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CALCULUSES, ANNIHILATORS AND HYPERINVARIANT
SUBSPACES

B. M. SOLOMJAK

0. INTRODUCTION

A large amount of recent achievements in operator theory is connected with
the problem of invariant subspaces. It remains unknown however whether every
bounded operator T in a Banach (or even in a Hilbert) space B has a nontrivial inva-
riant subspace, i.e. a closed subspace X such that 7X = X and {0} # X+ B.

One way to an invariant subspace (IS) goes through a functional calculus,
We shall also follow this pattern.jThe words ‘‘functional calculus for an operator 7
usually mean a continuous homomorphism ¢ of a function algebra, containing z
(== the identity map of C) into .Z(B) (= the algebra of a!l bounded operators) such
that ¢(z) -= T.

The Riesz-Dunford calculus is defined on the set of functions analytic in a
neighbourhood of ¢(7T) (= the spectrum of 7) by the formula

(R) o =11y = -] -Sﬂz)w, T)di,
4 r

I' being a contour surrounding o(7) and R(4, T) b (T—AI)1. This calculus enables
us to find invariant subspaces corresponding to the isolated parts of the spectrum.
Quite an opposite position is occupied by the L®(g(7))-calculus for normal opera-
tors, the richest one from the point of view of functions and the poorest one from
the point of view of operators. In the common practice intermediate cases are con-
sidered.

First of all we should like to mention a calculus based on the Cauchy-Green
formula, developed by E. M. Dyn’kyn [11]. it is defined on the set of functions ana-
lytic in a domain Q containing ¢(7) in its closure, and sufficiently smooth up to 0Q.
The rate of smoothness depends on the rate of growth of the resolvent near the
domain. Some results of this paper can be obtained on the base of this calculus.
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J. Wermer has constructed a calculus (the “W(T)-calculus™) applicable to
operators with spectrum on the unit circumference T:

W(T) ¥ {fe LNT) : Y, i }m)} iT") < + oo);

o0

Y }'(n) T

00

def

o(f) = AAT)

We shall also use the algebra W (T) — W(T) n H®. (Throughout the paper we
use the technique of spaces H” and E?(Q). For references see [4].) With the aid of
the W(T)-calculus J. Wermer proved a theorem which originated the approach we
discuss. Namely, T has a nontrivial IS provided

&, logi T
(W) pX Lt - < 00
hr

and o(T) contains more than a single point. (Note that (W) implies o(T) < T.

Then it was proved by Y. I. L’ubich and V. I. Matsaev [14] that if o(T) lies
on a smooth curve 7, it contains more than one point and if 7 satisfies the following
nonquasianalyticity condition:

Slog.;log+ max{ {R(4, T ; dist(4, y)=¢} dr < oo

0

then Thas a nontriviai IS. The proofs of these theorems virtually show much more,
namely, that T is decomposable (see [2]), and the IS’s they yield are in fact maximal
spectral subspaces corresponding to an arbitrary closed subset of o(T’). These 1S’s are
hyperinvariant, i.e. they are invariant for all operators commuting with 7. We shall
write  HIS for a hyperinvariant subspace.

When o(T) is a single point the decomposability does not work. A. Atzmon
[1] was the first to apply a functional calculus in this case. The main result of [1} is

THEOREM Al. Let T be an invertible operator in a Banach space, such that
for some ke N, ¢, ¢, > 0,
(A) T < e, n >0, keN;
{AA) s T < g explent®), n>0, ¢, >0.
Then either T - AL 2 € C, or T has a nontrivial HIS. If also o(T) = {2} then either
(r - 2,0+ .0, or T has an uncountable chain of nontrivial H1S’s. ( Note that in the
case a{T)# {2y} the statement of Theorem Al follows from Wermer's theorem.;

A. Atzmon employs the following scheme: calculus — annihilator - HIS.
By an annihilator we mean an § # O such that f{7) -+ O in some calculus. If it
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exists we write T e C,(), where U is the algebra of the calculus. (We denote by
C, the class Cy(H).) The passage annihilator — HIS is interpreted by N. K. Nikol-
skii in the following way:

LemMMA. Let Te Co(N). Suppose that every closed ideal A = U has the pro-
perty: either A = {feW: f(2) =0}, AcC, or there exist f¢ A, g¢ A such that
Je € A. Then either T has a nontrivial HIS, or T'== 21, A C.

Proof. Consider A= {feW: fiT) = 0} #{0}. It isa closed ideal in A (by the
continuity and multiplicativity of the calculus). If there exist f, g¢ 4 such that
Jg € A, we have {0} < Img(T)c Ker f(T) < B and Ker f(T) is the required HIS,

The alternative implies that z — 1 € 4 for some 1€ C and then 7 = Al. %

Our paper is in a sense a development of Atzmon’s results. They are extended
onto a wider class of operators. An important step is the choice of a calculus. It is
convenient for our purposes to define the ““calculus’ on some linear set & (which is
not an algebra). An analog of the equality z(T) == T holds in a ‘‘limit”’ sense. The
multiplicativity holds for some pairs f, g € # with fg € #. The proposed calculus is
based on the formula (R) and works when the spectrum is ‘“thin”. The de-
finition of an annihilator remains unchanged. The passage annihilator —» HIS
is based on considerations close to those of Lemma.

Let us now turn to an approximate description of our results. Let o(T) == {4y}
and suppose there is a Jordan domain @ with a rectifiable boundary Q@ such that

IRG, T < 0u(14 — Ao)s A @
IR(, T)| € 0oI4 — 4l), A€ Q.

The growth of ¢, corresponds to the critical Phragmén-LindelSf growth in 4, for Q;
the growth of ¢, is essentially weaker. Then either T has a nontrivial HIS, or the
upper estimate for [{[R(4, T)|| inside Q is also c, (|2 — A|). Thus, to be sure of the
existence of a HIS we have to exclude the cases of symmetrical growth of the resol-
vent, either imposing an extra condition or using the fact that T — 1,7 must be nil-
potent when ¢, = x~", Theorem Al gives an example of application of such a
scheme with Q@ = D (the unit circle) and 1, ¢ T.

The existence of an IS can be sometimes deduced from a ‘‘weak™ estimate
in Q:

(R(A, T)x, )| € @12 — Al), L€,
where x € B, y € B* are fixed and nonzero. The existence of an annthilator does not
always imply the existence of an IS. The paper [1] contains the following

ProrositioN A. Let ||T"|=O(expeln|®), n—- -+ oo, a<1/2. Then
Te Co (W A(T)).
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The W (T)-algebra has prime nonmaximal ideals and Lemma cannot be
applied.

We extend the result of this Proposition up to its natural bounds. We also pro-
duce an example, answering in the negative two questions posed by A. Atzmon
in [1].

1 wish to express my deep gratitude to N. K. Nikolskil for his constant gui-
dance and encouragement. I am thankful to G. Y. Bomash, E. D. Gluskin and
V. P. Havin for helpful discussions.

1. FUNCTIONAL CALCULUS FOR OPERATORS WITH THIN SPECTRUM ON 02

1°. DEFINITION 1. Let @ < C be a star-shaped domain (with the centre 4y)
with rectifiable boundary. Let T € £(B), o(T) = Q and suppose the set a(7) n Q2
has zero linear measure. The function

K(2) %= supiR(g + 12 — ), T)lls A€ 0@,
ra>1

is measurable and a.e. finite. We assume that there exists an 1 € H* () such that
¢)) (DKL) € ¢ ae. on ¢Q.

The 1-calculus is defined for functions f =: hg, ge E*(Q) by the Riesz formula;
we write éQ for the boundary contour with the natural orientation.

def 1 ;
@ syl Sf(/l)R(A, T)dz.
s )
NOTE. We may suppose that 4 is an outer function (for definition see [4]).
PROPOSITION 1.1. The l-calculus has the following properties: (for the sake
of convenience we consider 1y =:0)
def €
() ““Continuity”: If(T)] < (2m)~'cligly == o S lg(4) [:dAl.
g o0
(i) “Permanence”: f(T) - f(T), r -1 —.

Here f.(A) %t f(Ar) € ENr~Q), so f,(T) is defined by the Riesz-Dunford calculus.
(i) “Multiplicativity”:
(a) (hg)(T) p(T) = [M(gp))(T); PPy g€ ENQ).
(b) (heg:)(T) (hg)(T) = (h(g:hg2)) (T); &:» &2 182 € ENQ).
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(By #, we denote the set of polynomials.)
(iv) a(f(T)) = f(a(T) n Q).

Proof. Since (i) follows immediately from Definition 1, we start with the pro--
perty (ii).

Choose F, to be relatively open in 0Q, containing o(T) N 3dQ, and with
|F] < & The set S‘if:fC\(Q U WU pF) is closed and does not intersect a(T’), there--

p>>0

fore ||R(4, T)|| < ¢, A€ S. Further, when r > 1/2

(hg)(T) — (h,g,) (T) == 2i~- S h(Dg(A) [R(A, T) — r'R(r~14, T)] dA
n
o
and thus
2n(|(hg)(T) — (h,g) (D) < Ih(Dg(DI R(A, T) — r*R(r~2, T)|| |dA] +

0a\F,

n S DEDIIREG, T + 2RC-12, T 1d4] <

F
[

<ITr = 1) llghlhllo -+ 3¢ S I8 101
FZ

Choosing first ¢ and then r we obtain (ii).

The ‘“‘multiplicativity’” properties follow easily from (ii) and from the multi--
plicativity of the Riesz-Dunford calculus.

Finally, if T — AI has no inverse and A € @, then f(T) — f.(A) has no inverse:
and so does f(T)— f(1) (make r —» 1 and consider the limit in the uniform
topology). %

Now we shall introduce typical situations when the 1-calculus can be con-
structed.

DEeriNITION. ¥V, ,, . e {x +iyeC:0<x<¢ |yl <ax", a,e>0, meN.
We say that a domain Q belongs to the class (m) if it satisfies the requirements of”
Definition 1 for A, = 0 and

3a,6e>0, VicdQ, V,p ¥ +AinQ =0

(see Figure 1).

PROPOSITION 1.2. Let Q be of the class (m), o(T) < Q and let & = o(T) N 0Q.

def —~

be the set of nonuniqueness for the class C{"(Q) = {fe C(Q): f™ e C(D)}. Let also-

IR(, T < cdist™"(2, &), A¢Q.
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Then T admits a 1-calculus in Q.

Fig. 1.

Proof. For r > 1,
"R(rA,T)i < cdist™*(rA, &) < ¢dist=™" (4, &).

The last estimate can be deduced from simple geometrical observations. Thus
K(2) < cdist="7(2, ). There is an he C3%(2) such that /¥ {&:=0; k-0, ...,
mn — 1. Then h(4); < const dist™(2, &) and (1) is satisfied which is all that is
needed for the 1-calculus. 23]

PROPOSITION 1.3. Let @ be the unit disc D, o(T) =D, o(T)nT: {1};
iR(A, T)" < @(ji — 1}), A¢D. Suppose @ is decreasing and S log®@(x)dx < co.

0
Then T admits a 1-calculus in Q.

Proof. Clearly K(2) < ®({4 — 1}). There exists an outer function # € H*® such
that lh(e®): -~ 1/d(iel* —1i) and (1) is satisfied. 1

2°. DEFINITION 2. Let Q < C be a domain of class (S) (V.I. Smirnov’s class
4]) and ¢@2 - - a simple rectifiable curve. Let

Te Z(B), o(T)c @, o(T)ndQ = I}
and
) IR(LT). < cid =™ 2gQ

The 2-calcufus is defined for functions f == (z — Zy)"g, g € EX(Q) by the Riesz for-
mula (2).

Note. The 2-calculus imposes more restrictions on the operator and less
on the domain than the 1-calculus. However when 2 — A, € () one can choose
) == (A — Zg)" and both calculuses will coincide. In fact we shall deal only with
such cases, but it is convenient to consider the 2-calculus separately because the esti-
mate (3) takes place rather often and makes possible a slightly different approach.
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PROPOSITION 1.4. The 2-calculus has the following properties. (We put Ay == 0.)
() “Continuity” : If(T)|] < ¢ (2m)~igil, _
(i) ““Permanency”: for functions analytic in a neighbourhood of Q the 2-cal-

culus agrees with the Riesz-Dunford calculus;
(ii') The weak convergence g, — g in ENQ) implies the weak operator conver-

gence (2°g)(T) = (2"g)(T).
(iil) Multiplicativity:

(@) (2"gp)(T) = (Z"(TYKT); pePs geENQ);
() z"(g:2"g)N(T) = ("¢ )T) (2"gXNT); g1 € EXQ), g€ H®(Q);
(iv) a(f(T)) = flo(T) 0 Q).
Proof. (i) is straightforward so we pass to the property (ii). In the Riesz-Dun-
ford calculus f (R’(T):—;:; S SR, TYdA, where I' surrounds the spectrum.

r
For I' choose I, the contour 8(Q U B(4y, £)) with the natural orientation where
B(4y, &) = {z: |z — Al < &}. We have:

Toom-—nmy=( | - | Jwrans

T, NoB(Ay &) 02N B4y, )

hence

20 fR(T) — ATI| < (2m& + 132 0 B (B, £))cliglloo — .

(ii") is the consequence of the fact that (R(4, T)x, y)A* € L*(0Q).

(iii). We check only (b) as a less trivial case. Since Q belongs to the class (S),
£, can be approximated by polynomials p, in E* (see [4]). OQ being a simple recti-
fiable curve, we can choose a sequence {q,} of polynomials, converging to g, in the
weak-star topology of H®(Q) (see [5], Chapter VI, 5°). Then z"p.q, — 2"g:8:
weakly in E1(2). Making use of the properties (ii’), (i), we obtain (z*q,)(T) 5 (z"g)(T)
and (2" XT) — ("¢ )(T) (in norm). Hence

@"PNT) (zg )(T) = (z"g) (T)(z"g) (T).
But

(@'p)(T) (2" )T) = ["(pz"q)UT) = [2"(g12"g)UT),

so the required equality is established.

(iv). We have f= z"g, g € E}(Q). As above, we choose g, € %, such that
q. — g in EF1(Q) and then (z"q,) (T) - f(T). From this point the argument repeats
that of the Proposition 1.1 (iv). %

10 — 2660
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2. ANNIHILATORS

Let T e #(B) and suppose that T admits a 1- or 2-calculus. Question arises
whether a function g € EX(Q), g # 0, exists such that (hg)(T) - - O. If the answer
is affirmative, hg is naturally called an annihilator for T. (In the 2-calculus we
always set n(z) =~ (z - Ag)")

Let /g be an annihilator. ¢Q2 being rectifiable, g € EX(Q) can be represented in
the form g,/g,, where g; € H®(Q). Thus, using the multiplicativity (b) of the calculus
we obtain that /ii(Ag,) is also an annihilator. So we shall always choose an annihi-
lator sig with ge H®(Q).

THEOREM 1. Let g € H®(Q). The following statenients are equivalent:

(i) (he)(T): - O.

(i) VxeB yeB®, F,,% hg(R(-, T)x,) e HQ).

(i) h(A)g(A). {R(4, T)i! < const, ieQ\a(T).

Proof. (iif) = (ii). Since Ag is analytic in @, it vanishes on the spectrum. Hence

T can have only isolated points of spectrum in Q. Now (ii) follows from the standard
removable singularity theorem.

(i) => (i). We have ((hg)(T)x, y) == S F . p(A) di = 0 (see [9], Chapter X,
dn
§5, Theorem 1).
(i) = (iii). The function &, , is analytic in @\o(T) and has nontangential
limits a.e. on £Q, for 6(T) n ¢Q is a closed set of zero linear measure. The boundary
function # ,'¢Q is summable (and even bounded) (see (1)).

. o 4. 27
AT (A dL = .? (T7-(hg¥(T)x,3) =0, mneN,
1
[{12]

using the multiplicativity (a) of the calculuses. Thus we conclude ({9], Chapter X,
§4, Theorem 2) that &, , is the Cauchy integral of its boundary values and hence
F ey € B Q) ([9], Chapter X, §5, Theorem 2). (More precisely: 7, ., defined on
@2\a(T) can be extended on the whole of Q, resulting in an EYQ)-function.)
Finally, using the maximum principle:

sup hg(A)i R(AT) €  sup Fo (A <¢'g e EL
LeN\H{T) AER
xig1, 1ysl
COROLLARY.

MT) =0« sup ki) R T) < co.

A€ N\H(T)
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NOTE. In the case when /i(T) = O the calculus is trivial. On the other hand
the estimate sup |[#(4)] [[R(A, T)|| < co holds according to Definitions 1 and 2.
i€aQ

It expresses the fact that our calculuses can be used only when the behaviour of the
resolvent is different on different directions approaching the spectrum point.

Now we pass to our ‘‘typical situations”.

ProrosITION 2.1. Let o(T) = {0} and for some B, 0 < B < =,

IR@A, DIl < ki2=", largd] = B;
(4)
IR(4, T)|| < kyexp(kold|~™%), AeC.

Then T has an annihilator.

Proof. For B <m we consider @ =Dn{z: Jargz] < B}. (We set argze
€ (—m, n].) It is clear that the calculus (1 or 2) is well-defined. Put g(z) =
= exp(—kyz~ ™) ¢ H*(Q). Now z"¢(z) (R(z, T)x, y) is analytic in Q and bounded
on the rays argz = 4 f5, argz = 0. The Phragmén-Lindelof principle works with a
huge ‘“margin of safety’” and thus our functionisin A*(Q). Making use of Theorem 1,
we obtain that z”g is an annihilator.

For f==n we consider Q= D\{x Liyiy< -7115 x{?, x < 0}. By the
Hilbert formula R(u, T) = R(A,T) (I — (u— )R, T, so for |u— (<
< —; IR(4, T)|~Y, we have: ||R(u, T)|| € 2iR(4, T)||. The domain is chosen so that

IIR(A, TH} < 2kjA|=*, A ¢ Q. Thecalculus canbedefined and we again consider g(z)=
=: eXp(— k,z7Y%) € H*(Q) and similarly conclude that z"g is an annihilator.

PROPOSITION 2.1°. The conclusion of Proposition 2.1 holds if (4) is replaced
by a weaker condition

(4) ' IR(ALT)| < kdist="(2, 0Q), Ai¢Q,
where Q=D n{z: largz| < B}, B< m.

Proof. We can consider a slightly enlarged domain Q5 Q (see Figure 3).
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¥+
Fig. 3.

y,+ and y. are chosen so that lexp(—z==%3), :=const > 1 on them. A calcu-
lation shows that y, and y_ have the tangency of a finite order with the correspond-
ing rays {argz - -+ ) and therefore we can find me N such that

'R, T) < kid-= i¢@Q.
The calculus can be defined and z™ exp(—k,=~™%%) is an annihilator (this can be
proved similarly). 2]

Let us mention that we use (and shall do so constantly) the Phragmén-Lin-
del6f principie for curvilinear angles (a precise reference is [12], Theorem 3.4.3) but
with “nearly” a double “margin of safety™.

As a rule we have to deal with conditions like (4'). Consequently we have to
distort Q to obtain an inequality similar to (4) in its inferior. How far one can go in
this direction is illustrated by the following proposition.

In this proposition we impose a purely technical requirement of ‘‘regularity”
on the function & limiting the growth of resolvent, namely

(5) x- f_,__._,-_—- { < const.

PropositioN 2.2. Let o(T) = {0},
() R4 1) < gexplepd,™), 2eC;
(i) ‘R(AT)| < ®(Rel), 0<Rei< A
Let ®e CYO, A), ® | , @ > 1 and suppose (5) is satisfied. If
12

X

then T admits a Y-caleulus in some domain Q and has an anniilator. If in addition
(i) lim log!R(L T)i- |4 >0
A0
Re <0

the calculus in nontrivial.
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The proof is rather long but does not involve new ideas. We write ¢ for an
arbitrary positive constant, not necessarily the same in different formulas.
Mention that ¢ | and (a) imply

(b) xlogd(x) -0, x-0.

1°. First of all we must ““distort” the half-plane and estimate the correspond-
ing conformal map.

LeMMA 2.1. Set Q={z=x+1iy:|z| <3J, x <0 or |y > ¢(x)}, where
9 €CHO,8), 0(x) T30,0'(0) > + oo,

(:k) S-“d;xi- < +OO,

_ ¢(x)

0
(xx) x e < const.
4

Let w: @ — {z: Rez < 0} be the conformal map such that 0(0) = 0, w(a 4 ip(a))= =i,
where |a -+ ip(a)] = 4.
Then for some ki, k,

kiz} Z lo(2)] 2 kolzl, zeQ.

2.
NN

Fig. 4.

The proof will be given at the end of the section.
x

In the proposition we naturally put @(x) == (_.__.
log &(x)

1/2
) . Clearly, ¢ €

€ C{0,4), (X) =50 and (x) holds.

- 1 ( log @(x) )‘/2 log #(x) — x [log $(x))

o= log? &(x)
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50 by (5) and as [log &(x)) < 0,

¢ \ xlog &(x) x log &(x)

Now we have (s+) and (b) implies that (p’(x)'—v—_f) + o0o. 'All the requirements of
Lemma 2.1 are checked.

X

2°. Here we show that there exists an outer function /1 € H®(Q) such that /: is
continuous on Q\{0} and

h()) € [O(Re DY, 4= x + ig(x).

The function ®(Rew~(iy)), defined on [—1,1] has summable logarithm. Indeed,
l0~1(iy}} > cly; by Lemma 2.1 and for y close to 0, |w~Yiy)] <2¢(Rew~1(iy)), so
Rew~Yiy) > ¢~Yc,»,/2) and since @ decreases, for some r>0,

S log ®(Re w~Y(iy)) dy < 2 S log (¢~ cy/2))dy <
(V]

wr

a a a
4 log &
£ - -\log @(u) ¢’ (1) du < const A —-(~u—)~<p(u) du =- const\ du < b oo
¢ u o(u)
0

0 0

So there exists an outer function i€ H®({z : Rez < 0}) such that
iy)! = [P(Re @~ NI, yel~11],

and continuous on {z : Rez < 0)\{0}. Then / == /i o w is the function we are looking
for. This very h provides the 1-calculus for T We choose ¢ sufficiently small so that

€2 should be star-shaped. This is possible owing to the fact that (p’(x)x;o> - 0O,
Obviously, K(1) € max(const, @(Rel)), hence hKe [°(0Q) and the calculus is
well-defined.

3°. Now we prove that 7 has an annihilator. For z == x 4 ip(x),
iexp(eaz ™)t == exp(cax(x® + @*(x)) ") <
< expleax{(@(x)) ) = exp(c; log P(x)) < P"(Rez), meN, m > c,.

it means that 4"™(2) exp(csz~") is bounded on dQ. Since it is also bounded in the
left half-plane, A™(z)exp (c,z=Y) € H®(Q) by the Phragmén-Lindelof principle
The same principle gives us that 2" +1(z) (R(z, T)x, y) exp (cs, z~1) is bounded in @
for this is the case on {z:Imz =0, Rez < 0} and on 0Q. (Here we use (i).) So we
apply Theorem 1 and conclude that 2™ *Y(z)e»* annihilates 7.
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4°. It remains to check that provided (iii) holds, the calculus is nontrivial,
i.e. (T)# 0. We make use of the following well known result.

LemMMA 2.2, Let g be an outer function in {z : Rez > 0}. Then
limxlog g(x)| =0, x — 0,. %

Thus we have: lim|x|/log|h(x)] =0, x—0_. For z=Iiy, sufficiently
small, as at the beginning of 2°,

2] llog h(z)| < |yl log ®(Re w=(iy)) < |yl log ®(p~(cly)) =

= %[rp"-(clyl) log #(~(cly))]"* > 0.

(We used (b).) Applying the usual Phragmén-Lindel6f method we obtain that
14| lloglh(3)] - 0; 4 >0, Reld < 0.
Let ze @ By Lemma 2.1,

(z| log 1A (2)]] = |z |log[/7(w(z))ll < ;1 lw(z)} - |log [l;(co(z))ll zj) 0.

2

If /(T) = O, by Theorem 1, |R(4, T)|| < c| h(%)|-* and
|4 log IR(4, T)Il < const |4l + |Aloglh(W)l] = 0; 1 -0, e,

which contradicts (iii).

5°. Now we prove Lemma 2.1. The proof is a straightforward application of
Warshawskii's asymptotics. '

First make a proper substitution: z, = log(—z~') (argze(— =, =).
The left half-plane is mapped onto the standard stripe G = {z: {Imz| < n/2} and
£ is mapped onto a curvilinear stripe ', bounded from the left by {z: Re z = log 1/3}.
Q' is symmetrical; denote its boundary curves by {s 4 i/2 0(s), s > bq—f—-flogl/é}
and by W the conformal map of Q' onto G arising from w. Note that 0(s) can be
written implicitly:

. 1
s = —loglx + ip(x)| == — 5 log (x* + @%(x)),
1 X T
-~ 0(s) = arctg - + ——-
5 (s) g o0 T2

We want to write the asymptotics of W when s tends to infinity in the form of {12},
Theorem 2.6.5, p. 161. The preliminary requirements are satisfied: Q' is symme-
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trical and 0(3)—97: as —— < ’c -0, x> 0. We have to
p(x)  ¢'(x)
that
S 0'*s) —-- < o0
S)

where 1/0(s) can be dropped since (s) > =.

S 0/2(s) ds = S (0= x¢) X 4o S dx
(@2 + x2)* x + 0o’ ¢y’

i

M. SOLOMJAK

check also

according to (==). Now by (x) and since ¢' is separated from zero, we obtain the

convergence of the required integral.

Thus,
E d
s
Re W(¢ -+ iy) = n\ —— -+ O(1).
& S TR
Note that
¢ ds ¢ -1
n S.____ - T:S (n -+ 2 arctg --i-) ds = ¢ + O(1),
0(s) o(x)
since

S arctg- ~ZEds < cS X ds = cS X_ xibee dx < c’S—fj—x— < oo
o(x) (x) o(x) x+ @l J o)

So we have: ReW(£ +iy) = & 4 O(1) or, equivalently,

loglz=1 — ¢ < log {(w(2))~Y < logiz™Y -+ ¢
and

e~zi < jo(2)! < efizl.

3. HIS'S AND 1S8'S

1°. THEOREM 2. Suppose that T e L(B) admits a nontrivial 1- or 2-calculus
and that there exists an annihilator hg, g € EX(Q). Then either T ==clI, or T has a
nontrivial HIS. In the case of the 2-calculus either p(T) = O for some polynomial p,

or T has an uncountable set of HIS’s.
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Proof. We can assume h is an outer function. Consider Ann T = {ge E'(Q) :

:(hg) (T) = O}. This is a subspace of £'(£2), closed by the property (i) of the cal--
culuses, nontrivial and z-invariant by the multiplicativity (a). Our domain is good
enough, so that the Beurling classification of z-invariant subspaces of EX() is valid.
{00 is a simple rectifiable curve, so polynomials are weak-star dense in H*°(Q2) which
implies that the operators of multiplication by z and by the conformal map of Q
in H(D) have the same lattice of 18’s.) So, there is an inner function ¢, such that
Ann T = @EYQ). If ¢ = ¢y, ¢; # 1 is inner, then Ker(ho,)(T) is a nontrivial
HIS. Indeed, since @ is of class (S), ¢; ¢ 9EY(Q), and by the multiplicativity (b)
(Propositions 1.1 and 1.4) we have

{0} g Im(hg,XT) < Ker(hg,XT) < B.

Now we prove that different factorizations of ¢ lead to different HIS’s. Suppose
that @ = @0, = @304, ¢; are inner and # 1. If Ker(hp,)(T) = Ker(ho(T)
then Im(hg,) (T) < Ker (hps)(T) and h@,pz€ Ann T == @E'(Q). Then ¢, divides.
@,. Similarly, ¢, divides ¢, which yields ¢, == @,, @, == @4

If @ does not admit any factorization, it is a prime Blaschke factor corres-
ponding to some ceC, and then z—ceAnn T and [A(z)(z— )] (T) ==
=:h(T)T — cI) = O. Now Im A(7T) is hyperinvariant and nonzero. If this subspace
is equal to B, then T = cl.

Now note that if ¢ is not a finite Blaschke product, it has uncountably many
different factorizations and thus 7 has an uncountable set of HIS’s. If ¢ is a finite
Blaschke product and /i(z) == (z — z,)" as in the 2-calculus then p(T) = O for some
polynomial p. ,

Norte. If ¢ in the proof of Theorem 2 has a singular component, T has an
uncountable chain of HIS’s.

ProrosITION 3.1. Under conditions of Proposition 2.1, either T" == O, or T~
has an uncountable chain of HIS's.

Proof. We can apply Theorem 2. The calculus is constructed in the proof of
Proposition 2.1. It remains to check that A(T) # O. But A(A)-== 1", so (T) =
means T” = O If this is not the case we note that exp(—k,z~"*®)e AnnT. So
@ (“the least annihilator’’) can be but singular and we have an uncountable
chain of HIS’s. N

PROPOSITION 3.2. Let o(T) = {1},
IR(A T)| < cyexplesl 4 — 117%), a<1; 1¢D;

R4, )| < dy exp(do] 2 — 1|7Y), AeD.
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We suppose also that

(=) lim (A-—1i-log IR, 7)) > 0.

A—1,A€D

Then T has a nontrivial RIS.

Proof. The l-calculus can be defined according to Proposition 1.3 with
A== (A1) exp(—(1 — D), a<ao <1. That AL exp(— (1 — )~ is
an annihilator is proved by the Phragmén-Lindel6f principle, as in Proposition 2.1.
If A(T): O, applying Theorem 1 we have that [R(1, T)' < exp(c; 2--1'%),
A€ D, which contradicts ().

2°. It turns out that ‘‘weak-type’” estimates inside @ are often sufficient for
the existence of an IS.

THEOREM 3. Suppose that T € £ (B) admits a nontrivial 1- or 2-calculus for func-
tions from hEX) and that there exist nonzero x € B, y € B* such that (R(2, T)x, y)
is a meromorphic function of class N() (a ratio of 2 bounded analytic functions).
Then T has a nontrivial invariant subspace.

Proof. For some fe H®(Q) we have hf(R(-,T)x,y)e H®(Q). Then also
()(A) X(R(L, T) x,y) € H®(Q). Applying the Cauchy’s theorem we obtain that

(HFNTT"x,3)==0, n=-0,1,....

put 7 % {ue B: (W )T)T"u, y) == 0, n:=0,1, ...}. & is linear and closed being
an intersection of closed subspaces. What is more, % is T-invariant and xe& #.
It remains to examine the case when & == B, but then Im (4f)(T) is a HIS ¢ ‘ortho-
gonal™ to y#0. If the latter is zero, (4f )(T) == 0 and we can apply Theorem 2. [7}

4. ATZMON’S THEOREMS AND ATZMON’S QUESTIONS

I°. In the paper of A. Atzmon [l] restrictions on operator are imposed in
terms of its powers. They can be rewritten easily in terms of the resolvent.

Lemma 4.1. (1) [T == O(F), n — + oo implies
FR(A, Tl = O((1A] — D=5, (A > 1,.
(i) log(T"x, ) =0O(@('n®), a <1; n— + oo (n— — o), if and only if
logl(R(4, T)x, )l = O}l — 1I!'=1F), B=a-t—1, |2 = 14 (4i—-1-),

with absolute constants in corresponding estimates.



HYPERINVARIANT SUBSPACES 357

(i) Both “‘O’-s in (ii) can be replaced by “‘0’-s.

o

Proof is based on the formulas R(1, T) = — ¥, 774~""* for 4| > 1 and
0
R(%, T) -+ Yy, T~""A"for || < 1. Further calculations can be found in [1].
0

When o(T) = {1} these estimates are insufficient and one must apply the
Domar’s Lemma [3]. We quote the result in the form of [7] and in the case when
E == {1}. In § 5 we give the proof of some generalized version of this lemma.

LemMA 4.2, (Domar). Let u be subharmonic in C\{1} and u(z) < |jz| —1|7?
Then u(z) <€ const [z — 1~

Proof of the Theorem Al (Atzmon). If ¢(T) = {1} and (A), (AA) hold we
obtain, applying Lemmas 4.1 and 4.2, that
logliR(4, T)| =O([A —1]"Y), A-1, 1eD;

IR(A, D= O(IA] — 1)~*-Y, (A =1,
hence
IR(A, T)|| = O(]A — 1{~%-2), 1 -1, Rei> L
The operator I — T satisfies conditions of Proposition 3.1 for § = n/2 and the
theorem is proved. %
2°. In [1] the following result is announced:

THEOREM A2. Let T e #(B), suppose B is reflexive, a(T) = {1}, (A) holds
and for some nonzero x € B, y € B*

[(T"x, )| = O(exp(c|n*/?)), n > — oo.
Then T has a nontrivial 18S.

Proof can be derived from Theorem 3. Applying Lemmas 4.1. and 4.2 we
conclude that

IR(A, T)|| € |4 — 1]-%-2, Re A > 1;
|(R(4, T) x, ¥)| < dy exp(deld — 1|71), 1eC.

The first estimate guarantees the 2-calculus in Q = {1: |4| < 2, Red < 1}. By the
Phragmén-Lindel6f principle, (R(4, T)x, y)(A2 — 1)¥+2 exp(dy(A — 1)7%) € H®(R).

It remains to apply Theorem 3. %
3°. THEOREM 4. Let o(T) = {1} and suppose that
(NQ) Y, n=%2log||T"| < o0,
n>1

() log|{T"{| = O(|a[*?), n — — oo.
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Then T has an analytic annihilator. If in addition

(if) lim in[-Y2log T > 0,

R——CQ0

then T has an uncountable chain of HIS’s.

The second statement was announced in the paper of A. Atzmon [I]; the
first statement answers a question posed in [1].

Proof. An important step is to ‘“‘regularize” the sequence {;T"'}.

DEFINITION. We shall say that a positive sequence {c,} is s-regular (strictly sub-
linear and regular) if there exist N,d, 0 < § < 1, such that »®-1¢, | , n > N.

CRITERION OF s-REGULARITY. Easy calculations show that {c,} is s-regular
if and only if for some Ny, 6,,0 <, <1,

Cp— Coe1 £ (1 —0)n"%,, n>N,

LEMMA 4.3. Suppose {a,)°is a positive sequence, such that a,,, < a, - a,,
Vm, neN, and Y, n~3%a, < co. Then there exists a concave s-regular sequence

n>1
{¢,})° such that a, < ¢,, n€N and
(6) Y 032, < oo.
n>1

The proof of Lemma 4.3 is enclosed in Appendix.
Next some technical preparatory work has to be done.

LEMMA 4.4. Suppose {c,}& is s-regular and concave. Put p(x)==sup (1 —x)" exp ¢,,
n

C<x<, P(x):- i (1 -F x)™"expc,, x> 0. Then for some k, N > 0,

V]
h<1:

(@) Y(x) < eu(x2)x=*, x<h;
{b) u > log u(1—e*) is convex and piecewise linear on the interval (log(1—h), 0);
(c) Va > N,3x: p(x) =(l — x)" expc,,
(d) xl(dogu(x)'| € clog u(x), x<h.
(The proof follows further.)

LEMMA 4.5. (N. K. NikolskiY). Suppose 6 is a positive function on [0, 1),
u > log 0(e*) is convex; d, =: inf x~"0(x), n = 0. Then
0<x<1
1

1—-¢ -]
S (Mf}—) dx < c(g) Z nl-¢logd,, O<e<l.
1 —x

n=1
0

(See [15), §2.6, Lemma 2).
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Now we make use of these lemmas to deduce the required result. We intend
to apply Proposition 2.2 and Theorem 2 (with the Note), so it is necessary to choose
a proper majorant.

We apply Lemma 4.3 with a, = log||[T"l, » > 1, and fix the obtained se-
quence {c,}. Since {c,} is s-regular, we have: n=%2¢, | , n> N, and (6) implies c,=
- = o()/n), so log||T"|| = O(In|*2), n - 4 co. Applying Lemma 4.1 we obtain that
log{R(4, T)|| =: O(IA] — 1|71, |4] - 1. Since log|(R(-, T)x, y)| is subharmonic
in C\{1}, Lemma 4.2 gives

log|R(A, D}l =O(jA — 1=y, i1,
For | > 1,

IR, DI < of] AT < YA — D,
0

where ¥(x) = Y (L+x)""expc,, ¢ 0. We consider px) = sup (I — x)"expc,,
0 n

x €(0,1], apply Lemma 4.4 (b), and choose v e CY(log(1 — /1), 0) to be increasing
and such that

(7 logu(t —e*) < v(u) < 2 log u(1 — %),
(¥ V() < (log u(l — ev))".
Our majorant will be ®(x) = cx~*expv(log(l — x/2)), x < h. By Lemma 4.4 (a)

and (7), IR(A, D € (A — 1), 1 < |i] <1 4 A Our goal is to check all the
hypotheses of Proposition 2.2 for T) = T — I. Clearly & is smooth enough and

IR(A, Tl < ®(Reld), |4l < h, Red > 0.

Since v increases, ¢ decreases.
g
1) To prove thatS(’Og (L)

1/2
) dx < oo, it is sufficient to show that
X

/2
S(Eg“(j)—) dx < 00. Put 8(x)=p (1 — x), 0<x<1. Lemma 4.5 can be applied
x

O

oo
and we obtain that our integral has an upper bound ¢ Y n—%2log d, where
1

d, == inf x~"0(x). But by Lemma 4.4 (c) there is an x, such that 0(x,) = xJ exp c,
0<gx<1

and log d, < ¢,, Yn > N. So the desired estimate follows from (6).
2) Condition (5): x [(log@(x))| < clog®(x) follows easily from (7), (8)
and the similar estimate for y, stated in Lemma 4.4 (d).
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Now we are in the position to apply the first part of Proposition 2.2 which
claims the existence of an annihilator.

3) If we have (ii) we prove that lim !A — I|logiR (4, T)# > 0. If not,
i—1,2€D

logiR(%, T)i:-0(]A —1{"Y), A= 1, Ae D and by Lemma 4.1 log 7" -~ o(in1*)
n — --- oo, which is a contradiction. So (NQ), (i), (ii) make possible to use Propo-
sition 2.2 and then Theorem 2. It remains to prove Lemma 4.4 and we shall be
done.

Proof of Lemma 4.4. Put ¢(n) - - n®~ e,
(@) Y(x) = Y (1 4 x)""expe,, put ji(x) - sup (1-+-x)=" expc,.
O n

We show that Y(x) < er(x) x~%, x <h < 1, and clearly j(x) < p(xf2), x < 1.
For N big enough
o0

[oo] or
Y, (-0 expe, < Y (LX) "expted 2p(N)™ Y b
N N %

Estimating b, .,/b, we see that it is less than (1 -~ x/2)~1 for n >const x~19, So for
> const x 19,

(>}
b, < by}, (1 -+ x/2)7" < constx (1 + x)~Nexp c,.
0

218

Therefore (x) < (const x—%% -1 const x~1)ji(x) < ex~*a(x).

{b) The function 1~ log u(l — e*) is the upper envelope of linear functions
# > ¢, = 1y, $o it is convex and piecewise linear.

(c) {c,)¥ is concave so for x such that

- ) S O~ Ch-ps

Copr — O log(-
I —x

u(x) - = exp (max (c,, - - nlog (-1 L ))) =: (1 — x)exp .
n — X

(d) logp(x) = : ¢, — nlog (»] L ) for some n. If there are several such i's
—X

we choose the largest. Then the same formula holds for x such that

1
Coyy — €y < log(i i IS Cy — Cpoy.
X
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We see that (log u(x)) = — 1—7}"— - Now we have

1
log u(x) = ¢, — nlog(—«——»)} G — - =

1] —x

nx

>0l -+ e, — o) =7 > {0+ aytog ()~ * )
1 —x 1 —x 1 —x

>4, iﬂ; = 5,)(logu(x)) I,

for x sufficiently small. (We used the criterion of s-regularity.) %
4°. In the paper {1], two questions are posed:

1) Suppose that T is a completely non-unitary contraction acting on a Hilbert
space, suppose T satisfies condition (AA) and assume that o(T) is of measure zero
(with respect to Lebesgue measure on T). Is T a Cy-operator?

2) Let T be an operator acting on a Banach space and assume that T satisfies
conditions (A), (AA) and that 6(T) is a Carleson set. Is T in Co( HY) for some positive
integer m?

ProrosiTioN 4.2. Let E be an infinite closed subset of T. There exists a c.n.u.
Hilbert space contraction T, satisfying (AA) and such that o(T) == E, T ¢ C,.

Thereby the answer to both questions is negative.
Proof. Consider T,= PSS, K= H>OQ0H? 0(2)=exp —Z—+—: » S is the
Z —

shift operator in A It is well known (see [16], Lecture III) that [Tl =1,
o(Ty) = {1}; for @ & H*, p(Tf = Poof: o(T,) = O if and only if @ € OH®; T, is
completely non-unitary.

Since || Tyll < 1, this operator admits the 2-calculus in Q= {i: |} < 2,
ReZ < 1} for functions from (4 — 1)2EXQ). The properties of permanency imply
that (A — 1)® 0(4) is the annihilator in the 2-calculus as well. Then by Theorem 1,

[R(Z, Tyl < cld — 1172 exp(2]2 — 1]71) < exp(d]d — 1{7Y.

According to Lemma 4.1 (ii), log [}75"]] == O(n'/?), 1 — oo. Thus T, satisfies the con-
dition (AA), is c.n.u., and o(T) = {1}.
Let & be a dense countable subset of E. Consider T'= Y, @ AT,. This ope-

i<e
rator is also a c.n.u. contraction and satisfies the condition (AA), o(T) = E. Sup-

pose that o(T) == O for some ¢ € H®. Then p(AT,) = O, L& &. So p(Az)(T) = O
and we obtain that ¢(lz) € 0H®, @(z) € elz+z-A % for all 1e&. But & is infi-
nite, so ¢(z) = 0, and we may conclude that T ¢ C, . %
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5. ANNIHILATORS AND NONQUASIANALYTICITY

In this section we discuss the existence of an annihilator for operators with
1-point spectrum. It is always connected with some nonquasianalyticity condition.

1°. We shall need some facts concerning (non)quasianalytic function classes.
Suppose {m,}® is a positive sequence. Let Cy{m,} = {fe C®T): fi) <
<const ¢"m,}, where f@)({) denotes the complex variable derivative: f'(ef) -

it
re — jeit df:je ) We also use
t

r R - c0 [GUUN |
Cyolm,} -= CP 0 Coim,;,

ds iry
-- EAS ). gconst g"in,
dtil .

Eafm} {fe c(T):

and
Cagim,} == C 0 Cylm,}.
A function class 7 is called nonquasianalytic if there exists an fc &, f # 0, such

—

that £f®(1): - 0, k > 0; otherwise Z is called quasianalytic.

THEOREM COSK. (T. Carleman, A. Ostrovskii, R. Salinas, B. Korenblum,
see [6], Chapter 1V, [13]). Suppose i, > 0, m, 1.
1) The following are equivalent :
(i) C,lm,) is quasianalytic.

e 00 1 y - inf 1k
(1) Y B! =: co, where B, == inf my .

1 k>n
® n
e (1
(i) S-n O(r) dr == 0o, where O(r) == sup A
P a»l m,

2) The following are cquivalent :
(i) Cuqim,} is quasianalytic.
@iy f"q'q[m,,} is quasianalytic.
ity CAl'm,} is quasianalytic.

Other function classes are characterized in terms of Fourier coefficients. Sup-
pose {p,}acz is a positive sequence. Let

A
Bip,) = {fe LNT): i fln)! <cpy?, neZ},
r/;gA {pn} = ﬂ{pn} H H.
LemmA 5.1, 1) Suppose p, > 0 and for some integer k and ¢ >0, p,q, <
< PP Bom e L. IF Y, (1 + i) =logp, < oo, there exists an fe AB{p,} vanish-
REZ
ing on some arc but # 0.
2) Supposer,t ,n=0,and lim (n="r) -= 00,V me N (so that B 4{r,} = CT).
R—e+00
Y, n=¥logr, < oo, the class A 4{r,} is nonquasianalytic.
ny

—



HYPERINVARIANT SUBSPACES 363

The author does not know whether such a result was ever stated explicitly but
its proof is a mere compilation and will be hinted only.

Proof. 1) We put g, = p, and observe that Y, (1 4 n%)~tlogp, < oo. Next
n€z

we follow the proof of Lemma 2.10, [2], Chapter 5 which treats the case k = 1.

We replace the estimate p,_,,p,, > p, (used there only once) by p,_,fm = 1 P
c

and obtain that the constructed ‘‘cap-function™ is in #{p,}.
2) can be derived from 1). The idea of the argument is due to A. Atzmon

[1], § 4, proof of Proposition 2. Put p, = rm, ne Z. Monotony and ¥, n-%2logr,<
n>l

< oo imply Z (1 + n®)~1logp, < oo. Since p,t, 7 20, PonPorm = PoPrtm

and 1) can be apphed So we construct f ] @{p,,} A= +#0, f(e" =0, It} <
We can assume f(e™¥) = f(e¥) so f(——n) f(n) Consider g(z) = Y}, f(n)z"’
n>0

Evidently g € 8 ,{r,}.Since W ,{r,} c C? we have for k >

k it
L 0 = 3 fon = - 3 Fon G =
d: n>1 PY=¥ /
_ —k dzkf(ell) _
=7 e OO0

which implics the nonquasianalyticity.
2°, Consider

F (o) = {fe c=m: 11lls 2 3, MN 2 < oo}
where M,(f) = sup | f®(L)|. It is supposed that @, > 0, W 4; < W@,
181=1

PROPERTIES OF F{w,}.

1) #{w,} supplied with the norm ||.||# is a Banach algebra.

2) #{w,} is separable (Fejer sums converge to fin the norm (|- {|,).

3) Flo} E FlodnCP = {fe F{w} :f(n) =0, n <0} is a closed sub-
algebra in F{w,}.

4 If fe & fo, then £,"'S f in & {w,), f(2) = f(rz). (It follows from the

fact that M (f,) < M (f) and f, - fin CF)
5) #{w,} is nonquasianalytic if and only if Y, &, < oo, where a,=sup k- w}/*

npl k>n
(see Theorem COSK). B
6) Z ,{w,} is nonquasianalytic if and only if ¥, }/«, < oo (see Theorem COSK).
nal

DEFINITION OF THE #-CALCULUS. Let o(T) = {1}, (T — D! < cw,. Put

e 5 20 ‘”(T IF, fe Fw

Kkaal

11 — c. 2660
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PROPERTIES OF THE & -CALCULLS.
1) A < cifis.

2) The &-calculus coincides with the Riesz-Dunford calculus for functions
analytic in a neighobourhood of the unit circle,

3) (f + BR) (T) = #f(T) -+ P (1) ; f g€ F {ay}.

) (BT =D eX); 1, ge F {o}.
Proof. Consider

P = gﬂ") (1)(x — ¥k,

g == ¥ g9(1) (x - 1fk!
[}

By definition, f{T) = limp(T), g(T) == limg,(T). For polynomials we have
the multiplicativity, so it remains to check that (p,g,) (T") — (fg) (T).

. . o k) 1 .

) (D — () (i< S, if‘iﬁl (T~ IF
k=n+1 k!

pe B RLOM HE

kenv1i0 1 k=t

. 0 (k)l& o ) (k)l'
S2 £ec (‘ifh; Z .Lg__.(.ﬁL O+ g ..!:[___(_21- wk) .
k=In{2} k! k={(nf2) k!
Since f, g and fg belong to the algebra F{w,} both summands tend to zero.

5) If #{w,}is nonquasianalytic, thercis an fe F{w,}, f+0,suchthat f(T) - O
6) If # ,{e,} is nonquasianalytic, there is an fe # ,{w,}, f # 0, such that.
f(T):: 0. For this f we have also:

H(T)-0, r—->1—.

PROPOSITION 5.1. Suppose 6(T') == {1}, i(T — D} < &, {log (a7} is convex
and

(x) Y (@K < oco.
it
Then there exists an fe Cy, f# 0, lim f(T) = O.
r-»l—
Proof. Consider

FOHEFHT-DH} s C, /{ K }

o
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The sequence {log (k! a;p ")} is convex which implies the monotony of (k! ag')'V%,
k > k,. Applying Theorem COSK we see that & ,(T) is nonquasianalytic and it
remains to use the property 6) of the F-calculus. %

NoTtEs. 1) (%) is satisfied for example if T—Je G,,,;, (Lorentz space, G,/ =
= {Te B Y, (5,(T)n"Y) 2 < o0}). It follows from the estimate obtained in [17].
n>1

2) For the existence of a nonanalytic annihilator it is sufficient that {|(7— I)*[|<
< o, {log (a1} is convex and k; al*k-1 < co. These conditions are satisfied

for example if T — I € 6, (Matsaev ideal, G, = {T e Gy: Y, s,(T)n"* < 00}).
n>1

3°. In Proposition 2, § 4 of [1] an analytic annihilator for T is found provided
log |77} = O (|n}*), & < 1/2, # — +oco. The next theorem gives an extension of
this result on the class of operators, satisfying (NQ) with its inverse. On the other
hand one can hardly hope to get an annihilator if (NQ) fails.

THEOREM 5. Let o(T) = {1},
§Z(1 + n¥2)-liog |17 < oco.

Then T has an annihilator in the W ,T)-calculus.
Proof. The main step of the proof is the following

LeMMA 5.2. Under hypotheses of Theorem 5 there exists a sequence {o}® |

such that {log ai'} is comvex, |(T — D¥|| < oy, k > 0, and Y, (k~l/*)!7? < oo.
o1

We apply Lemma 4.3 with a, = max (log ||T”], log||T~"|]) and fix the obtained
sequence {c,}{ (in the proof of Lemma 5.2 as well).

We can assume that n=* exp ¢, » +00, Vke N, otherwise (T—I) is nilpotent,
First we shall deduce the theorem. Lemma 5.2 and Proposition 5.1 imply
that # ,(T) contains some nonquasianalytic class C, 1{m,}, m, 1. Put M, =2"m,

One can easily check that C’A_I{M,,} = E‘A’l,z{m,,} = C 4 1{m,}. Put p, = k* sup(k"/M,).
By Theorem COSK, Y, k-2 log 8(k) < oo, where 8(k) = sup (k*/}/M,). But pss =
k21 n
== k49%(k), so {p,) being monotone, ¥, k~¥2 log p, < co. We have & ,{p,} =C aaiM,}

k>1

because for fe B ,{p,},

A

<5 fml<e s, <

k>0 Pk

<cM, Y 1/k2=c'M,.
K51

On the other hand W (T)> % {n*expc,}. Bringing all together we see that
WAT)N F (T) > B{pa expc,).
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The latter class satisfics the hypotheses of Lemma 5.1.2) and so we can take f & 0,
J®(1) =0, k > 0 and fe W(T) n FAT). By the property 6) of the S*-caleulus
lim f(T) == O, so f(T) = O in the Wermer calculus.

=] =

Proof of Lemma 5.2. As usual, power norm estimates can be transferred into
resolvent estimates with a majorant depending on Al To make use of the fact
that o(T) = {l}, we prove a generalized version of Domar’s Lemma for the maio-
rant in question. The estimates of the resolvent now depend on (4 — 1! which makes
possible the return to power norm estimates again but with the powers of (I"--I)
(instead of T).

where P(x) == Y (1-+x)""exp ¢,. Inits turn P(x) < cpu(x) x-’»‘?i:p(x) by Lemm 4.4
na»0

(a), where p(x) == sup (1 — x)" exp c,. Put 0(x) - - max (1, logP(x)), x > 0. Lemma
4.4 (d) implics xSO’zx)l < ¢ 0(x), hence x°0(x) + and
0 (xf2) < 2°0(x),
SuBLEMMA. Let u be subharmonic in C\\E, suppose E is closed, E < T,

(2 u(z) < (|2 — 17,
o § and
(b) o(x/2) < cp(x).

Then u(z) < const - o{p(z, E}), where p(z, E)-: dist(z, E).

The proof is given a bit further and now we make use of Sublemma: u, (2) -
=z log(R(4, T)x,y); is subharmonic in C\ {1} and uy (2 < constO(/ 12 - 1);
"x%, "y € 1. We apply Sublemma with ¢ == 0 and obtain:

"R{4, T)! < const@'(jA — 1)},

for some positive / and A close to 1.

Put M(r) == sup {R(4, T);, jA -~ 1! = r. As in Theorem 4 applying L.emma 4.5
we conclude thatS(r'1 log M(r))'/* dr < oo hence

0

(9) S(log M@EH)V2dr < co.
]
Since (T —IF = ZL S (2 — 1R (2, T)dA,
T
A--lisr

HT I < o, S inf (M (), k > 0.
0<rgil
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Evidently, o, | ,log (¢zY) = max (ku — log M (¢¥)) is convex. Let 7 be the inverse

l€u<oo

function for r > (log M (r?))}/2, so that M(1%(w)) == exp (w?). Clearly (9) implies

o

oo —
Sr(w)dw < oo and Y} 1(J/k) k-1 < oo since t decreases. Thus,
k=1

% < MEEE(I) (k) =(exp k)ie*([k) = e (Vk).
So we have that i‘:(k‘l aFP? < oo.
k=1

Proof of Sublemma. 1t follows the argument of Taylor and Williams {7],
where ¢(x) = x.

For technical reasons replace Eby E u {0}. Put ¢ = ¢ -1. First we prove that
conditions zy€ C\E, |z,| > 1/2, u(z,) > ¢® imply that a disc with the centre z, and
radius R > 4c%(c — 1)7* y(c®~?) either contains a z such that u(z) > ¢**! or a
ze E,

Indeed, if {|z — z)] < R} =« C\E, u(z) < c°*!, then u being subharmonic,

wswmsJ—Sm%+@u©<
nR?

S1<R
cvtl
< o7t 4 —— mes{z: u(z) > ¢, |z - 2] < R}.
nR?

The second summand does not exceed

CD+1 .
mes{z = rei®: |z — 7| < R, ¢(|l —rl) > -1} <
nR?
CD+1 . ) R
< R mes{z =re'?: |1 —r| < P(c°-Y), |0 — argzy| < arcsin—14-
19 zo

(Here we use that R < |z,] because 0€ F.) So we sec that the measure of
our set does not exceed 2y(c®~Y) lR; and bringing all together, ¢® € ¢°-1 4
Zo

4 *FUY(c®" ) 2R |z5| -1, hence R < 2c%(c®~Y)|zo|"1(c — 1)~ which is a
contradiction.

The proved statement implies that provided u(z)) = ¢, p(z, E)<
<const Y y(c¥~2). The majorant ¢ decreases, so does ¥ and thus x/2 > Y(co(x))

k»v

and y(cy) < %t}/(y). Therefore p(zy, E) < const(c*~?) hence

o(p(z4, E)) = p(const Y(c*Y)) > const ¢*~1 > const u(z,).
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Nore. Mention that an analytic annihilator is constructed in Theorem 4
which can be partly applied to the operator in Theorem 5. However it may prove
difficult to choose this annihilator from W (T), so we have preferred to develop the
approach of this section.

6. EXAMPLIS
X

1° Let K bzthe operator in L3(0,1) : Kf (x):= S ft)yde. Consider " - Y ®K' 2,

Q
where % is an invariant subspacc of the direct sum of some number (may be
infinitc) copies of the opcrator K. Then T has an uncountable chain of HIS's:

Proof. 1t is well known (see {10]) that ¢(K} === {0},
R4, K)!' € ¢Re 7Y, Rei <0
;,R(/.,, K) < ¢, CXp (C‘.‘/:'A -’1): /e C.

These properties clearly persist for T. So T satisfics the conditions of Proposition
2.1, B == nf2 and Thcorem 2 can be applied. Since K” # O, also T # O and T has

287 ]

an uncountable chain of HIS’s. %8

2° Let  be of class (im) (see Definition, § 1). Consider a Banach algebra
B such that C5(Q) <« B is a continuous inclusion, Let W be a prime ideal in B,
corresponding to a point A, € (Q. Denote 4 == BN, Let T be the factor-operater
of multiplication by z. What can we say about T? First of all, ¢(T): = {4,}. The inva-
riant subspaces of T correspond to closed ideals in A. For A ¢ 0,

‘ROL, T)! € (z — 2)~Yp < const ¥ (2 — 2)~1 ¢k < const dist~*=1 (4, ¢Q).
We can consider an enlarged domain Q > Q such that
[R(2, T). < const A — jyj ™%+, 140,
So the 2-caleulus is well-defined in 9.

PROPOSITION 6.1. Suppose that there exists @ 0 W such that 6 e CKY(Q)
7it can often be 0(z) = zP exp(a(z -- 2,)"7)). Then either A is finite-dimensional or
it fias an uncountable chain of closed ideals.

Proof. For j e G, R(A, T) = - 0(1") [0(2) 0;(’)](7) Her e[o(&:_.,;’(fl]m
denotes the factor-operator of multiplication. Se, (
R, ) 10(2), < | 0(2) 0(%) = < const ; 0“2;"0‘("))'3 <
¥ -4 l.ia z— A Uk
< const [0} ieQ.

Ck({))’
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Applying Theorem 1 we obtain that (z — A,)"*+90(z) is the annihilator in the 2-cal-
culus and the required result now follows from Theorem 2. %,

3°. Let T be a nonzero operator such that o(T) == {0},
IR, D)) < ¢, exp(celd|=?), AeC;
[Rx,T)|| € c|x|™", xeR.

Then T has a nontrivial HIS.

Proof. We shall prove that T2 has a nontrivial HIS (assume 7?# Q). Check
that —T? satisfies the conditions of Proposition 3.1, B = =. Indeed, o(T?) = {0},

[R(a, 73|l < (RGVa, T - |R(—ifa, T) | < cta=", a > 0.
IR@, T3 < IRYA, Dl - | R(=V4, T)|l <
< c2exp(2c, A-V?), LieC. @

As an example of such an operator we can suggest a part of direct sum Y}, @ K,
i€l

where K; = K or K; = — K; Kis the operator introduced in 1°.

APPENDIX

Proof of Lemma 4.3.
1) First we construct an s-regular sequence {b,}{, satisfying (6) and such
that a, < ¢b,,n > 1. Fix §€(0,1/2) and put

(o]
—pl-d j0-2
b,=n Y " Pa

1== [n]4)
. °__
Obviously n°-*b, | and
- o s 4(i+1) s «®
2 n-8/2 b, < E i%-2g, Z n—@R)=-9 £ o E 782, < 0.
Nz fezl n=l i=1

Finally,

(ni2) -1 , n
a, <em=0n’-t Yy (a4 a,.) < ent=? Y, %%, < b,
i (4] i={mi4)

n
2) It remains to obtain the concavity. Putc, = ¥y i~' b, We have: i~1b,}
1

since i®-1b, |, hence ¢, > n(n~1b,) == b,. The sequence {c,}P is concave because
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(€s — €5-1) | . Simple verification (as for {b,{°) shows that (6) persists for {eas
To prove the s-regularity we use the criterion from 4.3). We can assume ¢, - 0o,
otherwise a, < cc, < const and everything is trivial. We have for n big enough:
by, - by.q < (1 = 8)n",, hence b, < 4+ (1 ~ d)c, < (1 -8y ¢, Thus,

€y €y & (1 - c’s.&) n-t Ca ‘.

Ly

5
eoub

08 Is cerosular,
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Added in proofs. After the submission of the paper I got information from A.
Atsmon that a result close to that of Proposition 3.1 was presented in his lecture at the
““Toeplitz memorial Conference in Operator Theory™, Tel-Aviv, May 12, 1981.
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