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DERIVATIONS ON CERTAIN CSL ALGEBRAS

F. GILFEATHER

All derivations from a CSL algebra o into itself were shown by E. Chris-
tensen to be norm continuous [2]. For nest algebras they are all inner and in
fact the nth Hochschild cohomology group H"(«, 4) is trivial for all # and all
dual &/-modules 4 which are submodules of #(H) [7]. On the other hand,
H'(, o) need not be zero even for certain width two CSL algebras (the inter-
section of two nest algebras with mutually commuting nests) [6). However, if &/
is the finite intersection of nest algebras with mutually commuting and inde-
pendent nests then H' (<, &) is trivial [6].

In this note we investigate the obstruction to H(s/, /) = 0 when & is
an irreducible CSL algebra containing a purely atomic masa. The irreducible tri-
diagonal algebra &7, introduced in [4] as well as its finite analogies o, are shown
to be the only obstructions to H(#, o) = 0 for this class of CSL algebras.

A derivation § of & into & is said to be quasi-inner if there exists bounded
operator T e & and a possibly unbounded operator § affiliated with the core
€ of of so that 6 = 7,4 (64(4) = AR — RA). We show that whenever every
derivation of .« into & is quasi-inner then HY (s, of) # 0 if and only if &7 is a
tridiagonal algebra. If we denote M, = span (& + o/*%)", then it turns out that
H'(, o) # 0 is also equivalent to the condition that for all »#, M, is not
weakly dense in Z(H). Moreover if HY (o, o) # 0 because there exists a non
quasi-inner derivation d then it is shown that there exists a core projection P
so that P</P is a canonical minimal finite dimensional CSL algebra s, and
0] A, is not inner. These canonical algebras 7, are isomorphic to certain finite
dimensional matrix algebras and are closely related to the tridiagonal CSL
algebra.

1. PRELIMINARIES

All Hilbert spaces will be separable. In this paper subspace lattices will
all be commutative and are assumed to be closed in the strong operator topology.
For a subspace lattice ¥ we let €, denote the core, the von Neumann algebra
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generated by #. A nest is a totally ordered subspace lattice while ¢ is said to
have finite widih if & is the join of a finite number of mutually commuting
nests. As vsual we let Lat«/ denote the invariant projections for an algebra
& < Y(H) and Alg¥ the operators invariant under a lattice .. We say an
operator T is affiliated with the core % . if there exist core projections P, con-
verging strongly to the identity so that the domain of T contains the range of
each P,, P,TP, == TP, and P,TP,< %,. We shall use P to denote either a pro-
jection P or its range space PH.

Core projections £ and F are called steictly ordered (E < F) it EL(H)F <
< /. A CSL algebra with an atomic core is determined by the relation < bet-
ween its minimal core projections. Thus we describe the simple tridiagonal al-
gebra o7 and the finite algebras &7, by describing the order < on the minimal
core projections.

Exampre 1.1. To determine the algebra o7,, we let E,, ..., E., be the set
of minimal core projections. Thus F; 1 E;if i # jand I E, ;- ... " £y, Let
Eyioq -4 Egjuq € Ey; for i:=:1,....n and E, € E., determine the CSL algebra
&y, An Operator A € &7, precisely if A: E, > E;foriodd and A: Ey; = E,;. 4 +
-} Ey; - Ey; ., where E, is identified with E,,.,. This algebra has non inner
derivations for » > 2 and a direct calculation shows that HY .7, /) : C.
Clearly HY(s7,, &7,) is trivial and 7, is the smallest algebra with non inner deri-
vations (if dim E; :-- 1, then &/, is a four dimensional algebra on a four dimen-
sional Hilbert space).

ExampLr 1.2.  To determine the irreducible tridiagonal algebra 7., let
{£;1¢°1 be the minimal core projections. Thus E; 1 E; if i=-jand Y E, [
1

Let E; € E;, and Ey;_q = Es;yq <€ Ey; fori==12 ... determine the algebra /7.

It was shown in [6] that HYf, &) = (o’'s Where s :{ layete N @

is boundcd}. An operator 4 € 7, if and only if A:E;, - E; for i odd and

A By = By = Epy - Eyjyy

A representation for a commutative subspace lattice was given by W. Arveson
[1]. This representation of the subspace lattice is in terms of the increasing
sets on a compact partially ordered measure space (X, <, u). We consider the
case when each of the minimal core projections is one dimensional. Then for
the algebras &, and &/, given above the space X is discrete, y is counting mea-
sure and each minimal core projection corresponds to a point x; in X. Because
the representation of Le & is in terms of increasing sets (S is an increasing
set if x€ S and 3 > x then y e S) the order < on X is the mirror image of the
order < on the corresponding minimal projections. Thus to determine the lattice
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&y, = Latl,, we have X = {x;, ..., Xs,} and xs; < Xp;4, and x,, < x;. For
Lo == Latel,, we simply have x;; € x3;41. In each case x; < x; for all /.

In this paper we shall denote the rank one operator z — (z, x)y by x ® .
Thus if £ € F are strictly ordered core projections for o with x& F, ye E then
X®yed.

Matricially in terms of {E;} these algebras are the following: &/ € &/, has
the matrix representation

0 = O
* %3
0 = O

while & € &5, has the 2nX2n matrix representation

sk £ ) %
0 = O
K L ES
0 =
EE
0 =
In particular &7, consists of all matrices of the form
* % 0 =%
0 = 0 O
0 * = =
0 0 0 =

The algebra o/, is spanned by the core and the nilpotent of order 2 ope-
rators A, = e, ® e;, Ay = e, ® €3, Ay =€, ® e;, and A, = e, @ ey, If 6: A, —
— o/, is determined by 6(4,) = a;4; and J | ¥ == 0, then § is an inner derivation
precisely if ay + oy = o, + o,. Thus, as we noted above, H{(#,, &,) = C.

Let &, be the tridiagonal algebra where each E, is one dimensional and
is the span of ¢;. Let 4, and B, be the nilpotent of order two operators A4, = e,, ®
® e,y and B, = €y, ® ey, +1. If we set 6(4,) = —A4, and §(B,) = B, and let
6| % =0, then J extends to a derivation on «/_. For ¢ to be inner would
require an operator 7" such that Te; = ie;. Such an operator is not bounded but
is affiliated with the core ¥. Hence é is a quasi-inner derivation. It is shown in
6] that all derivations on ., are quasi-inner.
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In [4] the simple tridiagonal algebra was introduced wherein as above each E;
was a minimal core projection. In general a tridiagonal algebra <7 is defined as
having core projections {F;} so that for all Ae &/, AF; € F;_, + F; - F;,,.
The algebra 7., is “maximal’’ with respect to {E;} in the sense that it is con-
tained in no larger tridiagonal algebra w.r.t. {E;}. Generally many different alge-

bras can be tridiagonal with respect to a family of projections {E}.

Recall that for projections E, F in the core of a CSL algebra o/, £ <€ F
means Eo/F = ES(H)F. If E and F are minimal core projections then it is
easy to see that E&/F = 0 or £ < F. This observation will be useful.

LemMmA 1.3. Let o/ be an CSL algebra and E, F distinct minimal core
projections. Then ES/F =0 or Ef/F = EX(H)F and E&F =0 or FZE : 0.

Proof. Let E’ be the projection on the space [E«/FH] which is the closed
span of the vectors EAFx for Ae o/ and xe H. If E&/F # 0 then E' # 0. If
BeZ = %" == o/ nA* then BEAFx == EBAFxe[Es«/FH]. Thus E'e %' =: ¢
and since E is minimal in € we have F = E'. Since E and F are minimal core
projections E#(H)E and F¥(H)F are contained in 2. Thus E&/F = EZ(H)F.
If E&/F # 0 and FE +# 0, then o&f 2 (E + F)Y(H)(E+ F) and E¢ %. %

REMARK 1.4. The lemma is true if & is replaced by &, = (& + &%) =:
== span { L4 + Bf): 4;, B € ﬂ}. That is, if EZ,F # 0 then E./Z F is dense
i =1

in Eﬁ’(H)F in the weak operator topology. Equality need not be achieved since
., is not necessarily a weakly closed set.

While E. Christensen showed that any derivation of a CSL algebra &/ into
Z(H) is norm continuous it is sometimes useful to know about weaker con-
tinuity.

PROPOSITION 1.5. Let & be a derivation from a CSL algebra with completely
atomic core into L(H). If s#, is the unit ball of <f, then 6 | &/, is continuous in
the weak operator topology.

Proof. Let € be the core of &/ and 2 = €’ be the diagonal of «7. Then
é |9 is a derivation from 2 into #(H) and as such is inner. Thus there exists a
bounded operator T in Z(H) so that § — 8y is a derivation which is zero on
the von Neumann algebra &. Since J, is continuous in the weak operator topo-
logies we may assume 0 |% = 0.

Since 6|2 =0 we have 8(4BC)= AS(B)C whenever A4, Ce 2. Let
A, - A weakly in ¢, and let Pr be the projection on a finite set of vectors
{x;}7 .. where P.€ 2. Since § is norm continuous we have that {||6(4,)l} is bounded
and Pp0(A,)Pp=: §(PpA,Pr) — (PrAPy) = Pp0(A)P. By our assumption V P;H,
where P, is as above, is dense in H. Hence 8(4,) — 6(A4) weakly. Z)
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2. (s -+ sd*)"

We show in this section that for an irreducible reflexive algebra 7 contain-
ing a completely atomic masa, that o/ is tridiagonal if and only if for all n
the linear span of (& -+ &*)" is not dense in #(H) in the weak operator topo-
logy. The following lemma is the obvious half of that result.

Lemma 2.1. Let ., be the irreducible tridiagonal algebra with respect
to the minimal core projections {E;}. Then for all n, 4, is not weakly dense
in Z(H).

Proof. If Tis in o n&F* =D, then T.#4, < M, as well as MH,T < M,.
Since ¥ = & n/* then E. M E; = M, for all i,j. We show that any non zero
rank one operator y ® x with xe€ £, and ye E,,, cannot be in the closure of
A,. If it were then there exists a net 4, in .#, with 4, - y ® x weakly. Since
x®x and y ® ye D then (x ® x)A,(y ® y) € 4, as well. We then have that
(x ® x)A,(y ® y) - y ® x. Since y ® x is nonzero we conclude that for some a
(x ®@ x)A(y ® y) # 0 and hence y ® xe.#, That y ® x cannot be in .#,
follows from the fact that E,of/E; = 0 if j # i,i 4 1.

An algebra & is tridiagonal if there exists a family of core projections
{E;}{., so that & is contained in a maximal tridiagonal algebra 7, determined
by {E,} [6]. If o is also irreducible then the *-algebra generated by U .#, where
M, = (A + &%) is dense in FL(H). Moreover each &, < (&, +#%)". Thus
we have established the following corollary.

CoROLLARY 2.2. If o is an irreducible tridiagonal algebra then for all n,
M, is not weakly dense in £ (H).

THEOREM 2.3. Let &/ be an irreducible reflexive algebra containing a com-
pletely atomic masa. If for all n, #, is not dense in L(H), then o is a tridiagonal
algebra with respect to a family of core projections.

Proof. Let E,, E,, ... be the minimal core projections. Assume that for
some n the subspace [#,E,H] = H. Recall that 2 = ¥’ satisfies D(4,) =
= M,D = H, Since [#,E,H] = H we have E,. #,E, # 0 for all i and by (1.4),
E. M,E, is dense in E,L(H)E,. Let x,e E;, ye E; and z # 0 in E, Then z®x
and z ® ye #,. Since M,= ¥ we have y ® ze 4, as well. So y ® x =
=(z® x){(y ® z) € M,,. Thus .#,, is dense in F(H) in the weak operator topo-
logy. This is a contradiction and hence [#,E,H] # H for all .

Let F, be the orthogonal core projection [#,E,H]. Since V F,H reduces .«
we have VF,H = H. If E,F, # 0 then as in the paragraph above E; < F,.

Clearly (# + &#/*)F,H < F,,1H so that F;,F, =0. Let G,=F,© F,,
with G, = E, = F,. We have Y G, =TIand (& + #*)G, LG,,,; for i>2. Since
& - #* 1s selfadjoint we conclude that (& + &#*)G, L G, for |k —n| > 2.

Thus by definition &/ is tridiagonal. %
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REMARK. The irreducibility of &/ is an unnecessary hypothesis in (2.3)
however the proof depends on the existence of minimal core projections.

It can happen and is more usual that for an irreducible CSL algebra ./
the linear space .#, is dense for some . 1f for some n we have .#, is dense in
M4, then in fact 4, is dense in L(H).

LemmA 2.4, If 4, is weakly dense in 4, 1 then 4 is weaky dense in L (H).
Proof. We will show by induction that .#, is weakly densc in .#,., for

all k& and hence .#, is weakly dense in |_) ;. However |_J.#Z, is dense
k=it ko1

oo
in the von Neumann algebra generated by 7. Since &/ is irreducible {_j - %,
A

is weakly dense in Z(H).
We only need to show that if %, is dense in &, ,, then %, ., is dense in
M yyo. Let Tedl, ., and let x, ye H be given. There are operators S; € (&7 -+
N
-+ 7)1 <@ < Nsothat T==Y S, Each S; may be considered the pro-
i=:1
duct of n -+ 2 or fewer operators from &/ U «/*. Consider only any S; which
is the product of n 4+ 2 operators in &/ U &Z%. By the assumption that .#, is
dense in ./, the first n — 1 operators in the product S,-0 can be approximated
by n operatorsin &/ U &7%. If T;, is the new product with the remaining operator
in the product S,-0 we can take i((Sio -~ T,-o)x, ¥> 1 <¢/N. If we do this for all

N

the §;, 1 <7 < N, where necessary, we have each T, and hence T,:: Y I;¢
Cic

€u?,4+1. As they were chosen we see that (T — T x, y) | < e %

An element L, in a subspace lattice .& is called comparable if M ¢ & implies
M < L, or Ly < M. In particular every member of a nest is a comparable
member of the nest.

LeMMA 2.5. Let &7 be any CSL algebra and & = Lat</. Assume ¥ con-
tains an infinite rank comparable element L whose complement L* is also an infi-
nite rank projection. Then A, =2 L(H).

T, T, . .
Proof. Let Te $(H) and T::( ! “) with respect to the decomposi-
3 1

tion of H determined by L and L. We identify L* with L and let ¢ be a

constant so that
T (0 aI) _ (T1 Sz)
al 0 S; T,
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where S; and S; are invertible in .#(L). Then

T——(O al):AB

al 0
—1 .
where A4 = ( 0 SZ) and B:( 8T . Finally
3 0 L"—]‘Tl I
T— AB+ (0 al)
al @
where A4, B, (O‘ al)e o+ oA*, %
al 0

Since every member of a nest is a comparable element, the above shows
that for “most” nests .#, = £(H). A result (unpublished) of D. Larson shows
that #, = ¥(H) for all nests. The only case not included above is when A"y =
={0=P, < P, < ... <I} and each P, is finite rank.

We show this for completeness.

LemmA 2.6. (Larson). For a nest algebra 4, = L(H).

Proof. Let Ay be as above and let Te P (H). Let T+ al = A + iB so
that 4 and B are strictly positive. We will show A € /#,. Let 4, = AY2. Since A4,
isinvertible and P;H is finite dimensional, if 4, maps P,;H onto .//?i then dim(P; —
— P,_)H = dim(#,© M,_,) for all i.

Let S be an operator defined by induction so that S: (,//?,t @J?,-_l) -
- (P; — P,.,)H is an isometry. Clearly Vd/}i == H so S is an isometry on H.

Moreover SA4, € & = Alg A, so that A = A, 4, = (SA)*SA, € M,. )

Remark. That .#, is dense in Z(H) in the weak operator topology for a
nest algebra was first shown by R. Loebl and P. Muhly {8], with furthér proofs
and generalizations given in {3] and [5]. For the irreducible tridiagonal algebra &7,
(2.1) shows that .#, is not dense for any n and we note that &/, is the inter-
section of two nest algebras with commuting nests. Furthermore the denseness
of 4, in #(H) for a CSL algebra is in fact equivalent to o/ being a nest algebra.

((2.8) in {5)).

3. DERIVATIONS

For any derivation § of a CSL algebra o into & the restriction to the
diagonal algebra 2 = o/ n &/ is inner since & is a type I von Neumann algebra.
Thus we may substract that inner part and hence have a derivation of &/ into &
which annihilates 2. These derivations in turn are constant on the set EL(H)F
where E, F are minimal core projections.
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Lemma 3.1. Let E, F be two minimal projections with £ < F. Let 6 be
a derivation of &f into s/ with & | 2 = 0. There exists a constant ¢ so that 3(A) —
== ¢cA for all Ae Eo/F.

Proof. If E and F are projections with dimE = dim F let S be a partial
isometry of F onto E. Otherwise let S be a partial isometry of F into £ or from
a subspace of F onto E whichever is possible. Every 4e Eo/F can be factored
through S in the sense that A4 == SA, where A4, FL(H)F or A:: A;S where
A€ EZ(H)E. In either case Se o and A, € Z. Now §(A) == 5(4,5) = A, 5(S)+
4+ 6(A,) S == A,6(S) or in the other case 6(A4) = 6(SA4,) = 6(S)4;. In either
case we are done if we can show 0(S) = ¢S for some constant c.

Since ESF ~= § we have §(S) = EO(S)F. To show 4(S) == ¢S let ee F,
fe E with fin the range of S and e in the domain of S. Since e ® fe o/ we
have (e @ f) =f R fIe®fle®e =ce ®f Hence (3(S)e, f> = {cSe, .
If f; and e, are any other vectors in the range and domain respectively of §
then d(ey ® 1) == 8((f ® fi)(e ® f)(er ® e))=ce; ® f; and {(3(S)—cS)es, /> 0.
Since the projections on the domain and range of S are in & we conclude that
I(S) = cS. 2

Let 0 be a derivation on & for which ¢! % is zero. Then § is quasi-inner
if there exists a (possibly unbounded) operator 7 affiliated with the core % for
which & == 0. This means there exist core projections E, 1 I so that VE,H is
contained in the domain of 7 and TE, = E,Te ¥. Moreover 5(4) = 6,{A)
whenever A€ o and A = E,AE,. Thus J agrees with é; on E,&E, and by
(1.5) this determines o.

PROPOSITION 3.2. Assume for some n, ., is dense in L(H) in the weak
operator topology. Every quasi-inner derivation of </ into & is inner.

Proof. Let {E;}{°; be minimal core projections for ¥ and let § be given.
Let & be quasi-inner. We may assume that § | 2 = 0 and 6 = 3 where T is a
(possibly unbounded) operator affiliated with the core. Thus the domain of T
contains V G,;H where G; are core projections. Since {E;} are the minimal core
projections the domain of T contains V E H.

Let R, = : {i! E;.#[\E, # 0}. For i€ R, either E.o/E, or E,&/E; is not zero.
Our goal is to define a bounded operator S so that 6 = d;5. Let S| E, =: 0. Let
ie Ry and assume A€ E&E, is not zero. By (3.1) 8(4) == ¢;4. Thus we
define S| E; == —c¢;E;. Then AS — SA = E(AS — SA)F, = ¢;A. If however
E\E; # 0 we similarly apply (3.1) to define S!E,. If i,je R, and A€ E,/E;
is not zero then using the derivation property of & one can check that §(A) :-

k

+= d5(A). Hence 35 extends to a map on F.4,F for F=E;+ Y E, for {n;}{..S R,

i=al

which has the derivation property 6s5(AB) =z A04(B) + 65(A)B whenever
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A, Be FAMl F. Thus (6 — &) | FA ,F = 0. Since this is true for any set {n;}7., <

< R, then § and Jg agree on G G, where Gy = VE;, i€ R,. Now SG, is a
core operator so ||SG,|| =suple], i€ R,. However |c¢;| = Hﬂ?](f\)lﬂlL where
0# Ae E,/E, or E\&E;. Thus ||SG;|| < ||4].

Let Ry = {i| E;\#l,E, # 0}. If i€ R, — R, then there exists a je R, and a
nonzero A€ o so that Ae E;o/E; or A€ E;o/E;. In case 0 # E;o/E; by (3.1)
there is a constant d; so that 6(4) = d;A for all Ac E,/E;. Let ¢;=d; 4 ¢;
and define SE; = ¢;E;. We must show that SE; is well defined. Hence let 0 # Be
€ E .o E; for some k€ R,. By (3.1) 8(B) = aB and we need show that o 4 ¢, =
= d; + ¢;. However AB* ¢ E;#,E, and since 6 is quasi-inner,  extends to a
derivation on F,Z(H)F, where F,= E;+ E;+ E,. Hence 0(4B*) = Ad(B*)-+
+ 6(4)B* = (—a + d;)AB*. On the other hand J4(AB*) = AB*S — SAB* =
=: (¢ — ¢)AB* and O65(AB*) = 0(AB*) since j, ke R, Thus ¢;+d,=a-+ ¢
and ¢; is well defined in this case. A similar calculation shows ¢; is well defined
in case E;/E, # 0 for k€ R, and for the two symmetric cases when E.E; # 0.

k
By (1.3) these cases are mutually exclusive. Now as before let F= Y, E,, where
i=1

{n;}f.., = R,. Clearly d5 extends to a map of F#,F into F.,F so that if A4, B
and AB are in F.,F then 65(AB) = A 64(B) + d5(A)B. In particular, since &
is a derivation one can check that 6 and Jg agree on Fo/F. Thus §5 extends
to Gy = VE;, i€ R, as above and ||SG,|| < 2||6|| since |d;| < ||6]].

Continuing we extend S to G, so that [[SG,|| < n|i6]l and 6(4) = 54(4)
for AeG,oG, Moreover G, = VE; where ie R, = {i| E.#,E, #0}. By our
assumption ., is weakly dense in L(H) so G, = H.

We collect the main results in Section 2 and above into one theorem.

THEOREM 3.3. Let o/ be an irreducible CSL algebra which contains a com-
pletely atomic masa. Assume every derivation of o into &f is quasi-inner. Then
the following are equivalent :

i) H{( o, ) # 0;

ii) for all n, M, is not weakly dense in L(H),;

iil) & is a tridiagonal algebra.

Proof. The implications (i) implies (ii) is (3.2) while (ii) implies (iii) is (2.3).
Finally (iii) implies (i) follows from Theorem 5.1 in [6].

Now we turn to the case when every derivation need not be quasi-inner. In
this case a derivation on &/ does not extend to the von Neumann algebra generated
by &7. Examples are found using any of the algebras «7,, with » > 2. Our main
result is that these are the only obstructions to every derivation being quasi-inner.
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Next we give a less obvious example to illustrate how it may occur that ail
derivations are not quasi-inner. This example in another form was used by A. Hopen-
wasser and R. Moore to illustrate an irreducible CSL algebra ./ with a rank two
operator which is not the linear combination of rank one operators in &Z.

ExAMPLE 3.4. Let {e,}2., be an orthonormal basis. Determine s/ by the strict
ordering on the minimal core projections E; = span{e;} (cf. Examples (1.1)
and (1.2)). Let E,,,, > E; whenever j is even and j # 2n and E, > E, for all k.
It is almost immediate that .#; is dense in #(H). To see this consider the rank
one map ey ® eu.,. If i # k then es; ® ex+q 1S In &Z% The map e,;® ¢, is in
(4 + %)% by using the product of e;; ® ey and (e, ® es44)* for k # i or n.
Similarly one shows ey, ® e€s,.+1 € .#,. To obtain e,; ® e,;., one must use the
product of three maps from &7 - &%,

Let P be the core projection P = E, + E; + E, + FE,. It is easy to see that
PP = o/, given in (1.1). Noting this one can easily construct non quasi-inner
derivations on /. Thus HY(&, o) # 0 yet .#, is dense in Z(H).

This example is precisely the obstruction encountered if every derivation of .=/
into &7 is not quasi-inner. We recall the algebras A,, defined in Example 1.1.

THEOREM 3.5. Let o/ be an irreducible CSL algebra containing a purely atomic
masa. If there exists a non quasi-inner derivation & then there exists a core projection
P so that P/P = sd,, for some h and | Ps/P is not inner.

Proof. Let {E;}®., be the minimal core projections for 7. Assume § is not
quasi-inner and as usual we may assume 62 =0. Let F, = E;+4 ... +E,. If
one assumes that for all n, 6 | F,/F, is quasi-inner, then ¢ is in fact quasi-inner
on &. Thus there exists an » so that § | F,«/F, is not quasi-inner. For a subset
Rof {1, ..., n} one defines Fp as ¥, E; where ic R. Let R, be a subset of {1, ..., n}
of minimal cardinality for which 6 | Fre/ Fy, is not inner. Let F, =: FR0 and assume
Ry = {1, ..., ky}. After reordering E,, ..., E,, if necessary we claim that Fyo/F, - =
== &, Where Ay is given by (1.1). Now only consider {E,, ..., E.} and 4, .

Let S;=:{jeRy: E,E; #0, j#i}. If ie S; and je §; let R:= Ry\{i}.
Then & | Fg.eZ Fris inner and the implementing operator 7 can be extended to E;
so that &, Ry/Ry = 01 | RysZR,. Also if je §; and ke S; let R =: Ry\{j}. Let
T be a core operator on Fy so that (6; — )| Fre/ Fg = 0. Choose TE; - - ¢cE; so
that if R, = E; - E; + E,, 7| Ry/R, = 5| Ry&/R,. The constant ¢ is uniquely
determined by ¢ through the relationship E; > E; > E, and since TE; and TE,
are known. Now if me S;n R, then me §; or ke S,,. This relationship guaran-
tees that (0 — 65) | Ry#R, = 0. Thus we conclude that i€ §; and je S; cannot
occur as well as i€ S; and j€ S, cannot occur.
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Clearly if i€ R,y is in no §; for j # i and if no j for j # i is in §; then R, is
not a minimal set. Hence for /€ R, there exists je R, such that ie S; or je §;
but not both. Let R, be the je R, so thatjis in no S, for j # i. R, is non empty
for if iye Sy then by the above j, is in no §; and hence j,€ R;. If j¢ R,, then
there exists i so that je S;. Let R, = Ry \R, ; then R, U R, = R,.

Let (E,,..., E,) be a loop if {m,, ..., My S Ry sothatE, = > By where k
is even and k& + 1 is identified with 1. Loops exist since by the preceding para-
graph let n, be any index in R, and n, & S,, and continue letting ny # n, so that

mES,. Since R, is finite after k, + 1 steps M +1 Must be some 7;. One loop obtain-
ed is thus (B By s - E"‘"o)'

If J is inner when restricted to & compressed to any loop in R, then as in
the proof of (3.2) one can show that é is inner on &/ compressed to FRo' Thus let
E,, ..., E, be the shortest loop with n,, ..., 5, in R, on which ¢ is not inner.
Since R, was minimal among sets on which ¢ is not inner {n,, ..., n} == R,. Thus
(m, ..., m) is simply a permutation of (I, ..., k) and we may assume n; =i. We
now have E,; » E,;,, and £, > E; and we may assume k is even. If Ey; > E;
for some other odd j, ther: § must fail to be inner on one of two loops; the
one between j and 2i or the one obtained by bypassing the core projections bet-

ween 2{ and j. Consequently Pg APy, is precisely .«,. Finally R, was obtained so
that & | R,/ R, is not inner.

One might hope in view of (2.5) that in general a lattice with a comparable
element has HY&/, o) = 0. Unfortunately o/, has non inner derivations and
has a comparable element, specifically L = E; — E;,. However for &, it is easy to
see that every quasi-inner derivation is inner (3.2). This is also the case for arbi-
trary lattices with comparable elements (no atomic assumption on % is needed).

PROPOSITION 3.6. Let & be any commutative subspace lattice with a non-
trivial comparable element. Every quasi-inner derivation on of = Alg ¥ is inner.

Proof. Let L be a nontrivial comparable element. Then L* > L. Letd be a
quasi-inner derivation on & so that 6 |2 =0 and § is implemented by the pos-
sibly unbounded operator T affiliated with the core. Fix unit vectors x,€ L* and
¥o€ L. For ye L define Ty(») = — 8(x0 ® ») (xo). 1Tl < 3]l Iyl and if P < L,
Pe @ then T,P(y) = PTy(y). Thus To|Le%|L Moreover T,(y)=T(y)—
— {Txy, xo» and thus T'| L is a bounded operator.

In order to show T | L* is also bounded we let x € L* and in the domain of T*
and then set Ti¥(x) = 8(x ® yo)*(¥o). As above ||T7 | L*| < ||6|l. Expanding we
get 0(x @ yo)*(¥o) = O7(x ® ¥o)*(¥o) == (T* — al)(x) where o = (¥,, T¥y- Thus
T*#| L* is also a bounded operator and thus § = dr is an inner derivation. @
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