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NONCOMMUTATIVE INTEGRATION FOR STATES ON
VON NEUMANN ALGEBRAS

CARLO CECCHINI

1. INTRODUCTION

The general theory of noncommutative integration has its model in the theory
developed for the particular case in which the von Neumann algebra ./ (acting on
a Hilbert space ) playing the role of the space L®(Q, X, 1) in the abelian case is
semifinite while the role of the measure u is given to a normal faithful semifinite
(n.f.s.) trace tr on .#. It has been developed by Segal [13], Kunze [10], Dye [6],
Stinespring [16], Nelson [11], and it is remarkably close to the ordinary measure
and integration theory. In particular it is possible to represent.#,, (the predual of .#)
as the Banach space (called LX(#,tr)) of closed, densely defined (in general unbound-
ed) linear operators on s affiliated with .#. It is also possible to define interpolation
spaces between . = L®(.#, tr) and L'(.#, tr) of closed, densely defined operators
on J affiliated with ., which are called L?(#,tr), for 1 < p < -+ oo. ForX e
e LP(4,tr) (1 < p < 4 o00)the LP(.#, tr) norm is given by

(a.n [ Xl = tr (X772

For Xe L”(.#, tr) and Y e L”((.,///, tr) with»] R —l,— = 1, their duality coupling
P r

is given by

(1.2) (X,Y) - tr(X+Y).

Among all the other features which can be carried over from the classical case to
this situation, it is worthwhile to note that L"1(.#, tr) n L":(., tr) is norm dense
in L"i(.# ,tr) (i == 1,2)for 1 € p; < + ooand weak-* dense in L®(#, tr) if p, = +o0.

Tt would be desirable to obtain a theory as close as possible to this model
for the general case of a von Neumann algebra .# on which a n.f.s. weight w is
defined. The problems however start at the very first step, i.e. the representation
of the elements of .#, the positive part of .#,,, as positive closed densely defined
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operators on 3, which in general is not possible. Various theories for the general
noncommutative integration theory have been therefore developed, whose main
difference, from our point of view, lies in the choice of the features of the main
model which have to be lost.

In the approach due to Haagerup [7] the LP(.#, w) spaces are represented as
Banach spaces of closed, densely defined operators, and formulas similar to 1.1
and 1.2 hold, but those operators do not act on the same Hilbert space # as ./
(i.e. the theory is not spatial), and the intersection between any two different LP
spaces is trivial, consisting only of the zero operator.

A spatial theory, closely connected with the preceeding one, has been deve-
loped by Connes [5] and Hilsum [8]. Again the L? spaces are described as Banach
spaces of closed, densely defined operators, which now do act on 4, and the
analogues of 1.1 and 1.2 hold. However the triviality of the intersection permains,
and, moreover, the weight involved is defined on the commutant .#' of .# rather
than on .# itself.

Another approach has been followed by Sherstnev [14], [15] (and extensive
bibliography there quoted), Trunov [20], Trunov and Sherstnev [21] and Zole-
tarev [22].

In this approach the elements of ./, are represented as quadratic forms on
a suitable dense domain D(2#, w) of #, which, however, are not in general the qua-
dratic forms of any closed densely defined linear operator on J#. Their intersec-
tion with those of the operators in.# is norm dense in .4, and weak-* dense in . 7.
It is not possible to define L7 spaces for p # 1, -}- co (except by using abstract inter-
polation, [22], or in the case of .# semifinite, where heavy use is made of the
Radon-Nikodym theorem for traces [20]) and define directly products or powers
of elements of L7(./, ®). So we cannot obtain the analogue of 1.1 and 1.2.

It is also worthwhile to mention an approach due to Araki and Masuda [3],
in which they act in the standard representation of .# with respect to a n.f, state w
and the LP(.#, o) spaces are described as subsets or completions of 3 with respect
to suitable norms.

Finally, the L” spaces have also been studied as interpolation spaces between .#
and .#, by Kosaki [9], Terp [19] and Zoletarev [22].

The aim of this paper i1s to present an approach to the theory of noncom-
mutative integration for the case of a general von Neumann algebra .# on which
a n.f. state w is defined which retains the most of the features present in the trace

model.
As in [22] the spaces L(p;.#, w) are Banach spaces of complex forms, i.e.

complex linear combinations of positive forms on a dense subset D(#°, w) of the
Hilbert space on which .# acts, making thereby the theory spatial.

In general those complex forms are not, as in the case of traces, the ““diagonal
elements’ of any closed, densely defined operator on ¢ ; for each p € [1, +00],
however, they are closely connected with an operator in the space L"(.#, ') defined
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in [8] (o’ is 2 normal faithful semifinite weight on the commutant.#'). This enables
usto definea product, belonging to L(p,;.#, ), between any element of L(p, ;.#, w)

and any clement of L(p,; .#, w), provided 1 + 1 == »]~- , With 1 < py, pe, Py <
P P2 D3
< -+00; and so to get a connection with the formulas developed in [8] similiar to
1.1 and 1.2. To do so, we must use, as remarked, an auxiliary n.f.s. weight w’ on ./Z/';
it is important to note, however, that all objects which are expected to depend only
on ./ and w (i.e. p-norms, products, etc.) in fact do not depend on the parti-
cular @’ used. For p € (1, 4 co) those spaces are defined using interpolation as in
[22], and are a concrete representation of the interpolation spaces in [18]. This has
a remarkable consequence that the w conditional expectation defined and studied
in [1], [2] and [4] can be lifted to a contraction on L(p; .#, w) for p € [1, 4-o0].

Note also that our L(1;.#, w) coincides with the one defined in [14], and [15],
and if .# is semifinite, our L(p; .#, w) spaces coincide with those defined in [20].
Some partial results in the direction of this paper can be found in [4].

This paper is organized as follows: Section 2 contains a short sketch of the
theory of noncommutative integration in the approaches of Haagerup [7], Connes
[5] and Hilsum [8], since it will be used heavily in the rest of the paper, so as to
establish our notations. Also some useful consequences of their treatment are given
as lemmas.

Section 3 contains the definition and properties of a Radon-Nikodym
derivative of a general element of .#} with respect to a n.f. state w, while in Sec-
tion 4, after defining directly the spaces L(1; .#, w) and L{oco; .#, w), the spaces
L(p; 4, w) are defined as interpolation spaces between them, and the explicit for-
mula establishing their connection with the spaces LP(.#, w') is proved. Section 5,
after the definition of the product between elements of our spaces L(p; .#, w), is
devoted to the proof of classical theorems for products and the duality relations.

Finally, in Section 6 we get, as an application, some results on w-conditional
expectations.

It is a pleasure to thank L. Accardi and D. Petz for useful conversations and
the referce for his helpful suggestions on the first version of this paper.

2. PRELIMINARIES AND NOTATIONS

In this paper .# shall denote 2 von Neumann algebra acting on a Hilbert
space S and .’ its commutant; w will be a normal, faithful, semifinite (n.f.s.)
weight on .# (mostly we shall deal only with a n.f. state) and ' an n.f.s. weight
on.#’. The modular antomorphism group of w (w’) on % (#7") will be a; (a;,).

We shall denote by ##,, the Hilbert space on which the standard representation
7, of .# with respect to w acts and 5, will denote the immersion mapping of
the set &, = {a € 4 : w(a*a) < + oo, w(aa*) < -+ oo}. The commutant of 7, (.#)
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will be denoted by =,,(.#), the isometric involution by J, and the modular oper-
ator by 4,,. All the above mentioned objccts will be endowed with a prime '™ if
they are referred to the couple (', ®»’). In the case in which w is a n.f. state,
the Hilbert space 4, has a cyclic and separating vector  such that w(a) =
= (n (a)Q, @) for all a in 4, and 1,(a) = 7 (@)Q fcra e 4.

2.1. DEFINITION. D(°, w) == {{ e A ;3 a > 0: [al|*<ow(a*a) Va € 4} (see

91, (191, (5], (81, [14D.

The space D{#, w) is a vector space dense in &, and for each ¢ e D(#, w)
there is a unique bounded linear operator R (¢): #,, = # such that R (S)n (a)--al.
The mapping ¢ — R () islinear, and for all &, y € D(A#, w) the operator R ()R, (i)™
is in /.

A positive form ¢ on a dense subspace D of a Hilbert space 2 is a mapping
from D to [0, + co] such that

L q(28) = 1.f}q()) VieC, V¥ieD

[

g -+ n) +qé—m=2q) +29(n) V¢, neD.

The set of vectors on which g is finite (or 2(g)) is a linear subspace of D, on which,
if it is dense, g defines a positive quadratic form. The mapping & — g(£) is lower se-
micontinuous iff there is a closed positive quadratic form g on # such that (Domg ) n
N D= 2(q) and g(&) = g (&, &) for ¢ € 2(q). In the above situation, the positive
linear operator T(g) associated with the closure of ¢|Z(q) is the largest positive self-
adjoint operator T such that |[TV%|? = ¢(¢) for all ¢ € 9(g). We shall say that ¢
is a complex form on D if it is a complex linear combination of positive forms
whose domain is D.
If  is a n.f.s. weight on .Z, the equality

(23) qm(é) == w(Rw'(é)Rw'(é)+)

defines a lower semicontinuous positive form on D(3#, w’) with dense domain, and

do . . L .
the operator T(g,,) = ;{ED, is called the spatial derivative of @ with respect to .
w

For a detailed treatment of the material skeched above, see the original paper by
Connes [5].
Hilsum [8] now defines the spaces L7(./7, w’) for 1 < p < +oo.

2.4, DEFINITION. LP(#, w') is the set of the closed operators T with dense
domain on J# such that, given the polar decomposition T = u!Ti of T, v € .# and

(TP = g—c—u for some w in the predual .4, of /.
. C()I v
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d
If w €.#, with polar decomposition w =: vlw|, let T, (w)=1u ;@‘- and
w’

S"I‘wf(cu)dw’ = w(I). Then the spaces L°(//, ') are Banach spaces under the norm

(2.5) 17, = [S m”dw'}”"'

if, as we shall always do in this paper, by sum (and, later, product) of unbounded
operators we take the strong sum (and strong product), as defined in [13]. It is
proved in [8] that many classical theorems (for instance the duality theorem be-
tween LP(.#, ') and L7 (#, @')) remain true for those spaces. Also L., w’) is
isometrically isomorphic to .# .

2.6. EXAMPLE. Let .# be a von Neumann algebra operating on a Hilbert space
with a cyclic and separating vector Q of norm one. Let w(a) = (a2, Q) for a € .4
and w'(a’) = {a'Q, Q) for a' e #'. Then D(#, w') = {aQ:a € M}, RAaQ) =a
d
and dC?’ = 4, the modular operator for w (cf [5], proof of Lemma 10a)). So
®
AV e LP(#,w’) for 1 € p < +o0.
The linear mapping U: T € L2/, w’) - TQ is a unitary operator, as it is

a bijection and S|T|2da)’=S|T|21,RmI(Q)+|2dco’ = |||T|2]]? (see also [19], 2.2).

This approach to the theory of noncommutative L? spaces is closely connected
to and partly based upon the approach due to Haagerup [7]. There the L? spaces
consist of closed and densely defined operators affiliated with the crossed product
(V7)) My = R(M, o) of # with the modular automorphism group of w. If .# is
identified with its canonical immersion in .#,, then .#, is generated by .# and a
one parameter group of unitaries 2,(r) = ' (with generator /1)) such that for a € 4
gl(a) = A (D)al (). Let 6* = @ be the dual action on .#,[17], and T the operator

valued weight T: 4§ — . #§ given by T(a) == SO“‘(a)ds.There is a trace 1, on .,

such that w- T == t(h,-). For ¢ € 4}, set ¢ = :79 oT and let /1, , be the 7,-measur-
able (cf. [10]) Radon-Nikodym derivative of ¢ with respect to 1, on.#,. So l, =
= h, . The mapping ¢ — £, , for ¢ € /4 has a unique extension to a linear map
of ., onto the set of 7,-measurable operators 4, , affiliated with ./Z,, satisfying
Oh, , = e~*h, ,. Soit is natural to define L*(.#) as the set of such operators, and
define a linear functional tr on L'(.4) by tr(a,, ,) = ¢([).

Then LP(.#) (1 € p < +00) can be defined as the set of closed, densely defined
operators a with polar decomposition a = ula| affiliated with .#, such that
laj? € LN(.#) and u € 4. The norm of ae L7(/) is given by [lali, = tr(la|”)/".

2 — 1685
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In [8] (page 153) the algebra W(.#) is defined as the von Neumann algebra
acting on # @LAR) (~ L*R, #)) generated by the operators a®7 for a € ./ and
dw

-df—, ® Ly for w e}, with Ly the generator of the regular representation of R
)
i dw \¥ . . .
(= L;f). The operator (U, ,€)(s) = (El—ai’) &(s) for e LR, #) is a unitary
w
operator on this space, and we have the spatial isomorphism U, ..#%7 U, ., = W(.%)

(in particular, U, ,aU,,, = a®I for a € 4), while U, 11 oUpw = dgg ®Ly for
wl

all ¢ €./#§. This implies that any closed operator T acting on  is in LP(.Z, w')
it TR®LY? € Lo(./F).

The above summarized results imply the following lemma which will be useful
later.

2.7 LEMMA. Let ./, . #', @, @ and &, 3, , Q be as defined earlier. For all
@ €.ly let m,(p) (n,(@)) be the element of (R (M) ((Ryt!')y) defined as
[mo(0)(7,(@)) == @(a) for a € .7l (respectively [m,(¢)]1(Jn(a)],) = @(a)). Then
1 1/2 1/2
2) ( 3“1) a(d—“’-) bdo' = (n, (@2, Jm b2
do’ dw’

for a, be.i.

b) S ( 5‘_"1) a ( do )” b (d—‘i)y cdo’ — S Aez (@) A, (DAL, (c) dm (o)

dw’ do’ do’

fora b, ce.Z,0 <o, B,y <1, a4+ f+y=1

Proof. The von Neumann algebras ./, = R(.4#, ol) and (r,(.#))y = R(rn (),
a,',w(w) ) are isomorphic by [17], Proposition 3.4 and their isomorphism x is such
that x(a) = n(a) for all a € .# and %(2 (1)) == ).Jm(u,) (). This implies (/i) = /z,i.:w(l.,) .

For a n.f. state ¢ of .# we have (re R):x(hl ) = sx(hiu(h; *hit ) =

= h () (Ul,4)), since a straightforward check shows that the one parameter family
«©

of operators /1;“/120’,‘0 is the family u,,,, of unitaries in ./ defining the Radon-
-Nikodym cocycle for the states @ and ¢. So the one parameter family of unitaries
in n,(.4), (uf,,4) must satisfly for 7 € R and all ¢ € ./ the equalities:

%(uzw,(p))%(a)x(uéw,(p))-*- = X(uiw:¢)au£m,¢)+) =
= x(h; " hi ahghil ) = x(ag (oL (@))).

S0 2(uf,, ) is the family of unitaries uz”w(“’)f”w(“’” defining the Radon-Nikodym

cocycle for the states n,(w) and =, (@) on .#, and therefore x(llg,w) = /7:”((,,),%(,,,,,.
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Let us note now that, by Theorem 1 in [11], ¥ can be extended to an iso-
morphism between the *-algebras of the 7,-measurable operators affiliated with .4,
and of the rn(y‘(w)-measurable operators affiliated with (n(.#4)), by setting x(a) ==

(o] [ve)
= %(“)S A dx(e;) when e has pclar decomposition a = ug 2de,. Since %(hil,) =

0 0
= lﬂfm(w),n > we get x(h, ,) = hnm(w),,1 @) first for ¢ a n.f. state, and then, by
@ B e
linearity, for the general ¢ €. /7.

a)
1/2 1/2
R
dw’ do’

d 1/2 d _ 1/2
~ x[[ Uy (“1 ®L;f) UJ,W] [Uy e ® I)UJW][ u,,,w,(ai"a, ®L,,») Uw} ]=
w

de’

PR IRT. 172 Y2
= x(h, al, )= lznm(w)nw(a)h,;(w).

. (do N2 d . . .

So if ( w) a(—w) is the representative in LY(.7,w’) of ¢ €.# then
do’ do’

h,l,f () T @) /z_.‘,f ) 1s the representative of x,(¢) € [n,(/))y in L7, (A), 7, (@)). On

the other hand (see Example 2.6)):

1/2 1/2 + —
Unw(w),:z(‘)(w)' [A © le((l)Aw ® Lyfm] U:tw(w),rzw(m)' =

d(m,(w)) VM2 d(7,(w)) +
== n (w)a (w) —— w - = ®L U:n w)x (@)
w7l (d(nw@o)')) old) (dcrw(w)')) ”w] o7

1/2 1/2
== hnw(w)nm(a)hitw(w) 5

and so AY’n(a) AY? represents n_ () in LY(r, (&), 7 (w)"). Therefore

1z 1/2
S (92) a (90_)) bdw == Sdiﬂnw(a) Acll;/Qnm(b) dr (),

dw’ dow’

for all @,be.Z. If b > 0, then =, (b) = |R,,a(w)o(7rm(b1/2)9)+12; so, for @ > 0, the
last member of the preceding equality is equal to:

SAi’zﬂw(a)d'i;’lezm@)' (e (6 P 0) =

= (@) AP, B, = (1 (@2, T B
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which is the equality in our statement. It follows for the general a, b € .# by polari-
zation (see also [19]).
b) The proof can again be carried out as the proof of the first part of a).

3. A RADON-NIKODYM DERIVATIVE

In the following w will be assumed to be a n.f. state on ., while " will be
allowed to be a n.f.s. weight on .%".

d 1/2
3.1. PROPOSITION. Let &' € D(#, w'). Then (d“i) ¢ e DU, o),
w

Proof. If ae€ ./, using Lemma 2.7 a) we get,

1/2 12 2 s dep U2
a 93) & a(d“’ ' = (@—) a+a(—‘°—) IRy (¢)* 2dew’ =
do’ do'’ | do’ do’

= (T (@*DQ, S (Rur L (€)Y < [[IR(E) Pl [m Q1 =

o9

g“/

= HR(S) T lo(ata),
which implies our statement,
3.2. LeMMA. Ler ¢, € DO, w). Then R, (M) R.(E) € (n (M) .

Proof. Let a;,a,,a,€.4. Then
(@), R Ro(8) mo(a)m(a)2) 4  —
= Ky, agaaly s = aya, aslyy =
= (R, () (a3} 1o(a)R2, R (a) D =
= (M, (a41)8, To(az)R () * R (D7, (a)2>

and the thesis follows by the density of #,(#)Q in 7, .

3.3. DerINITION. For W €./}, set

[9(w, YINE) = Y (5 (ol Ry()1,)

for all &€ D(A#, w). We shall call g(w, ) (or shortly g(y)) the Radon-Nikodvm
derivative of W with respect to .
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1t is immediate to check that the mapping & — [g(w, ¥)](&) is a positive form
on D(A#, w). It is not in general lower semicontinuous in | -{|,; we have however,

as a substitute for this, the following
3.4, PROPOSITION. For any n.f.s. weight o' on ', the restriction of g(w,y)

d 1/2 V ' (e V
on (_w“) D(F , ') is lower semicontinuous in the normé — ||&||, = H(dﬂ) el
wl

’

We need the following lemma first:

_ dew (12
3.5. LemMa, Let &, p € (a—/J D(#, w"); then
)

-172 AT
Rw'(( g‘q) " ) Rw’((gg) / ’7) = 75 (SR (M) * RAEL)-

do’ doo’

Proof. The first member of the above equality is in .# by Proposition 3.1
and [5]; the second by 3.2. It is enough to prove it for & = # and then use pola-
rization.

Let now ae.#_. . Then:

On the other hand,

() e
‘ do’ o’
N S(dw )ma(d )”21?«,'((99)—)—1/25)7'
dw’ do dw’
[do \~VE _\+|2
=: ¢ m ()R, J, ol R [ | — Q

by Lemma 2.7 a) and the statement follows.

2

.

<a‘;‘:: é>.;? == ”al/‘.!“;i”” = llRw(é)nw(a]/Z)Q”jff = <n(u(a)Q’ !Rw(&:)|2Q>Jf :
al/‘l(?ﬂ)llz
# l dw’

dew Y~V
4
(&)

do' =

<a£; é>y[’ ==

k4

e

|

)

Proof of Proposition 3.4. By Lemma 3.5

[aty

[9(e, YIE) = ¥ ( ! R( ( j’Z‘ )/

)

, . dw -2 . . . .
hence by [5], the mapping (af)«/) & = [g(w. Y)I(E) is lower semicontinuous in 3
w

and our statement follows.
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3.6. REMARK. Proposition 3.1, Lemma 3.5 and [5] imply that [g(w, )](@) =
dy \1/2 n1/2 | 172

_ (i (dw) ¢ fora_-'e(?’?f’—) D@, o).
do’ do do’,

3.7. PROPOSITION. Let Y, ¥ Wy € 4. Then

a) If qQb) and q(y) coincide on ( (%;)]/ZD(%, '), then Wy = o

b) g(xy + Bo) = aq(Yy) + Bg(yy) for o, f > O;

&) @IS = [EI2 for & e GZ)I "Dt o),

d) for all a € ./, there is a unique Y, € .43 such that [q(p I WE) == ['a@=E|} for

. {dow V¢
all ¢ e (d ’) D(#, w'); moreover the following statements are equivalent :
\dw

e) ¢ < aw for some o > 0;
eV =, for some a€./.

Proof. a) follows from the weak density in .# of the set of the elements of

: (see [5]).

Rto’(((j_al)_llzg)+ )
do’
b) is obvious.
1o \-12 1\ +23
O lg@)®) = o |8 A(55) ") ] ) =l
d) Let ae./, and € <9~)1/2D(Jf, w'). Then
do’

- TS
do’ de’ do’
d(,)”‘ylli“ in

. . dw \Y2
So i, is the unique element of ./, represented by the operator (da—)—/) a (a~
W '

the form

by

L./, 0"). For b e 4 ., we have:

/2 1/2 1/2
. (b) = (5'—“’—) (d“’ bdw' = (df” ) b(i‘i ado’ <
dw’ dw’ dw’ dw’

dw dw . do V2 (do Y2
() b( ) :“aug(._,) b( ) doo’ = [lallo(®).
do')  li'ca,w) do \do

Conversely, if ¢ < aw for some a > 0, then [¢(y)] (&) < «|i¢|* and thereis therefore
an a € .4, such that [g({)](&) = {la¥3¢]. :

< flall ,’
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3.8. REMARK. A remnant of the chain rule of the classical Radon-Nikodym
derivatives can be found in the following relation

/2 /2
[a(wy, ¥I(E) = [q(coz,wn((d%)l (d‘“ ) é),

dw,

. {dw 2
true for all n.f. states w, , w,on &,y € 4§ and { e (aa—{,) D(H, ).
w

3.9. PROPOSITION. The mapping a — Y, defined in Proposition 3.7 a) for
a € .4+ coincides with the restriction to 4+ of the mapping defined with the same
notation in [19], Definition 1.

wa(

Proof. Let ae 4+, &€ D(#, w). Then

Rw,((gﬂ)—l/z'f )+iz) _ S (92)1/2a(g@_)1/z Ra'((dg)—) 1/2(3 )+
do’ | do’ do' |- dor
-Gl () ")) -
do’
= Q| () ) o (f2(G) )
do’ do

-1/2 l
by Lemma 2.7 a). Now, as {(j—“’) ¢:¢e D, w)} — D, &) if o is a
w

2
dw' =

)

state, by linearity and an application of [5], Proposition 3 we obtain our statement.
In the following we shall use the notatlon Y, for a € .4 with the same meaning

as in [19].

4. THE SPACES L(p; #, )

The preceding secﬁon suggests the following -definitions:

4.1. DErmNITION. L(l;.#,w) s the Banach space .of the complex forms on
D, w) of ‘the. type: :

[g(w, ¥))E) = ¥ (n; ' (J, R(E)  (E € DOF, w))

for some ¥ & ., with the norm  [lg(e, ¥) |l e = Wl I ¢ e, and
q=q(»,¥), we set ¥ = yY(q).
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4.2, DEFINITION. L(00;.#, ®) is the Banach space of the complex forms on
D(#, ) of the type

[9(w, @))(&) = (¢, 0l (S € DK, w))

for some ae.#, with the norm |lg(w, V)lrwo: . = lallg. If a€#, q=
= g(w, a) we set a = a(q).

4.3. LEMMA. L(co;#, ) < L(1;.#,w), moreover q(w,a)=q(w,¥,) for
aec..

Proof. The statement follows immediately from Proposition 3.7 and linearity.

4.4. REMARK. By Proposition 3.8 the preceding lemma implies that the embed-
ding of L(oco;.#, w) into L(1;.#, w) defined by the inclusion implements the linear
norm decreasing injection a —» ¢, from L (= .#, as w is a state) to ./, defined in
[19], Proposition 2.

It is also possible to check that the space L, defined above coincides with
the one defined by Sherstnev, which is obtained by completion of L(co;.#7, w)
with respect to the L(1;.#, @) norm (see for instance [15]).

The above remark and [19], §1, imply immediately the following.

4.5. LEMMA. The Banach spaces L(co; 4, w) and L(1;.#, w) are a compatible
couple (in the sense of the theory of interpolation).

4.6. DEFINITION, For each p € ]1, oof we define L(p;.#, w) to be the complex

. . | .
interpolation space at ¢ = - relative to the couple L(oco;.#, w) and L(1;.#, w).
V4 ‘

The second part of Remark 4.4 implies that the spaces L(p;.#,w) coincide
with those defined in [22]. For the particular case of a semifinite von Neumann
algebra they have been studied also in [20].

In the following we will set as in {19]

vp(&, 1) = CUITIM2E, T+ Y2y

if T is a closely, densely defined operator on J#, with polar decomposition
T = U|T}, and ¢ € 9(IT{V%), n € D(IT+|M2).

4.7. THEOREM. Let w be a fixed n.f.s. weight on 4 and let p € {1, c0). Then
L(p; 4, w) coincides with the set of quadratic forms q € L(1; . #, w), whose restriction

d 1/2
to (c_lf,’_) D(#, w') is of the form
w’

dow \-1/2r de \-1/2r
(: Yy = E) — {’ ——
(x) 9(<) T ((d(o') B (dw’) Cf)
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for some T € LP(, w'"). Moreover the correspondence between forms in L(p; ./, w)
and operators in L"(.#, ") given by (x) defines a linear isometry of L'(A, ') onto
Lip; ., w).

Proof. Let us note first that, for T € L7(/, w’), the formula (+) above makes

d =1/2p i 1/2p" 1/2
sense, as (_wl) ée((ici DA, w) < 2(S) for all L€ ‘_iﬁ’) D(#,w')
dw’ dw’ do’
and all S e L*(#,w’'). For p =1 the statement follows from Definition 4.1 and
Remark 3.6 for positive forms, and then by linearity for all complex forms in

L(l;.#,w). As o is a state, the diagram (55) in [19] reduces to the following:

AN N

where p,, by [19], Theorem 27 has the explicit form
d 1/2p d 1/2p
uy(a) = ( a)) a(ﬂ for a € 4,
(Dl \dw/
and

dw \A2r ‘
T( _3) ) for Te LM(4, o).
do’

4 f{do
v(T) =1 ((dw’)
In the preceding formuia 1 is the natural mapping from .#, to LY, w’). The
spaces L” defined in [19], § 5 are the image of L?(.%, w’) in ./, under the injection v,.
Now, if ¢ belongs to L?, by Lemma 4.3, Remark 4.4 and [19], Theorem 36,
g(w, ©) € L(p; 4, w), and the mapping ¢ — g(w, ¢) from L? to L(p;.#,w) is a
linear norm preserving bijection.
So, if ge L(p;.#,w), then g = g(w, ¢) for some ¢ € L”, and therefore,
if v(T)= ¢, we have:

o y
9(6) = 9. IO = vy (my ((jz )1 :, (%) z«:) _

) dw _1/2“ do —1/2;
:v(d_w)1/2p’T(:_ww:)l/2p'((aJ) S (a—u—)—,) ) s) =

dw’

_y2p dew \-V2r 1/2
v ((d“’) , ( ‘“) 5) . for ée (513) D(#, o),
do’ do’ do’

The above proof shows also that the mapping T — ¢(&) is a linear and iso-
metrical bijection.
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4.8. DrrmNiTiON. The isometrical bijection from L(p;.#,w) to LP(#, ')
defined by the equality () in Theorem 4.7 will be denoted by ).;‘," .

4.9. REMARK. From the proof of the above theorem, it follows also that,
as forl € p, <p, <+ 00 L(pydl,w) 2 L(ps; A, w),

A2 1 i1 1

2 4 4 2 ’ ’
NOM dC’) (172 pl) A’ dw ( P2 pl)
/~p1(9) = (d__w’) Apz(q) (a—aj’)

forg = g(w, a) € L(co; #, w), }%(q) = a.

5. SOME CLASSICAL THEOREMS

1 1 1
Let g, € L{p,; M, w), g3 € L(py; M, ), — + -— = - -, 1<py, ps,r< 400,
P D2 r

Then, if @’ is a n.f.s. weight on .4, )f,’l'(ql))f,‘,’;(qg) is an element of L'(.#, »'), and,
so, there is a unique g5 € L(r; .#, @) such that ).,‘;’1’ (90 /’.;f;(qz) = 27 (g5). The following
proposition shows that the solution ¢, of the above equation does not depend on w’.

5.1. LeMMA. Let qy,4y,p1,Ps, 7, @ be as above, and oy, w} n.fs. weights
on ./l'. Then the equality

N CAZMICAEPARON

holds for some qy € L(r; A, w) iff the equality

I (a2 @) = 2,(a5)

holds for the same q5.

Proof. The symmetry of the statement makes it sufficient to prove only its
if part. By Theorem 4.7 and Remark 4.9 it is enough to prove that
dw ‘“'1 dw

1/2-1/2r 1/2-1/2r
(——) £ " (q3) (— represents in LY.#, w;) .the same element of
deo’, do’

e as(di)l/“_l/“r;,r”’z (42) ((—j-ci)l/z—l/hin L, w}). As L(oo;.#, w) is p norm
do’ dw,

dense in L(p;.#,w) for all 1 < p < 4+ oo by the continuity of products in the

norms of the spaces L?(.#, w;) and LP(.#, w;z), we see that it is enough to show it in

the particular case in which ¢,, ¢, € L(oo;.#, w) or, equivalently, that for all
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ag,a,,dq €4,
1/2[;:‘1

(dw (dw NG (da) 1’2"1} ,
— a | — as a,dw; =
[ dwi) doyi ) dwi)

1/2p4

(dw )”2”2 (dco v ide ] ,
= — a, s a;dws;.
dowy dw; (dw;) 4

. 1 | . . . .
Here —-+ — =1 (i=1,2). The above equality, however, is an immediate
Pi Pi ’
consequence of Lemma 2.7 b).
By the preceding discussion and the above proved lemma, we can give the

following:

5.2. DerINITION. We define, using the usual notation, the product g,(p;)g:(ps)
as the unique element in L(r; #, o) satisfying the equation

5@ (q) = 2 (@(p)ga(pa)-

5.3. REMARK. Notethat if ¢,€ L(p;; .4, o) (i = 1,2; we drop here the assump-

. 1 1 . .
tion — + - - < 1) , then by Theorem 5.6a) it makes sense to consider the pro-

141 P2

1 1 .

ducts ¢4(p3)g-(py) Whenever p; 2 p, 2 1L, po2py 2 1,- -+ — < 1. It is easy
Ps Pq

to check, however, that in general all those products are different. Note also that

if g(&) = (&, 48>, qu(&) = (&, axt) for & € D(#, w), then [g,(c0) gx(00)] (&) =
= {lay, axt).

5.4. EXaAMPLE. Let o be a tracial n.f. state. Then we have

7 @(p)ap2) = i @)% (g) =

¢ 1/2p 12r 1/2p, 1/2r d 127
t(icz) m(d‘*’) T, (92 -__.(dﬂ) mz(—“’—) ,
dow’ do’ do’ do’ do’

d
as agrcommutes with both 7, and T,. This shows that the product g;(p,)¢s(ps)
»

is the old product between operators lifted to their “diagonal matrix elements’.

5.5. DEFINITION. Let g € L(1;.#,w). We set Sqdco to be the value in the

identity of the element of .#, corresponding to ¢ via the canonical isometric
isomorphism,
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To complete the analogy with the usual algebraic structure we give also
the following:

5.6. DEFINITION. Let g€ L(l;.#,®w). We define g* by setting ¢g+(¢) =
= ¢() for & € D(H, w).

It is immediate to check that if ¢ € L(p;.#, ), then for each n.f.s. weight "
on .2’ we have 45(qf) = 22(q,)*.

5.7. THEOREM. Let g, € L(p;;. 4, ), +— ooz p, = 1. Then

a) [9:(P1)G5(P2)] (11 2)q5(P3) = q1(P1)]gs 172)43(1’3)]("2,3)
1 1 I ] ] 1 1 I 1

for — -4+ —-4+ —<1,- -+- -= i .
y4 Ps I3 h P2 'ya  Po P3 Fas

b) The product q.(p)qs(p2) is linear in both the first and the second member.

c) la (PP iLcr; ity < ”ql(p])”L(Pl;.ﬂ,w) qu(l’z)“L(n.z;Jt,m)
| 1 1
if —+—-=-—<1L
141 P r

1 .
d) For ~oozp>1, -i—< + =1, Lp;. ¥, w) is the dual space of
n p
L{p';.#,w) and the duality mapping is given by (q,, ¢-) — & gt (P)gs( p)dow.

o

Proof. All the above statements are immediate consequences of Definitions 5.2
and 5.5, Theorem 4.7 and their analogues for the spaces L?(.Z/, w’) proved in [8].

The following proposition gets back part of the classical properties shown
to be lost in Remark 5.3.

5.8. PROPOSITION. Let q; € L(py; 4, w) (i = 1,2), with} < py,ps,r € + oo.

__1,_ + _lﬁ = »l« . Then

S 0(P)s( P> = S 2P P

I i
whenever p; < py < py < p; and—— + — =1 (i==3,4).

P i
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Proof. For o’ any n.f.s. weight on ., we have (cf. 5.2, 4.7, and [8])

\astrantriio = 77 @7 o =
3

L -k LY N
_ S ((cjlz)) )~( 1)/,';,1'(%) (350—,)2[/1 12)2;;'(02) (\(%)2(93 pz)dw, _

w
J\do’ ) : do’
1o 1 1 1
= S)(/‘I)l(ql) (jZ))’) ) (p4 I’J /:)_(42) (j:}j/) k(p'l p_) dw’ =

)
= S @aie’ =\ a(poa(rido.

The following theorem shows that any isomorphism (not necessarily spatial)
between two von Neumann algebras.#, and .#, intertwining their weights w, and w,
can be lifted to the algebraic structure of their L(p;.#,,w,) and L(p; .4, w,) spaces.

5.9. THEOREM. Let K be an isomorphism K:. i, — s with 4, and i,

voin Neumann algebras. Let w, (w,) be a n.f. state on 47y (M) such that for a € 4,
:(K(a)) = wy(a). Let us set, for q € L(co;.#+, w,)

K@) = <{n,x(a)ny n€ D(dy, w,)

if q(&) = <&, al) for & € D(y, ®,). Then K can be extended to a linear isometry
from L(1;.4y,w,) to L(1;.4,,w,) such that

a) K|L{(p; .4, w,) is a linear isometry from L(p;ly,w)) to L(p; s, ®s)
for 1 € p £ + 0.

b) [K(gDI(PIIK(9)1(P2) = K(g:(p)as(p2)) 1 < p1,pg, < 00 p— + —p— =
1 2

1
=, gy € L(py sy, ), qa € L(pa; Ay, @y).
v

c) K(g)t = K(g+).

Proof. The mapping K is clearly a linear isometry from L(oo;.7;, w,) to
L(00;. 1y, wy):;

K@D Los 1,00 = 9lleriin, 0y fOr 1< p <+ o0,
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So by the density of L(co;.#, w) in L(p;.#, ) we get a). To prove b) note that
the equality in the statement follows from Lemma 2.7 b) if ¢, , g, € L{(0o;. 71, o)
and can then be extended to the general case by density and Theorem 5.7 ¢).

Finally c¢) is trivial for g € L(oco;.#,, w,) and can be extended to the general
case by noting that the mapping g — g* (resp. K(q) — K(g)*) preserves the norm
of L(p;.%,,w,) (resp. L(p;.dy,ws)) for 1 < p < + oo.

6. AN APPLICATION

In this section . /7, and .4, (.#, < .#,) shall be two von Neumann algebras,
and o, (resp. w. = w,|.#,) a n.f. state on .#, (resp. .#/,). We shall denote by E
the w; conditional expectation from .#, to .#,. For its definition and properties
see [1], 2] and [4]. We shall define a linear contraction ¢ from L(oo;.#,, w,) to
L(oo;. /75, w,) by setting

(%) [e(@](n) == <{n, E(a)n)
for n e D(.#,, wy) and g(&) = (&, aéd (a €., € DA, w)).

6.1. ProvosiTioN. The mapping & can be extended to a linear contraction g,
Jrom L(1; .4, 0) 10 L(1; .5, wy). Moreover, if q is the representativein L(1,.7/, ,w,}
of w(q) €./, then efq) is the representative in L(1;.4y, ws) of ()t =
= @(e(q)) € M oy

Proof. Let q, € L(00; .4, , wy), wi (w;z) a n.f.s. weighton. 7] (#3)and a € .#,.
Then by Lemma 2.7 a), and 3.18, 3.20 in [1], we have:

~

[p(g)](@) = 3 2 oplar)a doi =

" (dog\ V2 doy \ V2
= — 2 —_— d !
V(o) oo (Gar) e

e ;
- <T(“’1’ Ay (/"(00; Ay 'ul)(ql))Q’ Jml ) ofly nwl Lty (a*)Q)> =
7
nu)l -
- <'T‘”z' My (E(/‘(oo;wl, wl)((/l)))g"]w._, ity oy /12(a+)Q> =

2

= o ut D, 0@V, | 7, (@12 =

2 Yoo
dw, \V2 ) ooy \ V2 o
- S (awé ) )¥(°°;J{2 s wz) (8(6[1)) (a(:ué-) a do_)2 i

~ S 1 0 o ea)adoi = [p(ea))@)
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So ¢(e(9)) = @@l .4, for g€ L(oo;lly, ). S0 [gllaim,, o) = 0@, >
> 1 o@alla,, = 1 9E@)]u,, = 16@))iLs.,. ap and the mapping g — e(g) is
a contraction also from the norm L(1;.#,, ®,) to the norm L(1;.#,, w,). So using
again density of L(co;.#, w) in L(p; .4, ») the statement is proved.

NOTE. A version of the preceding proposition has been already proved in [2].

6.2. COROLLARY. ¢!L(p;.#,,w;) is a linear contraction from L(p;.#,,w,)
to L(p;.#,, ws). :

Proof. The statement follows from the Calderon-Lions interpolation theorem
(cf. for instance [12], page 37), Theorem 6.1 and the fact, proved in [4], that F
is a contraction on ./Z.

6.3. THEOREM. Let .4, ,. 4, w; and w, be as above. Then the w,-conditional
expectation can be characterized as the unique linear contraction E: l, — .y such
that the associated mapping &:L(00; 4, w,) - L(oo; M, wy) defined as in (x) at
the beginning of the section has an extension &,: L(1; .y, ®,) = L(1; . #, w5) which
is again a linear contraction and satisfies the equality

(%) £x(¢:(1) g2(00)) = [ex(g)}(Dgo(o0)

for g, € L(o0; My, ), qs € L(00; .M, w,). Here we identify and denote by g, the
complex form in L{co;.dly,w,) corresponding to a € 4l with the complex form
in L(0o;.#4, w,) corresponding to the same a € ..

Proof. By Proposition 6.1 if E is the o, conditional expectation from .#,
to.#,, we have, for w; a n.f.s. weight on.#; (i=1,2),a€.#,:

S }.c(olé; ys @) (e1(q:(1)go(c0)))adw}, =
= S /1((”11 My 2wy (7:(1)gs(c0))adw] =
- S A:)i Ay > @y (‘h)?»?i; ay,wp(gador =
— S ﬂzé 2 wp) (Sl(ql)),l‘:i;uﬂz’mz) (g deop =

=\ 6 e @M astooDa do,

which implies (x#).
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On the other hand it can be seen similarly that if E satisfies the conditions
in the statement then it satisfies the conditions of Proposition 6.1. The uniqueness
of the mapping satisfying them, as well as the existence and uniqueness of the
w;-conditional expectation yield our statement.

6.4. REMARK. The equality (%) above is the natural generalization of the
relation E(fg) = E(f)g (fe.#,, g €.4,) typical for the conditional expectation
in the classical case as well as when «, is a trace. In the above cases indeed, the
products ¢,(1)g.(c0) and g,(c0)g,(c0) cdincide. In this situation we are led to the
well known characterization of the conditional expectation as a norm one projec-
tion; the same remains true also in the situation, studied by Takesaki in [18], in
which o, (-#5) < ., for all t € R.
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