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NORMALITY IN TRACE IDEALS

P. G. DODDS and C. J. LENNARD

1. INTRODUCTION

The notion of normality for linear functionals and its utility is familiar in
several contexts. For example, it is well known [6] that the predual of a von Neumann
algebra may be identified with the closed subspace of its dual generated by the:
positive normal linear functionals. Similarly, a dominant role is played by normality
in the duality theory of normed Kéthe spaces [19] and, more generally, in the theory
of abstract vector lattices [20]. It is therefore natural to expect that the concept of
normality should play a useful role in the duality theory of trace ideals and it is
our purpose in this paper to study duality theory for trace ideals from the stand-
point initiated in [9] and to examine the relation of normality to questions of per--
fectness, weak sequential compactness and weak sequential completeness in the
setting of arbitrary trace ideals.

It is well known, of course, that the Banach dual of a minimal symmetri-
cally normed ideal # of operators in a Hilbert space may again be identified with
an ideal of operators. On the other hand, this is not the case if the ideal is not mini-
mal. Nonetheless, in the second section of this paper, we show that if .# is an arbi-
trary symmetrically normed ideal of operators in a Hilbert space, then the Banach
dual .#* admits a type of Yosida-Hewitt decomposition in that each element of .¢*
has a unique decomposition into normal and “singular’ parts. Further, the normal
linear functionals in J* form a closed subspace which may be identified with the
a-dual #* introduced by Garling [9]. This characterization of the w«-dual ideal
> in purely order-theoretic terms is then exploited to give internal characteriza-
tions of o(#, # *)-relatively compact subsets of an arbitrary perfect ideal # (Theorem
3.4). This extends to the setting of arbitrary trace ideals the normality-type criteria
for relatively weakly compact subsets of the ideal of trace class operators obtained
by specializing the results of Akemann {1] for relatively weakly compact subsets.
of the predual of a von Neumann algebra. Using this criterion, we then show that
the trace ideal .# is perfect if and only if .# is 6(#, £ *)-sequentially complete (Theo-
rem 3.5). The motivation for this characterization is to be seen via the Calkin cor-
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respondence, for it is well known [12] that if g is a symmetric K&the sequence space,
then u is perfect if and only if u is a(u, i *)-sequentially complete.

In the final section of thc paper, the criteria developed in earlier sections are
-applied to the case of symmetrically normed ideals to give efficient characterizations
of perfect ideals, ideals which are weakly sequentially complete, minimal ideals
which have minimal dual, and reflexive norm ideals. While the characterizations
given in this section are suggested by results familiar from the theory of Banach
lattices, it is important to note that the structure of an -arbitrary normed ideal is
very different from that of any Banach lattice, as has been pointed out by Lewis [13].

We gather now some basic notation. Throughout the paper, .# will denote
an ideal of operators in the (arbitrary) complex Hilbert space #. The ideal of all
-operators on J# is denoted by # and the operator norm by |- || - The ideal & will
be called a symmetrically normed ideal, written s.n. ideal, if .# is equipped with
anorm |- ||, with the following properties:

(i) # is a Banach space under i ,.

(i) If Aes and if U, Ve then iUAV| 5 < [[Ujool VoA 4.

(1) |4l = |i4|leo if A is of rank I.

By ? is denoted the ideal of compact operators, equipped with the operator norm
and by %, is denoted the ideal of trace class operators equipped with the usual
trace norm -, = tr (|- ) where 'A! denotes (A*A)YV2 forany Ae@B. If f, gcH,
then /' ® g will denote the operator (-, g)f. If .# is an ideal in 4, the a-dual ¥ of
4 is the set of all 4 €% such that ABe %, for each Be.#. Equivalently, .5 is
thc set of all A € # such that B4 € ¢, for each Be.#. . is an ideal in # and if
AeJ*, Be.f then tr(4AB) = tr(BA). The ideal .# is called perfect if 5 =: .5
For basic properties of the a-dual #* of an ideal .#, the reader is referred to [9].
If .7 is a s.n. ideal then .#° will denote the |- || s-closure in .# of the ideal of finite
rank operators #. The s.n. ideal .# is called minimal if & = #° Finally, if Eis a
Banach space then the Banach dual of E is denoted by E*.

During the preparation of this paper, the second named author was partially
supported by a grant from the Flinders University Research Budget.

2. NORMAL FUNCTIONALS AND A DECOMPOSITION THEOREM

This section is concerned with duality considerations related to normality
and we establish a decomposition theorem for the Banach dual of an arbitrary s.n.
ideal which is a non-commutative analogue of the well known Yosida-Hewitt decom-
position [18] for finitely additive measures. This decomposition result will play a
useful role in subsequent sections.

If # is an ideal in # and if ¢ is a linear functional on .#, the adjoint
functional @* is defined by setting ¢*(B) - - (B*) for all Be .#. The linear func-
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tional ¢ is called self-adjoint if ¢ = ¢* and positive, written ¢ > 0, if p(4)z0
whenever 0 < 4 e 4. If A e £, we denote by ¢, the linear functional tr(4(-.)).
It is a simple consequence of [10], Theorem II1.8.3, that the linear functional ¢,
is self-adjoint if and only if A is self-adjoint and ¢, > 0 if and only if 4 > 0.

We shall use the following terminology. If # is an ideal in %, if {B} c S
is an upwards (downwards) filtering system of self-adjoint elements of # and if {B.}
is weak operator convergent to B e 4, we will write B, 1, B (B, |, B).

We may now make the following definition.

DerFINITION 2.1. Let # be an ideal in B. The linear functional ¢ on £ is
said to be normal if and only if {B,} = 4 and 0 < B, |, 0 implies lim¢(B,) = 0.
T

We remark that if ¢ is a normal linear functional on £ then the adjoint
functional ¢* is also normal.

PropOSITION 2.2. If' ¥ is an ideal in & and if A€ 5>, then ¢, is a normal
linear functional on 5.

Proof. 1t is not difficult to see that tr(-) is a normal linear functional on ¢,
If {B} < # satisfies 0 < B, |, 0and if 0 < A € £, then it follows from Lemma 2.3
below that AY2B AY*| 0 holds in %,. Consequently tr(4B,) = tr(4Y/2B,AY2) — 0
and this completes the proof of the proposition.

LemmA 2.3. Let F be an ideal in #. If 0 < Be S and if 0 £ AeS™,
then A'Y2BAY2 € €, and tr(AY2BAY?) = tr(4B).

Proof. Since 0 < B e ., it follows that 0 < ¢ € #*. Consequently, if {¢;}{.,

n
is any finite orthonormal system in # and if P = ¥} ¢; ® €;, then
i=1

n
0 < Y, (4Y2BAY?%;, &) = tr(PAVZBAV?) = tr(AV*PAY*B) < tr(AB).
i=1

It follows that AV2BAY? e %, and the final conclusion follows from [10), Theorem
I11.8.2.

Suppose now that (£, ||-1l5) is a s.n. ideal. It is now our intention to identify
those elements of the Banach dual #* which arise from .#*. We observe first that
if Ae . #> thenp, € #*. This fact is an immediate consequence of the following
simple observation.

PropOSITION 2.4, If (£, |i-1l5)is a s.n. ideal, then each positive linear functional
on £ is continuous.

Proof. If ¢ is a positive linear functional on the s.n. ideal J, it clearly
suffices to show that the restriction of ¢ to the positive cone of 4 is continuous.

9 —2110



130 P. G. DODDS and C. J. LENNARD

If this is not so, there exists a sequence {B,}.~, of positive elements of .£ for
which ||B,'[s < 1and ¢(B,) = 2",n=1,2,... .Setting A,==2-"B,,n:-1,2,...,it

(=]
follows that ) ll4,[ls < 1. Consequently, if 4 is the weak operator limit of the
=1

n
[oe]

n
partial sum sequence {Z Aj} , then 4 € #. However
j=1

n=1

o4) » o (

‘A,,); n, n=1,2,...

j=1

and this yields the desired contradiction. A
From the preceding proposition, it follows that if (4, ||-||5) is a s.n. ideal
and if 4 €.#*, we may define

l4ll ,x = il@aliss = sup{ltr(4B)|: Be 4, || Bll, < 1}.

It is shown in Theorem 7 of [9] that (J*, || l ;x) is again a s.n. ideal. Suppose

now that 4 € #*. Using the polar decomposition and the positivity of ¢4, it is
not difficult to see directly that

Il = sup{tr(I4|B) : 0 < Be ., | B|l, < 1}.

Denote now by {E,} the system of projections with finite dimensional range, upwards
directed by range inclusion. Tt is clear that 0< BY2E,BY2 1, B for each 0 < B € .,
From the normality of ¢4, it now follows that

Al ,« = sup{|tr(4B)| : B € 59, | Blis < 1}.

From these remarks, it follows that under the mapping 4 — ¢, the s.n. ideal
(#*, || I ,x) may be identified isometrically with a closed linear subspace of (f9)*.

This constitutes part of the proof of the following result; the remaining details
follow the standard lines of the argument of [9], Proposition 11, and are accordingly
omitted.

PROPOSITION 2.5. If ¥ is a s.n. ideal, then (F>, |||, x) = (F9*.

It is convenient to record here the following simple consequence of Propo-
sition 2.5 above.

COROLLARY 2.6. If . is a s.n. ideal, then

O, - 119) = (F9, Il -
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We now show that if # is a s.n. ideal, then #* is complemented in .#*
and is the range of a positive projection of norm one.

PropositioN 2.7. If £ is a s.n. ideal, then 5% =% @ (FOL and each
of the closed subspaces #*, (F0)L is the range of a positive contractive projection.

Proof. Since each positive element of £ is the weak operator limit of an
upwards directed system in #9, it follows directly from normality that #* n (9L =
= {0}. If now ¢ € #*%, let ¢’ denote the restriction of ¢ to #?. By Proposition 2.5,
there exists A € #* such that ¢'(C) = tr(4C) for all C € #°. Define ¢, € #* by
setting ¢,(B) = tr(4AB) for all Be #. It is clear that ¢, € #£* and that ¢, = ¢ —
— ¢, € (S°)L. Moreover

loillor = ll@allsx = ll@al 20l yo0 = @1 y0y0 < ll@llgs.
We show also that |@,] s« < ||@]ly«. Let ¢ > 0 be given and choose D € £ with
1Dl <1 and |pD)| = [|@sllex — &/2. Since AD € %, and since tr(4D(.)) is

normal on 4, there exists a projection E with cofinite range such that |tr(4DE)| < /2.
Observe that

lp(DE)| > |po(DE)| — 19y(DE)| = |py(D)| — Itr(ADE)| > ||@o]l o+ — &
and so ||@,]|s* < ||@lls+. Finally, if ¢ > 0, then it follows from

e(f®f) = o(f®F) = (4. /),

for each f € #, that A > 0. Hence ¢, = 0 and so ¢, > 0. To see also that ¢, > 0,
let 0 £ Be# and let ¢ > 0 be given. From the normality of ¢,, there exists a
projection £ with co-finite range such that ¢,(BY2EBY?) < ¢. It follows that

0 < p(BY2EBY?) = ¢,(BY2EBY?) + @u(B) < & + ¢4(B).

Hence ¢,(B) = 0 and this suffices to complete the proof of the proposition.

We remark that the preceding theorem is due to J. Dixmier [5] for the case
that J = 4.

We are now in a position to characterize #* as a subset of #* in purely
order-theoretic terms, in a manner familiar from the theory of normed Koéthe
spaces.

ProposITION 2.8. Let F be an s.n. ideal and suppose that ¢ € %. The
Sfollowing statements are equivalent.
() pesx,
(ii) ¢ is normal.
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(iii) lim(BR,) = 0 for every family {R} of projections in & with R |0,

for each 0 < Be J.

Inaddition, if I € € then each of the above conditions are equivalent to each
of the following.

(iv) @(B,) — 0 as n — oo for all sequences {B,} = S with0 < B, 1, 0.

(v) @(B,) - @(B) wheriever 0 < B € # and {B,}3., is the partial sum sequence
of the Schmidt expansion of B.

Proof. That (i) = (ii) is Proposition 2.2 above. The implication (i) = (iii)
is a simple application of the normality on & of tr(AB(-)) for each 4 € £, Be S .
The implications (i) = (iv) = (v) are obvious. We prove the implication (ii) = (i).
The implications (iii) = (i) and (v) = (i) follow by a similar argument and so their
detailed proof is omitted.

Assume then that ¢ is normal and let ¢ = ¢, -~ ¢, with ¢, € F> and ¢. €
€ (FYL. If 0 < Be s and if {E,} is the family of all finite rank projections in 4,
upwards directed by range inclusion, then BY2E_BY2 1 B holds in .#. Since ¢, is
normai, it follows also from (ii) that ¢, = ¢ — @, is normal. Consequently
@o(B) == ]itm @o(B2E,BY?) == 0. Thus ¢, =0 and so ¢ = ¢;.

The following remark will be useful. Since ¢ is normal if and only if the
adjoint functional ¢* is normal, it follows that the statement “lim @(BR,) == 0"

in (iii) above can be replaced by the statement “limg(R.B) =0".
T
We conclude this section by characterizing, in terms of normality properties

of the norm, those s.n. ideals .# which are minimal.

PROPOSITION 2.9. If £ is a s.n. ideal then the following statements are
equivalent for A € £.
(i) 4 e s,
(ii) |AP,lls — Ofor every sequence { P, Y-, of mutually disjoint projections on # .
(iii) For every family {R,} of projections with R | 0, it follows that
li;m lAR.]|5 == 0.

(iv) For every family {A.} < B with 0 < A, < |A| and A, .0, it follows
that infj|4, |, = 0.

(v) For every sequence {A,} = & with 0 < A, < |A| and A, ., 0, it follows
that inf|4,]l, = 0.
n

Proof. (i) = (ii). Let {P,} be a sequence of mutually disjoint projections.
If f,g € s#, then from

1(f® &P.lls = | f ® Puglls = lIfIl 1 Pugl
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for = 1,2,...,it follows that ||4P,||; = 0 for each 4 € #F and consequently
for each 4 € 9 since ||P,llo = | form=1,2,... .

(ii) = (i). Suppose that 4 €.# and that condition (ii) holds. It is clear that
it may be assumed in addition that 4 > 0. If 4 is not compact, then it follows
from the spectral theorem for self-adjoint operators that there exists a projection P

5o
with infinite dimensional range and 2 > 0 such that PAP > /P. Writing P = ¥} P;
[ §
with {£;} a sequence of mutually disjoint projections, observe that
PiAPi;PiP14.PPi>;»Pi, l"-—‘1,2,...
so that

14Plls > |PiAPill; > |P AP = 4

v
A
Il
o

which contradicts (i), so that 4 is compact. Let 4 =Y, 7,0, @ ¢, be the Schmidt
i=1

expansion of 4. If A ¢.#9, there exists a sequence {n(k)}zci=1 of natural numbers

and & > 0 such that

" n(2k+1) _
Ili Y Lei®o) >&, k=1,2,....
) § =~ n(2k) K4
) n(2k+1) S
Setting P, = Y 9.®9;, k=1,2..., it follows that the sequence {P}._,
i=n(2k)

is mutually disjoint and ||4P,|l, > & for k = 1, 2,... which is a contradiction and
so the implication is proved.

(i) = (iii). Suppose that 4 € #° and that {R,} is a downwards directed system
of projections with R, |, 0 but that {|[4R,]|s} does not converge to 0. By passing
to a cofinal system if necessary, it may be assumed that there exists ¢ > 0 with
l4AR|ls > & for all 7. Since 4 € #° = (F**)0, it follows that for each index r,

sup{[tr(AR.B)| : Be >, ||B| ,x< 1} > &

Using Proposition 2.2, there exist sequences {R,} = {R,} and {B;} = #* such that
R Lis 1Bl yx = 1, Ite(ARBy)| > & and |tr(4 R, B))| <g/2 for eachk=1,2,....
Setting P = R, — Ry, for k =1,2,..., it follows that [tr(4P.B,)| > ¢/2 for
k:=1,2,..., whichimplies that ||A1F’k|lj>< « > ¢&f2 for k = 1, 2,... . This contradicts
the fact that 4 € (#* )0, by using the implication (i) = (ii) applied to S **,

(iif) => (iv). Without loss of generality it may be assumed that 4 > 0. Let
{A4,} € & satisfy 0 < 4, < A for each ¢ and 4,],0. It is clear that {4,} € 4.
Denote by {E,} the system of projections with co-finite range, downwards directed
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by rangeinclusion and observe that £, |, 0. Let ¢ > 0 be given. By the stated property
of (ii), there exists E. such that [ AE, | < #/3. For every index o,

Au s < UEAE 5+ (= EDAE by + A — E.)i s <
< UAE Vg 4 20 A — E )

Since the range of I — £, is finite dimensional and since {4,} is convergent to 0
for the strong operator toopo]ogy, there exists ¢, such that IIAUO([— Efo)""< ¢/3.
It then follows that 4, , < & for all 4, < A,, and this proves the implication.

The implication (iv) = (v) is clear.

(v} = (i). Suppose that 4 > 0 and that A4 satisfies the condition of (v). Observe
that if P is any projection and / > 0 is such that /P < A, then also P satisfies
the condition of (v). It is not difficult then to see that such a projection P has finite
dimensional range and it follows from the spectral theorem that A4 is necessarily
compact. That (i) follows from (v) is a conscquence of the fact that 0 < 4,1, 4
if {A4,} denotes the partial sum sequence of the Schmidt expansion for 4. By this,
the proof of the proposition is complete.

3. WEAK COMPACTNESS AND PERFECT 1DEALS

We begin with several order equicontinuity propertics for conditionally
a(Sf, f’)—sequen‘tia]ly compact subsets of an. arbitrary ideal .#.

ProrosITioN 3.1. Let & be an ideal in # and suppose that # < ¥ has
the property that each sequence in A contains a (5, 5> )-Cauchy subsequence.
Then A is o(F, F*)-bounded and has the following properties.

) - limsup{ltr(BA4,)| : Be X} =

for every family {4,} < #* with0 < 4,],0.

th) lim sup{'tr(BR.C)! : Be #} =0

Sfor each C € 7%, for every family {R.} of projections with R, |, 0.

(iii) Ii{,n sup{|[tr(CR.B)| : Be A} =0

for sach C € F%, for every family {R} of projections with R, |,0.
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Proof. Tt is trivial to see that X" is ¢(.#, .# *)-bounded. Assume that (i) fails
to hold. By passing, if necessary, to a cofinal subnet, it may be assumed without
loss of generality, that there exists & > 0 such that

sup{[tr(BA,)| : Be€ X'} > ¢

for all indices t. Using the fact that .# < (#*)*, it follows by induction that there
exist sequences {B,} < A, {4:} = {4} such that A; lu, ltx(B,4. )l > ¢ and
ltr(B;4; ) <e/dforl <j<nandn=1,2,... . By passing to subsequences if
necessary, it may further be assumed that {B,} is (., .# *)-Cauchy. Forn = 1, 2,. ..
set D, ~= A, —- A, . Observe thatif Eis any finite subset of N, then0 < Y, D; <
n n jeE
< A, . Consequently, Y, D;e s for each subset E of N. For n>2 and E€ 2N,
JEE
define
Hn(E) = tr((Bn - Bn-—l) Z Dj)'

JEE

It is easily checked that {u,} is a sequence of bounded additive measures on the
Boolean algebra 2N with the property that p,(E) = 0 as n — oo for each E € 2N,
By Phillips’ lemma [7] it follows that yu,({n}) — 0 as n - co. However,

(D] = 1tr((B, — Byo)(Ar, — Az DI > 1tr(B, 4, )] —
— tr(B,A,, ) — Itr(B, 1A )| — Itr(B, sy )] > &4 for n > 2.

This is a contradiction, so (i) is established and (i) and (iii) may be proved in-
exactly the same way.

Ttis convenient at this point to insert a sharpened form of property (ii) preceding,

LeMMA 3.2. Let ¥ be an ideal in # and suppose that A is a o(¥, F*)-
-bounded subset of . The following conditions are equivalent.

@) lim sup{|tr(BR.C)| : B € H} =0

for every C € 5%, for each family {Rt} of projections. with R, |.0.
(ii) lim sup{|tr(BR,C)| i Be A’} = 0

for each sequence {P,} of mutually disjoint projections.

Proof. (ii) = (i). If (i) does not hold, then there exists ¢ >0, Ce s>, a
sequence {R,} of projections with R, |, and a sequence {B,} < X such that

ltr(B,R,C) > & and |tr(B,R,:,)| < €/2
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for n=1,2,... . If P,= R, — R,,y, n=1,2,..., then {P,} is a sequence of
mutually disjoint projections such that

'tr(B,P,C) > &/2, n=1,2,...

and this contradicts (ii).
(i) = (ii). Suppose that (ii) fails so that there exists ¢>0, a sequence {B,jcAt
and a sequence {P,} of mutually disjoint projections such that

ny
tr(B,P,C) >¢, n=12,...

Since €, == £~ , there exists an increasing sequence {n(k)}, with n(1) == 1, such that

(B, (Y, PYC) < 8/2-”

J>n(k+1)

For k —1,2,... set Q, = Pyt Y P;. The sequence of projections {Q}

Jenk+1)

satisfies Q; |, 0 but
te(B,yQC)! > €2, k=1,2,...

so that (i) is not satisfied. This completes the proof of the lemma.

PRrOPOSITION 3.3. Let % be a s.n. ideal. If ' = F* is o(F*, F)-bounded
and if -either

1)) lim sup{|tr(BR,C)| : Be A’} =0

for each C € 5 and each system {R.} of projections with R, |, 0 or

(ii) lim sup{[tr(B4,)| : Be A} =0

Jor each system {A} = F with A .0, then X is o(F*, F)-relatively compact.

Proof. By the Banach-Alaoglu theorem, it suffices to show that each o(#%, #)-
-accumulation point of 2 in #* belongs to #*. In view of Proposition 2.8, it
further suffices to show that each such accumulation point is normal. This, however,
is an immediate consequence of either stated equicontinuity condition together
with the corresponding characterization of normality given in Proposition 2.8.

We may now state an intrinsic characterization of o(#, .# *)-relatively compact
subset of a perfect ideal .#, in terms of normality type equicontinuity conditions.
For the special case that # = €,, our result is due to Akemann [1].
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THEOREM 3.4. Let # be a perfect ideal in € and let 4 <= F. The following
statements are equivalent.
W) A is o(F, F*)relatively compact.
(i) A is o(F, S *)relatively sequentially compact.
(i) A is o(F, I *)-relatively countably compact.
(iv) A is o(F, S *)-bounded and

lim sup{|tr(BA,)| : Be A} =0
T

Jor all systems {A.} = F* with A, |.0.
(v} A is o(F, F*)-bounded and

lim sup{|te(BP,C)| : Be £} == 0

for each C e 5% and each sequence {P,} of mutually disjoint projections.
(vi) A is o(F, F*)-bounded and

lim sup{[tr(BR,C)| : Be A’} =0

Jor each C € £ and each family {R.} of projections with R, |, 0.

Proof. The equivalence of conditions (i), (ii), (iii)) has been established by
Garling ([9], Theorem 11). The equivalence of (v) and (vi) is given in Lemma 3.2
above. That (ii) implies (iv) and (ii) implies (vi) is given in Proposition 3.1 above.
As the proof that (vi) implies (i) is similar to the proof that (iv) implies (i),
the theorem will be completely proved by establishing that (iv) implies (i). We
observe first that if S = &,, then A is o(#, #*)-relatively compact by Propo-
sition 3.3 applied to 4. We may assume then that J # %,. Since # is a perfect
ideal, we have that .# # %, . Since £ is an ideal of compact operators, we have
by the Corollary to [9], Proposition7, that®, < 5 ” %¢wand alsothat?, c s> <

” %.. For each C € #X\%, we write

|Allc = sup{tr(AUCV|) : U, V€ B, |Ue < 1, ||V]lw < 1}.

If #. denotes the collection of all A € # for which [|4|lc < co then it is shown
in [9] that (F¢, ||- |lc) is a perfect s.n. ideal. Observe that # =.# and that #§ < S
for each C € J *\%, . It follows from Proposition 3.3, that 4" is o(F ¢, £ &)-relatively
compact in £, for each C e F*\¥,. Let now {4,} be a o(F, .£*)-Cauchy net.
Since {4,} is |- |l-bounded, it follows that there exists 4 € # such that 4, - 4
for the weak operator topology. For each C € #*\%,, there exists A(C) e ..
such that {4,} is o(F ¢, #¢)-convergent to A(C) and hence weak operator convergent
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to A(C). It follows that A(C) == A for all C € £-\%,. In particular, 4 €4 for
all C € 4>\%, and it follows immediately that A4 € (#*)> = 4. Finally, by noting
that ¥, < S¢ for all C € #*\¥,, it follows that {4,} is a(.#, # *)-convergent to 4
and by this the proof is complete.

We remark that the criterion given in part (v) above may be used to give
a direct proof of the fact that if # is a perfect ideal with @, 7 F ¢ G, then
the #-invariant cover (see [9]) of each o(F, # )-relatively compact subset of .# is
again o(f, . *)-relatively compact, where # denotes the || -||x-unit ball of .#. This
result is established in [9], Theorem 12, and the proof given there is based, in
part, on a separate study of weakly compact subsets of symmetric sequence spaces
[8]. However, as itis not central to our present purposes, we shall not give the details.

If 4 is an ideal in ¥ and if u is the symmetric sequence space associated
with # under the Calkin correspondence, then it is well known [12] that u is
perfect (i.e. u == p**) if and only if u is o(u, y*)-sequentially complete. We now
show that this result remains valid if u is replaced by . We recall first {9] that
the BK-topology on anideal # < 4 is that defined by the family of norms

pe(-) = {tH(ICX(HYD 1 X, Y€ B, [[Xfoo < 1, [ V] < 1}, 0£CeS™.

It follows from [9], Theorem 10, that if .#*> s &, then the dual for # under the

BK-topology is precisely £ . We may now state our main characterization of perfect-
ness.

THEOREM 3.5. If & is an ideal in €, then the following statements are
equivalent.

(i) & is perfect.
(i) S is o(F, S *)-sequentially complete.
Gii) If {B,}n, S £ is o(F, S ”)-bounded and weak operator convergent to
Be 4, then Be £.
(iv) If {B}n . is o(F, F¥)-bounded and if O < B,1, then there exists
0 < B ef with B, > B for the weak operator topology.

Proof. (i) = (ii). It follows immediately from Theorem 3.4 and Proposition 3.1
above that each o(#, #*)-Cauchy sequence in # is ofF, ¥ *)-relatively compact,
and the implication follows.

(i) = (iv). If {B}o>, is o(F, #*)-bounded and 0 < B, T,, then {B,), , is
|| - llo-bounded and consequently there exists B € 2 with {B,} weak operator con-
vergent to B. However, from 0 < B, T, and the ¢(#, #*)-boundedness of the
sequence {B,}, it follows that {B,},-, is o(F,#>)-Cauchy and the implication
(i) = (iv) follows.

(i) = (iii). Suppose that {B,}.., < . is o(#, #*)-bounded and that {B,}
is weak operator convergent to B € 4. Since # is perfect and . < ¥, it follows
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that /> 3 %, and consequently the sequence {B,} is bounded for the BK-topology
on . If now 4 € £X\J0}, if U, V are partial isometries in & and if {¢;}; , is
an arbitrary finite orthonormal sequence in 3, observe that by [10], Lemma 11.4.1

H

2 i(UABkaj: (Pj)| < t_r(IABk\) < S',JppA(Bk) < oo

j 1

holds for n, k= 1,2,... . It follows that also

Z |(UABV(P,, (/)J)| < S"(JPPA(BI;)

j=1

forn = 1i,2,...,and consequently from [10], Lemma 11.4.1, it follows that AB € ¥,
and so Be .#, since . is perfect and A € £*\{0} is arbitrary.

The implication (iii) = (iv) is clear so to complete the proof of the proposition
it suffices to show that (iv) = (i). To this end, assume that (iv) holds and observe
first that this implies that # > # &,. In fact, suppose that #* =&, and let {p,} ,

n

be an orthonormal sequence in . Setting P = Y oi®¢p;and P, = Yo® ;.
i=1 i=1
n::1,2,..., it follows that {P,,}f_.l is o(#, #*)-bounded since #* = &,. This
implies by condition (iv) that P e # 'and this contradicts the assumption that
F S%. It now follows from [9], Proposition 7 (iii) that #~* = &,,. Suppose now

that 0 < Be £~ and let {B,},., = be the partial sum sequence of the Schmidt
expansion of B. It is clear that 0 < B, 1,, that {B,}., is o(F, .# *)-bounded and

that {B,,}:f’,__1 is weak operator convergent to B. Condition (iv) now guarantees
that B € # so that # = #>> and so .# is perfect. By this, the proof is complete.

4. SOME TOPOLOGICAL PROPERTIES OF NORMED IDEALS

The results of the preceding section not only admit a certain sharpening
for the case of s.n. ideals, but provide the basis for a unified approach to topological
and order properties of arbitrary s.n. ideals that are related to weak sequential
completeness, weak compactness and reflexivity. In order to consider perfectness,
we shall need first a preliminary result which shows that, if # is an s.n. ideal,
then 4= is precisely a maximal ideal in the sense of [10]. For the dzfinitions relevant
to the following discussion, we refer to [10], Chapter III. Following [10], & will
denote a symmetric norming function on ¢,, with maximal domain ¢, and adjoint
function @%. By %, is denoted the s.n. ideal consisting of all A € ¥, for which
the singular value sequence {s,(4)}7; € cq.
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LeMMA 4.1. Let J be a s.n. ideal and let & be the symmetric norming
Junction on ¢y defined by setting

D) = || Z ne; ® 'e—j“.sf

3 oo . g
for each n € ¢y, for some orthonormal sequence {e;} ;.1 in H#. If 6, g F S Cs

then
(I3 11 ) == (Bor, | los)-

Proof. If p is the symmetric sequence space corresponding to . under
the Calkin correspondence, if u is equipped with the norm [|- i, induced by #
and if p>, the a-dual of u is normed by setting

i s = sup{iz_] m&d & e m gl < 1}

‘1hen it suffices, by Theorem 2 and Theorem 3 of [9] to show that (u*, !i- ',,>~) o=
cous I llos). This however follows readily from the relevant dehmtlons and so

ithe details are omitted.
We may now characterize perfect s.n. ideals.

PROPOSITION 4.2. If & € ¥ is a s.n. ideal, then the following statements are
equivalent.

(i) £ is perfect.

() If {B,,},, 1 € F is || - || s-bounded and weak operator convergent to B € 4,
then Be S.

(ifi) F coincides pointwise with a s.n. ideal €, with symmetric norming
Junction & not equivalent to the minimal one.

(iv) If {B, },, 1 €I is ||-|ls-bounded and if 0 < B,T,, then there exists
0< Be# with0< B,1,B.

Proof. The implication (iii) = (ii) is proved in [10], Theorem 111.5.1, while (ii)
trivially implies (iv).

(i) = (iii). It is clear that we may assume that %, ; 5 g ¥ so that
“, g S ” % , by the perfectness of # and [9], Proposition 7, since the impli-
cation (i) = (iii) is clearly valid for ¥,. Let ® denote the symmetric norming
function induced by £ on ¢y . From Lemma 4.1 above, it follows that 5~ = G«
.and hence

J“r = (jx)x = gq)t!ir - (g@.

It 1s clear that & is not equivalent to the minimal one and by this the proof of the
implication is complete.
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1t remains to prove the implication (iv) = (i). As in the proof of Theorem 3.5,
condition (iv) implies that #** < @, Let 0 < Be .£** and let {B,},., be the
partial sum sequence of the Schmidt expansion of B. It is clear that the sequence
{B,,}f,xi.1 isa(#, #*)-bounded and hence || - || ,« x bounded in £~ *. However, it follows
from Corollary 2.6 that || B,|ly = ||B,ll ,~»,n=1,2,...,sothat {B,}is | - || ,~bounded

and so it now follows from (iv) that B € .#. Thus £ is perfect and by this, the
proposition is completely proved.

We remark first that the equivalence (i) <> (iv) above can be viewed as a non-
-commutative analogue of a well-known characterization of perfect Banach lattices.
See, for example [20], Theorem TII.1. To facilitate some further remarks, a s.n.
ideal .# is said to have o-Fatou norm if and only if whenever {4,}., € .# and
0< A,1,A4 with 4 € #, it follows that {|4|l, = sup ||4,|ls. In equivalent form,

this property appears in [16]. It is not difficuit to see that each Gohberg-Krein
ideal ¥4, has a o-Fatou norm. Moreover, in Proposition 4.2 preceding, if the ideal .#
is assumed to have o-Fatou norm, the statement (iii) may be replaced by

(iit) Il ) = (Fa, [ llo)-

Let us now make one further remark. In [4], the authors consider a class of s.n.
ideals with a property that is easily seen to be equivalent to the g-Fatou property
of the norm, together with the property given by statement (ii). It follows that the
class of ideals considered in [4] are precisely the Gohberg-Krein ideals ¢, and this
answers a question raised in [4].

Before proceeding to our next result, we observe that if . is a s.n. ideal
and if A4, B e # satisfy 0 < B < A, then ||B]|, < ||A]|,. Tt follows (see, for example
[2]) that each element of #* is a linear combination of positive functionals.

We now characterize those s.n. ideals which are weakly sequentially complete.

PROPOSITION 4.3. [f £ is a s.n. ideal, then the following statements are
equivalent.

(i) £ is (&, I*)-sequentially complete.

(ii) F is perfect and minimal.

(iii) Each || .|| s-bounded increasing sequence of positive elements of F is
|| - || s-convergent.

(iv) F contains no copy of «,.

Proof. (ii) = (i). Since 4 is minimal, it follows that 4 < ¥, and that
F< = % The implication now follows from Theorem 3.5.

(i) = (ii). We observe first that . < % . In fact if this is not so, then .#*
coincides with %, by [9], Proposition 7, and consequently #¢ == (#* X)? coincides
with #9 = €, . This contradicts (i). It now suffices to show that #* = #* and to
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this end, it suffices, in view of Proposition 2.8 to show that if {B,} = .# satisfies
B, 1,0 then {B,} is o(#,5%)-convergent to 0. Since the dual cone generates .*,
it follows that {B,}}, , is o(.#, #%)-Cauchy, hence o(.#, F*)-convergent to an element
B e .4, by assumption. However, since {B,,}f,o , 1s weak operator convergent to O.
it follows that B ~= 0 and the proof of the implication is complete.

(ii) <> (iii). This equivalence is easily seen via Proposition 4.2 and Propo-
sition 2.9.

The implication (i) => (iv) is trivial.

(iv) = (ii). Assume that .# contains no copy of ¢,. Observe first that . = <
S ¥, for if not, 5+ 2 %, by [9], Proposition 1, so that £ > = # since - is
perfect. 1t follows that #0 = (& =)0 = &, and this is a contradiction. It now
suffices to show that £ = (#--)0 To this end, suppose that 0 < 4 €. " but

that 4 ¢(f <), Let 4 = Y. 4i¢; ® @; be the Schmidt expansion of A. Since
i=1

A ¢ (5 )0, it follows that there exists ¢ > 0 and an increasing sequence {n(k)},fo,1

of natural numbers such that

I n(2k) X ) n(2k) . '
Y 40 ® e = S, A0 ® o > &
i nizk-1y ly bizniz-1n AR
for k=1,2,... . Setting
. n(2k)
A, = %, Lei®e, k=12,
i n(2k-1)

1t is not difficult to see that if & € ¢y, then
£l ¢lleo < H; &dills < [EllliAll,

and this clearly yields a contradiction. By this, the proposition is completely proved.

We remark first that the equivalence (i) <> (ii) of the preceding proposition
contains as a special case the well-known fact ([1], Corollary IIl.1) that &, is
weakly sequentially complete. Further, Proposition 4.3 is a non-commutative analo-
gue of well-known characterizations of Banach lattices which are weakly sequentially
complete. See, for example, [15], Theorem I.c.4. To make some additional ‘remarks,
suppose that # is a s.n. ideal with # € ¥ and let u be the associated symme-
trically normed sequence space. It follows from [9], Corollary 1, that # is perfect
it and only if pu is perfect and it is not difficult to see that .# is minimal if and
only if the induced norm on u is order continuous. Using standard facts from the
theory of Banach lattices, it follows that each of the statements (i) — (iv) in Propo-
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sition 4.3 above are equivalent to each of the corresponding statements obtained
by replacing .# by u. We omit the details. We note finally that if the s.n. ideal £
is in addition assumed to be minimal, then a number of additional equivalent
statements can be obtained by inspection from [3], Proposition 3.7 and [l1],
Theorem 3.4. The details however, we leave to the interested reader.

Our next result characterizes those minimal s.n. ideals .# for which the dual
ideal > == #* is again minimal and is related to a question raised by Schatten [17].
Again, our motivation is drawn from analogous results from the theory of Banach
lattices. See for example [14], Theorem 1.c.9.

ProposiTiION 4.4. If # is minimal s.n. ideal, then the following statements
are equivalent.
(i) F* is minimal.
(i) The unit ball of F is conditionally (¥, F*)-sequentially compact.
(iif) £ contains no isomorphic copy of ¢£,.

Proof. The implication (ii) = (i) follows immediately from Proposition 3.1
and Proposition 2.9.

Condition (i) implies via Proposition 3.3 that the unit ball of .# is relatively
o(F ™, F~)-sequentially compact in .# > * and hence conditionally ¢(.#, # *)-sequen-
tially compact, which is (ii).

The implication (ii) = (iii) is clear. The proof will be complete by showing
that (iii) = (i). If #* is not minimal, then by Proposition 2.9 (ii), there exists
0 < Aes> with ||4]| x = 1, a sequence {P} . of mutually disjoint projections,

a sequence {B,};., < £ with ||B,ll;, <1 for n=1,2,... and ¢ > 0 such that
[tr(AP,B,)| > ¢ for n==1,2,... . If £ € ¢, observe that

|| Z énPanHf < Hé”l

On the other hand, if 1 € ¢4, and if ||1]l, < 1, then

”Z én‘puBn”.f = }tr((z }“nAPn)(Z énPan))' =
= lZ /1,,6,, tr(APan)| P 8”5”1

by appropriate choice of .. It follows that .# contains an isomorphic copy of ¢,
and the proof of the proposition is complete.

Once again, we observe that if u is the normed sequence space corresponding
to the minimal s.n. ideal #, then u has order continuous norm. It is not difficult
to see that #* is minimal if and only if 4> has order continuous norm. Using
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standard facts, it is then not difficult to show that each of the statements of the
preceding proposition is equivalent to each of the statements obtained by replacing .#
by 1. We remark that the preceding result may be used as a basis for an alternative
proof of [11}, Theorem 3.5. It should be further remarked that the equivalence
(ii) <> (iii) above is an immediate consequence of Rosenthal’s /, Theorem (see [7],
Chapter XI). We have, however, preferred to indicate the direct and simple proof
that is available in the present setting.

We conclude with a characterization of reflexive s.n. ideals, which is a simple
consequence of Proposition 4.4 and Proposition 4.3 above.

ProrosiTION 4.5. If 4 is a s.n. ideal, then the following statements are
equivalent.
(i) & is reflexive.
(ii) & is perfect and both 5 and #* are minimal.
(iii) Every increasing bounded sequence in the pasitive cone of ¥ is convergent
and S s minimal.
(iv) £ contains no subspace isomorphic to ¢4 or /.

We remark finally that, via Proposition 4.2, the implication (ii} = (i) is given
n [10), Theorem 111.12.2.
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