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LIFTINGS AND EXTENSIONS OF MAPS ON C*-ALGEBRAS

A. G. ROBERTSON and R. R. SMITH

1. INTRODUCTION

Let B be a C*-algebra with a two sided closed ideal J and let n : B — B/J
be the quotient homomorphism. If E is either an operator system or a C*-algebra.
then a map ¢ : E — B/J is said to have a lifting, or be liftable, if there exists a
map ¥ : E — B such that ¢ = my. If E is contained in B/J and ¢ is the identity’
then the map is suppressed and ¥ is said to be a lifting of E. Usually conditions
are imposed on ¢, and lifting maps of the same type are sought. If E is a finite:
dimensional operator system then unital positive maps have unital positive lliftings
[2], contractive maps have contractive liftings [11], but completely positive maps.
need not have completely positive liftings [3]. In light of these results we formulate
and prove the strongest possible general lifting theorem. This asserts that every
finite dimensional operator system in B/J has an n-positive unital lifting (Propo-
sition 2.4), for each integer n > 1. The lifting theorems of Andersen [2] and Choi--
-Effros [11] are both special cases. The lifting of finite dimensional operator systems
is a prelude to the lifting of C*-algebras, as in [2] for C*-algebras with the pcsitive:
approximation property, or as in [10] for nuclear C*-algebras. Here, we obtain.
n-positive liftings for separable C*¥-algebras which have the n-positive approximation
property. ’ ‘

In the third section this theory is applied to the reduced C*-algebra of F,,
the free group on two generators, in order to answer a question which arises from
recent work of Stormer [24]. In that paper the problem of extending a positive
map ¢ : A — B(H) to a larger C*-algebra B was considered, and this was shown
to be possible if 4 is nuclear. An example was given to the contrary in the non-
-nuclear case in [18] and we strengthen this to n-positive maps here. Examples of”
non-extendible maps on operator systems have been known for some time [4], [24]
and we incorporate these in a general theory. The fourth section is concerned

with a short application to matrix ranges. Background material is to be found
in [20], [21]. :
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It is assumed throughout that all C%*-algebras and operator systems are
unital, with 1 representing the identity. The C*-algebra of n X »n matrices is denot-
ed M,,and if ¢ : 4 - B is a linear map then ¢ ® id,: A @ M, > A ® M, is
defined by ¢ ® id,(a;;) = (¢(a;;)). ¢ is n-positive if ¢ ® id, is positive, and is
completely positive if every ¢ ® id, is positive.

2. n-POSITIVE LIFTINGS

In [2] Andersen proved, as a coirollary of a difficult selection theorem
for A(K) spaces, that any finite dimensional operator system E in a quotient C*-
-algebra B/J has a positive unital lifting ¢ : E — B. A consequence of this result
was the existence of positive unital liftings ¢ : B/J — B whenever B/J is separable
and has the positive approximation property [2, Theorem 7]. We wish to obtain
a generalization of this to n-positive liftings, but first take the opportunity to provide
a simple proof of Andersen’s theorem.

THeOREM 2.1 (Andersen). Let E be a finite dimensional operator system in
.a quotient C*-algebra BJJ. Then there exists a unital positive lifting ¢ : E — B.

Proof. Working with a basis for E consisting of self-adjoint elements and the
identity, it is easy to construct a self-adjoint unital lifting ¥ : E —» B, which is
automatically bounded since E is finite dimensional. Let

K={y(@)_:ack, lla| =1, a> 0}

where x_ denotes the negative part of a self-adjoint C*-algebra element x. Then K

is a compact subset of J and is thus contained in conv{x,} for some sequence
{x,J%., < J satisfying lim ||x,|| = O [14). By reordering {x,} if necessary, there

n—co
-exist integers m; < n, < ny ... such that

2-C4Y) g ix,ll < 27% for m < n < My

‘Since the positive part of the open unit ball of a C*-algebra is upward filtering [15]
there exists a sequence {ji}z~, < J such that
il <27% and j, > x, for m < n<my,.

n, -1

[ee]
Define j = ¥, x, + Y] ji and observe that j > x for all x € K.
r=1 k=1

By compactness there exists a positive linear functional 6 € E* such that
@) > |la|| for all @ e E+. Define v: E —> B by v(a) = ¥(a) + 0(a)j. Then if a € E+,
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Ylall = 1,
v(a) = Y(a@). + (0(a)f — Y(a)-) >
> Y@ + (= ¥(@)-) >0
by the construction of j. Thus v is a positive lifting of E, and it only remains

to make it unital. Following [6], write v(1) = 1 + k, — k, where k,, k, € J* and
choose a state @ on E. Define ¢ : E - B by

1 -1
@@ = (1 + k) 2(v(a) + w(@k)(1 + k) %, (acE)
and observe that ¢ is a unital positive lifting of E.

In order to generalize this theorem, the following technical lemma will
be needed.

LeMMA 2.2. Let E be an operator system and let B be a C*-algebra. If
W EQ® M, - B® M, satisfies

Y(U*XU) = U*y(XHU

Jor all X € E ® M, and all unitary matrices U € M, then there exist ¢, ) :E - B
such that

VX)) =0 ®id,(X) + itraceX) ® I,, Xe€E® M,.

Proof. To avoid technical complications only the case n = 2 will be discussed.

"The calculations for n > 3 are in the same spirit, depending on a number of matrix
identities.

(1) For a € E, the identity’

P [ [ R
(S K10 [ M BT

and so (g (())) is a diagonal matrix. Thus there exist maps A, u : E - B such

Yo o) = (07 )

leads to

that
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(2) The identity
gives

(3) For any t eR

([ [P B Y
()l )G )= eod)

Thus there exists a linear map ¢ : E — B such that
v 0 a) _ (0 (p(a)).
00 0 0

(4) Since (0 ! (O a (0 1)=(0 0 it follows from (3) that
1 oJ\0 O0J\1 O a 0

W(g §)=(f,,@ g)

and so

(5) The identity

V2 )2 oz vz,
1 (?1 0) L =(0 —2)
Aol m o

leads to
((p(a) 0 )= (,u(a) 0 )_ a) 0 )
0 —ola) 0 Aa) ( 0w

and so ¢ = u — A
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(6) Finally
a by (ua O 0 o(b) 0 0 Ad) 0\
w& d)_(o M@)+(0 0 )+(wo 0)+(0 qu_
=((p(a)+).(a+d) o(b) )= '
¢(c) o(d) + i(a + d)

~ a b a b
=¢ ®id ) + trace( ® 1,
¢ 2((: d ( e d

and the proof is complete.

If £ is a finite dimensicnal operator system then a simple compactness
argument gives a strictly positive state 0, € E* and a constant k €(0,1) such.
that :

O0o@) > kllall (a € E*).

Many different choices of 0, and k are possible, but we fix one now for the remaind-
er of the section.

Given any state « on E, the linear functional § = (1 — k)~Y 6, — ko) is
also a state, and so 0, = ka + (1 — k)f. Write

E, = {a € E : 6,(a) = 0}.
Lemma 2.3, If A € E;, ® M, satisfies

I,+A420

n

then |trace A|| < n/k.

Proof. Clearly A is self-adjoint and so if A4 is written in matrix form as (a;;)
with a;; € E,, then each diagonal entry a;; is self-adjoint, and 1 + a; > 0. 1f « is.
any state on £, let § be the state satisfying

0y = ko + (1 — K)B.
Then
1+ a(a;)) >0, 1+ Ba;}=20
from which it follows that
wa;), Blai) = — 1.
On the other hand
| 0 = O(as) = kalay) + (1 — K)B(as),
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u(a) = - (,‘« = 1)ﬁ(ai.-> < (7‘(— 1) <t

since PB(a;;) > — 1. Thus

and so

— 1 < ala;) < 1/k

and since x was an arbitrary state, |ja;|| < 1/k. Consequently

' i n
h H
litrace 4| = | § a; !41 < Y llaiil < njk.

ProrcsiTicN 2.4. Let E be a finite dimensional operator system in BlJ.
Then for ecach integer n > 1, E has an n-positive unital lifting.

Proof. By Theorem 2.1 there exists a positive lifting o :E@ M, - B ® M,.
Let G be the compact unitary group of M, with normalized Haar measure u
and define a new positive lifting ¥ of £F ® M, by

Yx) = S Up(U*XU)U* du(UY
)

for XeE @ M,. Then if VeG

WX = SV-:=(VU)¢<(VU)~*-=X(VU))(VU)*Vdu(U) ~
o]

= V*(X)V
by invariance of u. By Lemma 2.2 there exist maps 7, 4 : E — B such that

Y(X) = 7 ® id,(X) + AtraceX) ® I,, (X €E ® M,).

If a€E* then a ® P, > 0, where

and so Y(a ® P;) > 0. From this it follows that /(a) > 0 by examination of the
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{2, 2)entry,and thus 2 > 0.In addition A(a) € J andso 2 : E = J. Letj, = A(1) e J*
and define ¢ : E — B by

p(a) = (a) + ?'f- 0y

‘We now check that ¢ is an n-positive map.
If Xe(E® M,)* then X may be expressed as

X=M+Y MeM, YecE, ®M,.

States are completely positive [22], and so 8, ® id,(X) > 0, leading to M > O
since Y is annihilated. If ¢ ® id,(X + &l,) > 0 for aill ¢ > 0 then c®id,(X) > 0,
and so without loss of generality we assume that A is invertible. Then there exists
an invertible matrix T such that 7%MT = I,, and so

T*XT = I, + T*YT > 0.
Clearly

o ®idX) =T %5 @ id(T*XT)T*

and so it suffices to check positivity of ¢ ® id, on positive matrices of the form I, + A
where A € E, ® M,,.

By Lemma 2.3 |trace 4| < n/k and thus |{trace(, + Al < n + nfk < 2nlk
since k < 1. Then

6 ®id(I, + A) = T @ idy(J, + A) + ‘3k~1 ®1 =

YU, + A) + ( 2]—” Jo — Mtrace(I, + 4) ® 1,,) >
<

' 2 m
> WL, + 4) + (—’11'0 = l]o) ®1,
k k
since 4 = 0 and trace(f, + A) < (2n/k)1. Thus
e ®id,(I + A=y, + A) >0

and ¢ is an n-positive lifting of E. The final argument, modifying o to a unital »n-po-
sitive lifting, has been given at the end of Theorem 2.1.
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COROLLARY 2.5.If E is a finite dimensional operator system in B|J then for eacl
integer n = 1 there exists an n-isometric unital lifting of E.

Proof. Let ¢: E — B be a 2n-positive unital lifting of E, by Proposition 2.4.

’IY) >0 in E® M,,. Then

n

)> 0, and so [ip ® id,(X)|| < 1. Since any lifting is

If Xe E® M, then [LX|j < 1 if and only if (/["/’

( I, ¢ ® id,(X)
o ®id,(X)* I,

norm non-decreasing, it follows that ¢ is n-isometric.

We say that a C*-algebra 4 has the n-positive (respectively n-contractive)
approximation property if there exists a net {7, : 4 — A4},c4 of finite rank »-posi-
tive (respectively n-contractive) operators converging in the point norm topology
to I. If A is separable then the net may be replaced by a sequence of operators
T2

THEOREM 2.6. Let A be a separable C*-algebra with the n-positive (respectively
n-contractive) approximation property, and let ¢: A — BJJ be an n-positive (respec-
tively n-contractive) map. Then there exists an n-positive (respectively n-contractive)
lifting y: A - B of @, which may be chosen to be unital if ¢ is unital,

Proof. Let {T,}® | be the sequence of approximating maps and let E, be the
operator system in B/J spanned by ¢7(4) and 1. By Proposition 2.4 or Corollary
2.5 there exists an n-positive (respectively n-contractive) lifting ¢, : E, - B and so
¢T,: A —» B/J has an n-positive (respectively n-contractive) lifting ¥,07,: A — B.
The argument given by Arveson in [6] is valid here, and so the set of n-positive (res-
pectively n-contractive) liftable maps of 4 into B// is closed in the point norm
topology. Since we have shown that each ¢T7, is liftable, we conclude that ¢ has an
n-positive (respectively n-contractive) lifting .

In the n-positive case the argument at the end of Theorem 2.1 will modify ¢
to be unital and n-positive. If ¢ is unital and n-contractive then ¢ is n-positive
and so has an a-positive lifting . Since A4 is a C*-algebra  is also n-contractive and
so the proof is complete.

REMARK. The n-contractive part of this theorem gzneralizes the C*-algebra
version of a result of Choi-Effros [11, Theorem 2.6].

3. EXTENSIONS OF POSITIVE MAPS

The starting point for this section is a recent result due to Stormer [24] which
asserts that if 4 € B are unital C*-algebras with A4 nuclear, then every unital
positivemap ¢: A — B(H)hasa positive extension y: B — B(H). Note that the com-
pletely positive version (with the nuclearity requirement dropped) is Arverson’s
Hahn-Banach theorem [4]. We begin by strengthening this result to n-positive maps.
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ProrosiTiON 3.1. Let A € B be unital C*-algebras with A nuclear. Then
every n-positive unital map ¢: A — B(H) has an n-positive extension Y: B — B(H).

Proof. A ® M, is nuclear and ¢ ® id, : 4 ® M,, > B(H ® C") is positive,
so by [24, Theorem 3.14] there exists a positive unital extension A: B ® M, —
— B(H ® C"). Since B ® M, is a C*-algebra, / is contractive. As in Proposition
2.4, let G be the unitary group of M, with normalized Haar measure u, which is
both left and right invariant since G is compact. Define : B ® M, - B(H®C") by

n(X) = SS U0 xvyvdu(U)du(¥V), (X eB® M,).
GxG
The invariance of u implies that
HCXD) = Cy(X)D
for X e B® M,, C, D € G, and by linearity this relation holds for any matrices
C, D e M,. By considering suitable choices of C and D as matrix units in M,
it is easy to check that 7 has the form Y ® id, for some map y: B — B(H).

Now / is contractive, and so 5 is contractive, from the definition. Moreover,
if X €4 ® M, then, for U, V €@,

HUAXV) = ¢ ® id (U*XV) = U*p @ id (X)V

and so

¢ ® id,(X) SS UAUSX VYV *dp(U)du(V) = 5(X) = ¥ ® id,(X).

GxG

Thus ¥ is an n-contractive extension of the unital map ¢, and so is an n-positive
extension.

REMARK. The restriction that ¢ be unital is not essential. If ¢ is n-positive and
@(1) = T € B(H) then, modifying an argument of Choi-Effros {12, Lemma 2.2],
there exists a unital n-positive map &: A — B(H) such that ¢(a) = T*2E(@)TY2 for
a € A. Proposition 3.1 can then be applied to &.

In [24] Stormer conjectured that his extension theorem was no longer true if
A were not assumed to be nuclear. An example to this effect was given in [18], but
we present here a related and stronger result. Let F, denote the free group on two
gencrators. When F, acts on K = [,(F,) by left translation the resulting C*-sub-
algebra of B(K) is denoted Cf(Fz) and is a quotient of the group C*-algebra C*(F,)
by an ideal J. Let C*(F,) be faithfully represented on some separable Hilbert space H.
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THEOREM 3.2. For each integer n > 1 there exists an n-positive unital map
@, CT(FZ) — B(H) which has no positive extension to B(K).

Proof. C5(F,) is separable and has the n-positive approximation property for
each positive integer » [13]. By Theorem 2.6, applied to the identity map of Cj:(FL,)
onto C*(F,)/J, there exists for each n > 1 an n-positive unital lifting ¢, : Cf(E_,) -
— C*(F,). Since C*(F,) < B(H) we may regard the larger algebra as the range of
¢, - The verification that no ¢, has a positive extension to B(K) now follows by com-
bining the argument of [18] with that of [11, Theorem 4.5] to show that the quotient
map C*(F,) — C;(F,) does not lift to an extendible positive map.

COROLLARY 3.3. For each integer n > 1 there exists an integer k(n) and an n-po-
sitive unital map - Cf(FZ) = M,y which has no positive extension to B(K).

Proof. Suppose that this were false for some integer 1. Then all unital n-positive

maps of Cf(Fz) into matrix algebras would have positive extensions to B(K). Since
B(H) is the w*-closure of an increasing union of matrix algebras, a simple limit argu-

ment would then imply that ¢, : C;(F,) —» B(H), constructed in Theorem 3.2, has
a positive extension to B(K). A contradiction has been reached.

REMARK. With some simple exceptions, B(H) couid be replaced in Theorent
3.2 by any unital C*-algebra. Let 4 be a unital C*-algebra which has irreducible
representations on Hilbert spaces of arbitrarily large dimension (inctuding o). Fix
7 > 1 and recall from [19] that there exist completely positive maps t,: M,y = A,
0,1 A = My, such that lo,z, — idl} < 1yr for 1 > 1. If i, Ci(Fp) = My is the
non-extendible n-positive map of Corollary 3.3 then 7,y,: Cf(Fg) — A is n-positive.
At least one of these must be non-extendible otherwise, after composition with 7,
a limit argument would construct a positive extension of ,,.

‘We now construct non-extendible positive maps on operator systems by me-
thods which allow us to obtain the explicit examples of [4, A2] and [24} as special
cases. These positive maps are actually order isomorphisms. We need a generat
result, which is an abstraction of the proof of [24, Proposition 3.15].

LeMMA 3.4, Let E, E', F, F' be operator systems with E < E' and F < F’,
Suppose that there is a positive unital projection n from F' onto F and a positive
linear map @ from E onto F which has a positive right inverse L.

Then @ extends to a positive linear map ¢ from E' into F' if and only if there is
a positive unital projection from E’ onto E.

Proof. If such an extension ¢ exists, then the map ¢ "¢ is a positive unital
projection from E’ onto E. Conversely if there is a positive projection p from E’ onto
E then ¢ = ¢p is a positive extension of ¢.



. LIFTINGS AND EXTENSIONS OF MAPS 127

As a first application, we assume that /' = B(H) for some Hilbert space H, F
is the range of a positive unital projection on B(H) and F is not order isomorphic
to an abelian C*-algebra. (For example F could be an injective non-abelian C*-al-
gebra.) Let X be the w¥-closure of the pure states of F and define the canonical
map :F - C(X) by y(x)(p) = p(x), x € F, p € X. Then ¥ is an order isomorphism
from F onto an operator system E = C(X). Let ¢ = L.

PROPOSITION 3.5. @ does not extend to a positive map ¢: C(X) — B(H).

Proof. If such an extension did exist then E would be the range of a positive
projection on C(X) and hence would be order-isomorphic to an abelian C*-algebra
[17, Theorem 4] contrary to assumption.

A simple concrete example js provided by the case where F =V + iV, with V'
a finite dimensional spin factor [1]. Thus F = span{l,s,, ..., s,}, where 5., ..., s,
are symmetries in B(H) satisyfing s;5, + s,5; = 20;1. According to [16] there exists
a positive projection from B(H) onto F. The pure state space X of F may be identi-
fied with the unit sphere in R” [1]. It is readily verified that in this case E is the linear
span of 1 and the coordinate functions x,, ..., x,. The order isomorphism ¢ is
given by

ool + apxy + o0+ ax,) = %1 + oxs, o0 oA,

When n = 2,5, = ((1) (1)) , Sy = (0 _(;) and X = T, the unit circle in R2?, we
i

recover Arveson’s example [4, A2], together with a new proof that ¢ is not ex-
tendible.

The operator system E constructed by the above method is of necessity infinite
dimensional. The following example, which was shown to us by M.-D. Choi, shows
that we can choose E to be finite dimensional if we drop the requirement that ¢
be an order isomorphism.

Let E={(a, b, ¢, d)el?:a—b=c—d}, and define ¢:E > M, by
o(a, b, ¢, d)=—1~(a+b a—b

2\c—d c+d
1—1i, —1 41, —1 —1)|| =2, sothat [[¢|f > 1. Hence ¢ does not extend to a
positive map on £,

) . Then ¢ is positive and unital but |lp(1 + 1,

PROPOSITION 3.6. Let A be an i jective C*-algebra and ¢: E - A < B(H) be
as in Proposition 3.5. The following are equivalent:

(1) ¢ is extendible (to a positive map @: C(X) - B(H)),

2 llol=1,

(3) A4 is abelian.
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Proof. (1) = (2). ¢ is unital, so [lo]| = {j¢| =

2) = (3). ]fA is nonabelian then there exists a eA llall =1 such that a® = 0.
Then {f(a)! < 1/2 for each state of A. Thus |Y(a)| < 1/2 (where ¥: 4 — C(X) is
the canonical order isomorphism defined by Y(a)(f) = f(a)). Now ¢ = ¢y~ so
lo((anl =1 = llall > 2l¢(a)||. Therefore |y > 2. :

(3) = (1). If A4 is abelian then ¢ is completely positive [22] and so ¢ is exten-
dible [4].

We now study non-commutative operator systems and non-extendible order-
-isomorphisms on them from a rather different viewpoint from that adopted in [24,
Proposition 3.15]. The following resuit is obtained by modifying the arguments in
[3, page 286) to deal with positive, instead of completely positive maps. K(H) denotes
the algebra of compact operators on a Hilbert space H.

THEOREM 3.7. Let ¢: B(H) — B(H) be a positive unital map and let
F = {x € B(H): ¢(x) = x} be irreducible. Suppose that there exists x, € F, such
that d(xy, K(H)) < |Ixp|'. Then F, is a JC-algebra.

Proof. This closely follows the argument in [5]. First note that there is a central
projection e € B(H)** such that B(H)is *-isomorphic to B(H)**e and K(H)(1 —¢)=0.
Note also that e is a minimal projection, since B(H)*%e is a factor. By [5,
p. 286], there exists a normal positive projection ¥ on B(H)** such that Yo = ¢
on B(H) and F < §(B). Let p be the support projection of . Then px = xp for
all x € F[16, Lemma 1.2(2)]. Hence pex = pxe = xpe for all x € F, so that pe is a
central projection in B(H)**e. Thus pe = 0 or pe = 1. We prove that the first
possibility does not occur.

Suppose that pe = 0. Then x, = ¥(xy) = Y(px,p) = Y(p(l — e)xo(l — e)p) =
= J{(! — e)x,). Now there exists y € K(H) such that {ixo — yli < [ix,!'and (1 —e)y=
Therefore  |xg!l = W (1 — e)(xo — ¥ < [xp — »!| < ||xpll.  This contradiction
shows that pe # 0. Hence pe = e.

To complete the proof it is enough to show that Fy, is a Jordan algebra: that
is x? € Fy, whenever x € F,,. Let z = @(x?) = x% Then z = ¢(x?) — <p(\)2
and y(z) = 0, since Y =y on B(H). Tt follows that pzp = 0, and therefore ¢z =
since pe = e. Hence = = 0, since the map x — ex is an isomorphism. Thus ¢(v?) = x2
This proves the result.

COROLLARY 3.8. If'n is a positive unital projection on B(H) whose range is irredu-
cible and contains a non-zero compact operator, then n(B(H)),, is a JC-algebra.

CORCLLARY 3.9. Let E be an irreducible operator system which contains a non-
-zero compact operator. Let F be an operator system on a Hilbert space K which is the
range of a positive unital projection on B(K). Suppose that ¢: E — F is an order-iso.
morphism from E onto F. If ¢ is extendible then E,, is a JC-algebra.
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Proof. By Lemma 3.4 there exists a positive unital projection from B(H) onto
E. Therefore E, is a JC-algebra by Corollary 3.8.

REMARK. The fact that the positive map of [24, Example 3.16] is not extendible
is an immediate consequence of this result. In that particular case F,, was the
JC-algebra of real symmetric 2x 2 matrices. In general, it follows from [16] that
F, will be order-isomorphic to a YC-algebra.

We now give an example of a 2-positive map on a finite dimensional JC-algebra
which has no 2-positive extension. This contrasts with the case of finite dimensional
C*-algebras, which are of course nuclear.

EXAMPLE 3.10. Let D = {x @ x': x € M,}, where x*denotes the usual trans-
pose of a complex 2 x 2 matrix x. D is naturally embedded as a subspace of M,.
The self-adjoint part of D is a JC-algebra which is Jordan-isomorphic to (My),, -

According to [25] there exists a positive linear map ¢: M, - M, which is
not decomposable in the sense of [23]. Thus, ¢ cannot be expressed as a sum of
completely positive and completely copositive maps. Define a linear map
Y:D - My by Y(x @ x%) = o(x).

We first claim that ¥ is 2-positive. For if not, there exist elements a, b, ¢ € M,
such that

(95, 2250 («p@ o)
br@b cac) o(0%) o)

Replacing ¢ by ¢ + ¢l if necessary, where ¢ > 0, we may suppose that ¢ is inver-
tible. By [9, Lemma 2.1], @ > bc~%b* and a* > b'c~1'b*!, or equivalently, a > b*c~1b.
However ¢(a) 2 ¢(b)p(c)~1p(b)*. Write x = ¢~/ be=Y2 and y = ¢~2ac~%/2, Then
Y = x%x, ¥ = xx*, but @y(y) Z @o(x)@y(x)* where ¢,: M, — M, is the positive
unital map defined by ¢y(z) = @(c)~V3(cV?zc1/2)p(c)~1/2. However, this contradicts
25, Theo rem 5.2], where it is shown that such ¢, must satisfy a “Strong Kadison
Inequality’’. Therefore ¥ is 2-positive. 4

Now suppose that  extends to a 2-posiﬁve map J i M, — M,. Then define
positive maps i, and ¥, on M, by ¥,(x) = Y(x ® 0) and ¥,(x) = ¥(0 @ xY). Clearly
Y, is 2-positive, hence completely positive and ¥, is 2-copositive, hence completely
copositive. However ¢ = y; + ¥, which contradicts the fact that ¢ is not decompo-
sable . ’

We have therefore shown that  is a 2-positive map on D which does not ex-
tend to a 2-positive map on M.

REMARKS. 1. The first part of the proo f actually shows that every positive map
from D into B(H) is 2-positive. '

9 — c¢. 2609
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2. The map i above does extend to a positive map on M, , since there is a posi-
tive projection from M, onto D.

4. MATRIX RANGES

Recall from [7] that the numerical range W(a) of a C*-algebra element ¢ € 4
is defined to be {¢(a) : ¢ is a state on A}. If an ideal J is specified then the essential
numerical range W (a) is defined to be W(n(a)) where n: A —» A/J is the quotient
homomorphism. A state is a completely positive unital map ¢: 4 - C, and so
the higher order matrix ranges W, (a) are defined by replacing states by completely
positive unital M,-valued maps. As before the essential matrix ranges W,.(a) are
defined to be W (n(a)). These were introduced in [4] and studied in [20], [21]. It is
always true that W, (a) © W, (a) and a natural question is whether an ideal pertur-
bation a + j of a can be found for which W (a + j) = W,.(a). This was solved posi-
tively in [20], [21], but the methods of § 2 allow us to state a stronger result.

THEOREM 4.1. Let E be a finite dimensional operator system in a C*-algebra A
with an ideal J. Given an integer n, there exists a linear map t: E — J such that
W.(a + 1(a)) = W, (a) for all aeE.

Proof. n(E) is a finite dimensional operator system in A4/J and so has an n-posi-
tive unital lifting y: n(E) - 4. Define 1: E - J by

w(a) = yn(@) —a (a€k).

It suffices to show that W (Yn(a)) ¢ W (n(a)). If ¢: A - M, is unital and com-
pletely positive then @y: n(E) — M, is n-positive, and so completely positive [8]. It
thus has a completely positive unital extension 0: A/J - M, . If a € E then

b(n(a)) = o¥n(a) = ¢la + 1(a))

and the inclusion is proved.

REMARK. In the presence of the n-positive approximation property the same
argument extends this result to infinite dimensional operator systems.
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