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SHAPE THEORY AND (CONNECTIVE) K-THEORY

M. DADARLAT and A. NEMETHI

1. INTRODUCTION AND PRELIMINARIES

1.1. INTRODUCTION

E. G. Effros [16] posed the problem of finding suitable invariants for studying
inductive limits of the form

C(Xl) ® Al - C(Xz) ® Az .

where the X; are CW-complexes and A4; are finite dimensional C*-algebras. In the
present paper we study this problem from the viewpoint of homotopy theory and
shape theory. Our algebraic models for shape invariants are based on ordered
K-theory.

The material is organized as follows:

1. Introduction and preliminaries.

2. Ordered K-theory and large denominators.

3. Connective KK-theory for spaces.

4. Homotopy computations for large homomorphisms.

5. Shape theory.

6. A connectivity result.

We consider the category %(n) whose objects are C*-algebras of the form

® C(X,) @ My, (finite sums)
K

where the X, are finite connected CW-complexes of dimension < #. The set Hom(4, BY
of morphisms in €(n) from A to B consists of all x-homomorphisms of C*-algebras
(including the nonunital ones).

Our main object of study will be the inductive limits of C*-algebras from €(n).
This requires a satisfactory classification of the morphisms of #(n). Now it is clear
that the space Hom(4, B) with A, B € ¥(n) is too big. Therefore, as in commutative
topology, it is natural to consider first the question of homotopy classification of
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such maps. This is a difficult problem whose approach requires certain technical
considerations of homotopy theory occuping many pages of our paper. The starting
point of our calculations of homotopy classes of x-homomorphisms is a decp result
of G. Segal [39] concerning thz realization of the connective BO-spectrum as a sequ-
ence of spaces of s-homomorphisms. In fact we use the complex version of this
result, which, as pointed out by J. Rosenberg [36], is also relevant for the computa-
tion of the stable homotopy groups of commutative C*-algebras. Building on this
circle of ideas we develop in Section 3 some aigebraic topology techniques in order
to compute the homotopy classes of =-homomorphisms Co(X) » C(Y) ® #7. It
turns out that

KK(Y, X) 1= [Cy(X), Co(¥) @ #] = H[Cy(X), ColY) @ M,]

has a natural structure of abelian group with addition induced by the orthogonal
sum of the homomorphisms. Moreover kk(¥, X) has good excision properties in
both variables and this allows us to define the groups kk, (Y, X) yielding a generu-
lized homology-cohomology theory which can be regarded as the connective theory
associated with the Kasparov KK-theory when the later is restricted to spaces. There
Is an obvious product structure on kk, induced by the composition of homomorph-
isms which enables one to riake many explicit computations. For instance iff X
and Y are torsion free spaces, then kk(Y, X) can be completely computed in terms
of those group homomorphisms H*(X, Z) — H*(Y, Z) which prescrve some natural
filtrations reminding of cyciic homology. The connection with K-thecory is maude
with the aid of the natural map kk(Y, X) - KKiC,(X). C,(Y)) which turrs out to
be an isomorphism provided that X and Y are (i1 — 2)-connected finite CW-comple-
xes of dimension <.

The results of Section 3 become useful for our concrete purposes only after
we know that there is a sequence v(m) of integers which tends to infinity, such that
the natural embedding

IIOII‘I(CO(X), Mm) g Homﬁcﬂ(){)v Mm - 1)

is a v(m)-homotopy equivalence (in fact one can take v{m) »= 2[(m,3}]). This will
imply that

kk(Y, X) = [Cy(X), Co(Y) € M,] = [C(X), C(Y) ® M),

provided that the dimension of Y is less than v(in).

It is worth noting that this connectivity result extends the stability properties
of vector bundles to cocycles of connective K-theory, i.e. to s-homomorphisms.
The proof is quite intricate and we have defeied it to Section 6.
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The next problem concerning homomorphisms is how to reduce the study of
[@ CX) ® M, , G-) C(Y) ® Mm ] to the study of the simpler homotopy classes of

the from [C(X)), C(Y) ® Mk ]. This completely nontrivial problem is discussed in

Section 4. Since we use techmques based on stability properties of vector bundles
and homomorphisms, our classification results apply only to those #-homomor-
phisms which are large in the sense that they “amplify” many times — with respect
to the dimension of each ¥; — each matrix subalgebra M, of @ C(X;) ® M, . This

is a natural restriction if we want to obtain purely algebraic but complete invariants
for the homotopy classes of +-homomorphisms. The precise definition of large homo-
morphisms is given in Section 2. The main topic of Section 2 is to give an intrinsic
characterization of those inductive limits 4 = limA4; with A4; € ¥(n), which can
be written as limits of inductive systems with all the bonding homamorphisms large.
This is accomplished using the notion of ordered group with large denominators
introduced in [31].

Having a rather satisfactory homotopy classification of s-homomorphisms we
pass to the question of how this local invariants can be patched together to yield an
invariant for both the diagram 4, — 4, — ... and the inductive limit 4 = lim 4;.
This is the shape problem to which we devote Section 5.

Let us state informally some special cases of our results concerning shape classi-
fications. Let %;(2n) be the category of the C*-algebras of the form (-kD CX) ® M,

where the X, are (2n — 2)-connected finite CW-complexes of dimension <2n with

K°(X,) torsion groups. Let ©j(2n) be the category of the C*-algebras of the form
C(X) ® M,, where X ranges over the (2n — 2)-connected finite CW-complexes of
dimension <2a.

Let 4 =1limA;, B=1imB,; be unital C*-algebras whera A;, B, € €(2n
(j=2,31is fixed, n=1).
Assume that both 4 and B have no nonzero finite dimensional representations

and also that the group K,(4) has no proper order ideals. Then the following asser-
tions are equivalent:

1) Ky(4) =~ Ky(B) as scaled ordered groups and K;(4) =~ K,(B).
2) There is a diagram of C*-algebras and *-homomorphisms:

R R T
\/ AN
-...>Bj—-...-Bj—>...

with each triangle homotopy-commutative.
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3) A is shape equivalent to B in the category of separable C#-algebras in
the sense of Blackadar [2].

The (hard) implication 1} =» 2) is somewhat surprising since we know by the
work of Loring [27] that C*-algebras as C(S! x S?) and C(S?) are not semiprojective
in the sense of Effros-Kaminker [17]. Also the general shape theory of Blackadar
[2] does not give 2) even we assume A to be isomorphic to B. 1n order to handle such
delicate situations we introduce the notion of KK, v-semiprojectivity as a K-thzo-
retical analogue of semiprojectivity. Let us bricfly describe the idza of the proof,
Having an isomorphism K.(4) ~ K, (B) onz first constructs a diagram as at the
point 2) but in the category KK, v (5.1.1 b)). At this stage the formalism based on
KK v-semiprojectivity (of Section 5) and large denominators (of Section 2) are
used together with some results of [37]. Then one has to replace KK . v-homomor-
phisms by actual homomorphisms. This is done by first replacing them by kk-ho-
momorphisms using Theorems 3.4.5—-3.4.6 and 3.5.2 (where thz main restriction
on X, actually arise!) and then by applying the stabilization techniques o’ Sections 4
and 6 (Theorems 4.2.8, 4.2.17, 4.3.1, 4.3.2, 6.4.2, 6.4.4).

Related ideas arc used to give a short proof (5.2.4) of a theorem of Effros and
Kaminker concerning shape classification for inductive limits of Cuntz-Krieger
algebras.

One may conclude from our computations the important role played by the
connective K-theory in problems concerning homotopy theory. This is mainly due
to the fact that it detects phenomena which are not seen by ordinary K-theory. What
1s however missing is a suitable continuous extension of connective K-theory to the
category of C*-algebras, which, among other things, would give a rather satis-
factory shape invariant. We hope to discuss this problem in a future paper.

The authors are grateful to Professor Serban Stritild from whom they learned
the Dold-Thom theorem on quasifibrations which proved to be a key tool of this
paper.

Also we would like to thank the referee for his solicitude concerning the paper.
Many improvements of the cxposition are due to his deep constructive criticism and
detailed suggestions.

1.2. PRELIMINARIES AND NOTATION

In this section we shall fix some notation and make some conventions and
definitions to be used in the sequel.

1.2.1. Let & denote the category of all separable C*-algebras and =-homo-
morphisms. If 4, B€ & then we shall denote by Hom(4, B) (resp. Hom,(4, B))
the space of all (resp. all unital) *-homomorphisms 4 — B with the topology of
pointwise-norm convergence. Accordingly we define [4, B] (resp. [4, B],) to be the
set of homotopy classes of homomorphisms in Hom(4, B) (resp. Hom,(4, B)).
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For unital 4 € & let 1, denote its unit.

1.2.2. Given A € & nonunital, let

0-A-At5C-0

be the unital extension of 4. If X is a locally compact space (resp. compact),
let Cy(X) (resp. C(X)) denote the continuous complex functions vanishing at infinity
on X (resp. all continuous complex functions on X). We may identify Cy(X)* with
C(X1) where X* denotes the one-point compactification of X. We shall use the
notation C,(X) even for compact spaces X with base point x,€ X to mean
Co(X) := Cy(X'\ {xo})-

1.2.3. Let M, denote the C*-algebra of all & X k complex matrices and ¢
the C*-algebra of compact operators on an infinite separable Hilbert space. There
are natural embeddings M, <> M, .y — 2 such that " = lim M.

1.2.4. If X is a compact space with base point x, € X then the restriction map
Hom,(C(X), M,) - Hom(Cy(X), M,) is a homeomorphism of topological spaces.
This is easily seen if we recall that for any ¢ € Hom,(C(X), M,) there are x,, ...
... X, € X and mutually orthogonal projections p,, ..., p, € M, with ¥}, p, = 1,

r

such that o(f) = Y, f(x,)p; for each f e C(X). Wesay that x,, ..., xrare the proper

i=1

values of ¢ and p,, ..., p, the spectral projections of ¢.

1.2.5. 1f A is a unital #-algebra then U(A) stands for the unitary group of 4.
For nonunital 4 let U(A4) be the subgroup of all u € U(4Y) with p(u) = 1¢.

1.2.6. If 4 is a C*-algebra we denote by V(A4) the semigroup of equivalence
classes of projections in 4 ® 2, with orthogonal addition, and K ,(4) = K,(4) @
@ K,(A) the K-groups of A. There is a canonical homomorphism from ¥V{(4) to
K (A4). If 4 ® A has an approximate identity consisting of projections then K,(4)
can be identified with the Grothendieck group of ¥(A4). The image of V(4) in Ky(4)
is denoted by K,(4), . We denote by Z(A4) the subset of K,(4) corresponding to the
projections of 4. The triple (K,(A4), Ky(4),, Z(A)) is a preordered scaled group ([3]).

1.2.7. There is a split extension
0-S4A-CSHY®A-A4-0
where S4 = C(S*) ® A4, which gives a natural isomorphism
K, (C(SYH) ® A) =~ Ky(4) @ Ky (S4) =~ Ky(4) @ Ky(4) = Ky(4)

which commutes with inductive limits.
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We define K (A), to be the image of K(C(S?) ® A), in K, (4) under this
isomorphism. It is clear that K,(4), is a subset of (K,(4): \{0}) ® K;i4)u
U 100, 0)}. In general it is a proper subset (e.g. for 4 = C(S*) @ C(SY)). In a similar
manner we define X, (4)< K, (4), as corresponding to Z(C(S') ® 4) under the
above isomorphism. It is important to note that

K. (lim4;), = limK,(4,)), and Z (limd4;) = limZ.(4)).

We also define Hom(K .1 4), K.(B))+ v to be the set of all homomorphisms of
Z,-graded groups K.(A4) -~ K (B) which take K, (4), into K. (B), and X.(A)
into X.(B).

1.2.8. For 4, B ¢ % we shall consider the Kasparov groups KK, (A, B) ([26]).
As a spectal case of the Kasparov product we have the pairing

KK, (C. 4) ® KK.(4, B) » KK,(C, B)

which gives a natural map
+:KK(4, B) - Hom(K,.(4), K.(B)) {sec [37)).

It is useful to make the following notation
KK(4, B); v = {x eKK(4, B) : 3(x) € Hom(K .(4), K.(B)). «}.

Notice that if x ¢ KK(4, B).. gy and » € KK(B, C), y then xpr € KK(A, C)i v. As
it follows from {37, Proposition 7.3] the map

KK(A’ B)-%-S - Hom(K:E:(A.)a K*(B))+,.‘:

is surjective for a large class of C*-algebras.

1.2.9. For a compact space X let Vect,(X) denote the set of isomorphism
classes of complex vector bundles of rank & on X. In Vect,(X) we have a distingui-
shed element [k]--the class of the trivial bundle of rank k. Let Vect(X) = {_J Vect.(.Y).

We shall freely identify Vect(X) with the monoid of equivalence classes of idem-
potents in C(X) ® %', i.e. with V(C(X)), and K%X) with K (C(X)).

1.2.10. Recall that a map f: (X, x;) - (¥, ¥,) is an m-homotopy equivalence
0 < m < oo)if fi i m(X, x,)— n(Y, ») is an isomorphism for 0 < g < -- 1
and an epimorphism for ¢ = m. If m = oo then f is called a weak homotopy equi-
valence.

f g . .
1.2.11. A sequencc X — Y — Z is called exact if for any space W, the sequence

La 8y . . .
(W, X]—=[W, Y]— [W, Z] is an exact sequence of pointed sets, i.e. imagel ) =
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= g, *(0) where 0 is the trivial element in [W, Z]. If this happens only for CW-com-
plexes W, then the above sequence is called weak exact.

1.2.12. In order to simplify the terminology we shall mean by ‘‘category” a
mathematical entity which satisfies all the axioms of the usual categories, except
possibly the axiom which postulates the existence of identities. The term ‘“‘subcate-
gory” will be used in accordance with the above convention. Now if ¢ is a ‘“‘sub-
category” of & then &/ % will denote the class of all C*-algebras which can be repre-
sented as inductive limits of countable inductive systems (with injective bonding
morphisms) of C*-algebras in €. For instance if & is the category of finite dimen-
sional C*-algebras then &/ F counsists of all AF-C*-algebras [7].

For the sake of brevity we shall use the terms algebra for C*-algebra and
homomorphism, or even morphism for x-homomorphism.

2. ORDERED K-THEORY AND LARGE DENOMINATORS

Recall that € (n) denotes the category of C*-algebras of the form
q
@ C(Xi)®Mil.s (1>0,
i=1 ¢

where X,, ..., X, are arbitrary finite connected CW-complex with dim(X;) < a.
The morphisms of %'(n) are arbitrary C*-algebras homomorphisms. Let =7%(n)
be the class of C*-algebras defined as in 1.2.12.

The methods we shall give in the next sections for computing the homotopy
classes of *-homomorphisms use in an essential way some stability properties of
vector bundles and #-homomorphisms. For this reasons our calculations apply
only to those morphisms in € (n) which are large enough in the sense of Definition
2.1.8. Therefore it is natural to ask which inductive limits of C*-algebras from
¥ (n) can be written as limits of inductive systems with arbitrary large bonding mor-
phisms and how can they be characterized in an intrinsic manner. The first part of
this section is devoted to these and to related questions. The answers we offer are
given in terms of K-theory groups. They are based on the notion of ordered group
with large denominators introduced by Nistor [31] in order to settle similar questions
for AF-algebras

The second part of this section deals with the states of the ordered group K, (4)
for 4 e AC0).

2.1. THE DIMENSION MAP

The main technical tool of this subsection is the dimension map associated
with each description of A e &% (n) as the limit of aninductive system of C*-algebras
from €' (n). We first introduce the dimension map for C*-algebras in 4(n).
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For A € €(n) of the form A4 = O CX) ® M,, , we definer(4) = M,, Let

x;€X;, 1 £7< ¢ The evaluation map A — r(4) given by (f,-)n—>(f,-(.\,-)), f; €
e CX) ® M, induces a split extension of groups

’A

0- Ki4) —-)K (A) K,(r(4)) -0

where K (A4) := ker(r,). Notice that », does not depend on the choice of x; in X;
since each X, is connected. If #(4) = C9, n; = 1, 1 < i € g, then the above exten-
sioni reduces to

0. -K'(X)--KX)-»-H¥X, Z)-0

where X = X, 0 ... U X, see[25]. and this justifies our notation for ker(r,).
We need the following stability properties of complex vector bundles (see

[23, Chapter 8, Theorems 1.2, 1.5 and 2.6)). For x ¢ R, let {x} denotc the smallest
integer ¢ with v < ¢.

2.1.1. THECREM. Let X be a CW-complex of dimension <

a)y It EeVect (X)), k > {n - 1)2>, then there is Fe Vect<,,, 1 o) X) such
that F is isomorphic to F@® [k - {(n - 1)/2)].

b)Y If E,, Eyc Vect(X), k= 2. and E, © G is isomorphic to Eo @ G for
some G e Vect(X) then Ey is isomorphic to Es.

¢) If k20 then the Grassmannian Gk + {n/2}) classifies all vector bundles
of rank It over X, 1.c. Veet,(X)=[X, Gk -+ {n/2)).

The following corollary is a direct consequence of Theorem 2.1.1. See also (3,
Example 6.10.3].

2.1.2. CorCLLARY. Lot A € G(n) be as ubove.

a) Let a= (al, coaa) e Ko(d) and rga) = (5, ... s)E Kor(d)) =~ Z4.
If for each i, 1 < i £ g, we have either a; = 0 or s; 2n then a € Ky(A4).. .

b) If ae K(,(A).r and for each i. 1 < i < g, the i component of v4(a) is no
greater than n; - - {(nj2), then a € X(A). i.e. there is some projection in A whose K-the-
ory class equals a.

c) Let x = (a, by e K (4) with a = (a,. ....a).b = (by.....band r (&} =
w= ($14 .28 If for cach 1 < i < q. one has either a; = b; =0 or 5,50 + 1,
then x € K (4),; (see 1.2.7).

d) Let x = (a, b € K (A). . If for each 1 < i < q, the i'" component of ¥ ,(a),
is no greater t/zat n; — L+ 1)i2) then x € Z (A) (see 1.2.7).

We sha | prove below that the assignment 4 — r(4) is functorial. To this pur-
pose, given 4, Be €(n) and o € Hom(K,(4). Ky(B)).. v, it is useful to consider the
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matrix of ¢ with respect to the decomposition
Ky(4) = Ki(4) @ Ky(r(4),  Ko(B) = Ko(B) @ K (1(B)).
2.1.3. ProrosITION. If 0: Ko(A4) — Ky(B) is an homomorphism of (scaled) order-

ed groups, then its matrix with respect to the above decompositions is triangular :

o= ( ; ﬁ) and y: Ko(r(A)) — Ko(r(B)) is a homomorphism of (scaled) ordered
groups.

Proof. 1 r(A) = @ M,, then K,(r(4))~ Z¢. The description of 1, : Ko(4) =
- Ky(r(A)) is as fo]l;vls: given E;eVect(X), 1 <i<q, rylEl ...,[E)]) =
= (rank(E,), ..., rank(£))) (recall that each X; is connected). Now let ¢ — (: ﬂ)
and x € Ky(4). Corollary 2.1.2 a), kx + n[l ,]Je K(A4), for all ke Z. SincZ: oyis

an order preserving homomorphism we infer that kd(x) + y(n[l]) € K (r(B)),
for all k € Z. This implies é(x) = 0.

2.1.4. If we further decompose

o= (au)lsjsll @ Ko(4:) -» @ Ka(B))

1€igqg i=1
h
B = (5): & Ka(r(A) -+ © Ki(B)
h
Y= (yji): C‘iDIKo(’(A ) - @1K()("(Bj))

q
where 4 =@ A;,, B= 6—) B, Ai=CX)@M,, B, = C(Y)® M,,,j then
i=1 j=1 '

() (B i)) will be called the standard picture of o.
0 G

2.1.5. The homomorphism y associated in 2.1.3 to ¢ will be denoted by r(s).
Proposition 2.1.3 shows that ¢ induces a commutative diagram

0 - Ko(A4) - Ko(4) — Ko(r(4)) - 0

x G r{o)

0 - K(8) — Ko(B) — Ko(r(B)) - 0.
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Moreover it follows that the correspondence o = r(¢) (and even o = %) is func-
torial. For A € () the homomorphism 4 : Ky{4) ~ K (#(4)) will be called the
dimension map associated to 4.

If 4 € o7%(n) is the limit of the inductive system (4;, ¢;;). 4; € ¥(n). we shall
denote by r(A) the unique (up to isomorphism) AF-algebra determined by the
scaled dimension group lim(K,(r(4,)), #(¢;;);). There is also a surjective homo-
morphism r, : Ky(A) - Kgy(r(4)) induced by the homomorphisms Fa,  Kold) >
- Ky(r(4)). Our notation is misleading since it is not clear whether the above
AF-algebra depends only on A4 (and not on the approximating system (A,. 0;:1).
This is certainly true in certain cases pointed out in Section 6. In the general case
we make the convention that »(A4) denotes a fixed AF-algebra arising as describhed
above from a fixed approximating system of 4. Note that (Ky(A), K,(4).)is an order-
ed group since any A € </% (n) is stably unital and stably finite. Also, the epimorph-
ism oyt Ky(A4)-» Ky(r(A)) is oxder preserving and does not vanish on the nonzore
elemenis of Ky(A); .

2.1.6. Drrixition ([31]). Let (G, G.) be an ordered group. We say that ¢ has
large denominators if for any a > 0 and & € N there are b € G and m = N such that
kb < a < mb.

2.1.7. PrepesITICN ([210). I} A is a simple AF-algebra, non stably isomorplic to
S0, then Ky(A) has large denominators.

2.1.8. Here we define the notion of m-large and m-full homomorphisr:.

Let 72, Z" have the standard orderings Z% = N9, Z* == N" and the order
units o = Gy, ..o and o= (g, Lo g Let o= Tk 29 7" be a morphism
of scaled ordered groups. This is equivalznt to say that k;; > Oforall/, jand

~

o
tim oy -- ¥k =00 for ali j
. i XK

i=

-

The morphism 7 is called m-farge (i 2 0) if suatisfes the following two conditions:
a) if some k; > 0 then k;; > m
b) if some t; > O ther t; = m.
If, in addition, all k;; > 0 then v is called m-fuli. We extend the above definitions to
the morphisms of (scaled) ordered groups o: K,(A)— Ky(B) with A, B¢ “in),
by saying that o is m-large (sn-full) iff the morhism #(g) defined in 2.1.5 is m-iarge
(m-full). By extension we say that a morphism ¢: 4-» B, A, B 4(n) is m-iarge
(m-full) ifY Ky(¢p) is m-large (m-full). Note that since F < %(n) the above definitions
also apply to morphisms of finite dimensional C*-algebras. The product of an
m-large morphism by a p-large morphism is mp-farge. Also the product of an m-full
morphism by a p-full morphism is an mp-full morphism.
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2.1.9. REMARK. a) Let 4 be an AF-algebra and assume that K,(4) has large
denominators. Then any faithful inductive system of finite dimensional C*-algebras
A, — As~ ... withlim 4; = A can be refined to an inductive system Ail—» A, = ..
with arbitrary large embeddings. The converse it is also true, (see [3]).

b) If A is as in Proposition 2.1.7, then the inductive system (4;) can be refined
to an inductive system with m-full embeddings for arbitrary large m € N (see [15]
and [31]).

The C*-algebras in o/ %(n) have similar properties (2.1.14).

2.1.10. LeMMA. Let Ae L C(n) and a, b e Ky (A), such that r(a) < r(b)
and r(a) belongs to the order ideal generated by r (b — a) in Ko(r(4)). If Ko(r(4))
has large denominators then a < b.

Proof. Let A = lim A; with A; € €(n). Then K (4) = limK,(4,) and Ko(r(4)) =
= lim K, (r(4;)) in the category of ordered groups. The idea of the proof is to show
that b - a € Ky(4) comes from some element of some group K,(4;) satisfying the
hypotheses of Corollary 2.1.2 a).

Let x =ra), y=rb), z=r b — a)e K (r(4)),. We have 0 < x € y,
y = x + z and x belongs to the order ideal generated by z. If follows that y and z
generate the same order ideal. On the other hand since X,(r(4)) has large denomi-
nators there are w € Ky(r(4)), and m € N such that nw £ z < mw. Combining the
above data we obtain that y and w generate the same order ideal in K,(r(4)). The-
refore we can find some j € N such that y, z € Ky(r(4;))+ and they have the same
support, i.e. their coordinates in Z4~K,(r(4;)) vanish simultaneously. Also we
can assume j large enough such that a, b € Ky(4;), and y — x — aw e Ky(r(4)), .
Let rAj(a) = (X . . s Xy, rAj(b) = (Pro - en¥g) W=y, ...,w)eZ. We
must have y, — x;2nw;, 1 £ 7 < g, and moreover if some w; = 0 then y;, =
= x; = O since y and w have the same support. Therefore we may apply Corollary
2.1.2a)to get b — a eKy(4)), .

2.1.11. PROPOSITICN. Let A€ A€ (n). Then Ky(A) has large denominators if
and only if Ky(r(A4)) has large denominators.

Proof. One implication is trivial since r,: K (4) — Ky(r(4)) is a surjective
morphism of ordered groups. To prove the other assume that K,(r(4)) has larged
denominators and fix @ € Ky(4), and k € N. By assumption there are x € Ky (r(4))..
and m € N such that 2kx < r (@) < mx. Let b € Ky(4), be such that r,(b) = x. We
wish to apply Lemma 2.1.10 in order to prove that kb < a and @ < 2mb. For the
first inequality it is clear that r,(kb) < r,(a) and we have to check only that r,(kb)
belongs to the order ideal generated by r,(a — kb). But this is again obvious since
rkb) = kx < r(a) — kx = r (@ — kb). In the same way r, (a) < 2mr (b) and
raa) € ry(2mb — a) imply a < 2mb.
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2.1.12. COROLLARY. Let A € 7% (n) be such that r(A) is not stably isomorpric
to A Then Ky (A) is simple if and only if Ky(r(A)) is simple.

Proof. One implication is again trivial. To prove the other assume that K, (r(.4)}
is simple. Let J be a nonzero ideal in Ky(A4). We shall prove that J contains any
given positive element « € Ky(A). Indeed if b€ J, b > 0 then 2r,(a) < mr,(b)
for some m € N, since K, (A4) is simple. Therefore r(a) < r,(mb) and r(a) belongs
to the order ideal generated by r (mb — a) since r,(a) < r (mb — a). By Proposi-
tion 2.1.7, Ky(r(A4)) has large denominators and so we can apply Lemma 2.i.10
to get @ < mb. Since b € J we must have ae J.

We also have the following generalization of Proposition 2.1.7.

2.1.13. CORCLLARY. Let A ¢ e7%(n) be a simple C#-algebra such that #(4) is
not stably isomorphic io %" (e.g. A is simple, unital and has no nonzero finite dimen-
sional representation). Then Ky(A) has large denominators.

Proof. 1f A is simple then K (A) is simple. By 2.1.12, K (r(4)) is simple so
that K,(r(A4)) has large denominators by Proposition 2.1.7. Finally we apply Pro-
position 2.1.11 to obtain the desired result.

2.1.14. REMARK. Proposition 2.1.11 -12 and Corollary 2.1.13 exhtbit clisses
of C#-algebras in «7%(n) which display properties which are analogous with those
in 2.1.9. For instance if 4 ¢ &/%(n) and K,(A) has large denominators then any
faithful inductive system of algebras in % (1), A; -» Ao —+. .., such that A4 = limA,,
can be refined to an inductive system A i A B e with arbitrary large embed-
dings. The converse is also true. If 4 is as in Corollary 2.1.12 and Ky(4) is simple,
then these embeddings can be chosen m-full, for arbitrary large m € N.

2.2. SOME PROPERTIES RELATED TO LARGE DENOMINATORS

The results of this subsection are not used later in the paper but we find them
enough interesting to be included here.

2.2.1. PrROPOSITION. Let A € Z6(n) an ¢ suppose that Ky(A) has large denomi-
nators. Then

a) A has cancellation;

b) 7 (U(A) =K ;1(4), i 20;

©) Z(A) is a gencrating, hereditary and directed subset of Ko(A), (see[15] for
definitions).

Proof. Write A == lim A; with A; € ¥(n) and n-large embeddings 4; > 4;.,.
Having in mind Theorem 2.1.1 and the fact that U(k) — U(k + 1)is a 2k-equivalence
the proof goes along standard arguments. See [4] and [35] for related situations.

2.2.2. PROPOSITION. If A € o %(n), then for every state f on (Ko(A), Ko(A4),)
there is a unique state f' on (Ko(r(A)), Ko(r(A4)).) such that f = f'er,.
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Proof. 1t is enough to consider the case 4 € €(in), when the proof is similar
to the proof of Proposition 2.1.3. Indeed, as in 2.1.3, if f'is regarded as a map from
Ky(4) @ K,(r(4)) to R then the positivity of f implies that f vanishes on Kg(A).
Hence f factors through r,. The uniqueness holds since r, is onto.

2.2.3. PROPOSITION. Assume that A € /¥(n) is unital. Then every state o
(Ko(4), Ko(A)., 5 [14]) is induced by some bounded trace state on A.

Proof. Let A, 4 AZE ..., A, €% be a faithful inductive system with
unital embeddings such that 4 = lim A;. Define for each i =1 a x-homomorphism
yi : F(4) — r(A;4,) such that Ko(y,) = r(Ko(¢;)). The AF-algebra r(A4) associated
in 2.1.5 with the inductive system (d4;, ¢;) can be realized as lim(r(4;), y;). Now
let f be a state on K,(4) and let f = f’or, be thefactorization provided by Proposi-
tion 2.2.1. Since the statement of Proposition 2.2.3 holds for AF-algebras [3], there
is some trace state o on r(4) such that f’is induced by a. For each i >1 we define
the trace 1;: 4;—» C by 1, = 0,0ev; where ev;: 4;— r(4;) is an evaluation map
(2.1.2) and o, is the restriction of o to r(4;). We shall prove that f is induced by any
weak limit of the sequence (t;). More precisely let w be a free ultrafilter on N and
define a trace T on the algebraic inductive limit of A4; by t(a) = limt,(a). Note

that ||z(a)|l < |la] since |z;|| = ri(lAi) = 1. Therefore we can extend 7 on 4 by
continuity. Of course in general it is not true that t|4; = 1,. However if e is any
projection in 4; then t(e) = 1,(¢). To prove this equality it suffices to know that
7;4:(€) = 7;(e) for any projection e € 4;. But this follows from the following com-
mutative diagram

Kyio;)
Ko(A.') _— KO(Ai+1)

Kol
Ko(r(4:)) ——— Ko(r(4;41))

R

where f/ is induced by o;. Indeed it is easily checked that f;e(ev)),([e]) = 7,(e) asa
conseqeuence of the definition of 7;. Therefore we obtain

fe)) = fi o rafle]) = tile) = limz,(e) = t(e).

i~

It is also clear that the above equalities hold for all projections ¢ in 4; ® .
This completes the proof.

The following corollary proves, in a special case, a conjecture in [4].
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2.2.4. COROLLARY. Let A4 € 7% (n) be a unital simple C*-algebra and let p, ¢ be
projections in A. If 1(p) < t(q) for every trace state = of A, then upu™ < q for some
unitary u c U(A).

Proof. 1t is useful to consider the following two cases.

a) r(A) is stably isomorphic to .#".

h) r(A) is not stably isomorphic to ¥

Since A is a unital simple C*-algebra in ~7%(n) it can be proved that the first
case can occur only if 4 is isomophic to some matrix algebra M, . (The proof is
easy and we omit it.) As our corollary is trivial for 4 = M, we turn our atiention
to the second case. Assuming b) we can apply Corollary 2.1.13 to find that K(A4) has
large denominators.

On the other hand if =(p) < 1(¢) for every trace state t of A. then if follows (by
Proposition 2.2.2) that f'or ([p]) < ['>r,([q]) for every statc f' of Kgyir(4)). Now
Ko(r(A)) is a simple group whichis alsounperforated. Therefore it follows by [3, Theo-
rem 6.8.5) that Ky(r(4)) has the strict ordering from its states (see also [15]). This
implies r,([p]) < r.([q]) in K4(r{4)). From Lemma 2.1.10 we derive [p] < [¢] in
Kau{A). (Note that K,(4) has no proper order ideals since 4 is simple.) After conju-
gating with suitable unitaries we may asume that p, g belong to some 4; and more-
over [p} < [¢] in Ky(4)). Since Ky(A) has large denominators by Theorem 2.1.1 it
tollows that p is homotopic mn ;. (for k large enough) to some projection p; < a.
But homotopic projections are unitarily equivalent.

3. CONNECTIVE KK-THEORY (FOR SPACES)

In this section we develop methods for computing the homotopy classes of
s-homomorphisms Cy(X) -+ Ci Y)Y & #. We will introduce a bivariant functor
kk(Y, X) which coresponds to such homotopy classes and which, as explained in
the Subsection 3.3, defines the natural connective theory associated with Kasparov
KK-theory. As noticed in the Introduction our results heavily depend on [39].

3.1. THE GROUPS ki,

3.1.1. For A, B (*-a'gebras, Hom(A4, B) will denote the space of all s-ho-
momorphisins 4 -~ B with the topology of pointwise-norm convergence. This is a
pointcd space - the base-point is the null homomorphism. We dzfine [4, B] to
be the set of homotopy classes of homomorphism in Homi{A, B). I X. Y are pointed
topological spaces then we define Map(X, Y) to be the space of all continuous
basc-point preserving maps of X into Y endowed with the compact-open topology.
The space Map(S!, X)) is denoted by QX and is called the space of loops in X
For fe Map(X, Y), Qf € Map(QX, QY) is dcfined in the obvious way. If X, Y
are compact then, via the Gelfand duality, Map(X, Y) can be identificd with
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Hom(C,(Y), Cy(X)). Also [Cy(Y), Cyp(X)] coincides with [X, Y], the homotopy class-
es of maps in Map(X, Y). We shall use many times the obvious identification

Hom(4, B ® Cy(X)) ~ Map(X, Hom(4, B)).

This gives an isomorphism

[4, B ® Cy(X)] = [X, Hom(4, B)].

Assume that B is stable, B ~ B ® . Then it is proved in [36] that Hom(4, B) is
a commutative H-space with respect to the operation defined by letting ¢, + ¢, be
the composite

(0 @5)

A——B®B—>B® M, ~ B.

The homotopy unit is given by the null morphism. In this way [4, B]is a commuta-
tive monoid.

3.1.2. Let W, be the category with base-vertex finite CW-complexes as objects
and base-point preserving maps as morphisms. Let W§ be the full subcategory of W,
consisting of connected spaces.

Following Segal [39], for each X € W,, we define F(X) = Hom(Cy(X), X)
a0
00/
induce embeddings FE(X) — Fi*}(X). It is proved in [39] that the canonical map
l_i’zﬂ F&X) — F(X) is a homotopy equivalence, where the former space has the induc-

and FAX) = Hom(Cy(X), M,). The natural embeddings M, <> M, ,, an—>(

tive limit topology. For X = S* this shows that the infinite unitary group U(co) is
homotopy equivalent to U(X").

It is clear that each map f: X - Y induces a map F(f): F(X) - F(Y). If f; is
homotopic to f,, then F(f;) is homotopic to F(f;). If X is connected, then F(X) is
connected.

3.1.3. PROPOSITION. If X e W§, Y € W, then [Cy(X), Co(Y) ® A1 is an abelian
group with respect to the direct sum of homoniorphisms.

Proof. If X € W§, then F(X) is a path connected H-space and therefore we can
apply [43, Chapter 10, Theorem 2.4} to g=t that [¥, F(X)] = [C)(X), Co(Y) ® A}
is a group. %

Another proof of this proposition will bz availablz after we shall see that F(X)
is an infinite loop space. More precisely

F(X) ~ QF(SX) ~ ... ~ QF(S*X) ~ ... (see Corollary 3.1.7) .

2 - 1776
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3.1.4. DeriniTION. If X € W§ and Y € W, (see 3.1.2) then we define kk(Y. X) to
be the group [Cy(X), Co(Y) ® H#]. More generally, for n € Z we set

kk(S"Y, X) ifnz0
kk (Y, X) = {
kk(Y, S™X) if n<O.

This definition is extended for X, Y € W, in 3.1.9a).

Our next purpose is to find exact sequences for these groups. This requires
the notion of quasifibration introduced by Dold and Thom [14].

Recall that a continuous mapp : £-» B between topological Hausdorff spaces
is called quasifibration if for all points b € B and e € p '1(b), the induced maps

Pt Trq(E’ p_l(b)a (’) - ITq(B, b)
are isomorphisms for all ¢ > 0.

3.1.5. THroreM (G. Segal [39]). Let X be a compact connected space. If 4 is
a path connected closed subspace of X and A is a neighbourhood deformation retract in
X, then F(X) - F(X!A) is a quasifibration with fiber F(A).

For the purposes of homotopy theory the quasifibrations are as good as the
fibrations. For instance, given a quasifibration p : E— B one canreplace in the homo-
topy sequence of the pair (E, F = p~4b)), the groups =,(E, F) with 7 (B). in order
to obtain the homotopy exact sequence of the quasifibration:

nni-I(B) - x;a(F) - nn(E) - T[,,(B) - nn--l(F,)‘
As for fibrations even more is true.

3.1.4. ProrositiON. If p: E - B is a quasifibration, with fiber F = p~(b,).
by € B, then for any CW-complex Y there is an exact sequence of groups (k =1}
and sets (k = 0):

[Y, Q¥+1B]..[Y, QF] = [¥, QE]-» [Y, Q¥B] - [¥, Q*1F]_. ...

Proof. Let B! be the space of all (free) paths in B and let Cocyl(p) = {(u, ¢) &
€ BI3E : u(l) = p(e)} be the mapping cocylinder of p. The map p: Cocyl(p)-» B
given by p'(u, €) = u(0) is a fibration with fiber W(p) = {(u, ¢) e BT E : u(0) = by,
#(1) == p(e)}. Moreover there is a commutative diagram

F —s E-2. B

ool

W(p) — Cocyl(p) —p—;o B
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where i(e) : = (the trivial loop at p(e), ¢) is a homotopy equivalence and j isinduced

- by i. This is the standard construction used to prove that any continuous map is
homotopy equivalent to a fibration (see [43, Chapter I, § 7]). Now the idea of our

proof is to show that j is a weak equivalence. Assume that this was proved. Then
it follows by Whitehead’s theorem [43, Chapter 1V, Theorem 7.17] that j induces an
isomorphism [Y, F] =5 [Y, W(p)] for each CW-complex Y. Let us consider the fol-
lowing diagram with commutative squares

[Y, @“+1B] -5 [Y, QF) . [Y, Q*E] ——> [Y, Q*B] —> [¥, Q¥-1F]

(Y, @%+1B] 5 (¥, @ W(p)] —> [ ¥, Q*Cocyl(p)] —> [Y; Q“B] —> [¥, QW (p)].

The bottom sequence is exact since p’ is a fibration [43, Chapter I, Theorem 6.11%).
Therefore if the boundary maps ¢ are defined such that & = j3'ed’ then the upper
sequence is also exact. Finally let us prove that j: F — W(p) is a weak homotopy
equivalence. Since the homotopy exact sequence of a quasifibration is natural in
the sense of category theory we can use the first diagram in the proof to obtain the
following commutative diagram

Tp41(B) — 7 (F) ———— 7 (E) m,(B) 1 F)

Ja in

T 41(B) —> m(W(p)) —> m(Cocyl(p)) —> m(B) —> mi—.(W(P))-
Using the five lemma it follows that j, : m(F) — nk(W(p)). is an isomorphism for
each k& = 0. %
3.1.7. Suppose that p: E - Bis a fibration with fiber F. The boundary map &

in the sequence below

[Y, @B] -2 Y, F} —> [Y, E] —>

|

[SY, B]

is defined using the homotopy covering property of p. More precisely given a map
¢:SY — B we solve the homotopy lifting problem with initial data

Yvi N

5—’”'_/"l,,

YyxI—sSY 2538



224 M. DADARLAT ané A. NEMETHI

(YvI={y}xIy Yx{0]}, f=the map onto the based point of E, ¢ = the
natural quotient map) obtaining a map : Y x/-» E. Since ¢og maps ¥~ {1} to
the basz point of B, ¢ maps Y x {1} into F. This map, denoted by y,: Y-+ F, is
well defined up to homotopy. By definition one takes &[] = [¥,].

When p is only a quasifibration, the definition of 9 is more involved as we have
secn in the proof of Proposition 3.1.6. However for the maps ¢ € Map(SY, B) which
can be covered as in the above diagram the formula d[e] = [i¥,] still holds. Indeed
with the notation of 3.1.5 and y as above wz have the following commutative
diagram

YVF > Cocyl(p)
P
{ Y E / [ -
v / - il’
Y~ F -SY B

which implies that &[] = j.[,]. By the very definition of ¢ we have &[] = j.clo]).
Therefore {[¢] = [¢,] since j.. is injective. 3

Recall that for a C*-algebra A the suspension of A is defined by S4 = Cy(S") ®
® A.1f ¢ e Hom(A, B) is a »-homomorphism, then its suspension So € Hom(54,
SB) is defined by S = id(Cy(SY)) ® ¢. More generally, given ¢; € Hom(4;, B)),
i = 1, 2, one can consider ¢; ® ¢, € Hom(4d;, & A,, B, ® B,).

3.1.8. COROLLARY. The suspension map ¢ -» S¢ induces an weak equivalence
F(X) -~ QF(8X) for every X € Wi (see 3.1.2}.

Proof. By definition F(X) = Hom(Cp(X), #°). The map F(X)-- QF(SX) cor-
responds to the suspension map

Hom(Cy(X), #) - Hom(Cy(SX), Co(8") & A7)
via the following identifications
QF(SX) == Map(S', Hom(Cy(SX), #)) = Hom(Cy(SX), Cy(S") & ¥).
Let YeW,. We shall prove that the induced map
Se:[Y, F(X)]-1Y, QF(SX)]
is a bijection.

To this end we coasider thz quasifibration p: F(CX) - F(SX) with fiber F(X)
arising from the pair X < CX = the cone over X, by Theorem 3.1.5. By Proposi-
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tion 3.1.6 there is an exact sequence (of groups and pointed sets)

1Y, QF(CX)] - [Y, QFSX)] > [Y, F(X)]— [X, FCX)].

Since F(CX) is contractible (see the last part of 3.1.2) we find that the boundary
map d is a bijection. In what follows we check that S, is a right inverse for ¢ and this
will complete the proof of our corollary. Let ¢ € Map(Y, F(X)) and let us think
S as a map SY— F(S8X). In the same way

Y = id(Co(D)) ® ¢ e Hom(Co(X A D), Co(Y AT) @ )

is regarded as a map CY — F(CX). Here I = [0, 1] is pointed by 0 and the smash
products X Al, Y A I are identified with CX and CY respectively. Let X x I~ CI
and X x I- SX be the natural quotient maps.

Let Y v I - F(CX) be the map onto the null morphism. It easily checked that
the following diagram is commutative

Yl . F(CX)
y
P —1,
S
Y x 1 SY —— s F(SX).

Using 3.1.7 it follows that 9{S¢] = [¢,] where y, is the restriction of ¥ to
Y x {1} « CY and image(y,) = F(X) = p~%0). Finally, note that ,: Y -
— F(X) can be identified with ¢. This proves that {[S¢] = [¢] and hence S, is a
right inverse for 0. %

3.1.9. REMARKS. a) If X e W§, Y eW,, then the suspension map induces an
isomorphism of groups

kk(Y, X) = kk(SY, SX).

Consequently, the groups kk,(¥, X) can be defined askk, (Y, X) = limkk(S"*"Y, S'X)

r—00

and this definition allows us to work even with non connected spaces.

b) The group operation on kk(Y, X) = [¥, F(X)] given by the (infinite) loop
structure of F(X)coincides with that given by the orthogonal sum of homomorphisms.

¢) The groups kk, are contravariant in the first variable and covariant in the
second variable. Indeed each g € Map(Y,, 7,) induces a map Map(Y,, F(X))~-
-+Map(Y,, F(X))and then, foreachne Z,a homomorphism of groups g% : kk,(¥;, X) -
-» kk,(Y,, X). Concerning the second variable, each fe Map(X;, X,) induces a
map F(X;) -» F(X,) and then for each ne Z, a2 homomorphism of groups
S Kk, (Y, X3) - kk, (Y, X5).
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The next result provides us with long exact sequences for the kk-groups.

3.1.10. ProPOSITION. Le? i: A — X be a pair in Wy and let j: B Y be a puir in
Wo. Letp: X - Xid and q: Y - Y[B denote the canonical identification maps. There
are long exact sequences
8) KK, Y, X023 Kk a(Vs Xid) = Kk, (Y, 4) =5 Kk, (¥, X) 22 Kk (¥, X/A);
j& #® jo
b) kk,(B, X) 5 kk(Y, X) 5 k(Y/B. X) = Kk, +1(B, X) = kk . (Y. X),n & Z.

Proof. a) Let n 2 0. The sequence
[Y, Q"*F(X)] - [Y, Q" F(X[A)] - [Y, Q"F(A)] - Y, Q"F(X)} - Y, Q"F(X;A)]
is exact by Theorem 3.1.5 and Proposition 3.1.6. Then by definition
(Y, QUF(X)] = [S"Y, F(X)] = kk,(Y, X).
For n < 0 the same argument works using the isomorphism
kk(Y, X) = kk(SY, SX).

b) Let n > 0. We consider the coexact Puppe sequence associated with the
pair j: B Y (see (43, Chapter I, Theorem 6.221):

S"B .+ S°Y - SY Y/ B) -» §"1B . §7¥1y,

Therefore there is an exact sequence

[S"B, F(X)] ~[S"Y, F(A)] < [S"(Y;B), F(X)! «[S"+1B, F(X)] «{S§"*1Y, F(X).

1t follows from the definition of the kk-groups that this is just the required exact
sequence. For n < 0 one uses again the suspension isomorphism. a

3.2. SOME GENERALIZED HOMOLOGY (COHOMCLOGY) THEORIES
AND THEIR SPECTRA

In this subsection we look at kk,(Y, X) in the spirit of {42].

3.2.1. ProrosiTION. a) For any fixed spuce Y € Wy, the correspondence
X kI(X) :=kk(Y, X), nelkZ,

defines a generalized (reduced) homology theory on the category Wg (see 3.1.2).
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b) For any fixed space X € W, the correspondence
Y=k¥Y):=kk_,(V, X), nelZ

defines a generalized (reduced) cohomology theory on the category W, (see 3.1.2).

Proof. a) Recall that a generalized reduced homology theory on W, is a sequ-
ence of covariant functors

h, : Wy — {abelian groups}
together with a sequence of natural transformations

G, By~ h,.1°S, S =suspension

wverifying the following conditions:
D) If £y, fi € W, are homotopic maps, then 4.(f,) = h,(f);
2) If X € W, then ¢,(X): h,(X) = h,.(SX);

3) If it A— X is a pair in W,, and if p: X - X/A4 is the identification map,
then the sequence

h (i) k(P
h(4) —> h(X) — h,(X/A)
is exact.
We have to verify the above conditions for the functors k¥ . Now 1) it is easily
checked since any homotopy f, between f,, and f, induces a homotopy F(f,) between
F(f,) and F(f,) (see 3.1.2). The natural transformations ¢, are induced by the natural

weak equivalence QF(SX) ~ F(X) described in Corollary 3.1.8. The third condition
follows from the first exact sequence in Proposition 3.1.10.

b) The proof is similar but one needs the second exact sequence in Propo-
sition 3.1.10. %

For future purposes it is useful to find the spectra of these theories, which
-exist by the Brown-Adams representability theorem. By definition, a spectrum E
is a sequence of spaces E, with base point, provided with structure maps, either

g, SE,— F 4y
or their adjoints
g;l :En - QEn+1'
A spectrum E is an Q-spectrum if g, is a weak equivalence for each n. Each spectrum
E defines a homology theory
h,,(X, E) = ]_im[s"“ s B A X]
r
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and a cohomology theory
WX, E) = lim[S'X, E,.,]

(see [42]). If E is an Q-spectrum then 4"(X, E) = [X, E,] because of the equivalence g;,.
We are interested in the following two spectra:
1) E(Y) = Map(Y, F(§8") = Hom(Co(8"), Co(Y) ® #), YeW,
2) F(X) = F(5"X) = Hom(Cy(5"X), #), X e W§.
The structure maps for both these spectra are defined by taking suspensions of homo-
morphisms. It follows by Remark 3.1.8 b) that both E,(Y) and F,(X) arc Q-spectra,

3.2.2. PROPCSITION. 2) Oa the category W§ the generalized homology theory KY(-)
is given by the Q-spectrum E (Y).

b) On the category W ihe generalized coliomology theory K%{ - ) is given by the
Q-spectrum F(X).

Proof. b) The assertion is immediate since by definition.
k(YY) = kk_ (Y, X)=[¥, F(S"X)).

a) First we extend the homology theory kY(-) on the category W, by setting
KY(X) = kk(S"*1Y, SX) == k¥, (SX). By Remark 3.1.8 we have k;Y(X) ~ kI(Y)
wherniever X is connected. Let ,(-, E(Y)) be the gencralized homology defined on W,
by the spectrum (£,(Y)). We want to prove that 4,(-, E(Y)) is isomorphic to k;¥(-).
This will follow once we define a natural transformation of homology theories

T:hy(-, E(Y)) - KJF()
which induces an isomorphism on coefficients, i.e.
T: 14(S°, E(Y)) = kJ(Sy).
For X € Wy, let T(X) be induced by the maps

» - Hom(C,o(S"), Cq(Y) ® H) A X -» Hom(Co(S'X), Co(Y) @A)
E( Y) ANX Map(Y, 1-(S’X))
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where t(p AX) = ¢ ® ¢, and ¢, € Hom(Cy(X), C) is the homomorphism of
evaluation at x € X. More precisely, we use the following commutative diagram

’

[S™7, E(Y) AX] ——> [S™"*1, E,,(Y) A X]

Lo | e

[S"*7, Map(¥, F(S'X))] [S"+"+!, Map(¥, F(S"*1X))]

lz jz

kk(sn+rY, SrX) __""_) kk(S"+r+1Y, Sr+1X)

to define T(X) = lim(z,), : h4(X, E(Y)) -k (X). Here S’ is the composite of the
suspension map and the structure map S* A E£,(Y) - E,.,(Y). One can check the
naturality of 7 and, moreover, it is clear that T(S9) is an isomorphism since £,(Y) A
A S® = Map(Y, F(S)). %

3.3. WHY kk CAN BE REGARDED AS THE CONNECTIVE KK-THEQRY

Recall that given a spectrum E = (E,), the homotopy groups of E are defined
by n,(E) = im[S"**, E,] where the arrows [S'**, E]— [S'+¥+1 E,..] are defined
k

via suspensions and the structure maps g, : SE;, — Ej41.

3.3.1. DerFiNiTION ([1]). If E isaspectrum then the associated connective spectrum
is a spectrum E° together with a map of spectra E°— E such that n,(E°) — n{E)
is an isomorphism for r 2 0 and n(E°) = O for r < 0. E° is uniquely determined
by £ up to a weak equivalence. If i,(-, E) is the homology theory defined by the
spectrum E, then the homology theory /. (-, E°) defined by the connective spectrum
E¢is called the connective A, (- , E)-theory. One has a similar definition for the cor-
responding cohomology theories. In particular these definitions work for the topo-
ogical K-theory. The Q-spectrum BU of the complex K-theory is given by he
sequence

QU, U, QU, U,...

where U is the infinite unitary group U = U(oo) = lim U(n).

Let F = (F,) be the Q-spectrum F, := F(S") = Hom(Co(S"), #) if n > 1 and
Fy == QF,, with the structure maps

Fn - QI;‘n+1

given by suspending homomorphisms (see Corollary 3.1.7). Note that F is a ring
spectrum with multiplication p: F, A F,— F,. ., w(e, ¥) = ¢ ® Y. Therefore



230 M. DADARLAT and A. NEMETHU
m(F) has a ring structure. It is a result of G. Segal [39] that F is the connective spec-
trum BUC. We include a proo? of this and the computation of the ring 7,(F).

3.3.2. PRO®PCSITION. The ring w4 (F) is isomorphic to the polynomial ring Z1[t]
witir deg(t) = 2; t corresponds to the generator of n(U) = Z regarded as a homo-
morphism S € Hom(Cy(SY), Co(S?) ® A).

Proof. Note that ecach ¢ € Hom(Cy(S8Y), #7) is given by some unitary
uelU(#) and UK) ~ U. Therefore F, =~ U. Let r>=0. By definition
7 AF) = im[S™*" F) = lim{8§+1, Q°-1F]. Since F is an Q-spectrum we find

R—OD n-0

7Z, for r even

2 F) =[S+, U] = {
. 0 for r odd.

For r <0, #,(F) = Um[S"™*", F] = [S°, F,] =0 since F, is connected. Thus

=00
nx(F) =~ Z[¢t] as groups. In order to determine the ring structure on m.(F) we
observe that for

[l € F) = [(Cy(SY), Co(SP*) @ ]
and
[V] € xq([./) = [CQ)(Sl)s Co(sq+1) ® =%/‘]9

the clement p.([o]. (YD € r,. (F)'= [Cy(S), Cuo(S7+972) ® #'] is represented by
ColSY) ® Co(8H 0 (ST )@ @ ColSY) — 2o Co(S7+Y) @ #' ® Cy(STY) @ 4.
Therefore using the fact that the K -functor induces a bijection
[Co(8™) Co(&) & 7] - Hom{K . (Cy(S™), K (Co(ST))
for n 2 m z 0, the product
Uop g Topl F) X Ta{ F) - » Tagps o F)
can be identified with the composition of group homomorphisms
Hom(Z, Z) x Hom(Z, Z) -~ Hom(Z, Z).

3.3.3. ProposSITION (G. Segal). F = (F,) is the connective spectrum associated
with the spectrum of complex K-theory.
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Proof. Use the morphism S from Proposition 3.3.2 to define the maps F,,5—
— G3F, .3 = F, by the rule ¢ > ¢ ® S. The compositions:

Fopyog = Foy— ... Fo= QU
F2n+1—’F2n—1'"’--- —’F1= U

give a map of spectra F— BU which by 3.3.2 induces isomorphisms n {F) — n (BU) for
all r 2 0.

3.3.4. ReEMARK. The generalized homology theory kfo(-) = kk,(S°, -) defined
in Proposition 3.2.1 has the spectrum F = (F,) as was proved in Proposition 3.3.2.
Therefore kﬁo(-) is isomorphic to the reduced connective K-homology on W§ which

is usually denoted by k,(-). In the same way the cohomology theory kk_, ..(-, SY
is isomorphic to the reduced connective K-theory k"(-) on W, . The formulae

kkn—l(Sl’ X) = kn(X)y kk—n+1(Yy Sl) - k”(Y)

are important since they show that both the connective K-homology and cohomo-
logy can be realized via the homotopy of #-homomorphisms.

There are well-known similar formulae which relate the Kasparov KK-functor
to the usual K-theory. We restrict our attention to the commutative case. Therefore
starting with KK(Co(X), Co(Y) ® ) = KK(Co(X), Co(Y)) one has

KK, _1(Co(X), Co(SY) =~ K,,(X) = the reduced K-homology

KK _,+1(Co(SY), Co(Y)) = K"(Y) = the reduced K-theory

for arbitrary X, Y e W,.

Now it becomes apparent that kk is in a certain sense the connective KK-theory.
In order to give a more precise statement we need some preparations.

First of all it is clear that there is an obvious natural transformation y: kk., —
— KK, since even for (arbitrary separable) C*-algebras 4, B the canonical map
Hom(4, B) - KK(A4, B) factors through [4, B]. Therefore y is defined by the
commutative diagram

Hom(Cy(X), Co(Y) ® X))

/ \

KK(Y, X) = [Co(X), Co(¥) ® H] —— KK(Co(X), Co(¥)).

We shall sece (3.3.6) that y is induced by some map at the level of spectra.



232 M. DADARLAT and A, NEMETH

3.3.5. PRCPOSITION. On the category W, the generalized homology theory
X KK (Co(X), C(Y)) is isomorphic 1o the generalized homology theory X -» hy(X
G(Y)) defined by the spectrum G, (Y) = Map(Y, Q7+11).

Proof. This result is contained in [26, § 6, Theorem 4] since G,(Y) is weak

homotopy equivalent to the space Map(Y, &) defined there, but for our purposes
we prefer the description with G (Y).

Thus we define T(X): £,(X, G(Y))-» KK (Co(.Y), Co(Y)), as being induced by
the maps:
it

r

[S™", X A G,(Y)]

2o [Cy(SIX), Cy( S+ +1Y) © A} KK(Cy(X), Co(STY))

via the identifications U ~ U(.#") and
GAY)=Map(Y, G"+*1J) ~ Hom(Cy(SY), Cy)(S**1Y) @ .%).

The map ¢, above is the same as the map ¢, defined in the proof of Proposition 3.2.2.
Moreover the proof is carried out in the same manner. =

3.3.6. REMARK. a) There is 2 commutative diagram

Kk(Y, X) <——— h X, E(Y))
i

z i o

KK(CylX), Co¥}) e - i iX, G(Y))

where h,(X, E(Y)) and T were defined in the proof of Proposition 3.2.2 and £ is the
map of spectra

Z: Map(Y, F,)-» Map(Y, @*+1U)

induced by the map F,.» BL, ~ G"+1U given in the proof of Proposition 3.3.3.

b) Let X’ be an a-dual of X, for example a compact deformation retract of
the complement of X embedded in S"+1. By the naturality of the duality result
stated in [42, Corollary 7.10) we have a commutative diagram

ho(X, E(Y)) = h"(X", E(Y)) = KNX'AY)

ho(X, G(Y)) = h (X', G(Y)) = KX’ A Y).
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3.3.7. CoroLLARY. Let X € W§, Y e Wy and X’ an n-dual of X. There is a com-
mutative diagram
kk(Y, X) ——— k"(X'AY)

X
kk(Co(X), Co(Y)) ——K'(X" A Y)
where the right vertical arrow is induced by the map of spectra F— BU and the
orizontal arrows are isomorphisms induced by natural transformations.

Proof. The assertion follows from the above remarks. %

Since any two duals are of the same stable homotopy type the above diagram
does not depend on the choice of X’. The commutativity of this diagram gives a pre=
cise meaning to the assertion that kk is the connective KK (when restricted to spaces).

For a comparison result between kk and KK we refer to Theorem 3.4.5.

3.4. THE RELATION OF CONNECTIVE K-THEORY TO HOMOLOGY

. . . . . s
The map F,,,— F, given by tensoring with S induces operations k,(X) —>

255K, 4 o(X) and K"+2(X) s k(X). If K(Z) = (K(Z, ) is the Eilenberg-MacLane
spectrum, there is a natural transformation of spectra n: £ - K(Z) defined by maps
4. ¢ F, - K(Z, n). To describe n, one will use the realization of K(Z, n) as the infinite
symmetric of 8", K(Z, n) ~ P®(S"), due to Dold ard Thom [14]. The corresponding
map F, — P>(S") is given in 6.1.9.

The following result is due to L. Smith [40].

3.4.1. ProprosiTioN. For any finite CW-complex X, there is a natural exact
triangle

Ky (X) —2 5 ko(X)
‘—U*\' /ﬂ
}’:{*(X, Z)
with deg S, = 2, degn, = 0 and degd, = — 3.
We need also the dual triangle.

3.4.2. PreecsiTICN. For any finite CW-complex X, there is a natural exact
triangle

KH(X) ——> K*(X)

>~

H*(X, Z)
with deg S* = -- 2, degp™ = 0 and degd, = 3.
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Proof. Let W, be the mapping fibre of F, ~ F,_,. i.e. W, = {(u, ¢) e F]_, X
X F,:u(0) = 0, u(l) = the image of e under the map F, — E,_:}. Then the Puppe
exact sequence ([43, Chapter I, Theorem 6.11%])

Qaﬂ;ll:n—? - Qan I -qu"n o Qan~2
together with Proposition 3.3.2 imply

Z if g=n--3
Eq(Wn) = {

0 otherwise.

Consequently W, is a K(Z. n — 3)-space and we get an exact sequence
I:"_,g B4 K(Z, - 3) s Fﬂ hnd FH—Z'

Passing to homotopy classes [X, -] we get the exact sequence

kX _l; \'{”"SQX, Z) > K(X) L K72 X)

which proves the statement.

3.4.3. COROLLARY. Assumie that X is « jinite connected CW-complex of dinen-
sion n. Then

0 fgg0
XAV) = HY, Z) ifg=1,2
K (X) iCgsn--1.

Complementary inforinations are contained in the exuct sequence

® EY -~ S - 3F 3
0= K, olX) =25 Lk X) 255 H X, Z) = KyoalX) = 2 Ky (X) —25 ky(X) 25

LS HAX, Z) 0.

With the identifications K AX) = K(X) for ¢ 2 n ~ 1 the isomorphism k:,(ﬂ\’)%
:;i’ k,s.a(X) is the Bott periodicity.

Proof. If g < 0 then k(X) = lim{S8"". XA F,]=0 since F, is (r -1)-
-connected and X is O-connected and rhence X A F, is r-connected by [42. 3.16).
1t follows from Proposition 3.4.1 thatQ = k_(X) - k(X)) » H(X, Z) - k_o(X) —= ¢
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and 0 = ko(X) = ky(X) — Ho(X, Z) = k_y(X) = 0 are exact sequences so that
k,(X) = H(X, Z) for ¢ = 1, 2. Since H,(X, Z) = 0for ¢ > n + 1 it follows that

k(X) % k,+o(X)forq = n — 1. Now let X' be a N-dual of X and choose 2 m > N —
— g. Using [42, Corollary 7.10] and Proposition 3.4.2 we may write K ,5,(X) =
= kN-9-2(x"y = KV-9-2(X") = K,,,,(X) = K(X). Therefore k,(X) = K,(X)
for ¢ = n —~ 1. A more natural proof of this isomorphism will follow from Theo-
rem 3.4.5.

3.4.4. COROLLARY. Assume that X is a finite connected CW-complex of dimen-
sion n. Then

KiX) ifg<?2
k9(X)={HX) ifg=n—1,n

0 if g zn+ L.

Complementary informations are stored in the exact sequence
S* o S* ¥
0- K3(X) — kKI(X) 2 HYX, Z) - k¥(X) - ... = K'(X) — k"-2(X) —

S fin-xx, ) - 0.

. ~ S*
With the identifications kU(X) = KUX) for ¢ < 2 the isomorphism k3(X) = k?-3(X)
is the Bott periodicity.

Proof. 1f g=n + 1, then k%(X) = [X, F,] = 0, since F, is (g — I)-connected.
If 0<qg <1, then k9(X) = [X, F,) = KYX), since F, = QU, F, = U. As HY(X, Z) =
=0 for ¢ < 0, it follows from Proposition 3.4.2 that k2(X) =3 k%(X) = K(X).
If ¢ <0, then

k(X) = lim[S"X, F,,,] = [S~7X, F,] = KAS~2X) ~ KU(X).
Finally let us explain why we have a split extension

0 - K3(X) s K3(X) 2 HYX, Z)- 0.

If we take K(Z, 1) =~ S' and F, ~ U then the map y: U— St is the determinant
map and the inclusion S' = U(l) <> U gives a multiplicative left inverse for 1. 24
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3.4.5. THEOREM. Let X, Y be finite CW-complexes and suppose that X is
O-connected and Y is m-connected (m = —1, if Y is not connected thenm = - -1).
Then the cannonical map

Z: kkn( Yﬂ X) i KK::(C()(X)» C()(Y))

is an isomorphism for n = dim(X) - m - 2.

Proof. We shall compare the two homology theories
k,};(X) = kkn( Ys X) and K,),’(X) = KKI)(CO(X)J CO(Y))

If X =87 with I < ¢ < n+m-+ 2 then kJ(S7) = kk, (Y. S = k9*(Y) and
K¥(84) == Ke=7(Y). Using H/(Y, Z) = 0 for j < i we infer from the exact triangle
in Proposition 3.4.2 that k/+2(Y) S—:> k/(Y) for j < m. Since, for negative j, K/(Y) =~
~ kf(Y), it follows that ké—*(Y)= K?~"(Y) for allg < n + m + 2 and moreover
this isomorphism can be identified with y. It is clear that the same assertion is true
if we substitute S¢ with a finite wedge of ¢-spheres. Having this, the proof is carried
out by induction on the dimension of X. Tf dim(X) = 1, then X is homotopic to a
wedge of circles, hence the assertion is true. Therefore assume that y is an isomor-
phism for cach connected X of dimension < p and # > dim(X) ~ m -+ 2. Now
Iet X be a finite connected CW-complex of dimension p + 1. If X, is the p-dimensio-
nal skeleton of X, then X/X, -~:S,., is a finite wedge of (p + 1)-sphercs. The
pair X, <> X induces the following commutative diagram

- k'}:ﬂ(sp'?l) o k'}l’(Xp) kY (X) - k'};(sp-}'l) kl}l’—l(Xp) o

! Loy l

= K4 1(Sp40) - KJ(X,) - KF(X) ~ KI(S,00) - K1 (X)) > ...

The inductive assumptions together with the five lemma imply that kI(X) -
— K¥(X) is an isomorphism for n > p 4+ 1 - m - 2. 5]

3.4.6. COROLLARY. Let X, Y € WE have dimension n and assume that both X
and Y are (n - - 2)-connected. Then

[Co(X), ColY) @ #7] = KKUIC(X), Co(Y)).

Concerning the next result the referent pointed out that it can be casily de-
duced using the Atiyah-Hirzebruch spectral sequence or directly from the Dold’s
theorem which asserts that after tensoring with Q any generalized cohomology theory
h* becomes an ordinary cohomology theory with coefficients h¥(point} ® Q. How-
ever, we prefer to give a proof which is less elegant but specifies better the involved
maps and requires no other identifications.
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3.4.7. PROPOSITION. If X is connected, then after tensoring with Q, the exact
triangle 3.4.2 splits into short exact sequences

0 - k9*%(X) ® Q - k%(X) ® Q — HY(X, Q) - 0.

Proof. Since Q is flat as a Z-module the trianglé 3.4.2 remains exact after ten-
soring with Q. Therefore we have the exact sequences

q
0 ker($? ® 1)~ k(X)) ® Q 2o ® Q - coker(ST @ 1)~ 0
0 — coker($7-1 ® 1) - H4-3(X, Q) - ker(S? ® 1) - 0.

This shows that if ¢, = dimgk%(X) ® Q, b, = dimgH4(X, Q), d, = dimgker(S?®1),
¢, = dimgcoker(S? ® 1), then

dg—a,+a,.,—¢ =0 and c,_y —b,_3+d,=0.

According to 344, a,=b,=0 for g2n + 1, n = dim(X), and d, =0 for
g < 3. Also recall that k*(X) ~ K2(X).

Using the isomorphism K¢(X) ® Q= Heven( X, Q) given by the Chern charac-
ter we get

ag = Y by = q§1(02q+2 + dag+s)-

g>1

On the other hand from @, — a,_, = d, -~ ¢, we infer
— a4y = Z (@2 — Aq-3) = Z (dog — Cag)-
g>2 CEY)

Therefore we must have

Zl(czq+2 + dages) = ; (€34 — d3p)-
PEY]

qz=

This is possible only if d, = 0 for all g >4. Since we have already seen that d, = 0
for ¢ < 3, it results that Ker(S? ® 1) = Oforallge Z.

The above proposition shows that the image of the map ﬁ’:’(X, Z) - k#+3(X)
is always a torsion group. In the case when H*(X, Z) is torsion frec the k*(S?) =
=Z[t]-module structure of k*(X) is completely described by the following

3.4.8. COROLLARY. Let X be a finite connected CW-complex such that }~1="'(X, Z)

is torsion free. Then for each q € Z there is an isomorphism k%(X) — @ He+2(X, Z)
iz0

3 - 1776
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such that the following diagram commutes

Ke(X) ——, K9(X)

l l

® He¥N(X, Z) > @ HII(X, Z).
i»1 j»0

Proof. For a finitely generated group G let TG be its torsion part and LG
its free part. In the exact sequence

0 - ker $¢ - Tk%(X) ® Lk9(X) - Tk?-2(X) ® Lk?-%(X) — coker(5%) -» 0

ker §7 is a torsion group and coker S? is a free group since it is a subgroup in
He ~%(X, Z). If we assume that Tk%(X) = 0 then, as one can easily check,
ker S = 0 and Tk?-3(X) = 0. Since k"(X) = H"(X, Z) and k"-1(X) = H"-1(x, Z).
n = dim X, we can use an inductive argument to prove that ker(S%) = 0 for all ¢.
Therefore we get split extension (non natural splittings)

0 k) > ka-3(X) 2 HO~*(X, Z)- 0,
hence the statement of the corollary. 2

3.5. PRODUCTS

There are two fundamental operations with homomorphisms: composition
and tensorization. One can use them to define various multiplicative structures on
kk,. It turns out that on this way one can reobtain all the products and pairings
which can be introduced using the ring-spectrum structure of (F,). We shall not
develop this subject here, thus we limit our discussion to what is required in order
to obtain a special Universal Coefficient Theorem for kk.,.

3.5.1. The composition on the homomorphisms 'induces a product
kk(Y, X) x kk(Z, Y)- kk(Z, X).

More precisely for ¢ € Hom(Cy(X), Co(Y) ® o) and ¢ € Hom(C(Y), Co(Z) ® )
we define [¢]-[¥] =¥ ® id(#") o ¢]. This product is bilinear and associative.
For the bilinearity we refer to Theorem 3.1 d) in [36]. Also the associativity is a gene-
ral fact which essentially follows from the associativity of the composition. The
next computations are included just in order to make things clear.

Let A;, 1 <i <3 be C*-algebras and ¢; e Hom(4;, 4;,, ® #), 1 <i<3.
Let 1 denote the identity morphism of 5#°. One has to check that

P;3®1 @ 1o(Pa® 1ogp) = (93D 1o@) ®1cgy,
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but this follows from the equality

(@ ®1 @D, ®DN=(p3@ 1og) ® 1

which is straightforward.

3.5.2. Using the natural isomorphism kk(SY, SX) =~ kk(Y, X) we can extend
the above product to a well defined product

Kk, (Y, X) X kk,(Z, ¥) - kk,, (Z, X).

In particular we get the following facts:

a) k*(X) = @ k(X)) is endowed with a structure of left k*(S%-module which
q€EZ

coincides with that given by the operation S* : k?+2(X) — k%X).

b) The product k*(X)x kk, (¥, X)— k*(Y)induces morphismsa,:kk_ (¥, X) -
— Hom'(k*(X), k*(Y)) which actually map into Homl'(»(so)(k*(X ), k*(Y)) since
the product is associative. Here we use the notation Hom;u(so)(k*(X), k*(Y)) for
the group k*(S%-morphisms ¢: k*(X) — k*(Y) of degree r (i.e. @(k%X)) < k#(Y)
for all g € Z).

We want to prove that o, is an isomorphism provided that k*(X) is a free

k*(S%)-module. The following discussion on products will enable us to use Adam’s.
universal coefficient theorem [1].

3.5.3. Recall that (F,) is a ring-spectrum with multiplication p: F, A F, —-
— F,,, given by u(p, ¥) = ¢ ® ¢. This allows one to construct four basic exter
nal products: an external product in k, , an external product in k*, and two slant
products. Among them we are especially interested in the slant product

[:k2(Y A X) X k(Y) - kP=9(X).

Let us recall the classical algebraic-topology definition of the slant product. For
ack?’(Y A X), beky(Y) represented by f: Y A X— F,, g:S™ — F, A Y, respec-
tively, a/b is the element represented by

1
q+r gAlX F'Af ol
S AX—>F, AYAX——>F, A F,——F,,,.

Qur aim is to realize this slant product in terms of tensor products and com-
position of x-homomorphisms. Namely, tensoring to the right with id(Cy(X)) gives
a map

ix : k(Y)-kk(Y, ¥ A X)
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and using the product
k2(Y A X) X kky(X, Y A X)-~k?-9X)
(which is a special case of 3.5.2) we define
[]:kP(Y A X) X k(Y)~KP=9(X)

by the rule ajjb = a-iy(b).

The equivalence of the two products / and // is explained below.

We have two realizations of k,,:

- 1) k(Y) = im[S*", F(S") A Y] (via the spectrum F, = F(S")

and

1) k(Y) = lim[S*", F(S" A Y)] (via the kk-groups).

We have seen (3.2.2 a)) that there is a natural isomorphism T between the
two theories which is induced by the maps :

t,: FO) A Y - F(S" A Y)
given by
e A =080,

where ¢, € Hom(Cy(Y), C) is the evaluation map at y.
There is a similar situation concerning k* but this time the isomorphism T
is induced by the identification
Map(Y, Hom(Cy(X), #)) = Hom{Cy(X), Co(Y) @ F) (see 3.2.2 b))
Now the proper statement about siant product is
T(@b) = T(a) Tih).
This equality follows from the identity

(2 8) @ id(Cy(X)) @ id(A)) < (d(Co(S8); B s A 3} = 0 @ f» A %)

where s € 897, x € X, g(s) = ¢ A .
It is worth noting that all the other products defined in terms of spectra

admit similar realizations using the product 3.5.2.
With this preparation we are able to prove the following special Universal

Coeflicient Theorem.
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3.5.4. THEOREM. Let X € W5, Y € W, and assume that H*(X, Z) is torsion
free. Then the map

a, : kk_ (¥, X) - Hom[s o (k*(X), k*(Y)), reZ

is an isomorphism of groups. -

Proof. We have seen that k$(-) = kk_ (-, X) is a cohomology theory (see 3.2.1).
The same is true for

%(+) 1= Hompx o0 (k*(X), k*(-))

since by Corollary 3.4.8, k*(X) is a free k*(S¢%)-module.
v Since a,: k() — h¥(-) is a natural transformation of cohomology theories
all we need is to prove that it induces an isomorphism on coefficients, i.e.

[

WKL 00 = Hom o (k*(X), k*(S9)).
By the very definition of o} we have that
A(b)a) = alfh.
Here |/ is a special case of /[ in 3.5.3:
| | J1:KPC) X ky(X) = K =9(S0).

According to the discussion in 3.5.3 this pairing can be identified with / which, in
this special case, is just the Kronecker pairing for connective K-theory. With this
identification af is an isomorphism by the Adam’s universal coefficient Theorem ({1]).

3.5.5. THEOREM. Let X, Y be finite connected CW-complexes without torsion
in cohomology. There is an isomorphism a of kk(Y, X) = [Cy(X), Co(¥) ® K]
irztb'Homz(I-f‘-“(X , Z), H*(Y, Z)). The image of o consists of all group homomorphisms
which preserve both the graduation even-odd of cohomology and the filtration
FH* = @ HO.

m
qam

" Proof. The theorem follows from Theorem 3.5.4 and Corollary 3.4.8.

4. HOMOTOPY COMPUTATIONS FOR LARGE HOMOMORPHISMS

In Section 3 we gave some methods for computing

" CC(X); Co(Y) ® H] = kk(Y, X).
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The stability results of Section 6 will imply that the natural map
[Co(X)a Co(Y) ® Mm] - [CO(X): Co(Y) ® X
is a bijection, provided that m is large enough. Consequently in such cases we have

[C(X), C(Y) @ M}, = [Co(X), Co(Y) ® M,] = kk(Y, X)

so that one can make complete computations in many concrete situations.
This section is devoted to the more general problem of classifying up to

q
homotopy the morphisms 4 -~ D, where 4 = @ C(X) ® M, and D =
il '

h
=& CY)® M,,,j are C#-algebras belonging to the category €(n) defined in
il

Section 2. As explained below it actually suffices to compute
[4, C(Y) ® M,] =Y, Hom(4, M,)].

Briefly, our plan is as follows. First, we decompose Hom({4, M) into its connected
components B, (k) parametrized by,certain (¢ + 1)-uplesintegers & = (k,, ..., k,)
Each component is the base space of a certain principal fiber bundle

1T UGk) ~ T Homy(C(Xy), Mi) X Um) — B, (k)

i=0 i=1

so that the associated Puppe sequence will give some information on [Y, B, (K)l.
In order to reach a group structure on [Y, B,(k)] we embed the above bundle into a
bundle of H-spaces. Using certain stability results for vector bundles and homomor-
phisms it is shown that this procedure does not affect the homotopy in small dimen-
sions. This technique enables us to obtain complete algebraic invariants (ranging
in kk and K-groups) for the homotopy classes of those homomorphisms from A to
D which are 3(n + 3)/2-large in the sense of 2.1.8 (see 4.2.8 and 4.2.1).

4.1. SOME FIBERINGS

4.1.1. Let D; = C(Y;) ® M,,,j. Since Hom(4, D) is the disjoint union of the
Hom(4, D;)'s for 1 < j < £ it suffices to consider the case when D = C(Y) ® M,,.



SHAPE THEORY AND (CONNECTIVE) K-THEORY 243

Let B, = Hom(4, M,) = Hom(@ CX) ® My, M,,,) with X; and n; fixed
1

throughout this section. Using the notation of Section 2, each ¢ € B, induces a
homomorphism of scaled ordered groups

o) eHom( K[,( & M,,‘,), KO(M,,,)) < Hom(Z4, Z)

+3
.given by some integer vector (k,, ..., k,). In fact k; is the multiplicity of the embed-

dmg ((pIM,,i) M,, -+ M,, hence Z kiny < m Ifky=m — Z kn;, then ¢ is unital

i=1 =1
if and only if kK, =0. Let & = (ky; ky, ..., k,) and let Bm(l_c) be the set of those ¢
in B, with r(¢) = (k,, ..., k). B,(k) is a closed and open subspace of B,, and, as
we shall see in 4.1.2, the B, (k) are exactly the connected components of B,,. Assume
that k; =0 for some j > 1. Then B, (k) c Hom(@® C(X)) ® M., , M,). This fact allows

inj
us to make all the computations under the assumption that k; > O for 1 <j < q.
We need some more notation and definitions. Let

Uk) = Ulky) x Ulky) X ... X U(k,); forky, =0, U(k,) = a point.
E(k) = Hom,(C(X,), M) X ... X Homy(C(X)), Mk)
E, (k) = E(k) x U(m)
JO:UkR) ~Uim), w=(wo, w1, ..., w) € UK)
S0 =W ® m @ 1,)® ... @ (v, ® L)
where the above description of ;¢ is given according to the unital embedding

q
Mko @ (A{{k1 ® M"l) @ PR @ (qu ® an) "'*Mm, m = ko + 2 kﬂli.

i=1

Let (®, u) denote a generic element of E,(k), that is @ = (¢,, ..., @, Wwith
¢; € Hom(C(X,), M) and u € U(m). We have a right continuous action of U(k)

on E,(k) given by:
(@, u)w = (Wiuwy s - .., Wipw, ; woW)).
We also define p : E (k) - B,(k) by
p(g’ u) = u(oko @ (pl ® ld(Mnl) @ P @ (Pq ® id(an))u* .

The next lemma describes the homomorphisms belonging to B, (k) in simpler terms.
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4.1.2. LEMMA. a) p is onto, hence B,(K) is connected ;
b) p(P, u) = p(¥, v) if and only if (9, u)w = (Y, v) for some w € U(K).

Proof. a) If « € B, (k) then there is some u € U(m) such that a( é IC(X,.)®0.-) =
i1

= w0, ® (k, ®a)D ... ® (1, ®a)u for all a; € M, . Consequently if o =u*om

then the algebra a’( é ClX) ® 1,,';) lies in the commutant of 0"0 ® ( é Iki®x11ni}
i=%

i=1

a1
that there are ¢; € Hom,(C(X}), M"’i)’ 1 £i< g, such that 2" = p(¥, 1), hence

2 = p(@, u).

. . . . 4 .
in M,,. Since this commutant is equal to C = M"".® (@ M. ® 1,,‘_) it follows

q s
b) Let ¢ = @ lgx; ® a, €A, a; € M,.. From p(P, u)(a) = pyr, t) () we
i1 1 1 T - -

infer as above that u*v is @ unizary element in C so that ##v = j%w) for some we Uik).
Thercfore we have p(}//, ) = p(¥, wj'(w)) = p(¢, u). The last equality implies
plg, j¥w)) = p(¥, 1) which means way ¥ = 0, for 1 < i < q.

4.1.3. PropcsITION. The map p: E (k) — B, (k) is a principal fiber bundle
with fibre -U(K).

Proof. Since U(k) is a Lie group freely acting on the compact space E,(~) it
follows by a theorem of Gleason [22] that the quotient map onto the orbit space
En;(.l‘_’) i Em(]‘:),/b7(k)
is a principal fibre bundle with fibre U(k). By Lemma 4.1.2, p can be identified with
ithis map. %]

4.1.4. In order to discuss the unitary equivalence relation for homomorphisms
t is useful to consider the continuous left action of U(m) on E, (k) given by

v (9, uy = (P, tw), @ eEk),u veUlm).

-

Since this action commutes with the right action of U(k) on E, (k), we get an action
of U(m) on B, {k) which is easily identified to

U(Hl) < Bm(k) - Bm‘l‘:)a (v: lp) > Ullllv:::
since p(e(9, 1)) = p(®, wye® for all © € E(K), v, v € U(m). In the case when each

X; is a point, the action of U(m) on B, (k) corresponds to the action of L(m) on
the homogeneous space Utm), U(k).
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4.2 EXACT SEQUENCES
© " "4.2.1. Given afibration F — E' - B the Puppe sequence

- [SY, B] - [Y, F] - [, E] - [Y, Bl

is not always sufficient for the computation of [Y, B]:(without some additional struc-
ture). Letting aside the algebraic structure this is essentially due to the fact we do
not know how to extend the above sequence to the right. However this can be done
under certain favorable circumstances. For instance if K = G are Lie groups, then
the fibration X — G — G/K can be extended to a homotopy exact sequence

K< G5 Gk Bk BG

‘where BK, BG are the classifying spaces for the principal K, G-bundles, j' is the map
naturally induced by the inclusion j: K <s G and ¢ is a classifying map for the K-bun-
dle G — G/K. In the more general case when K acts freely on a compact space E
we have to confine ourselves to a shorter exact sequence

K5 ES EKS BK

where K is embedded in E as an orbit and ¢ is again a classifying map for the principal
K-bundle E — E/K. If these spaces happen to be H-groups, then passing to homo-
topy classes we get exact sequences of groups rather than pointed sets.

4.2.2. The case we deal with bears some resemblance with the above situation
but is more involved since we need to embed our fibration into a fibration of H-
-spaces. First we complete the fibration given in Proposition 4.1.3 to an exact
sequence

Uk) > E, (k) > B,(k) > BU(K).

All these spaces are pointed and the maps preserve the base points. 1If x? is the base
point of X;, then the homomorphism ¢ f) = f(x})- 1x,, '€ C(X)), is the base point
of Hom,(C(X)), M"i)' Accordingly we distinguish @0 = (¢}, ..., ¢J) in E(k), ¢® =
= (99,°1) in E, (k) and b° = p(e®) in B, (k). The grdup U(k) is pointed by its unit |
so that we have a corresponding base point in BU(k).

Let U(_k)i(l U(m) L Bh(k) be the fibration 4.1.3 in the special case when
each space X, reduces to a point. We define

i:U@m)— E, (k) = E(k) x Ulm), i) = (0°, u)
and -
p: E (k) -~ Uln), plp, u) = u.
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Note that both i and p are U(k)-equivariant since w*p®w = ¢° for any we U(k).
Therefore there are natural maps i’ and p’ induced by / and p such that the following
diagram is commutative:

U(k) === U(k) === U(k)
j"j il i“l
U(m) ——> E, (k) —— U(m)
S

B(k) ——> B, (k) ——> Bi(k).

Using the naturality of the augumented Puppe sequence we derive the following
diagram

.’ ,

B!\(k) ——> B,,(k) ——> BX,(k)

BU(k) -z -=: BU(k) —==: BU(k)

which commutes within homotopy. Therefore
goi" ~ 80 and e%cp’ ~ &

These factorizations allows us to prove the following

4.2.3. PrOPOSITION. There is an exact sequence

UK L5 E, (k) < B,(K) ~> BU(K) ~—> BU(m)

where j' is naturally induced by j°: U(k) — U(m).

Proof. Given a spacz Y we have to check the exactness of the following sequ-

’

e i
ence [Y, B, (k)] — [Y, BU(K)] = [¥, BU(m)] of pointed sets. Of course we shall
use the exact sequence

L4

50 j
1Y, By(k)] —> [¥, BUGR)] —> [Y, BU(m)).

First observe that j, o¢, = ji o (% o pl) = 0 since ji=¢% = 0.
Jx ° &y %28 ° Py #° 8%
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Now if g € Map(Y, BU(k)) is such that j’og is null homotopic, then
there exists f € Map(Y, Bj(k)) such that &% f is homotopic to g. Therefore
h =1i"ofeMap(Y, B,(k))is such thateoh = (goi)of ~eof ~ g.

4.2.4. We have reached the sequence 4.2.3 but it is not entirely satisfactory
since it gives us only exact sequences of pointed sets. However after we pass to
inductive limits in 4.2.3, natural group structures will be available. In what follows
we shall describe this construction. ' ‘

For any positive integer ¢ let tk = (tko; tky, ..., tk,) and let j?: U(tk) — U(tm)
be the corresponding embedding defined in f4.1.1, ie. ji(w,y, wy, ..., w) =
=W, @ (m; ® ],,1) ®..0MW® 1,,4).

For future purposes we need to describe j¢ using systems of matrix units,
Thus if (¢4 ) and (e,,,) are the usual systems of matrix units of M, and M,, then

n

q i
Jiw) = Z Z ZW Yen(i-1)trhe i x Mi=1) etk oty

where: w}¥ are the components of w;, i.e. w;, = Y, Wi el ,, w=(wg, Wi, ..., W,),
Xo
h(@) = Z mk; if i 20 (ng:=1if kg # 0, ng:=0 if ky = 0),#(—1) = 0.
j -0
Now we are going to define the bonding maps needed for inductive limits. The
first is the canonical embedding o, : U(tk) - U(sk),

o (Wo, Wi, .o, W) = (Wy @ ]"'o’ wy, @ 1k1, W, @ lkq).

In order to simplify the notation we set s = ¢ 4 1.

As it is easily seen there is a permutation matrix v, € U(sm) such that if we
define B2: U(tm) — U(sm) by B%u) = vf(u @ 1)v, then the following diagram is
commutative:

u@tk) —-J—'—> U(tm)

|

U(sk) — U(sm).
js

To be more precise one can take v, to be the unitary which permutes the canonical
basis of C*" according to the permutation £ of {1,2, ..., sm} which is defined below-
For each 0 < i < ¢q let

Wi={x=0+Dh(i -1+ +Dr~-Dk;+a:1<r<n, | <a<stk}
and
Vi={p=0+DhG - D)+ @+ Dr—Dk;+thk;+b:1<r<n;, 1<b<k}.
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These sets form a partition of {1,2, ..., sm}. If x and y are generic elements of
W and V. as above we put

xy=th(i - D+ 1r - Dk; + a
EQ) =th(q) + h(i — 1) + (r — Dk; + b.

Now define the second bonding map

ﬁ! : E!n:(t.]‘:) - Esm(sk)
by the rule
ﬂr(‘{’: ll) == ((e @ {Pf)a ﬁ?(“))

where @ = (Prs -5 0) € E(tk), 90 = (0%, ... o) € E(k)
PD O =1 @ 0}, ..., 0,8 pp) € E((t + k)

(see also the notation introduced in 4.1.1 and 4.2.2). Since f}, makes commutative
the above diagram it follows that 8, is U(rk)}-equivariant in the sense that

3,((_(,7, u), wy = if,(fg, iz w).

Therefore f, naturally induces a map 7y,: B,,.(tk) - B, (sk). Also we consider the maps
a; 1 BU(tk) - BU(sk) and f; : BU(tm) - BU(sin), naturally induced by the group
homomorphisms %, and #,. so that the following diagram commutes within homotopy

U(th) ——> E, (1K) ——> B, (thk) —— BU(tK) —— BUim)

AN

U(sk) ——— E (5K} ——— B, (sk} —— BU(sk) — — BU(sm).

Given a gspace Y we pass to homotopy classes [Y, -] in the above diagram and then
we take inductive limits. Since taking inductive limits preserves the exactness, we
arrive at the following commutative diagram with exact rows:

4.2.5.

[Y) U(k)] —— [}” ‘En(k)] _— [YJ Bm(k): -_— [Y3 BL‘V(]‘Y)} EE—— [Y’ BLV(HM

3
4
| | |
%o ' s & s 2:«, i ,/3_,";
} ; |

’

Jy 7, . Cy 1. . S .
IHm{Y, UGk)]— lim Y, £, (Rl — iim{Y, B, (1) - im[Y, BU(th)] — lim{Y, BU{m)].
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Using direct sums of unitaries, homomorphisms and respectively fiber-bundles one
<an introduce obvious abelian semigroup structures on each set

lim[Y, F] where F, = U(tk), E,(tk), B,,(tk), BU(tk), BU(tm).

In order to check that the addition bperations given by direct sums are well

cosx --sinx

defined one has to apply several times the ( )-trick in -order to join

sinx cosx
by a continuous path in Map(Y, F,) two objects a and &' of the form
a=b@b@c®cy, @ =bDc® by ® c,. Also one will notice that each map
F,~ F,,, is homotopic to the map a—a @ a® where a € F, and a® is the base
point of F.

It is also clear that the maps j,, p,, €, and j; preserve the direct sums so that
the bottom row in the above diagram is (at least) an exact sequence of pointed semi-
groups.

Having in mind the definition of K-groups and kk-groups we can make the
following identifications:

lim[Y, Uk)] = f[ lim[Y, U(tk))] =

i{=0

KIY)®  if ky =0
{Kl(Y)‘”l if ky> 0
lim[Y, E,(t)]= I lim[Y, Fi00)] x lim[Y, U@m)] = Tf kk(¥, X x KX(Y)
1 =1

Ig

7 i o( Y a : —
lim [¥, BU(tK)] = ) [ lim[Y, BU(tk;)} = {K (Yj*  if ko =0
KoYy +1 ifky,> 0

=0

lim[Y, BU(rm)] = Ko(Y).

Since all these are abelian groups, using 4.2.5 it follows that lim[Y, B,,(tk)] is
also an (abelian) group. In this way we get the following exact sequence of groups:

4.2.6.
. i 4 r, . e, . A
KY(Y) —5 11 kk(Y, X;) x K}(Y) — lim{Y, B, {tk)] — K%(Y)? —> K*(Y)
i--1
wherc § == qif kg =0and g =g+ 1ifk, > 0.
The homomorphisms j, and ji can be easily described if we recall the definition

of j: U(k) - E(k) x U(m), namely

JW) = (20, wo @ (W, ® 1,,1) ®@...0wW,® lnq)).
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Therefore if k, = 0 then

j$(}'1 y oo yq) =0, my + ... + "qu),

q
( the null component corresponds to II kk(Y, X, ,-))
i-0
JaelXys oo X)) = mx L+ ongx,

cokerj, = T[ Kk(Y, X)) (KI(Y) // 3, niKl(Y))

§=-1

ker j; == {(.\'1, cor X)) ef("(Y)": i X, = 0} .
i1

For ky > 0
Je(Wos 315 -5 ¥) = 0, 9 + mpy + ..o+ 1)

.r
Ja(Xps X5 0 X)) = Xo + xy + ..+ nX,

coker j,, = Iq[ kk(Y, X;)
i1

-~ q
kerj; = {(xo, Xps e X) EKUY)H1 X0 + ) myx; = O} .
ie:1

For spaces X, reducing to a point, the sequence 4.2.6 becomes

0 ) 60 ~ - ; -
KYY)i —> KNY) —> lim[¥, BU(1k)] — > ROY) ——5 RY(Y)

which gives the middle term up to an extension:
0-> cokerj$ — lim (Y, B, (tk)]-» ker ji ~ 0.
4.2.7. ProrosiTioN. There is a natural isomorphism

0:lim[Y, B,,(t0) - lim[¥, BL.(th)] X T[ Kk(Y; X)).
i-:1
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Proof. The construction given in 4.2.4—6 equally applies to the following
diagram which commutes within homotopy:

U(K) s U(m) —"s B (k) ——s BU(K) —— BUGn)

I i |l I'
l

U(k) — E, (k) ——> B, (k) ——> BU(k) —— BU(m)

0 0 0

J P

U(k) = U(m) BY(k) ——> BU(K) ——> BU(m).

’

In this way we arrive at the following commutative diagram:

b &0
0 — . cokerj& — % , lim[Y, B%,(tk)] —> ker j} ——> 0

. o7
1'* £
N

P €
0 ——> JI kk(Y, X;) X coker j& ~——> lim[¥, B,,,(tk)] ——> ker j}) —> 0

'
l" v, l

0 £0

lim[Y, B, (tk)] ——> ker jj ——> 0.

0 3 cokerj}

Next we define v:lim[Y, B, (tk)] - fI kk(Y, X)), by

i=1
q
Wx) = x — i4p4(x) €, ( I1 kk(Y, X) x {0}).
i1
(Note that ¢,v(x) = 0 and pyv(x) = 0.)

Now we can define

0 im[Y, B,,(th)] - im[Y, BS,(th)] x T] kk(¥, X))
i=al

by 0(x) = (pi(x), ¥v(x)). Using the commutativity of the above diagram it is easily
seen that 0'(y, z) = i, (y) + p.(2) is an inverse for § hence 6 is an isomorphism.

4.2.8. THEOREM. Let Y, X;, 1 < i < g, be finite connected CW-complexes
and let n > dim(Y). Assume that each nonzero component of k = (kq; ky, ..., kp)
is greater or equal than 3(n + 3)/2. Then
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a) There is an isomorphism

0 = (pl, v): (Y. Bo(K)} — Y, BY(K)] x T kk(Y;, X).
i -1

b) There is an exact sequence of abelian groups
0 — coker(j;) —[Y. Bi(k)] - ker(ji) - 0.

) If ¢,y € Map(Y, B,ik)) then v[o) = v[¢] and e,;‘[(p] = ¢, [¥] if and only if
there is some u € Map(Y. U(ny) such that [@) = [wju®].

Proof. a) The natural embeddings U(s) —~ U(s + 1) and BU(s) — BU(s + 1)
are 2s-equivalences [23]. Moreover, it follows by Theorem 6.4.2 that the embedding
E(k)— E(2k) is a (n + 1)-cquivalence. Using these facts it follows from the list
diagram in 4.2.4 (via a Five Lemma argument) that the map

7ot Bu(tk) = Bgspyn((t + 1K)

is a (n + 1)-equivalence for any ¢ > 1.
Therefore by Whitehead Theorem, the map

Vst [Y’ Bn([")] - lin][Y’ Btm(tk)]

is a bijection since dim(Y) < n. This map is used to transfer the group structure on
[Y, B_(Kk)! and we shall identify x with y.(x) for every x in [V, B,(k)). Accordingly,
the mups pl, v and ¢, may be seen as maps from [Y, B, (k)]. Finally, after these
identifications the assertion follows from 4.2.7.

b) Similar to a).

¢) The proof is Civided into two parts.

In the first part we prove the statement assuming that the following assertion
is truc: '

ASSFRTION. If ¢, v7 € Map! ¥, B thei d8lo) = &4w) if and only if - a®ou
Jor some v € Map(}, Gl

In the sccona part w2 »rove he sbove assertion.

The results of @) ard by will be used several times.

n

] == v[iy] shows that ¢ and ¥ have the same i-componrent. Let &' be the inverse

.....

SUCh that [%”] = 0,(}"1', :) = i:i:(yl) -é" p*(z) aa‘nd W/] = 01().23 Z) = i:g(}'a) ‘1- 17’:;;(3)-
Choose 2,2, € Map(Y, BY(k)) ard 8 € Map(Y, B,,(k)) such that [o] = y; and
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[8] = p4(2) and let ¢° be the map Y — BY(k) which. takes .Y to:the base point of
By(k). The equations [¢] = 0'(y1, 2) and [] = 8'(y,, 2) imply that ¢ @ ¢° is.homo-
topic to o; @ Band Y @ ¢°is homotopic to «, @ B as maps from Y to B,(2k). On
the other hand since ¢*[¢] = £*[/] we must have e5lo,] = e¥[o,). According - to - the
Assertion o, = ua,u* for some u € MaplY, U(m)]. Putting the above facts together
we have the following sequence of homotopies:

VO~ =D ) QPR 1,)~ud e@ ou*® 1=
= upu* @ @O

By the main stability result 6.4.2 we must have ¥ ~ ugpu*. Conversely, assume
¥ ~ upu*. As above let 9 @ ¢* ~ oy @ B, ¥ ® ¢° ~ o, B. B, where «; corres-
ponds to the kk-components and f8; €Y, B, (k)]. We have

1@ P~ YD~ D U0 ® P @ 1~ 1D uloy ® I @ u ~
~ oty @ upu®.

The direct sum decomposition provided by 4.2.7 and 4.2.8 a) shows that &, ~ o,
and upu* ~ f,. Consequently v[p] = [oy] = [x;] = v[i] and &[] = eh(ufu®) =
= 8] = Y],

The proof of the Assertion relies on some general facts. Recall that if K— G
are Lie groups then we have an exact sequence:

K -G 25 G/K-5BK - BG.

The left action of G on G/K induces a left action of Map(Y, G) on Map(Y, G/K).
Now the fact is that if 1, /2 € Map(Y, G/K) then £ o 1 is homotopic to &% o f2iff
f% = gf? for some g € Map(Y, G). A proof of this folklore type result is included
below. The Assertion corresponds to the case K = U(k), G = U(m).

Let &/, j = 1, 2 be the induced bundle over f/ of the bundle p: G — G/K. Since
&% f7 is a classifying map for &/, £ is isomorphic to &2 iff e90 f1 ~ £ o f2. Therefore
we have to prove that £ is isomorphic to £2iff f2 = g - f* for some g € Map(¥, G/K).
To prove this equivalence we shall work with G-cocycles (= systems of transition
functions for principal G-bundles) (see [23]).

First assume & =~ ¢2 Then there is an open cover (U,), of Y,
g} eMap(U,, G),j =1, 2, such that g/ lifts /.U, i.e. p(gi(x)) = fi(x) for all xe U,.
For any a, § with U, N U, # © define /iy € Map(U, n Uz, K) by higx) =
= gl(")gi(x), xe U, n Uj.

The system (U, , i) is called a G-cocycle associated with the G-bundle &/. There
is an equivalence relation in the set of G-cocycles such that two bundles are isomor-

4 — 1776



254 : M. DADARLAT and A. NEMETH}

phic if and only if any two G-cocycles associated with them are equivalent 123).
The equivalence relation for G-cocycles takes a simpler form when they correspond
to the same covering of the base space. Thus in our case £ ~ &2 iff there exist
h, e Map(U,, G) such that h34(x) = h7*(x)his(x)hys(x) for x € U, n U,. This implies

XM ()0 = gh(hyxgh(x)  for x €U, n Uj.
Therefore we can define g € Map(Y, G) by

(g UNxX) 1= gix)ha(x)gh(x)

and is easily seen that f2 = gfl.

The converse is almost contained in the above arguments.

Iff2 = gf! and g} e Map(U,, G) is chosen as above then we may take g3 :=
= (g!Ua)gi. Therefore h2p(x) = gi(x)'g(x)g(x)~'gh(x) = his(x) for x e U, 2 U,
and so & is isomorphic to &2,

4.2.9. REMARK. Define By, = lim B,,(tk). Since By, is a weak H space it
follows that the action of m,(Bw) on [Y, Byl is trivial. As the embedding B, (k) - B,
is a (7 + 1)-equivalence it is easily seen that m,(B,(k)) acts trivially on [Y, B, (K)).
Consequently [Y, B,(k)] coincides with the free homotopy classes [Y, B, (K)}e. =
= [4, C(Y)@ M)

4.210. Let 4= @ CX) ® My, D= C(Y) ® M, as above and let
y € Hom(K(r(4)), Ko(r(D)))4,x. Define [4, D], = {p €[4, D] :r(p) = 7}. It is
clear thatd [4, D] is the disjoint union of the [4, D], . Theorem 4.2.8 computes [4. D],
provided that y is 3(n + 3)/2-large. To make the result more clear we give below more
concrete formulae for the maps v, p§ , &, . The reader would have in mind the iso-
morphism [Y, BY(K)] = [r(4), C(Y) ® M,),, y = k1, ..., k;). Thus p; is just the
map [4, D], -» [r(4), D], given by [¢] — [(p:r(A)], where (p;r(A) denotes the restric-

q . ..
tion of ¢ to r(4) = @ M, regarded as a subalgebra of 4. Let ¢ be a minimal
i=1

projection in M, and for ¢ € Hom(4, D) let ¢! € Hom(Cy(X,), C(Y) ® M,) be
given be the composition

CoX) ® & > A > D.

W ith this notation v can be identified with the map

[4, DI, - YT KK(Y, X)), [o] = (o). ... [oD).
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Finally &,:[4, D] — KX(Y)3

i-] 9 k=0
g+1 ifky>0

is essentially the map Ko(q)]r(A)) € Hom(K(r(4)), Ko(D)). More precisely, let
[plel4,D],, y=(ky, ..., k) and Xx; @ [k;] eK%Y) ® K%pt) be theK-theory
class of the vector bundle ¢(e’). Then we have

8*[‘/’] = (xls LS xq) lf ko = 0

q
e4lp] = (m —ky — Y mxi, x5 .0, x,,) if &y > 0.
i=1

1

Consequently, if ¢, ¥ € Hom(4, D) then K‘,((p}r(A)) = K.,(lﬁ[r(A)) if and only if
r(p) = r(y) and &,.(¢) = e,().

The following theorem is essentially a reformulation of 4.2.8.

h
4.2.11. THEOREM. Let A = é CX)@®M,,D=@ C(Y)) ® Mmj where
i=1 ! j=1

X, Y; are finite connected CW-complexes and dim(Y;) < n for all 1 <j < h. Let ¢,
Yy € Hom(A, D) be 3(n + 3)/2-large. Then

a) [o] = [y if and only if [p7'] = [Y/] in Kk(Y;, X,) for all i, j and [|r(4)]=
= [Y|r(4) in [r(4), D);

b) [¢]) = [uyu*] for some unitary u € U(D) if and only if [¢’] = [y/] in
kk(Y;, X;) for all i, j and Ko(@|r(4)) = Ko(y|r(4)).

(For ¢ € Hom(4, D), ¢’ stands for the composition

CoX) ® € > A—5D — C(¥) ® Mu,)

4.3. HOMOTOPY AND K-THEORY

Throughout this section we let 4, D stand for two fixed C*-algebras in €(n)
q h
A= ©CX)®M,;, D= @ C(Y)® M.
i= Je=

We gave in 4.2 complete invariants based on kk and K-theory for the large mor-
phisms belonging to [4, D). In order to use our computations for shape classifications
it is useful to point out some cases when K-theory suffices for computing [4, D].

This is done by comparing kk with KK. A related problem is to describe the
image of [4, D] in KK[A, D] using order concepts.
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Let Z(n) be the class of finite connected CW-complexes of dimension. <n
whose total cohomology is torsion free and supported in two dimensions having
distinct parity. Thus for given X € Z(n) there are p, ¢ € N depending on X" such that
Heven(X, Z) = H(X, Z), HoYX, Z) = HY(X, Z) and both these groups are torsion
free.

4.3.1. THEOREM. Let A, D as above and assume that X (v Yy eda(n) for all i, .
Then ¥
a) If o€ Hom(K(4), K.(D))..x is 3(n + 3)2-large then there is some
¢ € Hom(4, D) such that K (¢) = o.

b) If ¢,., ¢, € Hom(4, D) are 3(n + 3)/2-large and K (¢,) = K (¢s) then
there is u € U(D) such that

0y is homotopic to u@.u©.
Proof. a) Let A, = @ Cy(X)) ® M., A, = & M, . We can suppose that
i 11 i )

D = C(i’)@M,,, so that we take D, = CO(Y)®Mm and D, = M,,. Let P ___'"(,',0"61)
where o?: Ky(4) -+ Ko(D) and ol: K (4) — Ky(D). ‘ '

20 B ’ at 0 . _ o 1
Let o' = and ¢! = ( ) be the matrix description of 6% and &
0 & 0 0 _
corresponding to the dccompositions K (4) = K.(4y) € K.(4,), KD) =
= K (Dy) @ Ki(Dy) (see 2.1.3). We have: - ‘.
@l = (o, ..oy 3‘2)3 Ky(4,) = @,“I‘.‘(O(Xl') d KO( Y) = KDy}

B =By -y B): Ko(dy) = 27 = KXY), B eKUYY
k= (ky,....,k) L~ Z.
Since ¢ > 0 we have that if some &; = 0 then 2? = 0, «} = 0 and f§; = O for the
same index i. The condition 6(Z(4)) = Z(D) is equivalent to ¥, ky;<m. This is

casily seen using Corollary 2.1.2 b) and the fact that ¢ is large enough. Sincg: G i
3( + 3)/2-large if k; # O then k; > 3(n + 3)/2 and so [Cy(X)), C‘,(Y)®M,‘}] o~
~Kkk(Y, X,) by Corollary 6.4.4. On the other hand the cohomological conditions on
X;, Y imply that kk(Y, X;) ~ Hom(K*(X;), K*(Y)) by the results of Scction 3.

Therefore we can find »; € Hom(C(X;), C(Y) ® M;;-i) such that Ki(o,) =
= (2, a). Define ¢’ € Map(V, Hom(4, M,)) = Hom(4, D) by

O’ () = p(oy(3), .., 0,0): 1) (see 4.1.1).

w_f[[*® O al 0
K*(‘”‘((o Lc.)’ (0 0))

Then
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Aside ¢’, we need another morphxsm ¢"' constructed as follows.

Let fo = ~ 2 Bi- Then (B, By, ..., B) € Kerji, = image 29 KY(Y). The-

refore there is Y € Map(Y, B%(k)) =~ Hom( (~qD M, , C(Y)®M,) such that e, () =
jo:1 '

= (B, Pr» --., B,) (see 4.2.8 b)). If evid - A is any evaluation morphism, then
using 4.2.]0 it can be verified that ¢’ := yoev:4 — B is such that K (¢") =
0 By /0 oW . .
= , (see [13] for a similar computation).
o /1o o))
Finally, we choose [¢] €[Y, B, (k)] such that its image in [Y, B,,(2k)] is
equal to [¢p' @ ¢'']. The above computations show that K,(¢) = o.
b) Let

Ky (0) = (“((Pi) Blo)

0 r(e;)

We have fi(¢;) = f(@;) and r(¢;) = r(p,) since K*(‘P]) = *((Pz)-
“The following commutative diagram

): K(4o) ® K(dy) — Ko(Do) ® Ko(Dy).

[4, D} ——> Hom(K(4), K (D))

@kk(Y, X;) —— Hom(K(4,), Ky(Dy))

shows that a(¢p,) = a(@,) implies v(¢,) = v(@,). Now we can apply Theorem 4.2.11
b) in order to derive the desired conclusion.

The following result concerns spaces which may have torsion in K, but we
have to make some restrictions.

q h
4.3.2. THEOREM. Let A = @ CX) @ M,.,D = @ C(Yj)®Mmj where X;, Y;
i=1 ¢ ja1

are (n -- 2)-connected finite CW-complexes of dimension < n and n is even.

a) If o XK(4, D), v is 3(n+3)/2-full (2.1.8) then there is some ¢ € Hom(A4, D)
such that [plkx =

b) If ¢,, ¢, € Hom(4, D) are 3(n + 3)/2-full and [¢slxx = [@3lkx then @,
is homotopic to ug,u* for some u € U(D).

(6 eKK(4, D),,5 is called m-full if its image in Hom(K,(4), Ko(D));,5 is
m-full.)

Proof. a) Let Ay, A,, Dy, Dy be as in the proof of 4.3.1. We shall analyse the
components of ¢ corresponding to the decomposition

KK(4,, Dy) KK(4,,D ))\

KK(4, D) = (
KK(4y, D)) KK(4;, D) /
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Let n = 25. By hypothesis each X is (25 — 2)-connected. It follows that the (25 ~- 1)-di-
mensional skeleton of X; is homotopic to a wedge of (25 — 1)-spheres. Since dim X; <
& 2s this easily implies that K1(X;) is free. Using the Universal Coefficient Theorem
for KK [37], we get

KK(4,, D,) = Hom(K,(4,), Ko(D,)) since K,(4,) is free and K,(D,) = 0;
KK(4,, D;) = Hom(K,(4y), Ko(Dy)) since Ky(4;) = 0 and K,(4,) are free;
KK(4,, D,) = Hom(K,(4,), K¢(Dy)).

Since e KK(4, D), it follows by Proposition 2.1.3 that its image in
KK(4,y, D,) = Hom(K,(4,), Ky(Dy)) is 0. Thus we get

(5 )

where o = (2, ..., %), &; e KK(C,(X}), Cop(Y)) =~ kk(Y, X;) (see 3.4.6). From this
point the proof is accomplished by analogy with the proof of Theorem 4.3.1 since
B and k have the same meaning as there. However, one may wonder why we have
asked o to be full. This is because in general the presence of torsion in K, may pre-
vent the implication k; = 0 = «; = 0 to be true.

b) Similar to b) in 4.1.8 but use the following commutative diagram :

[4, D] —— KK(4, D)

(.

® kk(Y, X)) —'—:—-» KK(4,, Dy).

5. SHAPE THEORY

In this section we use the homotopy computations from the previous section
by giving shape classification results for certain inductive limits of C*-algebras.

5.1. SEMIPROJECTIVITY

In this subsection we extend the notion of semiprojectivity for C*-algebras
introduced by Effros and Kaminker [17] to a more general setting which allow us
to develop a satisfactory shape theory for a larger class of C*-algebras.

Let & denote the category of separable C#-algebras. We start with a covariant
functor T: % — 2 with values in a category & having the same objects as &, such
that T(4) = A for each C*-algebra 4 in &. We have in mind two basic examples.
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5.1.1. EXAMPLES. a) Let s# be the category of separable C*-algebras and homo-
topy classes of homomorphisms, and let H: % — s be the homotopy functor, i.e.
H preserves the objects and takes the homomorphisms into their classes of homotopy
equivalence: ¢ — H(¢p) = [o].

b) Let KK,y be the category whose objects are separable C*-algebras and
for which the morphisms from 4 to B are elements of KK(4, B).,5 (1.2.8). The
law of composition is the Kasparov product (cf. [21]). There is a canonical functor
KK, ,5:¥ - KK, 5 since each ¢ € Hom(4, B) defines in a natural way an element
[olkx € KK(4, B);,y and this assignment preserves the products ([26]).

Let € denote a fixed subcategory of &. By a €-inductive system (4;, «;;) we
shall mean a diagram of objects and morphisms in €

A g, 2
By definition, for i < j, a;; i=a; ;30 ... 004y ;.
Of course the above definition makes sense in any category.
If (4;, «;;) denote a ¥-inductive system and 4 = lim A4, €& is the associated
inductive limit C*-algebra then we have canonical maps in &, «;: 4; — A such that
a; o o;; = o, For each S €% we have an inductive system of sets

(Homg(‘ga Ai)’ T(dji)*)
where T(«;;)«(B) = T(«;;) > . The maps
T(x;),: Homy(S, 4;) — Homg(S, A)

given by T'(«;)(B) = T'(«;)-p induce a natural map T, from the set theoretic inductive
limit lim(Homg(S, 4,), T(a;;),) to Homg(S, 4).

5.1.2. DEFINITION. A C*-algebra S e % is called T-semiprojective relative to
€ if the natural map T,.: lim Homy,(S, 4;) — Homg(S, lim 4;) is bijective for any
%-inductive system (4;, a;).

Equivalently S is T-semiprojective relative to € if and only if the following
conditions are fulfiled:

a) For every y € Homg(S, A) there are j and « € Hom(S, 4;) such that
T@)oa =y.

b) If a, B € Homy(S, 4;) and T(x;) o = T(x;)- f§ then there is j > i such that
T(“ji) oo = T(;)o B.

5.1.3. EXAMPLES. a) S €% is H-semiprojective relative to & if and only if
it is semiprojective in the sense of Effros and Kaminker (see the examples in [17],

[2], [28).
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b) Let € be the subtategory of & consisting of commutative C*-algebras. If X
is an ANR-space then C(X) is H-semiprojective relative to % (see [29)).

¢y C(8%) and C(S'xS") are not H-semiprojective relative to & (sec [27)).

d) Propositions 5.1.4 and 5.1.6 give some criteria for KK .. v-semiprojectivity.

Recall from the introduction that () denotes the category of the C*-alge-
bras of the form @ C(X,)@M,,k (finite sums) where X are finite connected CW-com-
e

plexes :of dimension < n. We let ¢’(n) denote the subcategory of %(n) having
the same.objects as % (n) but only 2-large homomorphisms.

a
5.1.4. ProPOSITION. Let A = @ C(X, k)@]l{,,k € ¢(n) and assume that the semi-
k1

group K(A), is finitely generated or equivalently that each KX, W) IS a finite group.
Then A is KK, y-semiprojective relative to 4'(n).

Proof. Let B = lim(B;, B;;) with B;, f3;; € €'(n). We have to prove that
KK(4, B).;,s = limKK({4, B); s.

As we shall see below all the difficulties come from the ordering. Indeed, since
K, (4) is finitely generated and K (B) = limK,.(B;) we have

Hom(K 4(4), K.(B)) = lim Hom(K (), K..(B).

Moreover, since A is nuclear it follows by [37, Theorem 1.4 and Proposition 7.13]
that
KK(4, B) = limKK(4, B).

Now recall from 1.2.8 tha: KK(4, B).,y = {x € KK(4, B): y(x) € Hom(K{A4),
K.(B))..,s}-

Therefore the canonical map imKK(4, B).,5 — KK(4, B)...y is injective.
Also it is easy to show (using set-theoretic arguments related to inductive limits and
the naturality of ) that the surjectivity of the above map reduces to the surjectivity
of the cancnical map

lim Hom(Ko(4), Ko(B)).;,5 — Hom(Ko(4), Ko(B))..x-

Therefore what we need is to prove that this last map' is onto. To begin with, we
need some notation.

Let A, denote the subalgebra C(X)) ® M”k let ¢, be a minimal projection in
M, and let J, be a finite set of generators for Ky(4,). Given ¢ = (0%, oY) &
€ Hom(K..(4), K. (B)),v, 6 # 0, we can find { > 0 and a morphism of Z;-graded
groups p = (p% pM):K.(4) - K.(B) such that
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a) K () o p = o where f; is the embedding B; — B.

Note that if x € K, (4), is given we can replace p by f;; © p, for large enough
Js in order to get p(x) EK*(Bj)+. This is possible since Ky (B), = limK(B), .
Consequently by increasing i we may assume that p also satisfies

‘b) pUKo(A),) = Ky(B)) (recall that Ko(A), is finitely generated)
and. A :

€) (2n[e], xi) € Ky(B)), forany 1 < k < g and x, € J,.

(Note that (2u[e,], x;) € Ko (4), by Corollary.2.1.2¢).)

A related argument shows that we can assume

d) p%(Z(4)) = Z(B)
since 2(A) is a finite subset of K,(4), and Z(B) = lim (B,). Finally, we may also
assume that

e) p® is 2n-large
since otherwise we replace p by ﬂ,+,, io p which is 2n-large because f8,,, ; is so and
PO is order preserving (see 2.1.8).

With these choice we shall prove that p € Hom(K (4), K4(B)),,x and this
will complete the proof. As a first step we show that p is order preserving.

h
As B; belongs to. ¥(n), it has the form .B; = @ D; where D; = C(Yj)®M,,._.

Writing A (—9 A, we may describe p as a matrix of morphisms p = ((p%), (P}
where pj;: K*(A,,) — K4(D;). The condition b) implies that p9, is order preserving

and so we can consider its standard picture defined in 2.1.3-2.1.4, pj, = ( i /3"‘).
7t

Of course y;;, > 0 and a simple calculation shows that if some y;, = 0 then a; = 0,
Bix = 0 and p}, = 0 for the same indices j and k. This remark is essential in what
follows.

Now let a € K, (4). . We wish to apply Corollary 2.1.2¢) in order to prove
that p(a) = K,(B;), . To this purpose we need the following coordinate description
of a and p(a): '

a=(a,...,a), a = ((ax, t), a) € Ko(4) ® Ko(r(4,) @ K,(4)), l1<k<gq
p@ = (by, ..., by), b; = ((b},5)),b})) € Ko(D;) ® Ko(r(D)) & KiDj), 1<j<h

Since p is order preserving we must have s; = Y, yut, > 0.

If some s; = 0, then y;# = 0 for each k and we will prove that b; = 0.

LetI = {k:y; = 0}and J = {k : t, = 0}. We have alrcady seen that «; = O,
Bji = 0 and pj, == O for each k € I. Also it is clear that @; = 0 and a} = 0 for each
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keJ since a > 0. Therefore

o @y B\ (e Loy ) =
g IZ (( 0 ij)(’k ),plk(ak)) o

If 5; > 0, then y;t, # O for some k and so s; > 2n since y;; > 2n because pOis
2n-large. Thus we may apply Corollary 2.1.2 c¢) to get p(a@) > 0. It remains to
show that p(Z(4)) < Z.(B). We shall use the point d) of the same corollary. The
condition d) satisfied by p® implies that 0 < s; < m;. There are three cases to be
considered for each index j:

(i) if s; = O then b, = 0 since b; > 0;

(i) if 0 < 5; < m;thens; < m; — 21 <m; — {(n + 1)/2) since p° is 2n-large;

q
(iii) if s; = m;, or equivalently Y7 y;t, = m;, then ¢, = n, for eachk €J =
k:,.

q
= {p: y;, # 0}, since otherwise Y, vium>m; which contradicts P[] € Z(B).

As a, € X (A4,) we must have a, = [1 4] for each k € J. Therefore b; coincides
‘with the j** component of p%[1,] and b; € Z(D;) by condition d).

5.1.5. One cannot drop the assumption on Ky(4), made in 5.1.4. For instance
it follows by [27] that C(S”) and C(S'x S') are not KK g-semiprojective in ¢'(2).

Let ¢''(n) be the subcategory of €(n) with objects of the form C(X) ® M,
and 2-large (possibly nonunital) #-homomorphisms.

5.1.6. PROPOSITION. Any C*-algebra A e €"'(n) is KK g-semiprojective in
%" (n).

Proof. Let A = C(X)®M,,, B; = C(Y,-)®M,,,‘,e%’”(n) and let B=1im(B;, f5;;)
ach f3;; being 2-large. Like in the proof of 5.1.4 for a given 6 € Hom(K (4), K (B)).,x»
6 # 0, we have to find i > 0 and peHom(K,.(4), K.(B))..g such that
a = K,(B)op. (Here B, is the embedding B; -+ B.)

Since K, (4) is finitely generated there is no problem to find p = (p% pY):
: K (4) — K (B;) satisfying

a) Ky(B)ep = o.
As Z(r(4)) is a finite set, Z(B) = lim Z(B,) and 6(Z4.(4)) = Z,.(B), by increasing i
(if necessary) we may assume that

b) p°(Z(r(4)) = Z(B).

We will prove that if p satisfies the conditions a) and b) and is 2n-large, then
p € Hom(K .(4),K.(B,))..,x. In proving this is convenient to use the formalism of

Section 2. Let p° = ( : 2

)be the matrix description of p® with respect to the
7
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decompositions
Ko(4) = Ko(4) @ Ky(r(4)), Ko(B) = Ki(B)) @ Ko(r(By).

We claim that § = 0. This is equivalent to say that there is a certain map y such that
the following diagram is commutative:

Ky(4) —> K, (B)

J

Ky(r(A)) ——> K, (r(B))).

Since it is clear that y exists iff rp p%a) = 0 for all a € K,(A4) such that r (@) = 0, we
have to deal with this last implication. Consider the comutative diagram

K,(8)
KoB) —— Ko(B)

r(Ko(8,)
Ko(r(By)) ——— Ko(r(B))

where r(B) is the matroid C*-algebra arising from the inductive system (B;, B;;)
as described in 2.1.5. Since r(Ky(8,)) is injective, the equalities

r (KO(Bi))rBipo = rgKo(B))p® = rgo®
shows that our claim reduces to the implication
r,(@) = 0 = f(a) = 0, where by definition f = ryza°.

Now if r,(a) = 0 then a e Ki(4) and so ka + (n + 1)[1,] € K¢(4), for each
k € Z. Since the morphism f is order preserving we have kf(a) + (n + 1)f({1],) €
€ XKo(r(B)), for any k € Z and this is possible only if f(a) = 0. To derive the last
implication one can use an embedding of (K,(r(B)), Ko(r(B)).) in (R, R;). Thus
B

Y
to zero then b) would imply y = 0, 8 = 0 and so p9[1,] = 0. But this gives a con-

tradiction since ¢°[1,] = O would imply ¢° = O because ¢® is order preserving.
Once we know that y > 0 we replace p by B;,, ;o p to reach

we get p% = (: ) . Let us observe that y > 0. Indeed, if y would be less or equal

c) p is 2n-large.
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From now on the proof is similar to the last part of the proof of 35.1.4. Like
there, we need coordinate descriptions of a and p(a):

a:=((d, 1), @) e Ko(4) @ Kolr(4)) @ K,(4)
pla) = (((a') + pir), 1), plah)) € Kn(Bs) @ Ky (r(B)) @ Ky(B)).

If ae K (A), and a+#0 then y1 > 2n > n+ 1 and so p(a) € K (B;). by Corol-
lary 2.1.1 ¢). Therefore we checked that p is order preserving. To complete the proof
we must show that p(Xy(4)) < Z.(B). If a € 2 (A), a#0, then r<m and yr<m;
since yt = rB',p"(a’, 1) & Z(r(B;)) by condition b).

Next we shall consider two cases:

1) if yt == m; then ¢t = m since t < 'm and ym < m;.
Asae X (A), A =CX) ® M, it follows that a = [1,] and so p(a) € 2(B) by h).

it) if y¢ < m; then vt <my - 2nmy; - i + 1){2) since y is 2n-large. Therefore
pla) € Z.(B;) by Corollary 2.1.2 d).

5.1.7. Having the notion of semiprojectivity defined in 5.1.2 we can construct
a “formal” shape theory following the pattern of the (shape) approaches in [29}
and [17]. First we need the category inj-Z associated with &. The objects of inj-&
are all the inductive systems (4;, %;;) in £. A map of systems ¢:(A;, %;;) >
-» (B;, P;;) consists of a sequence of integers (1) < ¢(2) < ... and a collection of
morphisms ¢;: 4; - B, ;,in & such that each square of the diagram

Ay s Ay .

Boay —> Bua
commutes. Two maps of systems @, ﬂ: (4;,%;;) —(B;, p;;) are said to be equivalent
provided for each i > 0 there is an j > (i), ¥(¢) such that B,y ° @; = P ° V-
Morphisms ¢: (4;, %;;) — (B;, B;;) in inj-& are cquivalence classes of maps of sys-
tems. Let (A,-—, ), (B;, p;;) be faithful inductive systems in & (i.e. we assume that all
a;; and B;; are injective) and let A = lim4;, B = lim B;, 4, B € & . Given an hoino-
morphism of C*-algebras ¢: 4 -> B we say that a map of inductive systems in &2

P (4;, T(2;)) — (B;, T(B;)

is associated with ¢ if for all / > 0 diagram

> ...

TCz)
A, > A
I
@3 i1 7o)y
+
T(@ o)
Ak

is commutative in .



SHAPE THEORY AND (CONNECT.VE) K-THEORY 265

The following three propositions -are -crucial for any.shape theory based on
semiprojectives. They were proven in [L7] for the special case of the homotopy func-
tor H. The proofs from there are set theoretical (in their essence) and can be easily
modified to work in our more . general setting.

5.1.8. PROPOSITICN. Let A = limA;, B = lim B, as above and assume that the
A; are T-semiprojective relative to €. Then any x-homomorphism ¢: A - B has an
associated system map .

5.1.9. PROPCSITION. Suppose that A, B are as above and that ¢, y: A — B have
associated inductive systems maps @, E (Aps T(x)) = (Bi, T(B;)). If T(p) = T(Y)
then @ and W arc equivalent and therefore they define the same morphism in inj-9.

5.1.10. PROPOSITION. Suppose that A = lim A, and B = lim B; where A; and B,
are T-semiprojective relative to €. If A is isomorphic to B in % ‘then (4;, T(x;) is
isomorphic to (B;, T(B;;)) in inj-2.

5.2. SHAPE THEORY

If @ is a subcategory of & recall that o/ % denotes the class of all C*-algebras in
& which can be written as. inductive limits of faithful inductive systems from %.

The next definition points out.the crucial propeity which must enjoy a cate-
gory ¢ of C*-algebras in order to give sense for shape invariants.

5.2.1. DeFmNITION. a) ¥is called a shape category if and only if the following
implication holds.

If (4;,2;;) and (B;, §;;) are faithful inductive systems in ¢, which have homo-
topic inductive limits: lim 4; ~ lim B,, then (4;, [«;]) is isomorphic to (B;, [;])
in the category inj-# (see 5.1.1 a) and 5.1.7).

b) Let % be a shape category and A4 = lim(4,;, v;;) € ZC. The shape inva-
riant of A, denoted by Shy(4), is the class of isomorphism of (4;, {x;]) in inj-#

5.2.2. REMARKS. a) If the objects of % are H-semiprojective in % then it fol-
lows by Proposition 5.1.10 that ¢ is a shape category.

b) If ¢ is a shape category and A, Be /% are such Sh,(4) = Sh,(B) then it
follows by [2, Theorem 4.8] that A and B have the same shape in the sense of the
general theory in [2]. ‘

It is interesting that one can exhibit shape categories @ of C*-algebras without
proving that its objects are H-semiprojective in 4. As we shall see in certain cases, it
is enough to look for KK v-semiprojectivity. This was in fact one of the starting
points of our paper. Let A" denote the category introduced in [37] as being the smal-
lest full subcategory of the separable nuclear C*-algebras which contain the sepa-
rable type I C*-algebras and is closed under stable isomorphism, inductive. limits,
extensions and crossed products by R and Z.
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5.2.3. THEOREM. Let € be a ‘‘subcategory” of A satisfying the following con-
ditions :

a) each A € € is KK.. s-semiprojective relative to €;

b) if A, B € € and 6 € KK(A, B)..,x, then there is ¢ € Hom(A, B) such that
[plkk = 0

c) if ¢, Y € Home(4, B) and [¢@)xx = [Ylkk then there is an inner automorphism
n of B such that n o\ belongs to € and ¢ is homotopic to 1 o .

Then € is a shape category. Moreover if A, B e € then Shy(4) = Shy(B) if f
K (4) ~ K4(B) as scaled ordered groups.

Proof. Let (4;, a;;), (B;, ;) be inductive systems in ¢ and let 4 = lim 4,
B = 1lim B;. In order to prove the theorem it suffices to show that the following are
equivalent :

1) There is an isomorphism in Hom(K (4), K4 (B))..x;

2) A is isomorphic to B in the category KK.. s ;

3) (4;, [%;]) is isomorphic to (B;,[B;]) in the category inj-o#.
We have

1) < 2) by Proposition 7.3 in [37] which applies since 4, B € A",

3) = 1) is immediate as noticed in [2].

It remains to prove 2) = 3). By hypothesis 4; and B; are KK... s-semiprojective.
Using Proposition 5.1.10 it follows from 2) that (4,, [x;]kk) is isomorphic to
(Bi» [B;idkx) in inj-KK .. v. Such an isomorphism gives a diagram in KK v

A.
s
"

Ai e Aic .
11 Ty
1 2 .
le sen 'ng

where the triangles commutes. Using condition b) we may assume that there are
suitable homomorphisms ¢, , ¥, , k > I, in €, such that

o = [odkx  and 7, = [ )kk -

Therefore [, > ¢;lxx = [1'}.-‘;«1";.»]""' and @51 > Yulkk = [Bik_;,ljk]xx-
Based on condition ¢) we can find inductively two sequences of inner automor-
phisms 3, € Aut(B;) and J, € Aut(A,-kﬂ) such that if @ =7, 0 ¢, and Y = 0, » Y,

then ¥ » ¢} is homotopic to % i, and @i, oy, is homotopic to f Jesahe This

k
means exactly that (4;, [x;]) and (B}, [;;]) are isomorphic in inj-#.

5.2.4. So far we have been very formalistic. That is why some comments
on our technique for approaching shape problems are perhaps in order. Now the
fundamental problem is to relate in inj-# two inductive systems whose limits are
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homotopic. More generally what can be said if the limits have the same K-theory
groups (including order and scale if necessary)? The main difficulty in solving this
problem within the homotopy category # comes from the possible absence of
H-semiprojectivity. The point is that for certain categories ¥ — & we can overcome
this difficulty by taking a devious route provided by the KX, s-functor. Diagram~
maticaly this is as follows:

A=~ B in # =y (4) = (B) in inj-o#

N\

Ky(4) =~ Ky(B) ®

(4]

2)

A= B in KK,y > (A4;) = (B) in inj-KK, v,
where 4 =1im4;, B = limB,.

Very informally the implications indicated by arrows hold since:

(1) KK is homotopic functor;

(1) This implication is a result in [37];

(2) A;, B; are semiprojective in KK v ;

(3) KK(4,, B)).,5 = [4;, B;] or assume the weaker condition of 5.2.3¢c).

Let @ be the category of Cuntz-Krieger algebras and proper (i.e. nonunital}
*-homomorphisms. We shall illustrate the power of our formalism by giving a short
proof for a theorem of Effros and Kaminker [18], stating that two algebras in /@
are shape equivalent iff they have isomorphic K-groups. Therefore, we shall
discuss each arrow in the above diagram. Let 4, B € &/ 0 such that K, (4) >~ K(B).

(I') Each O, € 0 is nuclear. Therefore /0 = & and we can use [37, Pro-
position 7.3] to get that A4 is KK-equivalent to B.

(2) Since K 4(0,) is finitely generated, it follows by [37, Theorem 1.4. and Pro-
position 7.13] that the functor KX(O,, -) is continuous. In our terms this means
exactly that each O, € @ is KK-semiprojective.

(3) As a variant of the computation in [9] it is proved in {18] that [O,, O] ~
=~ KK(0,, 0,) although the result is stated in a slightly different form.

Note that the above proof based on KK-semiprojectivity avoids the splitting
principle for progroups proved in [18].

5.3. SEVERAL SHAPE CATEGORIES

Our main result concerning shape calculations is the following list of shape
categories which verify the conditions of Theorem 5.2.3.

5.3.1. Recall that W denotes the category of finite connected CW-complexes.
For each n > 1 we define the following four classes of spaces included in Wg.
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“4(n) consists of all spaces X € W¢ of dimension < n for -which thete are .
p, 4 €N, depending on X, such ‘that. H®v"(X, Z) = HA(X, Z), HY(X, Z) =
= HYX, Z) and these groups are torsion free.

Note that SPv 87 € #,(n) provided that p, g sn and p - g =1 (mod 2).

As(2n) consists of all spaces X’ € WS of dimension < 2n which are (2n - 2)-con-
nected. Note that any finite connected CW-complex of dimension <2 belongs’
to €y(2).

44(2n) consists of those spaces X' € #5(2n) with the property that H*(X, Z)
is a torsion group. Note that #4(2) contains the noa-orientable manifolds of dimen-
sion 2.

£4(2n -- 1) consists of finite wedges of (2n — 1)-spheres. Starting with the
above classes of spaces we define the “‘categories” of C*-algebras €, (n), %a(2n),
@ol2n). €421 - - 1) as follows.

The objects of %,(n) have the generic form C(X)® M,, where X € 4,(n) and
m € N. The set Homg ((4. B) of morphisms from A to B consists of all 3(n + 3)2-
-large =-homomorphisms (2.1.8).

The objects of %,(2n) have the generic form C(X) ® M, where X € Za(2n)
and m € N. The set Homy, LenlA, B) consists of all 3(n + 3)/2-large *-homomorphisms
from A to B.

The objects of %.(2#n) 1ave the generic form O CX)® My, where X; € ‘( +(2n)

and 1;, ¢ € N. The set Hom,(,g(gﬂ,(A, B) of morphlsms from A to B consists of all
3(n + 3)2-full x-homomorphisms (2.1.8).

4
The objects of %, (2n -~ 1) have the generic form (+) C(X)®M., where

X;ed'(2n - 1) and #;, g € N. The set Hom(,n ee—1y{A. B) conslsts of all 3(n + 2),2-
-large =-homomorphisms.

5.3.2. REMARKS. a) Let 4 be one of the categories 4,(n), €a(2n), 4(2n -- 1).
Let (A4;, ¢;;) be an inductive sistem of C*-algebras such that 4; € 4 but ¢;; are
not assumed to be large in any sense. Let A = lim(4;, ¢;;). The associated AF-al-
gebra r(A) defined in Section 2 depends only on 4. This can be proved using Pro-
positions 5.1.4, 5.1.6 in conjunction with Proposition 2.1.3. Moreover, by the results
of Section 2 it follows that 4 can be represented as the limit of an inductive system
with 3(n + 3):2-large bonding maps if and only if X,(A4) has large denominators, or
equivalently, if and only if Ky(#(4)) has large denominators.

by Let A = lim(A4;, ¢;;) where 4; € %,(2n) but the embeddings ¢;; are not
assumed to be large or full. Like above it can be shown that r(A) depends only on
A. If r(A) is not stably isomorphic to .# then A can be represented as the limit of
an inductive system with 3(n + 3)/2-full morphisms if and only if K,(r(4)) is simple.
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5.3.3. THEOREM. Let € be one of the categories %,(n), €s(2n), €5(2n), €,(2n—1).
Then € is a shape category. Moreover for A, B e A€ (1.2.12) the following
assertions are equivalent :

a) K. (4) ~ K (B) as Z,-graded scaled ordered groups;

b) Shy(4) = She(B);

¢) A and B have the same shape invariant in the sense of Blackadar [2].

Proof. 1If follows by Propositions 5.1.4, 5.1.6 and Theorems 4.3.1, 4.3.2, that
the category ¥ satisfiss the conditions of Theorem 5.2.3. Therefore a) < b). The
second remark of 5.2.3 gives b) == ¢), while ¢) = a) is a general fact based on the
continuity of K-theory. -

5.3.4. COROLLARY. Let % as avove and A, B € €. The Jollowing assertions are
equivalent :

a) K (4) ~ K, (B) as Z,-graded groups;

b) She(d ® KA) = Sho(B @ X);

.¢) A® X and B® A have the same shape invariant in the sense of Blackadar.

Proof. If Ae /€ then A @ H € 4EF and 2 (4 ® H) = K (4),.

5.3.5. REMARKs. a) Let @ be a shape category. Let A = lim(4;, ),
B = lim(B;, B;;) with 4;, B;, a;;, B;; € €. Then Shy(4) = Sh,(B) means exactly that
there is'a diagram

Bj —— ...—= B; —> ... — B;,

such that each triangle commutes within homotopy.

The existence of such a diagram is not automatically assured even if 4 = B
unless € is a shape category or has other related properties, since it is not evident
that inductive systems having the same limit are related in inj-3¢.

b) If Ae AE for € = €,(n), €2(2n), €:(2n) then K,(4) is simple (as an or-
dered group) and it can be proved that

K*(A)+ = {(an)} U (Ko(A)+ AN {0}) @ K(A4).

Consequently, the assertion a) of Theorem 5.3.2 is equivalent to
a') K,(4) =~ K,(B) as scaled ordered groups and K,(4) =~ K,(B).

However, for ¥ = €,(2n — 1), a) cannot be replaced by a’) as it is shown below.
¢) Forp,q > 2, let A(p, q) be the C*-algebra arising as the inductive limit of

- C(SY) ® M, RGN CSY) @ Mp —> ---

5 - 1776
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where the emtedding ¢, is given by the rule

J(=9)
Sf(z0)

) S(zo)

0f)z) =

feCSH ® Mp,ze S! and z; is the base point of S,
It is easily seen that Ky(A4(p, q)) =~ Z[1/p] with the order induced by the embed-
ding Z[1/p] ¢ Q = R and K,(A(p, q)) = Z[1/q]. Let

A=A2,3) @& A3,2) and B = A(2,2) ® A, 3).

It is clear that K(A4)~ K4(B) as ordered scaled groups and K,(4) =~ K,(B). How-
ever A is not shape equivaleat to B since arithmetical reasons prevent K(4) to be
isomorphic to K.(B) as Z,-graded groups. To prove this, observe that any isomor-
phisms

¢:Ko(d) = Z[12] © Z{[1;3]} ~ Z[172] @ Z[1/3] = K,(B)

v:Ky(4) = Z[172] @ Z[1/3] - Z[13] ® Z{[1/2] = K«(B)

) 0 0 / o
(p::(cll ) ¢=( vlu).
0 Doz Yo O

This follows since the only morphism Z[1/p] -» Z[1/g] is the trivial one (provided that
D, g are distinct primes). Also it is easily seen that (a, b; x, y) € Z{1/2] © Z[1;3] &
@ Z[1/2] © Z[1/3] = K(A) belongs to Ku(4), if a > 0,0 >00ra>0,b=0,
y=0o0ra=0,b>0, x=0. A similar description holds for K.(B). Therefore
(0, ¥) (1,051, 0) = (¢y;(1), 0, 0, ¥5,(1)) is not positive since Y5, (1) % O (recall that
¥sy 1s an isomorphism).

The categories for which we succeded in shape computations are rather limit-
ed. There are two essential difficulties to be overcome in order to extend the above
results to larger categories. The first one is the absence of (KK v)-semiprojectivity
in %(r) even for nice algebras like C(S*) or C(S*x S'). The second one is the limit=
ed power of K-theory in homotopy computations (see Section 4). For instance for
A4, = CE'xS ® M, (i=1,2) the canonical map [4;, 4] -~ Hom(K.(4,),
K4(A4y))..,x is not surjective. Having this it is easy to construct inductive limit
C*-algebras having the same (scaled, ordered) K-theory but for which do not exist
diagrams as in 5.3.5a) (see 5.3.6 below).

are of the from
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If the connective K-theory would extend to a continuous theory on a larger
category of C*-algebras one would have a powerful tool in shape problems.

5.3.6. Let 4; = C(S* v S%) X M,;. Using Theorems 3.5.5 and 4.2.11 it is
easily seen that the image of the map

[4:, A;41] = Hom(K,(4)), Ki(4,4,) = M,(Z)

{(a b):a,b,ceZ}.

0 ¢

Letz::(l 1),0:(1 2),x=vu=(3 -1 , YV =uv = 21 .
1 -1 I -1 0 2 03

Choose ¢;, ;€ Hom(4;, A;,,) such that K;(¢;) = x and Ky(/;) = y and define
A = hEm(4;, ¢,), B = lim{4;, ¥)). 1t is clear that K,(4) = K,(B) as ordered scaled
group. Moreover the commutative diagram

is exactly

X

K,(4)) Ky(4y) ——> Ky(4g) ——s

SN,

Ki(4,) —;"> Ki(45) —_— Ky(4y)

shows that K;(4) ~ K,(B).

However, the inductive systems (4;, ¢,) and (4;, ;) are not isomorphic in
inj-o . Indeed, if there would exist a homotopy commutative diagram as in 5.3.5 a),
then passing to K;-groups we should find a commutative diagram of the form

n

n,
xl

Ki(4;) Ky (4;) ——> Ky(4,;)

Kid)) ——s Ky(4)) ——

m.
1

y ¥y

. a; b; L. 7
with z; = (0‘ ‘) € My(Z) and n;, m; > 2. But the equalities z,z, = xnl, ::322=y' s
.

it

z

,") - . » '
Z4Zy = X ° can not hold simultaneously since there do not exist ¢;, ¢, ¢y, € Z such

n n n,
that cye; = 2, 30, =3 2, cueq = 2 2.
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6. STABILITY PROPERTIES OF HOMOMORPHISMS

Let X be a finite connected CW-complex with base point x, € X and let F¥(X)==
= Hom,(C(X), M,). There is a natural embzdding x,: FFX) — F¥*1(X) given by
the orthogonal sum with the morphism f > f(x;). The main result of this section
asserts that this embedding is a 2[k/3}-homotopy equivalence for any X as above and
k > 3 (see Theorem 6.4.2).

Basically, the idea of the proof is the following one. As a first step it is proved
that m,(F(X)) = m(F¥+1(X)) and this is done via 7,(P%(X)). A key fact here is the
compatison theorem between F%(X) and the symmetric product P#(X). Next, the
main result is proved for X = V S! (and this is the most difficult part). Finally, the
induction over the numers of cells of dimension > 2 is carried out.

6.1. A COMPARISON THEOREM BETWEEN F*(X) AND
THE SYMMETRIC PRODUCT P*(X)

For k > 1, the k-fold symmetric product of X, denoted by P*(X) is defined by
P5(X) = X*[/G, where X* denotes the k-fold cartesian product of X with itself and
&, denotes the symmetric group on k objects regarded as acting on X* by permuting
the coordinates:

o(xy, .., X)) = (X5 -5 Xo)y O € Sy

If x = (x, ..., Xy), then we shall use the notation [x] = [x,, ..., x;] for a generic
element of PX(X).
There is a natural embzdding B, : P¥(X) — P**+1(X) given by

ﬁk[xla ---3xk] = [x09 X1, ---,xk]

which is used to define P®(X) = lim P*(X).

Dold and Thom [14] have introduced the notion of quasifibration which enabled
them to prove that r,(P={X)) = H,(X, Z).

We shall study maps which are not quasifibrations but which have similar
properties up to some dimznsion. Therefore it is natural to make the following

6.1.1. DEFINITION. A continuous map p: E — B between topological Hausdorff
spaces is called m-quasifibration, (0< m < oo), if for all points b € B and e € p~Xb)
the induced maps p,: n(E, p~i(b), ) — n (B, b) are isomorphisms for 0 < ¢ <
<m — 1 and epimorphisms for ¢ = m. (For m = oo one obtains the definition of
the quasifibration.)

A careful inspection of the proof of Satz 2.2 in [14] shows that one has the
following
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6.1.2. THEOREM. Let 0 < m < oo, p: E— B continuous and ¥ = (U);c,. an
open covering of B such that

a) For eachie L, p: p~WU)) — U, is a m-quasifibration,

b) Each nonvoid intersection U; N U can be written as a union of elements in %.
Then p is m-quasifibration.

6.1.3. REMARK. If p: E — B is a m-quasifibration then it follows from the
homotopy sequence of the pair p~i(b) = E that there is an exact sequence:

7.’:m(p_l(b)) - 7rm(E‘) - 7Tm(E" P-l(b)) - nm—l(P—l(b)) i “",-1(E) - nm—l(B) -
=, _p~ b)) - . ...

Therefore if p: E — B is an m-quasifibration with connected E and p-(b) is m-con-
nected for some b € B, then p is an m-equivalence.

In this section we shall meet several times continuous maps p: E — B which
are surjective and satisfy the following conditions:

6.1.4. a) B is locally contractible, i.e. each x € B has a fundamental system of
open neighbourhoods (U;);», together with continuous homotopies 4;: U; x I-U,
such that h; o = id(U)), the image of k;; = {x} and h; (x) = x forall 1€, j > 1
(by definition k; (y) = hi(y, t)).

b) Each homotopy 4; lifts to a homotopy

Hi:p™X(U) x I -p2U), poH;,=h;,op for all tel,

such that H; o = id(p~%(U))), the image of H;; < p~(x) and H; (y) = y for all
yep(x), tel, j = 1. (H; (») = H(» 1).)

¢) If x’ € U; and Hj , denotes the restriction of H; y at p~(x"), Hj 1: p~}(x")
— p~X(x), then for any y' € p~x'), y = H;,()"),

n(Hj 1) m(p~(x), ¥) = m(p~H(x), ¥)

is an isomorphism for 0 £ ¢ < m — I and an epimorphism for g = m.

d) For all x € B, p~(x) is 0-connected.
Note that if each fibre p~1(x) is m-connected then c) is automatically satisfied.
Moreover, if there are triangulations |K| ~ E and |L|~ B such that modulo these
identifications p: E — B is induced by a simplicial proper map X — L, then by
standard techniques with barycentric coordinates it is easily seen that a) and b)
are satisfied.

6.1.5. PROPOSITION. If p: E — B is surjective and satisfies the conditions a), b)
¢), d) from above then p is an (m + 1)-quasifibration (cf. Hilfssatz 2.10 in [14]).
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Proof. For each x€ B let (U})j»1, (§);»1, (H);»1 having the properties
a) — d). Itis clear that the family U= (U%).cx,j»1 satisfies the condition b) of
Theorem 6.1.2. Moreover we shall prove that p: p~X(U¥) — UF is a (m + )-qua-
sifibration for each x € X and j> 1. Since U7 is contractible it is enough to check that

n(p~HU7), p~Hx),x7) = 0
whenever0 < ¢ < m, X" € U and )y’ € p~1(x’). Now there is a commutative diagram

mpTHX), ) - mf(p7HUD )~ m(pTHED pTHE) V) = ma(P U )

HIE Ty
l ”q\H],l' 'llj‘Hi,ll
Y

T Ap7Hx), ) - (PN UF), ¥).

The first left vertical arrow is an isomorphism for g<m — 1 and an isomorphism
for ¢ = m by 6.1.4¢). The second vertical arrow is an isomorphism for all ¢ since
p~Y(U%) is O-connected. The bottom orizontal arrow is an isomorphism by 6.1.4b).
Since the upper sequence is exact it follows that =, (p~2U3), p~H(x’), 3') = 0 for
al 0 g g < m.

6.1.6. We need also the following formalism which enables us to describe the
the stratification of Hom,(C(X), M,) given by the multiplicitics of the proper values
of the homomorphisms.

Let & be the sct of all disjoint partitions of the set A== {1. 2, ....k}. A generic
element Ie€ & is described by I = (I, ..., I,,) so that 4 is the union of [; and
ILni; = O whenever i # j. & becomes a lattice with the order: J < Tiff the partition
I is finer than J.

The symmetric groups S, act by order preserving automorphisms oa (&, <)
by the rule:

al) = (o(h). ..., 0(1,)), o€C.

If x =(x,, ..., x;) €X* then I(x) denotes the partition of 4 which corresponds
to the following equivalence relation: if i, j € A then i ~ j iff x; = x;. That is 7
and j are contained in the same I, iff x; = x;.

Let e, ..., e, be the canonical minimal projections in M, e;e; = 0;;¢; ard
e+ ... +e =1, For I=(I,..., I,)e¥& we define

e(l) = Z ;.

ie7,
Fach ¢ € €, gives an isometric endomorphism of C*

O'().l g e e ey ;.;\) = (/..0.(1) g e ey ;'6(’:)).
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If o is regarded as an element of U(k) we have o*e;0 = e,;, thence o*e(l,)o =
= e(o(1,)). Let A(I) be the C*-algebra of those elements in M, which commute
with all the projections e(l)), ..., e(l,). We let U(I) denote the unitary group of
of A(I). If J < I then U(I) = U(J). Therefore there is a natural map

Uk)IUI) ~ URIUJ)

which is easily seen to be a 2-equivalence (consider the homotopy sequences of the
two fibrations). '

6.1.7. We define y: X*x U(k)] - Hom,(C(X), M,) as follows: if u e U(k) and
X=(x, .0, x)EX5 (%) = (Iy(x), ... I (x) e, i,el(x), 1 <r < m, then

b(x, u)(f) = u ( ¥ f(x,-r)e(l,(g)))u*, for all /& C(X).

For the sake of brevity ¥(x, u) will be denoted with [x, u] and sometimes with [x, e]
where e = (ue(f)u®, ..., ue(Z,)u*) is the list of the spectral projections of the homo-
morphism Y(x, 1). Also is clear that I(x) gives the multiplicities of the proper values
of Y(x, u).

6.1.8. PROPOSITION. The map : X* x U(k) - Hom,(C(X), M,) is continuous
and surjective. Moreover Y(x, u) = Y(y, v) iff there is ¢ € S, such that o(x) = y and
utve € U(I(x)).g -

Proof. The continuity of ¥ is obvious and ¥ is surjective by the spectral theo-
rem. Finally, equal homomorphisms must have the same proper values counted
with multiplicities and the same spectral projections corresponding to equal proper
values, whence the second part of the statement.

6.1.9. Let pr: X*x U(k) — X* be the projection onto the first factor and let
Y1 X* — P*(X) be the canonical map Yy(x) = [x].

We define the map p: FX(X) — PXX) by asking the following diagram to be
commutative

»

X x Uk) —2_, x*

| B

FHX) —t—s PKX).

That is p[x, u] = [x] and this formula is correct by Proposition 6.1.8. Note that
27x] = Uk)/UU(x)).



276 M. DADARLAT and A. NEMETH}

Since F*(X)is homeomorphic to F¥(X) = Hom(C,(X), M), p will induce a map
n: Hom(Cy(X), M,) — P¥(X) which naturally extends to 5 : lim Hom(C,(X), ;) —
~lim PK(X) = P(X).

Now the natural embedding lim F}(X) -» F(X) = Hom(C,(X), #) is a homo-
topy equivalence so that up to homotopy 7 : Hom(Cy(X), #) — P*(X).

6.1.10. THEOREM. The map p: FKX) — PXX) is a 3-quasifibration for any
1<k < oo

Proof. We shall prove that p verifies the hypotheses of Proposition 6.1.5 for
m =2 Letx = (x,...,x)eX* andchoose ¥V, = V; X ... X V,, (depending on
x), such that ¥; are open neighbourhoods of x; small enough to assure that Ny#Eu off
VinV; =0, and x; = x; iff V; = V;. These choices imply that for any s,.6, ¢ &,
a(Vo) 0 0x(Vy) # O iffl 01([(x)) = o,(/,(x)). Moreover if yea(V,) for some
o € €, then I(o(x)) < I(»). Since X is locally contractible, shrinking the V; if ne-
cessary, we can find A°: Vg X I — I, h° = (hy, ..., Iy), where h;: V; X I - V. with
h; = h; iff V; = V; are such that iy = id(V,), the image of /i = {x} and /}(x) = x
for all rel

Starting with /° we define for each o€ &, h: a(Vy) X I - a(F,) by
hg = (Mays - - .5 Mgy Finally welet V be the union of all 6(¥,) over ¢ € S, and
define the homotopy /i: ¥V X I — V such ho(V,) = hS. By construction
h(a(»)) = o(h(y) and I(h(y)) < I(y) for ye V and 1€l

“After these preparations we can reach the condition 6.1.4a), b), <), d).

a) Let ¥ as above and let U = (V) be the corresponding open neighbour-
hood of [x] in PX(X). We define 7i: Ux T — U by h([3]) = [(3)] and the couple
(U, F) satisfies 6.1.4a).

b) Since V is S;-equivariant, p~YU) = W(V'x U(k)). We define H: p~(U) x
X1 - p={U) by H [y, u] = [li{y), u). Let us check that H is well defined. If [r. 4] =
= [z, v} then there is some & e—:é,,, such that o(y) =z and w*roc € U, %')).(6.1.8),.
It follows that o(h(y)) = h(z) since h, is S,-equivariant and w*ro e UU(})) <
< UUG)) since I(h,()) < I(p). Hence [(y), u] = [h(2), t]. It is clear that
poH, =k opand p~Y(U), H satisfy 6.1.4 b).

¢) There is a commutative diagram

P Ux"l— p-1x]

b

UK UI(x") — UK)/UU(x))

where x' € Vyand U(I(x')) = U(I(x)) since I(x) < I(x').
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If I, Je & and J < I then Uk)/UI) - U(k)/U(J) is a 2-equivalence as noti-
ced earlier.
d) p~x] = Uk)/U(I(x)) is connected.

6.1.11. COROLLARY. p: F¥(X) — PX(X) is a 3-equivalence for any 1 < k < co.

Proof. If x = (x1, ..., x) and x; = x, = ... = x;, then U(I(x)) = U(k) so
that p~Yx] reduces to a point. Since, by Theorem 6.1.10, p is a 3-quasifibration it
follows by Remark 6.1.3 that p is a 2-equivalence.

6.1.12. Note that the following diagram is commutative

FXX) ———> F1(X)

PHX) o> P*+Y(X).
6.2. THE EMBEDDINGS P¥(X) — P*+(x)

If X is a finite connected CW-complex then it can be proved that lthe embed-
ding B,: PX(X) — P**}(X), B,Ix] = [xex], is a k-equivalence (k > 2). Since we
do not need this result in full generality we shall prove in this paragraph only the
following weaker result.

6.2.1. PROPOSITION. If k 22 then n,(P*(X)) — ny(P¥*Y(X)) is an isomorphism.

This proposition can be regarded as a first step to the main connectivity theo-
rem since by Corollary 6.1.11 7,(P5(X)) = m(F*(X)). The proof of 6.2.1 requires
certain preliminaries.

6.2.2. Forl, s>1let T, ;denote the set of all (a,, . .., @) & ([—1, 1)/ such that
some «; has at least one coordinate equal to + 1. We define D,  to be the image of
T, in PY([—1,1]),i.e. D, ; = T, /S,. Note that D, ; ~ S° and D, , is connected
ife(l, 5) # (1,1).

6.2.3. LEMMA. If (I, s) # (1,1), (1,2), then D, ,is simply connected.

Proof. T, ; can be identified to S*~! and the quotient map ¢: 8”7t — D is
a l-quasifibration. Since there are points x € D, ; such that ¢~3(x) is a singleton
it follows that ¢,: m(S"*1) — (D, ) is onto.

6.2.4. Now we are going to describe P*+1(X)\\ P¥(X) using the cell structure
of X.Let X = ¢, U e, U ... U ey be a cell decomposition of X with dime; <
< dime;, . Since we are interested into homotopy questions, we may assume that
X has a single vertex e, and so dime, > 1. Recall that if (x,, ..., x,) € X* then its
class in P*(X) is denoted by [x;, ..., x;].
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Now P*}(X) has a decomposition

PEAY Y)Y = PRX) U U [e; Xe, x...xe, 1.
. A 8 :

FS Iy
Jyredpsg E
1gj;sN
Since le; X ... X e, ]= [cj X ... Xe, ] for all o €3, we have
1 (1351 a(1) Yo (k+1)
) e, X ...¢; 1= U e, x...x e, 1
ill,.'. Iy~ bt ki1 lejs... s, SN 71 1+k
S

For given 1 <ji <...< jiy; < N, let (1), #(2), ..., 1(*) be determined by the
conditions

= =iy <diar = s = Jineie < cve = i@y ti()
and put J = (i, ..o die)
Ji={igt) + o+~ D+l<s<i(D)+ ... +1G) 1<igr
Define
E(J) = [aj1 Xooxe, 1= XegSiar @ PHYX),

220 act

EJ), = X e, Sy

geJ;
Then
E(Ty = E(J)X ... X E(J,).
Note that e, 3¢ ... ¢ e, (resp. X e,) has a natural cone structure (as a product
1 herl QG-"-
of balls) over the bord i)(ej o X, ) (resp. over d( X e,). Since the
1 <1

qsJ;

action of €, (resp. of &,(,;,) is compatible with this cone structure, the quotient

space E(J) (resp. E(J);) bhas a natural cone structure over dE(J) (resp. over

9E(J);). But obviously d£(J); can be identified with D, ;) 40y, where d(i) = dime;

14 r

and j' = jyqy + -+ + ju . By the general formula X ConeX; = Conc( ¥ Xi)
i=1 il

w here X, = X, denotes the join operation between spaces ([23]), we obtain that

E(J) = X COHED,(,-)’(J(” ::COI‘le( - Dx(i),d(i) ).
i-:1

i1

;
In particular the bord JE(J) can be seen by this identification as % D, g0y -
£=1
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Consequently, P¥+1(X) is obtained from P*(X) by glueing cones of the type
Cone( * D,(,.)‘d(i))along their bords % D,y aciy -
=1 i=1

6.2.5. We are now in position to prove Proposition 6.2.1. First recall {30]
that if X; are m;-connected then X, = X, is (m, + my + 2)-connected. Having this

property if follows by 6.2.2. and 6.2.3 that 9E(J) = % D4 is simply con-
i1

nected provided that k& > 2. Therefore dE(J) is homotopy equivalent to a CW-
-complex with a single vertex and no cells of dimension one {30]. This shows that
up to homotopy P*+1(X) is obtained by attaching to P*(X) cells of dimension > 3
and this does not change the fundamental group.

6.3. THE EMBEDDING FKS'v ...vSY) — FF+(S1y ... v SY

Throughout this paragraph X will denote a finite cluster of standard circles.
The main result here is that the embedding

FXX) — Fr+1(X)

is a 2[k/3]-equivalence (not depending on the number of the circles entering in X).

6.3.1. Let X=8,v...v S, where each S, ~ S' and let 5:S' - X
denote the inclusion onto the i™ factor. In order to analyse F*(X) it is useful to con-
sider the following filtration

FiX)y < ... < FKX), < F{X)y1 = ... FKX) 0<iI<k

where (X)), consists of those [x, e] € F¥(X) for which x = (x,, ..., ;) has at most
4 coor inates x; which are not equal to x,. Here the base point x, is chosen to be
the common point of the circles S; in X.

For 0 < 7 < klet A(/) denote the set of all ordered multi-indices a = (a,, ...
..., a,) such that a; € N\ {0} and Y, a; = I If a € A(/) then we shall denote by
F(a, 1) the set of those homomorphisms in F,(X) which for any 1 < i < m have
exactly a; proper values (counted with multiplicities) belonging to S; \ {xo}.

It is easily seen that

FEX) N\ FiX)oa = U Fla, 1)

ag a{l)

gives the decomposition of F*(X),\\F*(X),_, into its connected components.

6.3.2. Let k > 1. 1t is useful to define F*(Y) even for noncompact spaces
Y. Having in mind Proposition 6.1.8 we shall define F*(Y) to be the space Y*x U(k)
factorized to the equivalence relation: (¥, u) ~ (z, v) iff o—(;v) =z and wu*vo €
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€ U(I(y)) for some ¢ € S, . Of course if Y happens to be compact then F¥(Y) ~
~ Ho—ml(C(Y ), M,). We need later to know that F*((—-1,1)) is homeomorphic to
R¥, Using the notation of 6.1.6, 6.1.7 and arguments similar to those in 6.1.8, one
can check that

{x,u]l - u( ﬁ tan (g\, )e(I,Qc)))u‘}
r-:1 r

defines an homeomorphism F*((—1, 1)) onto the subspace of M, ~ c+ consisting
of all self-adjoint matrices, which in its turn is homeomorphic to R*".

6.3.3. For any a € A(]) let B(a, I) denote the homogeneous spaces
Uk)/U(ay) > ... xUla,) x Uk = 1).

There is a well defined map p,: F(a,!) -+ B(a,l)which we are going to describe below.
The space B(a, I) can be iden-t'iﬁcd with the space of all ordered (m+ 1)-uples(p;. ...
<+ vs Pm» Do) of mutually orthogonal self-adjoint projections acting on C* such that
dimp; = a;, 1 <j < mand dimp, = k - I. Given an homomorphism ¢ & Fla. )
we define p,(@) = (py,. . ., P> Po) Where for 1 < j < m, p; is equal to the sum of
all spectral projections corrcsponding to the proper values of ¢ which lies in
Sj\{,\‘(,} and p, =1, - (p; + ... + p,) is the projection corresponding to xj,.

It is not hard to sec that p,: F(a,!) - B(a,l) is a fiber bundle with fiber
isomorphic to -

F(1, 1))X oo X Fo(=1,1)).

Moreover F(a, /) admits a canonical structure of C®-manifold relative to which
Pp.: Fla, 1) - B(a, ) becomes a Ce>-differentiable fiber bundie. This is due to the fact

that B(a, I) and )m( Fa"((r -1, 1)) =~ R™7 have natural C-structure relative to which
i1

the clutching maps arising from the local trivialization of the above fiber buadle
are smooth.

There is a canonical section for p,, s,: B(a, I) — F(a, I) defined as follows. Let
i be the natural map p:([-1,1], {—1,1}) — (S, xp), u(r) = exp(2nizr) and let
®;:[--1,11- X be given by ¢; = y;=u (6.3.1). For any (p, ..., p,» Po) € B(a. I) we
define s.(py, ..., Prys Po) t0 be the homomorphism ¢ € F¥(X) = Hom,(C(X), M)

given by

o(f) = fx)po + 3} @, O)p;  for any fe C(X).
)
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mn
The image of s, can be identified with a smooth submanifold of codimension Y 4

i=1
in F(a, I) denoted by ims,.
The previous facts enable us to prove the following

6.3.4. PROPOSITION. The embedding FX(X),., — F*X), is a (I — 1)-equiva-
lence, k > 2,1 > 1.

Proof. The embedding

FMX)oy = FEX) N\ U”F(g,l)‘*F"'(X):\ U ims,
t_!_EA( a -

€A

admits a deformation retract so it is a homotopy equivalence. To have a good image
for this deformation retract one can look at the following topologically equivalent
situation. Consider a hermitian vector bundle E together with a continuous map
:SE = {ve€E:|lv|| =1} - Yandtheinclusionmap SE — BE = {v € E:||v|| < 1}.
Then there is a deformationretract for the embedding of Y inY u,BE \ {zero sec-
tion} which acts on BE\ {the zero section} by]pushing out the vectors (¢, v) —
= o/(tloll + 1 —2).
Consequently it is enough to look at the map
FKX),\\ U ims, — F¥X),.
ac A(D -

Now each imsE has an open neighbourhood ¥V, with smooth differential structure
such that ims, has codimension Y, a%> Y, e; = /in V,. Therefore we may use the

aproximation theorem of continuous maps by differentiable maps and the Transver-
sality Theorem [20] to see that the above inclusion is an (/ — 1)-equivalence.

6.3.5. Let I(k)=[2k/3]. By Proposition 6.3.4 each of the following inclusions
Fk(X)l(k) < Fk(X)l(k)+1 < ... < F{X)_, = FXX)

is an I(k)-equivalence so that F¥(X),q, < F(X) is an I(k)-equivalence. We shall con-
sider the following commutative diagram

Fk(X)I(k+l) ing Fk“(X)z(H 1)

° Pl +1)(X)

which is induced by the diagram 6.1.12 after we identify P/ +1(X) with its image in
PF+1(X). Therefore « is the restriction of a,, p, is the restriction of ;  p, and p,
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is the restriction of p,.,. Each x € X'*+Y defines a partition I(x) = (I, ... I¥) of
{12, ..., l(k + 1)} as in 6.1.6. The marked subset I} corresponds to those indices
i for which x; = x,. If X" = (X, Xq ... xy) € X* then the partition of {1, ..., k) asso-
ciated to x" is I(x') = (/y, ..., L_1, ;) where =TI} u {I(k + 1) + 1, ..., k}. Similarly
if x" = (x', xo) € X**1 then I(x") = Iy, ..., Iy, I, ¥ {k + 1}). Therefore by
6.1.9 py'lx] = UK)/U(I(x")) and pii[x] = Uk + 1/UUI(x")). Let m;, 1<i <t be
the cardinal of each I;. We can identitify U(J(x")) with U(m,)x ... x U(m,) and
U(I(x"")) with U(m,) >. ... 3 U(m, + 1) in such a way that the inclusion of U(Jix)}
in U(J(x"")) induced by U{k) — Utk + 1) corresponds to the embedding

u, 0 .
Gy, ..., 1, 1) -»(ul,...,u,_l,(o' 1)), where u; € U(m;).

6.3.6. LEMMA. The map «: py[x] - p7Yx] is>a' 2[k [3)-equivalence.

Proof. The homotopy exact sequences associated to the fibrations U(k) -
- pgllx] and U(k + 1) - p7Yx] together with the map pglx] -> pyx] (which
can be identified with %), induced by the embedding U(I(x")) — U(I(x"')), give the
following commutative diagram with exact rows

n (Ulm)x ... % U@m,)) - n(UK)) - n(pgx]) — =, (UGm) > ... xUm)) - =,.AU(K))

l Lo | |

w2 (U(ny) ... x U@, + 1)) -, (U(k--1)) -7 (p7Y[x]) » 7, (U)o x U, + 1)) -7 (Ul 4 1)

Since the embedding U(k) — U{k + 1) is a 2k-equivalence and &k = m, = &
— I(k + 1) we can apply the five lemma to obtain that pil[x] - p7Yx] i3 a
2(k — I(k + 1))-equivalence. The proof is complete since k& ~ I(k + 1) =
=k — [2(k + 1)/3] = [k/3].

6.3.7. LeMMaA. If k > 2 then each map in the following diagram

751(FI‘>(X)1(A-+ 1;) —_— nn(Fl‘“(X)t(Hl))

> /
k}. P1a

m(PLED(X))

is an isomorphism.

Proof. The result follows from Corollary 6.1.11 and Propositions 6.2.1, 6.3.53,
6.3.8. Let f: (4, a) — (B, b) be a continuous map between topological spaces such
that f..: m,(A4, @) — n(B, k) is an isomorphism. Assume that 4, B are semi-locally
simply connected, connected and locally path-connected and let o,: (E, a) —(4,a),
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wg: (B, b) — (B, b) be realizations of their universal covering spaces. If f (A, a) -
— (B, b) is the unique continuous lifting of f, wgzef = f o w,, then it is easy to check.
that for every X € B the restriction of o 4 to j.-l(i'c) gives an homeomorphism between

f~4(x) and f-Ywx(%)).

6.3.9. In order to simplify notation, let 4 = F¥X),441), B = FFtUX )41y »
C = PI*+D(X). Consequently the diagram from 6.3.5 becomes

A— " B

N

0

o

If we pass at the universal covering spaces as in 6.3.8 we get the following commuta -
tive diagram

-~

———

/R B
;"\4 ‘“/;1 )
C

By Lemma 6.3.7, m,(«), 7,(p,) and m,(p,) are isomorphisms. Therefore given ¥ € C,
x € C such that wc(X) = x, we can use] 6.3.8 to identify pg'(x) - pr(x) with
PoX(X) — pr(¥) hence the later map is also a 2[k/3]-equivalence.

Let D be the space obtained by collapsing to (distinct) points all the subsets of
the form pyi(%) n &(d) with % e C,’ie. [D = B/~ where by definition b; ~ b,
iff by, by € &(4) and py(by) = ﬁl(b;). If B: B — D is the induced quotient map then
p, factors through f, i.e. p, = Paof, as in the following diagram

A » B s D

Tt is easy to see that B-15(b) is equal to b if b ¢ &(A) and to G(A) n prp.) =
= &(psUp:BY) if b € &(4).

6.3.10. PROPOSITION. The unique map py: D — C satisfying p, = Pao ﬂ~ is
a (2[k/3] + D-quasifibration.
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Proof. We want to apply Proposition 6.1.5 for m = 2[k/3] so that we have to
check that p, satisfies to 6.1.4 a)—d). To reach c) and d) will suffice to prove that
each fiber p;1(X) is 2[k/3]-connected. Now it follows from the definition of p, that
PUX) = prM(E)/a(pyi(X)). Since %: pyi(X) — priX) is a 2[k/3] -equivalence we
can apply the first part of the next lemma in order to get that py'(x) is 2[k/3]-
-connected.

In virtue of the discution from the end of 6.1.4 in order to achieve the condi-
tion a) and b) it is enough to show that the map p,: D — C can be identified with
some simplicial map between simplicial complexes. In order to perform this identi~
fication one will use the following general facts about simplicial complexes.

1. Let X be a finite simplicial complex. There is a triangulation ¢, K, - X*
such that for each 7€ % (see 6.1.6) oy'({x € X* : I(x) = I}) is the space of some
subcomplex of K, and the action of €, on X* is induced by some action by simplicial
maps of E, on K.

2. There is a triangulation ¢,: K, — U(k) such that the subspaces U([) (see
6.1.6) correspond to some simplicial subcomplexes and the action of S, on U(k),
(0, u) > ouc®, is induced by some action by simplicial maps of &, on K, (see A.
Verona, Stratified mappings-structure and triangulability, Lecture Notes in
Math., No. 1102).

3. Let p: K — K, be a simplicial map between finite simplicial complexes and
et L = K be a simplicial subcomplex such that p(L) = some vertex of K,. Then
here are subdivisions K’ of K and Kj of K; and a simplicial complex K, such that
here exists a commutative diagram

K] 0

(p’ induced by p) with the property that the map ;p,": K;' — Kj can be identified
with p.": K}/ L — 'K, (p” is induced by :p).

4. Let p: K - K, be a simplicial map bztween finite simplicial complexes and
let G be a finite group whick acts on K by simplicial maps such that p(g - ¢)= p(r)
for each vertex v € K and g € G. Then there are suitable divisions K’ of K and K},
of K and a simplicial complex K;; such that there exists a commutative diagram of
simplicial complexes:

I

) (LAY ¢

\/’
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with the property that|the map 'pg!: |K;| — |Kj!can beidentified with [p,” : |K|/G —
— Kyl (ipl” is induced by [p)).

5. Let p: K — K’ be a simplicial map between finite simplicial complexes.
There is 2 commutative diagram of simplicial complexes

.

-~ bl ., . . N (~
such that the map 'K -—p—‘—.o |K’, can be identified with |K] L[K'| (see 6.3.8).

6.3.11. LEMMA. Let i: Y = Z be a NDR-pair of path connected spaces and let
m 2= 0.

a) If i is an m-equivalence then Z|Y is m-connected.

b) Assume that both Y and Z are simply connected. If Z|Y is m-connected
then i is an m-equivalence.

Proof. The lemma is a direct consequence of the theorems of Van-Kampen,
Hurewicz and Whitehead [43].

6.3.12. PROPOSITION. a: A — B is a 2[k/3)-equivalence.

Proof. If % € C is such that w.(%) is the base point of C = P!*+1(X) then
PzY(X) reduces to a point. If follows by Proposition 6.3.10 and Remark 6.1.3
that p, is a (2[k/3] + 1)-equivalence.

There is a continuous map §: C - D such that Ds0 5 = id(C). (For each

X eClet y € p;i(%) and define 3(¥) = fi&(y).) Since 7,(p,) o m,(3) = id we find
that § is a 2[k/3]-equivalence.

Now D and C was chosen such that
B: (B, a(4)) ~ (D, s(C))

is a relative homeomorphism of NDR-pairs [43]. Using Lemma 6.3.11 it results
that & is a 2[k/3]-equivalence since § it is so.

Finally, since m,() is an isomorphism (by 6.3.7), we get that «is a 2[k/3]-equi-
valence.

6.3.13. THEOREM. The embedding F*(X) — F*+*Y{(X) is a 2[k/3]-equivalence.
(Recall X = Stv ... v S.)

6 — 1776
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Proof. Consider the following commutative diagram

2'k+1}
=]

1:‘/€+1(X)“k+1) —_> Fk+1(X)
(5] !

2c--1)
[*+7]
Jon

in which the orizontal arrows are [(2(k + 1);3)]-equivalences as it was noticed in
6.3.5. The left arrow is a 2[k/3]-equivalence by Proposition 6.3.12. Now the result

follows since [(2(k + 1);3)] > 2[k3].

F"(X)l(ké-l\ ‘ Fk(X)

6.4. THE MAIN CONNECTIVITY THEOREM

The last step towards the central result of this section is the following Mayer-
-Vietoris type result.

6.4.1. THEOREM. Let A, B be connected, locally connected; and semilocally

-

simply connected spaces and f: A — B a continuous map. Let (U;);,(Vy);, 1 <@ %7
be open coverings of A and respective B and define

Uy=MU; ad V,=\V: for I<{1,2,...,1}.

icl iel

Suppose that there is m > 1 such that for each nonvoid I < {1, 2, ..., r} the foilsving
conditions are fulfiled :

a) U, and V, are nonvoid and connected;

b) The embeddings U, <> A and V;— B are l-equivalences;

¢) f(U) = Vs

d) f: U, =V, is an m-equivalence.

Then f- A - B is an m-cquivalence.

Preof. If m = 1 then the proof is accomplished by applying several times Van
Kampem theorem.

Ifm > 2 using the same thecorem we get that 7,(f) is an iscmorphism. Let
w,: A - A4, and a)B:];" — B be the universal covering spaces for A ard B,
and fix > 4 — B a lifting for f, wgof = fow,. Let U= 0z} (U), V, = a5
and note that?(f],) < f’,. We want to prove that each]"z 2/', - -I'/', is an m-equiva-
lence. Since zq(}';i;’l) identifies with m,( f:U,) for ¢ > 2 we have only to show that
n(f iﬁ,) is an isomorphism. Using b) and the functoriality of the homoiopy,
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exact sequences for fibrations we get the following commutative diagram

0 —> 7y(U)) ——> m(U)) o(F) —> 0
0 ——> 1,(A) —> 7m,(4) > 1o (F) 0

where F is the fibre over the base point. Note that we have no(f/',) = 0 since n,(Up —

- m,(A) is surjective and of course n,(4) = 0. Therefore we obtain the following
exact sequence

0 - 751((71) i 7T1(U1) - m(4) -0

and a similar sequence for ¥,. We can compare this sequences by the following com-
mutative diagram induced by f

0 ——> my(U)) ——> my(Uy) 7,(A4) 0

l LX) ln(f) l LX)

0 —> my(V,) ——> m,(V;) ——> my(B) ——> 0

in order to obtain that m,( f lU,) is an 1somorphlsm Once we know that f IU, is an
m-equivalence we can apply the Whitehead theorem to find that St Hq(U,) -
- H,,(V,) is an isomorphism for ¢ < m and an epimorphism for ¢ = m. Now the
usval Mayer-Vietoris argument gives the same conclusions for ;’* Hq(;l) - Hq(B).
Since 4, B are simply connected we can apply the converse of Whitehead theorem to

get that /= 4 — Bis an m-equivalence. Since we know that m,( f) is an isomoxphism
this shows that f: 4 — B is an m-equivalence.}

6.4.2. THEOREM. The natural embedding
a: Homy(C(X), M) - Homy(C(X), M), & > 3,

is a 2[k/3]-homotopy equivalence for any finite connected CW-complex X.

Proof. For n > 1 and r > 0 define W(n, r) as follows:

W(n, 0) is the class of all finite connected CW-complexes of dimension n — 1;

W(n, r) is the class of all finite connected CW-complexes of dimension # having
exactly » > 1 cells of dimension #.
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If X e W(2,0) then dim(X) = 1 hence X is homotopic to a finite cluster of
circles. Therefore a,: F¥(X) — F¥+1(X) is a 2[k/3])-equivalence by Theorem 6.3.13.
The theorem will be proved if we show the following implication which allow an
inductive argument.

If o, 0 FK(X) —» F*+1(X) is a 2[k/3)-equivalence for any space in W(n, r - - 1),
r =1, then the same is true for any space in W(n, r). Therefore let us fix n > 2. r > 1 and
X e W(n, r). Let e be a cell of dimension # in X and choose (k + 2)-distinct points,
in the interior of e, no one of them being equal to x,. For any nonvoid I < 11,2, ...
ook + 2} let oy = {x;:i €I} and define U, (resp. V}) to be the set of all homeo-
morphisms in F¥(X) (resp. #*+1(X)) which have no proper values in &, or equivalently

1= FKX N2, and V¥, = F*+{(X \ a,). Note that U, = (QIU,- and V, = (_;]l v,
and let U; = Uy, V; == V;,;. We want to show that U;, ¥; and f satisfy the hypo-
theses of Theorem 6.4.3. First of all, it is clear that U;, ¥;are open and each (inter-
section) U, , ¥, is nonvoid. Since any homeomorphism in F*+1(X) has at most k + 1
proper values, it follows that both the famillies (U;); and (¥;); cover X. Now let
us look closely at each condition asked by 6.4.1.

a) We have that U, and V, are nonvoid. They are also connected since X \z, is
connected (dime > 2).

b) It follows by Proposition 6.2.1 in conjunction with Corollary 6.1.11 that
the vertical arrows is the following commutative diagram induce isomorphisms
atm :

F*X \ a;) —— F*(X)

| ]

PHX N\ aj) ——> PY(X)

|

Po(X \ &) —>» P=(X).
Now according to [14] the map
,(P2(X N\ 7)) - m(P=(X))
can be identified with the map between the one dimensional homology groups
H (X N\ o) - H,(X)
(induced by X \ a, < X) which clearly is surjective.
¢) f(Up) < V, since x4 ¢ o,

d) X\ «, is homotopic to a space in W(n, r — 1) so that f: U, = F*(X\z,) -
- FF*Y X\ ap) = V,is a 2[k/3]-equivalence by hypothesis.
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Finally the above considerations show that we can apply Theorem 6.4.1 to get
that o, : F¥(X) — F**1(X) is a 2[k/3]-equivalence.

6.4.3. REMARK. An inspection of our proof shows that this result can be improv-
ed especially for lower values of k or by imposing certain restriction on X. In any case
it seems to us be quite remarkable that there is a rather large inferior bound, which
tends to infinity when k does, for the order of the connectivity of the pair (F*¥+1(X),
F%(X)) and this does not depend on X but only on k.

6.4.4. CORCLLARY. If Y is a finite CW-complex of dimension less than 2[k/3]
then the natural map

[Co(X), Co(Y) ® M,] — kk(Y, X)
is a bijection.

Proof. Since F*(X) = Homy(C(X), M,) is homeomorphic to Fi(X) =
Hom(Cy(X), M), it follows by Theorem 6.4.2 that the inclusion FEX)— F§+1(X)
is a 2[k/3]-equivalence. Moreover, we know that lim FX(X) is homotopic to F(X)
(3.1.2) and so F§X) — F(X) is a 2[k/3]-equivalence. Consequently, the map
[Y, FEX)] - [Y, F(X)] is one-to-one whenever dimY < 2[k/3].

6.4.5. REMARK. Let X, Y, k as above. Then n,(F¥(X)) acts trivially on
[Y, F§(X)]. Therefore [Co(X), Co(Y) @ M,] = [C(X), C(Y) ® M), =~ Kk(¥, X).
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