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SUBNORMAL WEIGHTED SHIFTS AND SPECTRA

C. R. PUTNAM

1. Let S be a purely subnormal operator on a separable Hilbert space H. If N

denotes its minimal normal extension on K O H then

S X
(1.1) N:(O T*) onK:H@H“'j
see Conway [1] and [2], pp. 129 ff. Here, T denotes the dual of S and is purely
subnormal on H+ with minimal normal extension N* on K. It is known that o(T) =
= {Z: z € ¢(S)} and that S is the dual of T. It is easily verified that $*S — SS*
=D=XX*, T"T-TT* = X*X and that

" ) +3 (e

(1.2) Re(N):( }0() on K =H@H"'

2

In case
(1.3) X is of trace class (that is, D? is of trace class),

an application to (1.2) of the Rosenblum-Kato perturbation theory and the fact that
Re(S) and Re(T) are absolutely continuous (see [8]) yield

(1.4) (Re(N))a = Re(S) ® Re(T).

(Since, for any operator B, Im(B) = Re(—iB), one also has, of course, (Im(N)), =
= Im(S) ® Im(T").) Here, for any selfadjoint operator A4, (A), denotes the absolutely
continuous part of A and the symbol 2 denotes unitary equivalence.

More generally, if p(B, B*) denotes a selfadjoint polynomial in B and B* (B an
arbitrary bounded operator on a Hilbert space) then p(B, B*) can be assumed to be
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]

a finite sum of terms of the formn aC + @C* where C = Bi1B**1... Bi~ B*kn apnd

J1,k1, ..., n, kn are nonnegative integers. It is easy to see from (1.1) that
p(S,S*) 0 ) :
1.5 N,N")= X),

0 X
where (X) denotes an element of the ideal generated by (0 0 ) and its adjoint in

the space of bounded operators on K. In particular, if (1.3) holds, then (X) of (1.5)
is of trace class and, by the Rosenblum-Kato theory,

(16) (P(N, N*))a = (p(S, 57))a @ ((T", T))a-

(It is understood that some of the operators in (1.6) may be absent.) However, if,
for instace, p(B, B*) is a polynomial in Re(B) = 1(B + B*) (# constant multiple
of the identity) then since Re(S) and Re(T) = Re(T") are absolutely continuous,
(p(B, B*))a = p(B, B*) with B = S or T*.

Next, let S be a unilateral subnormal weighted shift of norm 1. If {eg, e;1,€2,...}

is an orthonormal basis for H then
(1.7) Sen =apepsr (n20), where0<op€oyazg...— 1.

(The monotonicity of the an-sequence is a consequence of hyponormality, that is,
5*S — §58* > 0. Also, it is known that S is irreducible and, in particular, pure.)
The requirement that S be subnormal is equivalent to the existence of a probability

measure v = v(r) on [0, 1] with 1 in the support of v and with the property that if

(1.8) du(re®) = (27)~1d8dy(r),
then
(1.9) S=S,, where (S,f)(z) = 2f(2),

and f(z) belongs to the closure H2(u) of the polynomials in L?(u). Moreover, the
probability measure v satisfies

(1.10) (apay...an-1)% = /1"2"du(r) =c¢n (n2l),
0

and the correspondence between the operators S and such probability functions v is

one to one. (See [2], pp. 159 ff. and the references given there.) In the usual matrix
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representation of S of (1.7) on £2 one has

6 0 0 0
a 0 0 O
(1.11) S=]10 a 0 0
0 0 (¢3)] 0

and S*S — SS* = D £ diag{ad,a? — af,a} — a?,.. }, so that tr(D)(= ||D|}) = L.
Further, »

o0
(1.12) tr(D¥) = ag + 3 (a2 —o2_))%.
: 1

Thus, D% is of trace class if and only if the series of (1.12) is convergent. A gen-
eral necessary and sufficient condition on the probability function v(r) ensuring this
convergence will be obtained below (see Theorem-3.2).

In case & and &, are unit point masses at 0 and 1 and v(r) = (1+a)~ (8, +abp),
where a > 0, then the corresponding S has weights {(1 + &)~ %,1,1,...}; see (2],
p. 161. In particular, the cases @ = 0 and a = 1 correspond respectively to the simple
shift and an example of Sarason cited in Halmos [4], pp. 307-308. It is clear that
D = S5*S — 55" is then of rank 1 if S is the shift and is otherwise of rank 2.

Moreover, in view of a result of Stampfli [11], p. 377, cited in [2], p- 162, even for
an arbitrary subnormal unilateral weighted shift with weights as in (1.7), either the
weight sequence is strictly monotone, or'«,, = a; for all n > 1. Thus, for S given by
(1.8) and (1.9), S*S — SS* = D can have ranks 1, 2 or co.

Further ([2], p. 161), if dv(r) = 2rdr on [0, 1] the associated shift is the Bergman
operator on |z| < 1, that is, the operator S, of (1.9) on the Hilbert space of analytic
functions on the disk belonging to L%(dzdy). In this case the weight sequence is
{(n/(n+1))%} for n = 1,2,..., and the series of (1.12) is divergent, so that D% is
not of trace class. In fact, it will be shown later that a necessary (but not sufficient)
condition in order.that tr(D3%) < oo is that 1 belong to the point spectrum of v(r);
see Theorem 3.1. .

In Section 2, the role of the condition dv(1) > 0 will be discussed. In Section 3, it
will be shown that dv(1) > 0 is a necessary condition in order that the square root of
the self-comutator of a unilateral subnormal weighted shift satisfy (1.3). A necessary
and sufficient condition for (1.3) involving v(») will also be obtained. In Section 4,
it will be shown that ivhen (1.3) is satisfied, one can obtain the spectral multiplicity
function for any selfadjoint polynomial operator in T' and T* (T = dual of S). Some

1

examples are also given. In Section 5, a simpler necessary and sufficient condition for
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(1.3) will be obtained when v(r) is a sufficiently well behaved absolutely continuous
function near » = 1. Some consequences of this will be discussed. In Section 6, there
will be considered the case where v(r) is arbitrary and not necessarily absolutely

continuous near r = 1.

2. THEOREM 2.1. Let S be a unilateral subnormal shift defined by (1.8) and
(1.9) and for which 1 belongs to the point spectrum of v(r), that is

(2.1) dv(1) > 0.

Then S — Sy is of trace class, where Sy is a unilateral shift.

Proof. Clearly, {z"}n=0,1,2,... is an orthogonal system on H?(u) and

‘ 1
(2.2) /lz"|2du = /rz"du = Cn.

0

Then {e, = ()" 52"} is a complete orthonormal system on H?(u) and the usual
matrix representation on £2 of S is given by (1.11) with @ = (cay1/ca)? (n =
=0,1,2,...). The matrix representation for S — S is given by

0 0 0
S ao—-1 0 0
S—S = 0 a;—-10

Since (S — S0)*(S — So) = diag{(ao — 1)%, (a1 — 1)%,.. .}, it is clear that S — Sp is
of trace class if and only if 3(1 — @n) < 00. Since 1 —a? = (1 — on)(1 + @,) and
1< 14 a, €2, it is clear that S — Sp is of trace class if and only if

(2.3) D (1-a?) < co.

For convenience, here and also later, the following notation will be used. If
A, >0, B, > 0then A, ~ B, will be defined by

(2.4) An~B,=>0<a< An/Ba<b<oo (n=0,1,2,..),

where a and b are positive constants. (Thus, e.g., 1 — a;“’, ~1—a, witha =1 and
b= 2.) It is easily shown that A, ~ B, & B, ~ A, and that

(2.5) Apn~B, and Cp ~ Dy = A, +Cp ~ By + D, and A,C,, ~ B, D,,.
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In order to prove (2.3) note that since dv(1) > 0 then ¢, > const > 0 and so

l1-a? = (/ rdy —/r2"+2d1/) //rZ"dV ~ Cn = Cntl-

Thus, for some K = const > 0,

0

o0, [e] 1?’ 1= 1-
Z(l-—af‘) <K /1'2"(1—r2)d1/ = I\’/E(rz)"(l—rz)’du = K/dl/ £ K <oo.
0 0 b 0 5

This proves Theorem 2.1.

REMARKS. Since dr(1) > 0= S — Sy is of trace class, it is clear that if p(B, B*)
is a selfadjoint polynomial in B and B* (B =bounded operator on a Hilbert space)
then p(S, S*) = p(So, 53) is of trace class. It then follows from the Rosenblum-Kato
theory that 4

(2.6) (P(S,5"))a = (p(So, S5))a if dv(1) > 0.

It may be noted that dv(1) > 0 if and only if S is similar to So. See [2], p. 168,
Problem 7. (See also ﬂ4], Problem 199, pp. 307-308 and Problem 90, p. 50.)

A special case of (2.6) is that dv(1) > 0 = Re(S) (= (Re(S))a) = Re(So)
(= (Re(S0))a). Since Re(Sy) is known to have multiplicity 1 on [—1, 1] then so also
does Re(S). Thus,

(2.7) Re(S) = multiplication by ¢ on [-1,1].

Actually, the result (2.7) is true even without the hypothesis (2.1). In fact, more
generally, one has the following

THEOREM 2.2. If A is a hyponormal, unilateral weighted shift with 0 < ag <

La; a2 ...— 1 then

(2.8) Re(A) = multiplication by t on [—1, 1].

Proof. One may suppose that
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If o = (1,0,0,...)T, then a direct calculation shows that {(Re(A))"e0}n=0,1,2,.. gen-
erates £2. Thus Re(A) is absolutely continuous with simple spectrum (that is, its
spectral multiplicity function n(t) = 1 on its absolutely continuous support a). Since
A*A — AA* = D = diag{od,a} — a},a — a?,. .}, then ||D|| = 1 and 7 = #||D}| <

< / F(t)dt, where F(t) is the (linear) measure of the cross section o(A) N {z :

o
Re(z) = t}; see [6). But ¢(A) is the unit disk and it follows that & = {1, 1] (modulo
a zero set). Q.E.D.

REMARK. A slightly different argument is that tr(D)(= ||D]]) = 1 and = =
= wtr(D) < /n(t)F(t)dt = /F(t)dt; see [11]. (Here n(t) is the spectral multiplicity

[+4
function of Re(A).)

THEOREM 2.3. Let S be a unilateral subnormal weighted shift defined by (1.8)
and (1.9). Then

(2.9) i(l—aﬁ) < oo < dv(l) > 0.

o0
Proof. Let 3~ =Y. That dv(1) > 0 = Y_(1 - a2) < co was shown in the proof
0

of Theorem 2.1 above. To prove the reverse implication suppose that Y (1-¢2) < co.
It will be shown that dv(1) > 0.

Now (1 - a2) = Ec;l/rz"(l — rB)dv (clear]y /:/1:1/-) Since
o 0

r2ndv}

o, .

o0

> (1—0a2) < ocothen Y (1 —a2) — 0as N — co. Also the sequence {c, =
N .

is monotone nonincreasing and hence

1

o 0] [oe]
Z(l -al)= Zc,’,’l /rzn(l —rddv >
N N

0

1- 1—
>y / PNA+ 720t )1 - rD)dy 2 cx,l/erdu.
0 0

1-
o0
Now if dy(1) = 0 then cj! /T‘szl/ =1, so that Y (1 — a2) =0, a contradiction.
N

0
Thus drv(1) > 0, as was to be shown.
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3. Before stating the next theorem it will be convenient to prove the following
LEMMA. Let ¢, be defined by (1.10) and for a fixed constant a, 0 < a < 1, let

1 1
3.1 ien = /1‘2"du(1*) and ¢, =/r3"dz/(7“)
0

a

and

2 _ *2 __ % *
Qn = Cnpifcn and ap®=chy, /.

Then, for b = const, 0 < b < 1,

3.2) o = o2 (1 + ),

where [b"] denotes a term satisfying |[b>"]| < const(b?"). In particular,

(3.3) 1—a? =1-a4 ™
and
(3.4) a3:+1 —a, = a;2+1 e

a
Proof. Clearly, ¢, = ¢, + /1"2”d1/ g‘c; +a®", and if @ < @; < 1, also ¢ >

0
1

1
> /rz"du > ka?® with k = /(ll/ > 0. Hence ¢}, < ¢n < ch+a®™ = ¢ (14+a®/c}) €

aj

a
< e (14 [b27]) with b = a/a;. So cu/ch =14 [b?*]. But
ol = cnyprfen = (chrr/en)(en/en)(ensr/cngr) = ar?(1+ [6*]),
that is, (3.2).

1 1 :
It may be noted that c;‘,//dy = /rQ"dl/a(r), where v,(r) is the probability
a 1]

‘ 1
function on [0,1] defined by va(r) = 0 for 0K r < a and va(r) = 1/(1')//(11/ for

a
a £ r < 1, so that the o, are the weights of the unilateral subnormal weighted shift
associated with v,(r).

The following theorem is crucial for the remainder of this paper.
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THEOREM 3.1. Let S be a unilateral subnormal weighted shift defined by (1.8)
and (1.9) with the self-commutator S*S — SS* = D. Then

(3.5) tr(D?) < oo = du(1) > 0.

Proof. In view of (1.12) and Theorem 2.3, relation (3.5) is equivalent to
(3.5)’ Y2 -ed)i<oo= Y (1-al)< oo,
which, in view of (3.3) and (3.4), is equivalent to
(3.5)" (e —ah)i <o Y (1 —ap?) < oo

What this means is that there is no loss of generality in supposing that the given

probability function v(r) already satisfies
(3.6) v(r) =0 on [0,a] for some constant @, 0 < a < 1.

Henceforth, then, (3.6) will be assumed and the implication (3.5)" will be proved.

1 1
Recall the identity (with / - / - / )
0

a

(3.7) ( / fgdu)2+§ [ [t - sae2avmas) = [ rav [ oa

Now,
1- a,2, =1—-cpg1/n =(Cn — Cng1)/Cn = c,jl /1"2"(1 — 7'2)d1/,

so that, since 1 —r?2 = (1+7)(1—r) and 0 < r < 1, one has
(3.8) l1-—a2~¢;!t / r2*(1 — r)dv.

(See relation (2.4) for notation.)
If f(r) = r" and g(r) = (1 — r)r", then, on dividing by ¢Z in (3.7), one has

(3.9) (/ (1 - "‘)du/c,.):' + % (//7,21‘32"(,, _ S)zd‘/dy/c">2 _
= [y

Next,

a121+1 —af = cnt2/cat1 — cag1/cn = (Cnt2cn = Ci+1)/¢n¢n+1,
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that is, :
1 .
01,2,+l —-o? = 5//1-2"32"(1"2 - s%)2dvdv/encngy.

Since cay1/cn ~ 1 (in fact, coy1/cn — 1 as n — o0) and r2 — s = (r — s)(r + 5) with
0<a<gr s<1,itis clear that

(3.10) ol - // g2 (r —s)2dvdy/e?.

Consequently, in view of (3.8) and (3.10), relation (3.9) implies

(3.11) (1-a2)?+a2,, —al ~d./ca whered, = /rg"(l - r)2dv.
Now
(o5} [> =]
1““?\/=z(a£+1_a2)22( n+1—an) (o Opy1 — al)z,
N N

so that, by (3.11),
(3.12) 1 — o3 < const Z dn/cn) % ol ~ )%.

Let ¢(z) be defined by

1
(3.13) c(z) = /r"du(r).

Then
(3.14) d(z) = /r’ logrdv(r) and ¢'(z) = ‘/rJr log? rdv,

and hence, in view of the Schwarz inequality, (¢'/c)’ = (¢"¢ — ¢'?)/c2 2 0. Thus
¢’/c is negative and increasing (as z increases), so that |¢/|/c is decreasing. Since
Ic'| = [ #®dvy(r) with dvy = |logr|dy, it is clear that ¢”'/|¢'| is also decreasing and
hence (c"/|c'l)(|¢'l/c) = ¢ /e is decreasing. Since |logr|/(1 —r) — 1 as r — 1-0, it is

clear that

d, = / r2(1 —r)2dv ~ /r2" log? rdv = ¢"(2n).
Consequently, d,/c, = (dn/c"(2n))(c"(2n)/ca) ~ ¢“(2n)/ca. But ¢”(2n)/c(2n) =
= ¢(2n)/ca is monotone decreasing as n — oo and hence (3.12) implies that

(o}

(3.15) 1—a% < const (dy/en) %Z Qnpy - ';'
N
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Since, for A,B> 0, (A +'B)15 < A% + B#, it follows from (3.11) that (dn/en)? <
< const(l — a} + (ak 4y — a})?) and lence, by (3.15), 1 — a3 < const(l — ad+
+(03 41 = ak)¥)pn, where py = i(aﬁﬂ —a2)? — 0as N — oco. Hence, for N
large, N

(1-aX)(1 — constpn) < const(ady; — a?)ipn < const(aky, — a%)?,

and therefore (3.5)'. This completes the proof of Theorem 3.1.

Since, by Theorem 3.1, tr(D%) < 00 = dr(1) > 0 and since this latter condition
is the same as ¢, > const "> 0 (for all 1), it is clear from the argument given above
(see (3.11) in particular) that tr(D%) < oo & dv(1) > 0 and Y (da)? < oco. But
S(dn)? < 00 & T (c"(2n))% < oo0. Since ¢’(z) | as z — oo this can be stated in
terms of the function ¢(z) of (3.13) as

THEOREM 3.2. Under the hypothesis of Theorem 3.1,
o0

(3.16) tr(D7) < oo <= dy(1) > 0 and /(c"(z))’}da: < 00,
where c(z) is defined by (3.13).

4. THEOREM 4.1. Suppose that S is a unilateral subnormal weighted shift defined
by (1.8) and (1.9) satisfying
(4.1) tr(D?) < 0.
Then its minimal normal extension, N, satisfies

So 0
(4.2) N = ( 00 T‘) + trace class operator,

where Sy is a unilateral shift, so that, in particular,

(4.3) (Re(N))a = Re(So) ® Re(T)

and, more generally,

(4.4) (P(N, N*))a = (p(S0, 55))a & (p(T7, T'))a,

where p(B, B*) denotes a selfadjoint polynornial in a bounded operator B.
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Proof. One need only note that, by Theorem 3.1, relation (4.1) implies (2.1). An
application of Theorem 2.1 (sée also (1.5) and (2.6)) then implies (4.2), hence also
(4.3) and (4.4). :

Since N = N, where (N, f)(z) = zf(z), f(z) in L?(p), the spectral multiplicity
of (p(N, N*))a is known. In addition, so is that of (p(So, S3))a. In fact, since the self-

commutator of Sy (as that of S in general) is of trace class, it is clear that p(Sp, S§) = .
N

= Re(Q)+trace class operator, where Q = agI+)_ a,Sy. In view of Rosenblum-Kato
1

perturbation theory one has

(4.5) (P(S0,55))s = (Re(Q))a-

However, @ is an analytic (even polynomial) Toeplitz operator. Unless @ is a multiple
of the identity, Re(Q) is absolutely continuous. Moreover, its spectral multiplicity can
be read off from the Rosenblum-Ismagilov multiplicity theory. (See [10], Corollary 2,
p. 716 and [5].)
. N . .
In the present case, let f(e') = ag + Y a,e™ = u -+ iv, where u(t) = Re(f) on
1

[0,27]. If n(X) denotes the Banach indicatrix of u(¢), that is, the number of times
the line y = A hits the graph of u(t) on [0, 2x], then, except for a finite number of
values A, n()) is even and N(A) = (3)n(}) is the required multiplicity function of the
operator of multiplication by u on H?, that is, of (p(So,S;))a. (In the trivial case
where u = constant, (p(So, Sg))a 1s absent.) '

As a consequence of Theorem 4.1 and relation (4.5) the spectral multiplicity

function of (p(T‘,T):)a can then be read off from the known spectral multiplicity
4
functions of (p(N, N*))a and (p(So, S3))a-

ExaMpPLE 1. Suppose that v(r) has a pure point spectrum consisting of

r =4 and r = 1. Since 1 is an isolated point of the spectrum of v(r) then ¢"'(z) =

1
= /r” log? rdv(r) = 277 log? 2dv(3) and tr(D%) < oo by (3.16). It follows from

EXAMPLE 2. Suppose that v(») is given by
(4.6) dv(r) = rdr on [0,1) and dv(1) = -;-

Then tr(D?) < oo (see, e. g., (5.8) of Theorem 5.2 below). Then Re(T") has spectral
multiplicity function m(A) = oo or 0 according as |A| < 1 or |A] > 1. Also, (T"T)a
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(or (I'T*)a) has a multiplicity function given by m(A) = oo on (0,1) and m()) = 0
elsewhere.

Since, by Theorem 3.1, tr(D%) < 00 = dv(l) > 0, it is clear from Theorem
4.1 that whenever tr(D?) < oo, the spectral multiplicity of (p(So, S§))a is determined
from the contribution to (p(N, N*)), of the discontinuity of v(r) at » = 1. The spectral
multiplicity of (p(T*, T'))a is determined not only by dv(1) but by the behavior of v(r)

at all points of its spectrum.

5. A necessary and sufficient condition in order that tl'(D']‘E) < 0o was given in
(3.16). In general, however, it is not easy to establish the convergence of the integral
appearing there. On the other hand, if the probability function v(r) is absolutely
continuous and “well behaved” on some iuterval (1 — a,1) one can obtain a more

readily verifiable integral condition.

THEOREM 5.1. Let S be a unilateral subnormal weighted shift defined by (1.8)
and (1.9) satisfying

(5.1) dv(1) > 0.

Suppose that v(t) is absolutely continuous on some interval (1—a,1) (a = const > 0),

so that dv = v'(t)dt on this interval. In addition, suppose that
(5.2) VY1 -=1)"P T on(l—a,l)

for some constant p > 0 and that

(5.3) V(t)(1=t)?] on(l—-aqa,l)

for some constant q, 0 < q < 3. Then

(5.4) tr(D?) < 00 = /(u’(t)/(l —1))%dt < co.

Proof. Since dv(1) > 0, it is clear from (3.16) that (5.4) will be proved if it is

shown that

(5.5) / (¢"(z))3dz < 00 = / (V' ()/(1 —1))3dt < co.
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‘ 1
First, the implication = of (5.5) will be proved. One has ¢"'(z) > /t’ log? tdw(t)

.
with 7 = 1 — 1/z for z sufficiently large. Since log?t/(1 —t)? — 1 as t — 1-, then for

appropriate generic “const” one has (for large z)
1 1 .
'(z) > const/t’(l —1)%V/(t)dt > const r® / V'(t)(1 - t)"P(1 — t)**Pde.

T r

Since r* = (1 —1/z)* = e~ as z — oo, one has by (5.2),
1
c’(z) 2 const V' (r)(1 — )" /(1 — 1)2*Pdt > const V' (r)(1 — r)>.

Since z = (1 — r)~! then dz = (1 — r)~2dr and hence (¢”(x))¥dz > const(v/(r)/(1—
—r))zdr. This proves = in (5.5).

So far, the hypothesis (5.3) has not been used. It will however be needed, along
with (5.2), in the proof of < in (5.5).

First, we note that, in general, both

1

1 1 1
/t” logztdu//t’(l —1)%dv and /t” log2tdu//t” log” t dv
0 0 "

0

tend to 1 as z — oo. This follows from an argument similar to that used in the proof

of Lemma in Section 3. The idea is that ¢”’(z) for large z is determined essentially

only by the behavior of v(t) as t — 1-0. Consequently, there is no loss of generality in

supposing that (5.2) holds on (0,1), and, for conveniece, this hypothesis will be made.
For z sufficiently large,

1
'(z) € const/t’(l — )%/ (t)dt
0

where

r 1
/=/+/ withr=1-1/z.
0 r

But

r r r

/: /t*(l — )P ()(1 = 1)"Pde < V' (r)(1 —r)”’/t"”(l —t)*tPdt

0 0 0
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< V()1 - 1-)‘P/t’(1 —1)?*Pqt.

However, the last integral is the Beta function B(z+1, 3+p), which can be expressed in
terms of Gamma functions and then asymptotically estimated via Stirling’s formula.
Thus, B(z+1,3+p) = ['(z+1)I'(3+p)/T(z+4+p) ~ const/z3+?; see, e.g., Greenberg
[2], pp. 63, 66. Hence, for large =,

r

(5.6) / < const V' (#)(1 — )P /23*P  const v/ () (1 — 7).
0
Next,
1 1
/ < const/t*(l =)0/ (t)(1 — t)?dt <
1

V()1 =) /(1 —1)?277dt = const V'(r)(1 — r)?,

r

in view of (5.3). Thué, for large «,

1

(5.7) / < const v/ (r)(1 — 7).

r

In view of (5.6) and (5.7) one has by an argumént similar to that occurring earlier in
this section, for large z, (¢”(x))¥dz < const(+/(r)/(1 = r))2dr and <« of (5.5) follows.

\
As a corollary of Theorem 5.1 one has

THEOREM 5.2. Suppose that dv(1) > 0 and that v(t) is absolutely continuous
on (1 — a,1) for some constant a > 0. Il ¢ = const > 0 then

(5.8) V() < const/(1 —1)|log(1 — t)|**€ near t = 1 = tr(D?) < o0
and
(5.9) V'(t) < const/(1 - t)|log(1 — t)|* near t = 19 tr(D?) < oo

Proof of (5.8). Let v (t) be defined on (0, 1) so that

(5.10) vi(t) = A/(1 —t)|log(1 — t)|°*° near t = 1 and du, (1) > 0,
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where the constant A is chosen so that / dvy = 1. A change of variable

u = |log(1 — t)| shows that

1—

(5.11) /(V;(t)/(l —1))3dt < 0.

However, in view of (5.8),
(5.12) du(t) = v'(t)dt < const v{(t)dt = const duv; (1)
near t = 1, so that, for z large,

(5.13) c"(x) < const ¢(z);

1
where ¢(z) is given by (3.13) and ¢i(z) = /t“’dul(t). Clearly the function I/I(t)

of (5.10) satisfies the hypothéses of Thooxem 5.1 with p = 0 imn(5.2) and ¢ = - 1in
(5.3), and so, by (5.11) and (5.13), / ¢"(z))%dz < const /(c (z))*dz < oo. Since

dv(1) > 0, relation (5.8) follows. )
In order to prove (5.9), let /(t) = A/(1—t)log?(1—t) near t = 1 and dv(1) > 0 in
1

such a way that / dv = 1. Again, if one makes the change of variable u = |log(t—1)|,

it is seen that /(u’(t)/(l —1))%dt = 0o and so, by Theorem 5.1, tr(D?) = oo.

Similarly, one can sharpen Theorem 5.2 to obtain

dr(1) > 0 and, for some ¢ = const > 0,

(5.8), V(1) < const/(1 — £) log®(1 — 1) g log(1 1) e

near t = 1 = tr(D?) < oo,

while

(5.9); dv(1) > 0 and v'(t) < const/(1 —t)log®(1 — 1) |log log(1 — 1) 2

neart =1+ tr(Di) < 00.
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More generally, if Li(t) = |log(l = t)| and, for n = 2,3,..., L, = L,(t) =
= |log La-1(t)|, then with (5.8) and (5.9) corresponding to n = 0 in (5.8), and
(5.9), below,

dv(1) > 0 and, for some ¢ = const > 0 and some fixed n =0,1,2,...,

(5:8)n v(t) < const/(L - )L3LF ... L2LEES
near{ = 1 = tr(D%) < 00;
while

dv(1) > 0 and, for some fixed n=0,1,2,...,
v'(t) < const/(1 —t)L3L3 ... L,%LZ+1 neart = 1% tr(D%) < 0.

n

(5.9)n

The proof of (5.8), and (5.9), for n = 1,2,..., is similar to that for the case

n = 0 if one makes the change of variabile u = L, (f).

6. In this section there will be obtained conditions on a general v(t) (not neces-

sarily absolutely continuous near ¢ = 1) which assure that tr(D?%) < oo.

THEOREM 6.1. Let dv(1) > 0. If e = const > 0, then

(6.1) v(1-) — v(t) < const/[log(l — t)|?** neart =1 = tr(D%) < ©0.
. l-
Proof. If/ = / then
0

d'(z) = /t’ log?tdv = —/t" log>tdA(t), where A(t) = v(1-) — v(2).
Thus .
¢'(z) = —t° 1og2m(z)\o' + / A(t)(t% log? t)'dt.

1
Since (.. )l = 0, then, in view of the hypothesis, it must be shown that if
0

(6.2) d'(z) = /A(t‘)(t‘r log? t)'dt, with |A(t)| < const/|log(1 — t)[?

and p = const > 2,

then (¢”(z))? € L(1, 00). Since (1% log” t)’ = zt*='log?t + 2t*=!logt, it is enough to
show that ‘

(6.3) (a(z))? and (b(z))? € L(1,c0),
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where

a(z) = .’c/t'”'l(log'“’t/| log(1 —t)[P)dt and
(6.4)

o) = /tf-1(|1ogt|/|1og(1 ~ Pt

An integration by parts leads to
a(s) = - [ #2(og" ¢/l log(1 - )Y,
so that
(6.5) a(z) = —Q/t"m(logt/llog(l —t)l”)(lt+p/t” log?t/(1—1)]log(1 —1)[P*+)dt.

Since |logt|/(1 —t) — 1 as ¢ — 1 the integrand of the second integral of (6.5) is
majorized by that of the first integral near ¢t = 1. Since the first integral is just 2b(z),
relation (6.3) will be proved if it is shown that 6(z) of (6.4) satisfics

(6.6) (b(z))? € L(1,00).

An integration by parts of the integral for d(z) then yields
1
b(z) = ™ "|logt|/| log(1 — t)|”|0 - x'l/t‘”(. L)'t
1
On noting that (.. .)I0 = 0 and that |logt|/(1 —t)>— 1 as t — 1-, one obtains

b(z) = = /(»ﬁ-lu log(1 — )P}t + d(x),

(6.7) |
where d(z) < (const)pz ™! /(tx/| log(1 = t)[P+1)dt.

The integrand of the second integral of (6.7) is majorized by that of the first near
t =1 and so, in order to prove (6.6), it is sufficient to show that

1
(6.8) (bl(:c))% € L(1,00) where b(zy=z"! /(t"1/|log(1 —1)P)de.

0

An integration by parts of the integral for b;(z) then gives

1 H 1
bi(z) = —w‘2/'t$(1/|log(1—t)|p)’dt = —:c"2/ —1:_2/.
0 0 1
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1

3
Since Iz‘zf ‘ < const/z22%, which lLas a square root in L(1, 00), then, in order to

0
prove (6.8), it is enough to show that

(6.9) |b2(z)|% € L(1,00) where by(z) = —z_z/t’(l/llog(l —t)|P) dt.

1
7

-3
p 1 1- 2
0 —z2 / g-qﬂa-zwyanbgudw)l’ <
?
1

1
< constz™2e™7° (for z large),

l—z_%

and so —z~2 / has a square root in L(1, 00).

L
2

. 1
Thus, one need only show that —z~=2 / (1/]log(1 = t)|?)'d¢t has a square root

-1
l—x" 2

in L(1,00). But this last expression = const/z?|logz|? and, since p > 2, its square

root is in L(1,00). This completes the prool of Theorem 6.1.

Assertion (6.1) can be sharpened in a manner analogous to the improvement
(5.8)n of (5.8). Thus, for a fixed n =0,1,2,...,

dv(1) > 0 and v(1-) — v(t) < const(LIL3 .. . LZL2%G

(6.10) ,
near t = 1 = tr(D?) < oo.

The proof is similar to that given above and will be omitted.

The results of (6.1) can be stated in an equivalent form as follows:

THEOREM 6.2. Let dv(1) > 0. Then, for ¢ = const > 0,

1-
(6.11) /llog(l — )P dv < 00 = tr(D?%) < oo.
0
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Proof. 1t is sufficient to show that the hypotheses of (6.1) and (6.11) are equiva-
lent. First, assume the hypotesis of the left side of the implication (6.11). Then

Jlog(1 = P¥((1) = v(0)) = l1og(1 = O [ av(w) <

1_
< / og(1 — w)[2**du (u)
1

and hence (6.1) holds (with the same value of €).
Next, assume the Liypothesis of (6.1). It will be shown that
1-
(6.13) /Ilog(l - )|ty < co, for any § = const,0 < § < ¢.
0
To see this, let A(f) = w(1-) — v(¢). Then, for ¢ near 1, a partial integration yields

1- 1

/|log(1 —u)|?Hdy(u) = - / Hog(l — w)|***dA(u) = —| log(.l —u)|*+ A(u) tl--}-

t t

+ [+ )llog(1 = /0 - w)du.

1_
In view of (6.1), both (.. )‘ and the last integral are finite and (6.13) follows. This
R t
completes the proof of Theorem 6.2.

Whether the equivalent implications (6.1) or (6.11) become false if ¢ = 0 will
remain undecided. That both implications are false if 2 + ¢ is replaced by 1 is easy to
see, however, by choosing v(t) so that, néar ¢ = 1, v'(¢) = const/(1 — ¢)| log(l — t)|2.
Then v(1-) — v(t) = const/|log(1 —t)| and, by (5.9), tr(D%) = co. Thus, we pose the
following

QUESTION. Do the implications of (6.1) and (6.11) remain valid if 2 + ¢ is
replaced by 1+¢ 7
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