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UNIT BALL DENSITY AND
THE OPERATOR EQUATION AX=YB

M. S. LAMBROU and W. E. LONGSTAFF

1. PRELIMINARIES AND NOTATION

Every injective operator A with dense range, acting on a complex separable
Hilbert space H, has a finite rank “approximate inverse” in the sense that there
exists a sequence (R,) of finite rank operators such that the sequences (AR,) and
(RnA) converge strongly to the identity, with AR, and R, A in the unit ball of B(H)
for every n. This result is possibly well known at the “folk” level. Below, a short
proof (using the spectral theorem) is given and the result is partially extended to
closed densely defined linear transformations. The present paper is mainly concerned
with applications of the above result and its extension.

The first application leads to a characterization of the solution pairs (X,Y) of the
operator equation AX =Y B where A, or B, is an injective operator with dense range. .
This equation, in fact the slightly less general equation AX = Y A, arises naturally
in the study of operators leaving a pair of complementaiy subspaces invariant. The
characterization presented is fairly close to the obvious solutions X = CB, Y = AC
(C any element of B(H)), which unfortunately does not cover all solutions. However,
in the case where both A and B are injective with dense range, a simple argument
shows that every finite rank solution is of the obvious form. Another application gives
a perhaps more transparent proof [1] of the density of the set of finite rank operators
of the unit ball of AlgL in the unit ball of AlgL in the strong operator topology,
where L is the subspace lattice {(0), L, M,H} with LN M = (0), LVM = H and
L, M # (0), H. The final application concerns a certain class of finite atomic Boolean
subspace lattices (on possibly infinite-dimensional space). We show that, for each such
subspace lattice, there is a constant M > 1 such that the set of finite rank operators
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in the ball of radius M of its Alg is dense in the unit ball of the Alg in the strong
operator topology. (See “Added in proof”: M can be taken to be unity for this class
of examples).

In what follows H will denote a complex separable Hilbert space. By a projection
we mean an orthogonal projection and by a subspace we mean a closed linear manifold.
The norm closure of a linear manifold L C H will be denoted by L and Lt will
denote its orthocomplement. A subspace M is called non-trivial if M # (0), H. By
an operator on H we mean a bounded linear transformation acting on H. The set of
all operators on H will be denoted, us usual, by B(H). The rank of an operator is
the dimension of its range. The spectrum of an operator T' € B(H) is denoted by
o(T) and if T is a trace class operator, its trace is denoted by tr(T). We shall often
be concerned with not necessarily everywhere defined closed linear transformations.
The domain of such a transformation A will be denoted by D (A), its range by R (A)
and its graph, that is, the subspace {(z, Az) : ¢ € D(A)} of H@® H, by G(A). If
A and B are closed linear transformations, we write A C B if D(A) € D(B) and
Az = Bz forevery z € D(A). If Ais an operator, or more generally a closed densely
defined linear transformation, the polar decomposition of A is the familiar equation
A = U|A| where U is a partial isometry and |A| = (A" A)!/2. The Cayley transform of
a self-adjoint closed densely defined linear tranformation A is the (everywhere defined)
unitary operator V = (A —i)(4 +1i)~1. Convergence in the strong operator topology
of B(H) of a sequence (A,) of operators to an operator A is denoted by A, “Aor
by A =s-limA,. A collection £ of subspaces of H is called a subspace lattice on H
if (0), H € £ and, for every family {L,} of elements of £, VL, € £ andNL, € £
(where “V” denotes closed linear span). We denote by Alg L the algebra of operators
leaving every element of £ invariant. Other standard notation follows Halmos (5, 6]
and Radjavi and Rosenthal [9].

3

2. APPROXIMATE INVERSES OF FINITE RANK

Although the result stated below as Theorem 2.2 appears to be fairly widely
known, we have been unable to find reference to it in the literature. We supply a
short proof and partially extend it in Theorem 2.3 to closed denscly defined linear
transformations. Later sections concern applications of these two theorems. The

proof of the following preliminary lemma is based on idea of Harrison (reported in
(1])-

LEMMA 2.1. Let A be a positive operator acting on a complex separable Hilbert

space H and let (€,),(6,) be sequences of positive real numbers. There exists an
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increasing sequence (P,) of non-zero finite rank projections, converging to the identity

in the strong operator topology, such that

(A +en) ' Pa(A+¢en)||€146,, for every n.

Proof. We may suppose that H is infinite-dimensional. Let E be the spectral
measure of A. For each n>1let P, be a partition of [0, ||a]|] given by

Pa:0=t5" <t < .. <t = |4

fine enough so that |t — (™) | < 6, /(2/|(A+€,)~1|]) (1< i< kn) and such that P oy,
is a refinement of P,. For each n put A = [t ") no(A) (1< i< k) and put

t—17"1

AP = 1™ M) no(A).

kn—1?

Then Y. E(A{M) = E(o(A))=1.
1€<i<kn . .
Let {e;j:j>1} be any orthonormal basis of H and, for each n, let P, be the

projection onto the (finite-dimensional) subspace spanned by
{E(A)e; :1<5<n, 1 i< kn)

Since Pn41 is a refinement of P,, (P,) is increasing. Since P,e; = e; whenever
1<j<n, P,—>I. Note that, for each n, P, commutes with E(A{™) (1<i< k).
Choose sf") in Agn) (if AE") is empty, simply ignore this step) and put
\
kn

An =Y sMEAM).,
1

By (2, p-264], 14 ~ Adll< max |7~ 1] so 2(A+en) 14 ~ Anl|<Sn.
. NI kn
Since P, commutes with A, we have

Pu(A+en)=(A+ep)Pr4 Pa(A—Ay)— (A— AL P,
SO
(A +€n) ™ PalA +en)ll NPl + 2I(A+ £2) "I A = AulI|Pall S 1+ 6n.

This completes the proof.

THEOREM 2.2. Let B be an injective operator with dense range acting on a com-
plex separable Hilbert space H. There exists a sequence (Ry) of finite rank operators
on H such that s-lim BR,, =s-lim R, B = I and ||BR,|| <1, ||RnB|| <1 for every n.
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Proof. Suppose first that B is also positive. We may suppose that ||B|| = 1.

Let (en) be a sequence of positive numbers converging to 0, take 6, = &, and
A = B in the preceding lemma and put R, = P.(B +¢,)7 .

Then ||RaB|| < ||B(B+€n) 7| = (14¢€4)" < 1. Also, |[(B+¢€n)Ru|| < 1+&n (by
the lemma) so BR, = B(B +¢€,)"Y(B +¢n) Ry gives ||BR4|| <||B(B + &)~ Y||||(B +
+5n)RnII <L

Next we show that R,B—-I. Since ||RqBJ|<1 for every n and B has dense
range, it is enough to show that R, B?x — Bz forevery ¢ € H. Now B?>—(B+¢,)B =
= —€,Bs0(B+¢,)"'B>— B = —¢,B(B+¢,)"!. Hence |[(B+¢,)"!B*> - B||<én.
For z € H we have

[|[RnB%z — Bz|| = ||Pa(B + €n) "' B*z — Bz|| =

= ||Pa[(B + €n)"'B? - B]z + P,Bz — Bz||<
Senllz]| + || Pn Bz — Bz,

so R,B%s — Bz.

Next, BR,——I. For R,B—=1I gives (BR,)B—B. Since ||BR,|| <1 for every
n and B has dense range, it follows that BR,—I.

Without the positivity assumption we argue follows. By the polar decomposition
theorem B = U|B| where |B| = (B*B)'/? and U is a unitary operator. By the above,
there exists a sequence (S,) of finite rank operators such that S,|B|——1, |B|S,—I
and ||S.|B||| <1, |[|B]Sa|| €1 for every n. It is readily verified that the conclusion of
the theorem holds by taking R, = S,U*. This completes the proof.

The next theorem partially extends the preceding one to the case where B is a

closed densely defined linear transformation.

THEOREM 2.3. Let B be a closed densely defined injective linear transformation
with dense range acting on a complex separable Hilbert space H. There exists a
sequence (Ry) of finite rank operators on H such that R(R,) C D(B) for every n,
BR,z — z for every t € H and R,By — y for every y € D(B).

Proof. By the polar decomposition theorem for closed linear transformations [10,
p-297] we have B = U|B| with |B| a positive closed injective linear transformation
with dense range and with domain D (|B|) = D (B). Here, as in Theorem 2.2, U is a
unitary operator and as the domains of | B| and B are identical, we need only consider
the case where B is positive.

Let B be positive. As B is self-adjoint it has a Cayley transform {11, p.320]
V = (B —i)(B+i)~! which is unitary and which also satisfies B = i(I + V)(I - V)~!
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(implicit in this is that D (B) = D((I -~ V)~!)). The assumption that B is injective
and has dense range implies that I + V also has thesé properties.

By Theorem 2.2 applied to i(I + V), there exists a sequence (S,) fo finite rank
operators such that iS,(I 4+ V)—=5I and i(I + V)S,—1. Put R, = (I — V)S,.
We show that the sequence (R,) has the desired properties. Clearly, for every n,
R(R,) C R(I-V)= D(B). Also, for any z € H, BRaz = i(I+ V)(I - V)" }(I -
—V)Saz = i(I+ V)Spz — z. If y € D(B) = D((I - V)~!) we have R,By =
=T -V)iSa(I+ V))I -V)ly — (I-V)I - V) ly = y. This completes the
proof.

REMARKS. (i) With notation as in the statement of Theorem 2.2, if B is also
positive 'we may assume the sequence (R,) also satisfies || BR, — RaB|| — 0. To show
this it is enough to consider the case where ||B|| = 1.
With notation as in the proof of Lemma 2.1, note that since A, P, = P, A, for
every n,

|APs = PAll = |I(A = An)Pa — Pa(A — An)|| €
<2l A= Al
Hence
|APA(A+en)™" = Pa(A+en) P Al = I(AP, = PaA)(A+€,)7 NI
<NIAP. — PaAllll(A+a) I <
C2(A+ex)7HIINA = Aqll,

and, as we observed, the latter is at most §,,.
Thus, in the proof of Theorem 2.2, when we take A = B and §, = ¢,, in Lemma
2.1 we obtain ||BR, — R, B||<¢n, so ||BR, — R.B|| — 0.

(ii) There is a version of Theorem 2.2 (and a corresponding one for Theorem
2.3) for not necessarily injective dense range operators. For any operator B on H
there exists a sequence (R,,) of finite rank operators R,: R (B) — (ker B)L such that
(a) BRaz — z, for every z € R(B),
(b) RnBy — y, for every y € (ker B)%,
(©) ||BRaz|| < |||, for every z € R (B) and every n,
(d) IR~ By|| < |ly]|, for every y € (ker B)* and every n.
Indeed, let B € B(H) and let S be any invertibile operator from ker B @ H; to
7?,-(_35 @ Hy where Hj is any infinite dimensional complex separable Hilbert space.
Consider the operator

T= [? g] : (ker BY* @ (ker B® H1) — R(B) ©(R(B)* © H1)
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acting on H @ Hj, with respect to the splittings indicated (here we regard B as a
map from (ker B)* to m) Clearly this operator is injective and has dense range,
so, by Theorem 2.2, there exists a sequence (F,) of finite rank operators on H @ H;
such that TF,——I, F,T-51 and ||TF,||<1, ||FaT)|| <1 for every n. Now

R, S,
Fn = [T i ] :R(B)® (R (B): ® Hy) — (ker B*) @ (ker B® H;)

for some finite rank operators Ry, Sp,Tn, Un with R,: R (B) — (ker B)* etc, and

BR, Bs,,] - _[R,,B 5,,5]
ST, Su,)’ "™ T \T.B U,S)

Since TF,~—I and F,T-1, (a) and'(b) hold. Since ||TF,||<1 and ||F,T||< 1 for
every n, (¢) and (d) hold.

TF, = [

(i) If B € B(H) is injective, our second remark shows that there exists a
sequence (R,) of finite rank operators on H such that R,,B—SJ, BR,,——Pg and
[|RaB||<1, ||BRnz|| < ||Prz|| for every 2 € H and every n, where Pp denotes the
projection onto W (In (i), extend the definition of R,, to all of H by defining
it to be zero on R(B)1.) That the full conclusions of Theorem 2.2 need not hold
for such injective operators B is easily seen by examples. For instance, if B = S the
unilateral shift on £2, then B is injective and, since B(R,e1) L e; for any choice of
R.,, it is impossible to have BR, —1.

(iv) If B € B(H) has dense range, (ii) shows that there exists a sequence (R,)
of finite rank operators on H such that BR,—I, R,B——I — P and ||BRA|| L1,
||RaBz|| < ||(I = Pk)z]| for every z € H and every n, where Pk denotes the projection
onto ker B. Again the full conclusions of Theorem 2.2 need not hold for such operators.
For example, if B = S* the adjoint of the unilateral shift, then since R, Be; = 0 for

any choice of R,,, it is impossible to have R, B——1I.

3. APPLICATION TO THE EQUATION AX=YB

The equation AX = Y A arises quite naturally in the study of operators leaving
a pair of complementary subspaces invariant. Here A is some injective operator with
dense range. In this section we will describe the solution set of this equation. In fact
we will solve the slightly more general equation AX = Y B with either 4 or B an
injective operator with dense range (or still more generally, a closed densely defined
linear transformation).

An obvious family of solutions of the equation AX = Y B is given parametrically
by X = CB, Y = AC as C runs through B(H). Choosing C to be an operator of
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finite rank, it is clear that the equation has an abundance of solutions (X,Y) with X
and Y of finite rank. The argument that {ollows shows that if A and B are injgctive
with dense ranges, then all solutions with X or Y (and hence both) of finite rank
arise in this way.

For instance, suppose that Y is of finite rank and AX = Y B for some X. As
R(B)=Hwehave R(Y)=YR(B)CYR (B). As Y R(B) is a finite-dimensional
linear manifold it is closed. Thus R(Y) CYR(B) = R(YB) = R(AX) € R(A).
By the range inclusion theorem of Halmos and Douglas [3, 6], there exists an operator
C with'Y = AC. Since A is injective and Y has finite rank so has C. We have
AX =Y B = ACB, so X = CB by the injectivity of A.

If, instead, X is if finite rank, a similar argument starting from the equivalent

equation B*Y* = X* A* shows the existance of a finite rank operator C parametrizing
the solution by X* = B*C*,Y* = C*A*. Hence X = CB and Y = AC once again.
If X and Y are not of finite rank, the parametrization X = CB, Y = AC does
not cover all solutions of AX =Y B, where each of A, B is injective with dense range.
For exemple, if B = A and A is not surjective, the solutioneX =Y = Iof AX =Y Ais
not of the form X = CA, Y = AC because of the non-invertibility of A. Thus a more
general parametrization to describe all the solution pairs (X,Y) is unavoidable. For
instance, suppose that (C,) is a sequence of operators such that (C,B) and (AC,)
converge in the strong operator topology to operators X and Y respectively. Then
AX = A(s-limCy, B) = s-lim (AC, B) = s-lim (AC,)B = Y B. The main result of this
section is that the converse is true. Moreover, it is true if only one of A, B is injective
with dense range and (even if X or Y is not finite rank) we can choose (C,) to be a

sequence of finite rank operators.

THEOREM 3.1. Let A and B be operators acting on a complex separable Hilbert
space H such that A or B is injective with dense range. The following are equivalent
for a pair (X,Y) of operators of B(H).

(i) AX =YB,

(i) there exists a sequence (Cy,) of finite rank operators on H such that C,, B— X
and AC,->Y, -

(1) there exists a sequence (C,) of operators on H such that C, B=~X and
AC,-5Y. '

Proof. The implications (ii)=>(iii)=>(i) are obvious. Assume that (i) holds. If A
is injective with dense range, Theorem 2.2 shows that there exists a sequence (R,) of
finite rank operators on H such that R,A——1 and AR, ——I. Thus AC,—-Y where
Cn = R,Y. For this Cy, we also have C,B = R,YB = R,AX—-X and the proof is

complete in this case.
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If, instead, B is injective with dense range, then there exists a sequence (S,) of
finite rank operators such that S, B——I and BS,—1I. It is easily verified that, with
Cn = XS,, we have Co B—>X and AC,—>Y. This completes the proof.

In the previous theorem we may actually assume less. Basing the proof on The-

orem 2.3 rather than on Theorem 2.2 we conclude the following.

THEOREM 3.2. Let A and B be closed densely defined linear transformations
acting on a complex separable Hilbert space H such that A or B is injective with
dense range. The following are equivalent for a pair (X,Y) of operators of B(H).

(i) AX D Y B in the sense that XD(B) C D(A) and AXxz = Y Bz for every
z € D(B),

(i1) there exists a sequence (C,) of finite rank operators on H sucl that R (Cy) C
C D(A) for every n, CoBx — Xz for every z € D(B) and AC,y — Yy for every
y€H, ‘

(iii) the same as (ii) but without the finite rank assumption on the C,,.

The proof is similar to that of Theorem 3.1 and is omitted.

4. UNIT BALL DENSITY .

Given the subspace lattice £ = {(0),L, M, H} where L and M are non-trivial
subspaces of the complex separable Hilbert space H satisfying LN M = (0) and L Vv
VM = H,in this section we use the above results to study certain density properties of
the set of finite rank operators of Alg L. As is shown in [1] some questions concerning
the properties of such an algebra can be reduced to the case where L and M are in
generic position. Following Halmos [4] we say that two subspaces L, M are in generic
positionif LN M = L* NnM = LN ML = Lt n M+ = (0). In [4] Halmos gives two
elegant characterizations of generic positioning. The first says that, up to unitary
equivalence, the subspaces are of the form G(B) and G(—B) with respect to a direct
sum K@K of some Hilbert space K with itself, with B an injective positive contraction
on K for which I — B is also injective. The second characterization states that, again
up to unitary equivalence, the subspaces are of the form K & (0) and G(A) with A an
injective closed densely defined linear transformation on K with dense range. With
these characterizations a description of AlgL (given that we also have L* N M =

LN M* = (0), that is, generic positioning) becomes casy to obtain. For instance,

X Z
suppose that L = G(B) and M = G(—B) with B as above. Then [ —_ ] belongs
to Alg L if and only if BX + BZB = W +YB and -BX + BZB = W ~ YB or,
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equivalently, BX =Y B and W = BZB. Thus

AlL—{[ X Z]'BX.—YB}
8=z v)°*~ ‘

If [ BB ] is of finite rank so must X, Y and Z be. Moreover, by the arguments

at the beginning of Section 3, if also BX = YB then X = CB and Y = BC for some
finite rank operator C. It follows that the finite rank operators of AlgL are those

Z
CB ] with C and Z of finite rank.
BZB BC

In (8] Papadakis has shown that if £ is as above (not necessarily in generic

operators of the form [

position) then the finite rank operators of Alg L are dense in Alg £ in the ultraweak
topology, thereby improving the result in [1] that the same set of operators is dense in
Alg £ in the strong operator topology. A much stronger “Kaplansky type” unit ball
density property proved in [1] improves both of these results. Among the applications
of the results in Section 2 we gjve below a perhaps more transparent proof of this.

Some other applications are also given.

TuEOREM-4.1 ([1]). Let L and M be two non-trivial subspaces of a complex
separable Hilbert space H satisfying LN M = (0) and LV M = H and let £ =
= {(0), L, M, H}. Every operator in the unit ball of Alg L is the limit, in the stro;ng
operator topology, of a sequeuce'of finite rank operators from the unit ball of AlgL .

Proof. As indicated above, it is shown in [1] that we may assume that L and M
are in generic position. (In [1] a much stronger result is proved,' concerning “meshed
products”, but for the case of just two subspaces the work becomes considerably
easier; nevertheless we omit it.) Thus, by Halmos’ description, it is sufficient to prove
the theorem with H = K@ I{ and with L and M of the form G(B) and G(—B) with B
a positive injective contractlon on K (for which I - B is also injective). Since the finite
rank operators of Alg[, form an ideal of AlgL and the norm is submultiplicative, we
need only show that the identity on K @ K is a limit of the type described.

By Theorem 2.2 choose a sequence (R,) of finite rank operators such that

s-imR,B = slimBR, = I and ||R.B||<1, ||BR.]|<1 for every n. Put S, =
[ R.B 0

0 BR,
rank operators of Alg£ Clearly s-lim S, = I and [|Sn||<1 for every n. This com-

] . By earlier remarks in this section (S,) is a sequence if finite

pletes the proof.

From the above result it follows, as pointed out to us by A. Katavolos, that
each operator of AlgL belonging to the von Neumann-Schatten class Cp (1< pg oo,
where by Coo we mean the ideal of compact operators) is a limit in C, norm of a

sequence of finite rank operators of Alg L. This follows simply from the fact that if
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Ap—A and ||A,|| <1 for every n, then A, — AK in Cp norm for every K € Cy.
The result in [8), referred to earlier, also follows since strong convergence implies
ultraweak convergence on the unit ball of B(H).

As a further appli;:ation we prove the following generalization of the well known
fact that if T is an element of the ideal of trace class operators and X is any operator
then tr (XT) = tr (TX).

COROLLARY 4.2. Let A be an injective closed densely defined linear transforma-
tion with dense range acting on a complex separable Hilbert space H and let S,T be
trace class operators such that R (S) C D(A) and ASx = T Az for every = € D (A).
Then tr (S) = tr (T).

Proof. As the subspaces L = H @ (0) and M = G(A) are in generic position,
Halmos’ description shows that there exists a unitary U:H @ H — K ® K and a

positive injective contraction B on K such that
UL=G(B) and UM =G(-B).

Since AS is everywhere defined (because R (S) C D(A))and closed it is bounded.
S

AS -T
and M into L (since AS = TA on D(A)) so UDU* sends G(B) into G(~B) and

G(-B) into G(B). If UDU* is written in the form [

Consider the trace class operator D = . This operator sends L into M

, it is easily verified

d

(just as in the case of operators sending each of G(B), G(—B) into itself) that BV =
CB Z ]

BZB BC
of Alg{(0), G(B),G(—B), K & K} (here C and Z are finite rank operators) we have

= =Y B and X = —BW B. Thus for the typical finite rank operator [

vV WY( CB VA
tr[[x Y][BZB BC]] vr(VCB+WBZ +XZ +YBC)

=tr((BV +YB)C + (BWB + X)Z) = 0.

ut 1€ IMa) tl‘

with the strong operator topology. We have shown that this map annihilates all
the finite rank operators in the unit ball of Alg{(0),G(B),G(-B), K & K}, so it

annihilates the identity which belongs to the strong operator closure of this set of

] ()] is continuous on the unit ball of B(K & K)

operators by Theorem 4.1. Thus

S 0

t -T)=t
(S -T) r[AS _r

v
] =trD=trUDU"* = tr [

W
]:0.
X Y

as required. This completes the proof.
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Before proving our final theorem we make a brief digression concerning the atomic
Boolean subspace lattice £ = {(0), H & (0),G(A),H & H} where A € B(H) is an
injective operator with dense range (we could consider the more general situation
where A is an injective closed densely defined linear transformation with dense range,

but we omit this to avoid technicalities). It is easily verified that
X Z
vt ={(¥ Z) axsazazva).

From this the finite rank operators of Alg L can be described. If XY and Z are
finite rank operators and A(X + ZA) = Y A, then, by our remarks at the beginning
of Section 3, there exists a finite rank operator C such that X + ZA = CA and

Y = AC. 1t follows that the finite rank operators of Alg L are those operators of the
¢ (C-2)A Z
orm

0 AC
in the following theorem.

] with C and Z finite rank operators. These facts are used

THEOREM 4.3. Let A be an injective operator with dense range acting on a
complex separable Hilbert space H and let S; (1< j<m) be invertible operators on
H (m21). Let Ko, Ky, ..., Kn be the following subspaces of H(™+1):

Ko=He(0)o(0)®...4(0)
and, for 1<j<m,
K; = {(z,514x, S»Az,...,S;Az,0,0,...,0) : z € H}.

Then Ko, Ky, ..., Ky, are the atoins of an atomic Boolean subspace lattice £ on
H(™+1) and there is a constant M > 1 such that the set of finite rank operators in

the ball of radius M of Alg L is dense in the unit ball of Alg L in the strong operator
topology.

Proof. First let us establish the required density property for Alg L where £ is
the subspace lattice generated by the I; (07 <m). Using this we shall then show
that £ is an atomic Boolean algebra with atoms Ko, K1, ..., K-

Applying Theorem 4.1 to the subspace lattice M = {(0),H & (0),G(4),
H @ H} there exists a sequence (D,) of finite rank operators in the unit ball of

I0
Alg M converging strongly to the identity [0 I) on I @ H. Each D, has the

form © Z)A . Z
D,, = n T 4n . n
(" )
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where C, and Z, are finite rank operators. Thus s—lim(C,, —Zp)A=1,slimZ, =0
and s-lim AC,, = I. Hence the sequence (T) of finite rank operators on H(™+1) given

by

(Cn—2,)A  Z.S7! 0 0

0 S1AC, St 0 .0

T, = 0 0 S,AC.S;t ... 0
0 0 0 oo SmACLS;!

converges in the strong operator topology to the identity on H (m+1) Direct computa-
tion shows that, for every n, T, leaves each K; (0 < j< m) invariant, so T, € AlgL.
Put M = max{|ISi[LIST LIS HIST LUS2AST I, - - - ISm ISR} As [IDall< 1
we have

IS AC S IS IS INNACAIS;H IS M (2€5<m)

ll (Cn—20)A 2,57 I 0 I 0
0 S1AC,S; 0 S 0 S;

< max{1, ||$1][} max{1, ||ST *|[}/| Dnll < M.

(Ca—Za)A  Z.S!
_ 0 S$1AC, St
.S"_,-AC,.SJ-'1 (2<j < m), it follows that ITall € M. To summarize, (T5,) is a sequence

of finite rank operators of Alg L, each with the norm at most M, converging strongly
to the identity on H{™+1  As the set of finite rank operators of Alg £ is an ideal of
Alg £ and the norm on B(H(™+1)) is submultiplicative, the required density property

As ||T,]| is the maximum of the norms of [ ] and of the

follows. .
It remains to show that L is an atomic Boolean algebra with atoms Kj,
Ki,...,Kn. Note that since Sy A is injective (1< k< m), K; N K; = (0) whenever
m
i# jand 0K, j <m. Since SpA has dense range (1< k< m), \/K_,- = H{m+),

0 .
For each n, the finite rank operator T, above is a finite sum of rank one opet-

ators each belonging to AlgL. To prove this it is enough to show that, for every
rank one operator R € B(H) the operators F,G on H(™+!) given by F = diag(RA,
S1ARSTY, S, ARS; Y, ..., SmARS;!) and

-RA RS{Y 0 ... 0
0 0 0 ... 0
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are each finite sums of rank one operators of AlgL. For G this is easy to do: G is
m

itself a rank one operator of AlgL. Now F = Z F; whe_re Fo = -G, where

j=0

00 ...0 RS

0 0 ... 0 SiARS;!

F,=10 0 0 S,ARSI!

0 0 ... 0 SnARS;!

and where, for 1j<m -1,

) - -1
(0 0 ... 0 RS —RS;}, 0 ... 0)
0 0 ... 0 S1ARS;' -S1ARS;}, 0 0
00 0 SARS;' —S;AR j;ll 0 ... 0

sz . : : L : _
0 ... 0 S;ARS; SARSJH 0 ... 0

00 ...0 0 0 0

(0 0 ... 0 0 0 ¢ ... 0J

where the first j columns (and the last m — 1 — j) of Fj are zero. It is not too difficult
to verify that each Fj (1< j<m) is a rank one operator of Alg (.

By a result of [7], since the set of finite sums of operators of rank at most
one of AlgL is strongly dense in AlgL, L is (completely) distributive. Observing
the convention that \/ = (0) (where @ is the empty set) and using the fact that

[}
K; N K; = (0) whenever i # j, it now follows that, for every pair I,J of (possibly
empty) subsets of {0,1,2,...,m} we have

(%) \/A)n(\/h,)— V Kk

nJ

(since by dlstrlbumwty, \/ :alf \/ K;)= \/ (K;j ﬂ\/ K;) = \/(\/ K;NK;)). The

jeJ j€J i€l
desired result now follows from (%) by a result of [1]. However for the convenience of

the reader, we give a proof of this special case.
Let P denote the atomic Boolean algebra of all subsets of {0,1,2,...,m} (par-
tially ordered by inclusion). Consider the map ¥:P — £ defined by ¢(J) = \/ K;.

J
This map ¥ is a complete homomorphism, that is, for every family {J.}r of subsets

of {0,1,2,...,m} we have 1/)(U Jo) = \/tlz(Ja) and 1/)(0 Ja) = ﬂw(JQ). Since
r r r r
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also ¥(@) = (0) and ¥({0,1,2,...,m}) = H™+D 4(P) is a sublattice on Hm+1),
Clearly ¢(P) contains every K; (1< j<m) so P(P) = L by the definition of L.
The map ¥ is a lattice isomorphism of P onto £, that is, it is a bijection satisfying
I1CJ e y(I) CyP(J). (That I C J if 9(I) C (J) follows easily from the observa-

tion that, if $(I) C ¥(J) then K; = K: N (\/ K;) = \/ (Ki N K;), for every i € I.)
J jeJ
The desired result now follows and the proof is complete.

It would be interesting if the constant M in the statement of the above theorem

could be replaced by unity. As the proof shows, this is the case if each S; (1< j<m)

is unitary. Thus we have the following corollary.

COROLLARY 4.4. Let A be an injective operator with dense range acting on
a complex separable Hilbert space H and let U; (1< j< m) be unitary operators
on H (m>1). If £ is the atomic Boolean subspace lattice on H (m+1) with atoms
K; (0€<j<m)givenby Ko=H®(0)®(0)®...®(0) and, for 1<j<m,

K; = {(z,U1Az, U Az, ..., U;jAz,0,...,0) : z€ H},

then every operator in the unit ball of AlgL is the limit, in the strong operator

topology, of a sequence of finite rank operators in the unit ball of Alg L.
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Added in proof: Using duality theory, identifying B(H) as the dual of the set of
trace class operators on H and identifying the latter as the dual of the set of compact
operators on H (in the complex separable Hilbert space case), and also using the fact
that for any Banach space X, the unit ball of the canonical image of X in X** is
weak* dense in the unit ball of X**, it can be shown that if the set of finite linear
combinations of rank one operators of Alg £ is ultraweakly dense in Alg £, then the
same is true for the corresponding unit balls of R and Alg £ (see M. Anoussis, A.
Katavolos, M. S. Lambrou, On the reflexive algebra with two invariant subspaces,
preprint, for discussion on this). Two conclusions are pertinent to the above work.
Firstly, the apparently weaker density result of Papadakis [8] mentioned in Section
4, is actually equivalent to the unit ball conclusion of Theorem 4.1. Secondly, the
constant M in Theorem 4.3 can indeed be replaced by unity since the strong density
of the ball of radius M of R in the unit ball of Alg £ implies the ultrastrong (and
hence ultraweak) density of the (convex) set R in Alg £.



