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TAYLOR EXACTNESS AND KAPLANSKY’S LEMMA

ROBIN HARTE

0. IfT: X —Y and S :Y — Z are linear operators between complex spaces we
shall call the pair (S, 7" exact iff

(0.1) $710) C T(X),
whether or not the chain condition
(0.2) ST=0

is satisfied. For example if T = 0 this means that S is one-one; if S = 0 this means
that T is onto. When S and T are bounded operators between normed spaces we
shall call the pair (S,T) weakly exact if

(0.3) S™1(0) C A T(X),

and split exact if there are bounded 77: Y - X and §’: Z — Y for Whi(;h
(0.4) - S'S+TT' =1

It is clear’at once that

(0.5) (S,T) split exact => (S, T) exact = (S, T) weakly exact;

conversly if S and T are both regular in the sense that there are bounded T" : Y — X
and §*: Z — Y for which

(0.6) T=TT"T and §=SS*S
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then there is implication
(0.7) (S,T) weakly exact => (S, T) split exact;
indeed if (0.3) and (0.6) both hold then ([11], Theorem 10.3.3)
(0.8) (I-TT™)(I-S"S) =0,
giving two candidates for 7" and S’ to satisfy (0.4).
LEMMA 1. IfU . W= X, T:X —>Y andV :Y — Z are linear there is impli-

cation

(1.1) : (V,TU) exact, (T,U) exact => (VT,U) exact
and
(1.2) ' (VT,U) exact, (V,T) exact => (V,TU) exact.

IfU,T and V are bounded there is implication

(1.3) (V,TU), (T,U) split exact = (VT,U) split exact
and
(1.4) (VT,U), (V,T) split exact => (V,TU) split exact.

Proof. These are beefed up versions of parts of Theorem 10.9.2 and Theorem 10.9.4
of [11]: for example if V=1(0) C TU(W) and T~!(0) C U(W) then

VIz=0=>Tz&V-1(0)CTU(W) ==z —Uwe T }(0) CUW).
u

Lemma 1 does not extend to weak exactness: to violate the weak analogue of
(1.2) take ([8], Example 1) U = 0, T one-one dense but not onto and V~='(0) = Ce
with e € Y \ T(X).

LEMMA 2. IfU : W — X and V : Y — Z are bounded and linear, and T =
=TT"T : X =Y is regular, then

(2.1) V=1(0) € T(X) = T"V~1(0) € (VT)~(0)
and

(2.2) - TY0) C U(W) = T TU(W) C U(W).



TAYLOR EXACTNESS AND KAPLANSKY'’S LEMMA 401

Also
(2.3) V'V +TT .= I = VTT" =V"V
and
(2.4) T'T+UU =1=T"TU =UU".

Proof. The first part of this is essentially given by Mbekhta ({18], Proposition
2.4): to see (2.1) argue

Vy=0= VTT "y =VTT"Tz =VTz=Vy=0.

For (2.3) take V"' = VITAV' + I - VV". | | n

) It is familiar that the product of regular operators need not to be regular ([11],
(7.3.6.17); [3], §2.8), and that regularity of the product need not imply regularity of
the factors ([11], (7.3.6.16); [3], §2.8):

THEOREM 3. IfT: X — Y and S :Y — Z are bounded and linear and (S,T) is
split exact then

(3.1) ST regular, <= S, T regular.

Proof. If ST = STUST and S'S + TT' = I then
(I-TT)T(I~UST)=0= (I -STU)S(I - S'S).

Conversley if S = SS*S and T = TT*T and S~!(0) C c1T(X) then ([10], Theorems
3.8.3,2.5.4) by (0.3)

STTASMST = S(TT" + S*S — I)T = ST.

‘When T: X — X and S : X — X are complex linear operators on the space X
we call the pair (S, T) left non-singular if '

(3.2) ' S=H0)nT=(0) = {0},
right non-singular if

(3.3) S(X)+T(X) = X,
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and middle non-singular if, in matrix notation,

(3.4) (-s DO ¢ (g) X

This last condition means of course that whenever Sy = Tz there is z for which
y = Tz and z = Sz, and is a special case of (0.1). Each of these conditions is
symmetric in S and T, and not restricted to pairs (S, T) which are commutative in

the sense that
(3.5) ST=TS.

Gonzales ([7], Proposition) has essentially shown

THEOREM 4. Necessary and sufficient for middle non-singularity of (S, T) are the

following three conditions:

(4.1) S=(0) C TS™(0);
(4.2) T71(0) € ST~}(0);
(4.3) S(X)NT(X) C (ST)TS - ST)~*(0)

If (4.1) and (4.2) hold then also

(4.4) (ST)™1(0) + (TS)™*(0) € S~Y(0) + T~(0).
Proof. Suppose first that middle non-singularity (3.4) holds: then
Sy=0=>(-S T)(g) =0= (g) = (g)x
giving y = Tz with z € $~1(0); this proves (4.1), and similary (4.2). Also
w=Tz=Sy= (:) = (z)z=>w:STz=TSz,
giving (4.3). Conversely if these conditions hold then, using first (4.3),

(i) €(-S T)'(0)=> Sy=Tz=STz=TSz,
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giving y — Tz € S~1(0) C TS(0) and = — Sz € T~1(0) C ST~1(0), so that there

are u and v for which

y~Tz=Tu withSu=0 and z-Sz=S5Sv withTv=0:

T
but now (S) (z+u+v) = (y), as required by (3.4). Towards the last part we
z

assume only (4.1), and .claim

(45) (ST)™1(0) € S7(0) + T~(0) :

for if (ST)z = 0 then Tz € T'S™!(0), giving Tz = Tz with Sz = 0, and hence
z = (z —2)+2 € T-1(0) + $~(0).

The conditions (4.3) and (4.4) are not together sufficient for either (4.1) or (4.2),

even in the presence of commutivity: if for example
(4.6) S=T=P=P2#]

is a non-trivial idempotent then both (4.3) and (4.4), and of course also (3.5), hold,
while neither (4.1) nor (4.2) are satisfied. The condition (41) and (4.2) are not to-
gether sufficient for (4.3): for example take S = T to be one-one with T'(X) # T2(X).
Specifically if X = £, we can take S = T = U the forward shift with (Uz)p41 = p
and (Uz);, = 0. Curto ([5], pp 71-72) has shown essentially that, in the presence of
commutativity (3.5), middle non-singularity (3.4) is equivalent to (4.1) together with

(4.7) T-15(X) € S(X),
and therefore also (4.2) together with
(4.8) 57T(X) C T(X)

“Duality” considerations then suggest that (4.7), (4.8) and (4.4) might together be
equivalent to (3.4). This however fails without commutativity: if for example X = £,
we can take T' = V, the backward shift with (Vz), = £n41, and S = W with (Wz), =
= (1/n)z,, to satisfy both (4.7) and (4.8), and also (4.4), but not (3.4). Sufficient
for the non-singulariﬁy conditions (3.2)-(3.4) are the corresponding invertibility con-

ditions: we call the pair (S, T') left invertible if there is another pair (S’, T') for which

(4.9) SS+T'T=1I,
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right invertible if there is another pair (S, T") for which
(4.10) SS"+TT" =1,

and middle invertible if there are pairs ($',T") and (S”,T") for which, in matrix

notation,

(4.1.1) (',_,f,”)(—s T)+(§)(T’ sq:(é 2)

In the context of pure linear algebra it is clear that “invertibility” and “non-singulari-
ty” are equivalent, by the argument for (0.7); for bounded linear operators between
normed spaces we require that the “left”, “right” and “middle” inverses be made
out of bounded operators. When the operators S and T commute and the space X
is a Hilbert space then non-singularity implies invertibility; for Banach spaces this
question appears to be still open ([9], pp. 73-74). In general it is sufficient for left,
right and middle invertibility that (4.9) holds for a pair (S’,7”) such that

(4.12) (8,9), (8,7), (1',T), (T',S) are commutative.

The reader may suspect that there is an analogue for Theorem 4 with “invertibility”
in place of “non-singularity”: the author has been unable to find it. The invertible
analogues of the conditions (4.1) and (4.2), and of (4.7) and (4.8), are not hard to
find — each consists of either a column or a row from (4.11): the reader is invited
to think up invertible analogues for (4.3) and (4.4). Theorem 4 should also have an

analogue for “weak exactness”: thus (3.2) is equivalent to implication
(4.13) SU=TU=0=U=0,

the weakly exact analogue of (3.3) is

(4.14) VS=VT=0=>V =0,

and the weakly exact analogue of (3.4) is

=0 T -U’
4.15 - T =(vV Vv =0 v v = 0.
@) (-s 1)) = vi(g)=o=v v ()

It is not hard, starting from the “invertible” versions of (4.1) and (4.2}, and of (4.7)
and (4.8), to write down corresponding weak versions of these four conditions.

The next observation is again based on Gonzales ([7], Theorem), and has also
been noted by Curto ([5], p. 72):
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THEOREM 5. If (81,52, T) is commutative then there is equivalence
(56.1) (8152, T) non-singular <= (S,,T) and (S;,T") non-singular
and equivalence

(5.2) (5152, T) invertible <=> (5,,T) and (S, T) invertible.

Proof. Consider first invertibility: if 1Sy + T{T = I = S4S2 + T3T then
I = S4(S, Sy + TIT)Sz + TiT = (S55,)5152 + (4TS + TU)T;
conversley if 51,5152 + T1,T = I then
(51252)51 + T1;T = I = (51,51)S2 + T}, T.

This proves (5.2) for left invertibility, and similarly for right invertibility. Towards
middle invertibility, suppose that

(5.3) R'S'+SR =1 with S=UT, S'U=U'T' and W'T' + WU =1:

then ‘ .
U=R'SU+SRU=R'UT + UTRU
giving
WR'U'T = WU(I- TRU) = (I - WT')I - TRU)
and hence
(5.4) (WR'U +W)T' + TRU) =L

The implication (5.3)==(5.4), which we have just proved, gives forward implication
in (5.2) for middle invertibility if we take

T T
(5.5 T = , T'=(=-5 T), S= d S'=(-55, T
(5:5) (51) (=5 1) (slsz) . (=55 T)
with

/1 0 1 0 0
U= , U'=38,, W:( ), W':( ),
(o 52) 2 TS Si,8 T/,

1

—v12
R‘=(Tl/2 i?)) R’:( //’)'
12

(5.6)
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Conversley if

-5 T I 0

5.7 S T 4
(5. ( >( ' )+(S1) 5 (0 1)
ensinceagain (0 )= (3 5,) (5,) weo
n since again
he g 15, 0 S, s, we have

I 0 —S{‘) (T)

= =T S 11 7"
(5 5)= (o) s+ (gl ) s
0 -S4 T

giving (52) = (Sﬂf{) T+ (Sng) S1 and hence

T N (S O\(T
(5:8) (slsz)sl‘(—sm 1) (52)

and also
I - T

5.9 = S T/,
(5:9) (0) (Ssz)( 1)+(5152) '
Combining (5.8) with

_s, T) (1 0)

1 —J2 T T” ") =

(510 (G )= o+ (g sn=(;
gives

sr0 ( A ) ( T )
5.11 = -S, T SY(Ty Sy
(5.11) (—SZT{ 1) sy am) (75 Dt g, ) ST SE),

which combines with (5.9) to give

I T S8,
5.12 = T + S!T,S - —5251).
(5.12) (0) (5152)( P+ SITeS) (52T1'52+T£>( $251)

From (5.11) and (5.12) we get

s 0 I) ( SS, )
= 2 _S; T —S:8
(—Sng’ I 0 sris,+1) 5 251)+

(5.13) -
+( g, ) (SITY SUSY T4 SITES)),

from which we can read off

10 1.8 '
= S (=518 T
(o 1) (sle’S;+T5)( 5152 T)+

(5.14) r
+ (g, ) (RHSITIS SISp).
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This is backward implication in (52) for middle invertibility, and completes the proof
of (5.2). With the information displayed in the proof of (5.2), the argument for ¢5.1)
can be left to the reader. ' -]

For bounded linear operators between Banach spaces, (5.1) follows from the
spectral mapping theorem for the Taylor spectrum, and then (5.2) from the corre-
sponding theorem for the “Taylor split spectrum” ([11], Theorems 11.9.10, 11.9.11).
Our derivation of forward implication in (5.2) is based on the corresponding argument
for non-singularity ({10}, Theorem 4.3; [6]); our derivation of backward implication in
(5.2) also follows from the corresponding argument for non-singularity, which is what
is given by Gonzales [7]. The reader may find it entertaining to try and carry out the
matrix juggling in terms of operator calculations; he may also like to try and do the
non-singularity argument (5.1) in a general ring, using conditions (4.13)—(4.15).

If T: X — X is linear then its hyperrange and hyperkernel are the subspaces
o0
(5.15) T(X) = () T"(X)
n=l1
and

(5.16) T=%(0) = D T-7(0);

n=1

when T is continuous on a normed spaces X neither of these need be closed. If we

write

(5.17) comm(T) = {S € BL(X,X): ST =TS}
for the commutant of T and

(5.18) comm™}(T) = comm(T) ﬂ BL™Y(X, X)

for the invertible commutant of T', then we can collect the following

LEMMA 6. If T € BL(X, X) is arbitrary then

(6.1) T1T=%°(0) C T~%(0)
and
(6.2) T essentially one-one => T*(X) C TT*(X).

If S € comm(T) then

(6.3) ST=%(0) C T=*°(0) and ST™(X) CT®(X).
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If S € comm™(T) then '
(6.4) (T - $)™1(0) C T*(X) and T~*(0) C (T - S)(X).

Proof. This is Theorem 7.8.3 of [11]. |
We shall call the operator T : X — X self-exact if the pair (T, T) satisfies (0.1):
(6.5) ‘ T-1(0) € T(X),
n-exact if (T, T") satisfies (0.1):
(6.6) T=1(0) € T™(X),
and hyperexact if

(6.7) T-Y(0) € T*(X).

There are various equivalent forms of these conditions:

THEOREM 7. If T : X — X is linear and n e N and m + k =' n 41 then
(7.1) T-1(0) € T™(X) &= T~*(0) € T™(X) <> T~"(0) C T(X).
and .-

(7.2) TY0) C T®(X) < T~°(0) C T®(X) <= T~*(0) € T(X).
If T = TT"T is regular then
(7.3) TAT®(X) C T®(X) and TAT~*(0) C T=(0).

If S € comm™!(T) then

(7.4) (T —8)=°(0) C T*(X) and T™(0) C (T= 9)*°(X)
and
(7.5) | T=°0) N (T - S)~*(0) = {0}

and for each m,n € N

(7.6) T™(X) + (T - S*(X) = X.
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Proof. The first half of this comes from Lemma 1 and Lemma 2, taking U and
V to be powers of T'. For the last part factorise (T™ — S™)" in two ways to see that
((T — S)*,T™) satisfies (4.9)~(4.11) for each m and n:

(1.7) S™ — ro (T, S)T™ = (T = 8)"¢m(T, )"

for certain polynomials ¢, and rp . ]

We cannot replace m and n by oo in (7.6): for a counterexample take T'= U to
be the forward shift on X = £y and S =1.

DEerFINITION 8. Call T € BL(X, X) hyper-regular if it is regular and hyper-
-exact. We shall say that T is “consortedly regular” if there are sequences (S,) in
comm™Y(T) and (T}) in BL(X, X) for which

(8.1) 1Sall + 178 = T*|| — 0 and T~ S = (T = Su)T (T = Sn),

and “holomorphically regular” if there is § > 0 and a holomorphic mapping T : {|z] <
< 6} — BL(X, X) for which

(8.2) T—XM = (T-=M)T{(T—AI) foreach [A|<é.

Mbekhta ([18], Théoréme 2.6) has essentially proved

THEOREM 9. If X is complete and T' € BL(X, X)) then

(9.1) T consortedly regular = T hyper-regular => T holomorphically regular.

Proof. I T is consortedly regular then, using (6.4), there is inclusion T*(0) C
C (T - S,)(X) for arbitrary k and n, where S, satisfies (8.1), and hence if T*z = 0
then ¢ = (T" = S,)T 0z giving

(I =TTz = (T = Sa)T? =TT )z — 0 asn — 0,

and hence x = TT*z € T(X). This gives, without completeness, the first implication
of (9.1). Conversely suppose "= TT"T is hyper-regular and S € comm(7") with||S||-
JIT*|| < 1: using (6.3) and (7.3) and expanding (I —T"S)~! in the geometric series
gives

S(I —-T*S)~'T-(0) C IT~*(0) C I T(X)

and hence
(I -TTMS(I-T"S)"Y(I-T"T) =0,
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which by (3.8.4.3) from the proof of Theorem 3.8.4 [11] says
(9.2) T-S=(T-S)(I~-T"S)'T"(T - S).

Specialising to scalar S = Al gives the second implication of (9.1). n

The derivation of (9.2) is based on Caradus [4]; cf also Theorem 3.9 of Nashed
[20]. If we observe

(9.3) ' TNT - S)+(I-T'\T)=1-T"S

that T — TS sends the null space of T'— S into the null space of T, then we can
see why if T is Fredholm and I — T S is one-one then dim(T — S)~*(0) < dimT"~*(0)
({11], Theorem 6.4.5). Conversley if T = TT*T is hyperregular and S € comm™(T)
has small enough norm,

(94)

(T=-SYT+I—-(T-S)MT-S)=1+(T-S)"S with (T'-8)" =(I- TAS)~'T™,

furnishing an invertible operator which sends the null space of T into the null space
of T — S. In the Fredholm case this is the Kato zero jump condition [1}, [24], [21].
Theorem 9 says that the hyper-regular operators form a “comutatively open”
subset of BL(X, X), and hence that a certain kind of “spectrum” is closed in C. We
may also observe that the topological boundary of the usual spectrum is contained in

this “hyper-regular spectrum”:
(9.5) {T € cleommBL™ (X, X) : T hyper — regular} € BL™}(X, X)

We are claiming that if hyper-regular T is the limit of a sequence T~ S,, of invertible
operators which commute with 7 then T must also be invertible. It follows from (9.2)
that if 7 — S and I — T*S are both invertible then so is T"; since this argument
extends to TATT" this also makes T invertible.

The spectral mapping theorem for polynomials extends to the f‘]xyl)er-regular

spectrum”:

THEOREM 10. If ST = T'S then
(10.1) ST self-exact => S, T self-exact
and

(10.2) ST hyper-regular => S, T hyper-regular.
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If ST =TS and (S,T) is middle exact then

(10.3) S, T self-exact => ST self-exact
and

(10.4) S, T hyper-regular => ST hyper-regular.

* Proof. The first part is an extension of Mbekhta ([19], Lemme 4.15):
if (ST)~1(0) C (ST)(X) then

T7H(0) € (ST)™H(0) C (ST)(X) = (TS)(X) C T(X),

and similarly for S and powers T" and S™. This gives (10.1) and most of (10.2): for
the regularity of S and T observe that if ST = STUST and (ST)'(0) C (ST)(X)
then (I — STU)(I — UST) = 0 giving (since ST =TS)

TSU — STUTS + UTS =1
now apply (3.1). Conversley, for (10.3), use (4.1)-(4.4):
(ST)71(0) € S7H0) + T7(0) C S(X) N T(X) C (ST)(X).

This gives (10.3) and most of (10.4): the regularity of ST is (3.1) again. ]

The middle exactness condition in the second part is unnecessarily strong: it
misses the rather easy

(10.5) T hyper-regular == T" hyper-regular.

Three aplications of Lemma 1 show that, if ST = T'S;

(10.6) (52,72), (T?,5?) exact

is sufficient for (10.3): by (1.1) (5*,7?) and (T, T) exact imply (S*T,T) exact and
(T?,T*) exact and (S, S) exact imply (ST?,S) and hence (ST, S) exact; then (1.2)
says that (ST, T) and (ST, S) exact imply (ST, ST) exact.

One situation in which all the invertibility and non-singularity conditions for

(S, T) are satisfied is when we can write

(10.7) S=q(A), T=r(4)
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for an operator A : X — X and polynomials q and » without non-trivial common
factor. In general polynomials ¢ and » have a unique “highest common factor” hci(q, »)

determined by the logical equivalence
(10.8) {q,7} C (Poly)p <= hef(q,r) € (Poly)p,

together with the requirement that it be “monic” (unless either q or # is 0, in which

case also hcf(g, 7) = 0). It is now fainiliar that, by the Euclidean algorithin,
(10.9) hef(q, r) € (Poly)g + (Poly)r,

so that there are polynomials ¢’ and »* for which hef(g, ) = q'q + +/r. If in particular
hcf(q,r.) = 1, so that ¢ and r have no non-trivial common factors, then (in the
algebra Poly) the pair (q, r) satisfies all the invertibility conditions (4.9)-(4.11) (since
the analogue of (4.12) holds). This extends to the pair (S,T) = (q(A), r(A)), with
(8, 7") = (¢'(A),r'(A)) whenever A : X — X is an operator: thus if (10.7) holds
then the non-singularity conditions (3.2)-(3.4) are satisfied.

LEMMA 11. If A: X — X is linear there is equality

(11.1) Na-anp)= |J 40

A€C 0#p€Poly

and

(11.2) C NA-apRx) = () pA)X).
A€C 0#p€Poly

Proof. The left hand side of (11.1) is obviously included in the right; conversley
if p = qr € Poly with hel(q, ) = 1 then by (4.4)

(11.3) p(4)7(0) = 9(4)~(0) + (4)~'(0).

More generally if p = q1¢2...¢, is a finite product of factors q; of which no pair
has any common factors then the null space of p{A) is the sum of the null spaces
qj(A)‘l(O'); but by the fundamental theorem of algebra p is a product of polynomials
of the form (z — A)* for distinct complex numbers A. This proves (11.1). Similarly,
the right hand side of (11.2) is included in the left, and the opposite inclusion follows
by the inductive extension of equality (4.3):

(11.3') p(A)(X) = (A)(X) N r(A)(X)

if p = ¢r with hef(q,r) = 1. . |
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The operator A : X — X is described as algebraic if there exists a non-trivial

polynomial p-€ Poly for which
(11.4) p(A)~1(0) = X,
and as ]oéally algebraic if

(11.5) U ra0)=x.
0#p€Poly
The intermediate notion is that A is boundedly locally algebraic if there is k € N for

which
(11.6) X = U{p(/l)'l(O) 10 # p € Poly, degree(p) <4}

For bounded linear operators between Banach spaces, an application ol Baire’s theo-
rem says that (11.5)==(11.6) ([14], Theorem 15; [22], Theorem 4.8; (23], (3.4)); our
interest here is to expound Kaplansky’s lemma ([14], Lemma 14; [22], Theorem 4.8;
[23], (3.5)), which says that (11.6)==(11.4):

THEOREM 12. If A : X — X is boundedly locally algebraic then it is algebraic.

Proof. If A is locally algebraic in the sense of (11.5) then by (11.1) there is
equality :

(12.1) > (A= ADT®(0) = X;
AecC
for a boundedly locally algebraic operator to be algebraic it is necessarry and suflicient
that it have a finite set of eigenvalues
(12.2) .
A = {AeC: (A=A 0) £ {0}} = {A e C: (A= I)">(0) # {0}}.

We claim that if the set mlelt(

A) is finite then the condition (11.6) must fail: for if
A1, Az, ..., Ay are pairwise distinct eigenvalues of A, with corresponding eigenvectors

Z1,%2,...,2Zm, and p €Poly is a polynomial, we claim that there is implication

azg MY (Z ) 0= {z1,21,...2m} Cp(A)}(0) =

i=1

={A1, A2, .., Am} € p7H(0),

forcing degree (p) = m. To see why the first part of (12.3) holds argue that

(12.4) hef(g,7) =1, q(A)y=r(A)z=0, y+2=0=y=2=0:
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this is because the pair (S,T) = (¢(A),r(A)) satisfies the condition (3.2) so that
equality y + z = 0 puts y = —z in ¢(A)~!(0) N r(4)~1(0) = {0}. To apply (12.4) to
the first part of (12.3) take

y=zj, zzz:c;, q=z -, r:Hvz—/\,-.

i#j i#j
To see why the second part of (12.3) holds observe that
(12.5)  p(A;) #0=>hef(p,z — );) = 1 == p(A)"(0)n (A - )\ 1)~*(0) = {0}.

When the operator A is algebraic then (12.1) becomes a finite direct sum de-
composition of the space X: this decomposition makes it clear, as is observed by
Aupetit [2], that if k£ € N satisfies the condition (11.6) then (11.4) can be satisfied
with degree(p) <k. When A is algebraic then each existing inverse (A — AI)~! is
expressible as a polinomyal in A: when X is finite dimensional this is one of the
familiar applicatons of the Cayley-Hamilton theorem. We may also observe, as in the
finite dimensional case [13], [17], that when (A — AI)~! does not exist, then all the
eigenvectors z € (A — AI)~1(0) lie in the range of a related polynomial in A: the
simple observation is that if p(A) = 0 and p = ¢r with hcf(q,7) =1 then

(12.6) 2(A)~1(0) = r(A)(X) and r(A)~1(0) = g(A)(X).
We conclude by expounding another generalization of Kaplansky’s lemma; the un-

published argument is due to Laffey ([16], Lemma 1; [23], (3.5)):

THEOREM 13. If the operator A : X — X is boundedly locally algebraic modulo

a finite dimensional subspace Y C X, then is algebraic.
Proof, The assumption is that there is & € N for which, for each & € X, there is
a non-trivial polynomial p, € Poly for which

(13.1) degree(p;) <k and p(A)z €Y.

We are not assuming that the finite dimensional subspace Y is “invariant” under A
in the sense that A(Y) C Y, but immediately replace it with the (possibly infinite

dimensional} invariant subspace

(13.2) Y= |J sAY =Y+ ay)

p€EPoly neN
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generated by it, together with the induced quotient operator AY : X/YV — X/YV.
Applying Kaplansky’s lemma Theorem 12 to AYgives a non trivial polynomial (of
degree < k) po € Poly for which

(13.3) po(A)(X)C YV,

If Y is of dimension m, with basis y = (y1,¥2,.-.,Ym), then again by assumption

there are non-trivial polynomials g1, q2, . .., qm (of degree < k) for which
(13.4) gi(A)Ay; €Y (i=1,2,...,m).

and hence complex numbers (A;;) = B for which

(13.5) q,'(A)Ay; = Z/\ijyj (i: 1,2,.‘.,m).
i=1

This gives

(13.6) QA)y=0eY™,

treating the basis y € Y™ as a column matrix, where Q(A) € L(X,X)™ is the
“operator matrix” .

QA)=BRI-qA)I®A) =

(137) )\111 - ql(A)A /\121 .- /\lml
- Azll /\ggI - IJQ(A)A e ! /\2,,1.[
Amrl Amal oo Ammd —qm(A)A

It follows ([9], Problem 70; [12],(2.0.4) p. 108)
(13.8) go(A)y; =0 (j=1,2,...,m) with go(A) = det Q(A) € L(X, X):
since all the entries of Q(A) commute we can write adj Q(A)-Q(A) = qo(A)®1, exactly

as in the numerical case. It now follows ¢o(A)Y = 0 and hence go(A)Poly(A)Y = {0}

and hence

(13.9) 20(A)po(A)X C go(A)YY = {0}.
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Our final observation explains why (13.5) was not replaced by something simpler:

by construction
(13.10) degree(q0) = m,

which ensures 0 # gopo € Poly. ]
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