TAYLOR EXACTNESS AND KAPLANSKY'S LEMMA

ROBIN HARTE

0. If $T: X \to Y$ and $S: Y \to Z$ are linear operators between complex spaces we shall call the pair (S,T) exact iff

$$(0.1) S^{-1}(0) \subseteq T(X),$$

whether or not the chain condition

$$(0.2) ST = 0$$

is satisfied. For example if T=0 this means that S is one-one; if S=0 this means that T is onto. When S and T are bounded operators between normed spaces we shall call the pair (S,T) weakly exact if

$$(0.3) S^{-1}(0) \subseteq \operatorname{cl} T(X),$$

and split exact if there are bounded $T': Y \to X$ and $S': Z \to Y$ for which

$$(0.4) S'S + TT' = I.$$

It is clear'at once that

(0.5)
$$(S,T)$$
 split exact \Longrightarrow (S,T) exact \Longrightarrow (S,T) weakly exact;

conversly if S and T are both regular in the sense that there are bounded $T^*: Y \to X$ and $S^*: Z \to Y$ for which

$$(0.6) T = TT^{\dagger}T \text{ and } S = SS^{\dagger}S$$

then there is implication

$$(0.7) (S,T) weakly exact \Longrightarrow (S,T) split exact;$$

indeed if (0.3) and (0.6) both hold then ([11], Theorem 10.3.3)

$$(0.8) (I - TT^{\wedge})(I - S^{\wedge}S) = 0,$$

giving two candidates for T' and S' to satisfy (0.4).

LEMMA 1. If $U: W \to X$, $T: X \to Y$ and $V: Y \to Z$ are linear there is implication

$$(1.1) (V, TU) \ \text{exact}, \ (T, U) \ \text{exact} \Longrightarrow (VT, U) \ \text{exact}$$

and

$$(1.2) (VT, U) exact, (V, T) exact \Longrightarrow (V, TU) exact.$$

If U, T and V are bounded there is implication

(1.3)
$$(V, TU), (T, U)$$
 split exact $\Longrightarrow (VT, U)$ split exact

and

(1.4)
$$(VT, U), (V, T)$$
 split exact $\Longrightarrow (V, TU)$ split exact.

Proof. These are beefed up versions of parts of Theorem 10.9.2 and Theorem 10.9.4 of [11]: for example if $V^{-1}(0) \subseteq TU(W)$ and $T^{-1}(0) \subseteq \dot{U}(W)$ then

$$VTx = 0 \Longrightarrow Tx \in V^{-1}(0) \subseteq TU(W) \Longrightarrow x - Uw \in T^{-1}(0) \subseteq U(W).$$

Lemma 1 does not extend to weak exactness: to violate the weak analogue of (1.2) take ([8], Example 1) U=0, T one-one dense but not onto and $V^{-1}(0)=\mathbb{C}e$ with $e\in Y\setminus T(X)$.

LEMMA 2. If $U:W\to X$ and $V:Y\to Z$ are bounded and linear, and $T=TT^T:X\to Y$ is regular, then

$$(2.1) V^{-1}(0) \subseteq T(X) \Longrightarrow T^{\wedge}V^{-1}(0) \subseteq (VT)^{-1}(0)$$

and

$$(2.2) T^{-1}(0) \subseteq U(W) \Longrightarrow T^{\wedge}TU(W) \subseteq U(W).$$

Also

$$(2.3) V'V + TT' = I \Longrightarrow VTT^{\wedge} = V''V$$

and

$$(2.4) T'T + UU' = I \Longrightarrow T^{\dagger}TU = UU''.$$

Proof. The first part of this is essentially given by Mbekhta ([18], Proposition 2.4): to see (2.1) argue

$$Vy = 0 \Longrightarrow VTT^{\wedge}y = VTT^{\wedge}Tx = VTx = Vy = 0.$$

For (2.3) take
$$V'' = VTT^{\wedge}V' + I - VV'$$
.

It is familiar that the product of regular operators need not to be regular ([11], (7.3.6.17); [3], §2.8), and that regularity of the product need not imply regularity of the factors ([11], (7.3.6.16); [3], §2.8):

THEOREM 3. If $T: X \to Y$ and $S: Y \to Z$ are bounded and linear and (S,T) is split exact then

(3.1)
$$ST$$
 regular, $\iff S, T$ regular.

Proof. If ST = STUST and S'S + TT' = I then

$$(I - TT')T(I - UST) = 0 = (I - STU)S(I - S'S).$$

Conversley if $S = SS^S$ and $T = TT^T$ and $S^{-1}(0) \subseteq cl T(X)$ then ([10], Theorems 3.8.3, 2.5.4) by (0.3)

$$STT^{\wedge}S^{\wedge}ST = S(TT^{\wedge} + S^{\wedge}S - I)T = ST.$$

When $T: X \to X$ and $S: X \to X$ are complex linear operators on the space X we call the pair (S,T) left non-singular if

(3.2)
$$S^{-1}(0) \cap T^{-1}(0) = \{0\},\$$

right non-singular if

$$(3.3) S(X) + T(X) = X,$$

and middle non-singular if, in matrix notation,

$$(3.4) (-S T)^{-1}(0) \subseteq {T \choose S}(X).$$

This last condition means of course that whenever Sy = Tx there is z for which y = Tz and x = Sz, and is a special case of (0.1). Each of these conditions is symmetric in S and T, and not restricted to pairs (S,T) which are commutative in the sense that

$$(3.5) ST = TS.$$

Gonzales ([7], Proposition) has essentially shown

THEOREM 4. Necessary and sufficient for middle non-singularity of (S, T) are the following three conditions:

$$(4.1) S^{-1}(0) \subseteq T S^{-1}(0);$$

$$(4.2) T^{-1}(0) \subseteq ST^{-1}(0);$$

$$(4.3) S(X) \cap T(X) \subseteq (ST)(TS - ST)^{-1}(0)$$

If (4.1) and (4.2) hold then also

$$(3.4) (ST)^{-1}(0) + (TS)^{-1}(0) \subseteq S^{-1}(0) + T^{-1}(0).$$

Proof. Suppose first that middle non-singularity (3.4) holds: then

$$Sy = 0 \Longrightarrow (-S \quad T) \begin{pmatrix} y \\ 0 \end{pmatrix} = 0 \Longrightarrow \begin{pmatrix} y \\ 0 \end{pmatrix} = \begin{pmatrix} T \\ S \end{pmatrix} x,$$

giving y = Tx with $x \in S^{-1}(0)$; this proves (4.1), and similary (4.2). Also

$$w = Tx = Sy \Longrightarrow \begin{pmatrix} y \\ x \end{pmatrix} = \begin{pmatrix} T \\ S \end{pmatrix} z \Longrightarrow w = STz = TSz,$$

giving (4.3). Conversely if these conditions hold then, using first (4.3),

$$\begin{pmatrix} y \\ x \end{pmatrix} \in (-S \ T)^{-1}(0) \Longrightarrow Sy = Tx = STz = TSz,$$

giving $y - Tz \in S^{-1}(0) \subseteq TS^{-1}(0)$ and $x - Sz \in T^{-1}(0) \subseteq ST^{-1}(0)$, so that there are u and v for which

$$y - Tz = Tu$$
 with $Su = 0$ and $x - Sz = Sv$ with $Tv = 0$:

but now $\binom{T}{S}(z+u+v)=\binom{y}{x}$, as required by (3.4). Towards the last part we assume only (4.1), and claim

$$(ST)^{-1}(0) \subseteq S^{-1}(0) + T^{-1}(0):$$

for if (ST)x = 0 then $Tx \in TS^{-1}(0)$, giving Tx = Tz with Sz = 0, and hence

$$x = (x - z) + z \in T^{-1}(0) + S^{-1}(0).$$

The conditions (4.3) and (4.4) are not together sufficient for either (4.1) or (4.2), even in the presence of commutativity: if for example

$$(4.6) S = T = P = P^2 \neq I$$

is a non-trivial idempotent then both (4.3) and (4.4), and of course also (3.5), hold, while neither (4.1) nor (4.2) are satisfied. The condition (4.1) and (4.2) are not together sufficient for (4.3): for example take S = T to be one-one with $T(X) \neq T^2(X)$. Specifically if $X = \ell_2$ we can take S = T = U the forward shift with $(Ux)_{n+1} = x_n$ and $(Ux)_1 = 0$. Curto ([5], pp 71-72) has shown essentially that, in the presence of commutativity (3.5), middle non-singularity (3.4) is equivalent to (4.1) together with

$$(4.7) T^{-1}S(X) \subseteq S(X),$$

and therefore also (4.2) together with

$$(4.8) S^{-1}T(X) \subseteq T(X)$$

"Duality" considerations then suggest that (4.7), (4.8) and (4.4) might together be equivalent to (3.4). This however fails without commutativity: if for example $X = \ell_2$ we can take T = V, the backward shift with $(Vx)_n = x_{n+1}$, and S = W with $(Wx)_n = (1/n)x_n$, to satisfy both (4.7) and (4.8), and also (4.4), but not (3.4). Sufficient for the non-singularity conditions (3.2)-(3.4) are the corresponding invertibility conditions: we call the pair (S, T) left invertible if there is another pair (S', T') for which

$$(4.9) S'S + T'T = I,$$

ŀ

right invertible if there is another pair (S'', T'') for which

$$(4.10) SS'' + TT'' = I,$$

and middle invertible if there are pairs (S',T') and (S'',T'') for which, in matrix notation,

(4.11)
$$\begin{pmatrix} -S'' \\ T'' \end{pmatrix} (-S \quad T) + \begin{pmatrix} T \\ S \end{pmatrix} (T' \quad S') = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}.$$

In the context of pure linear algebra it is clear that "invertibility" and "non-singularity" are equivalent, by the argument for (0.7); for bounded linear operators between normed spaces we require that the "left", "right" and "middle" inverses be made out of bounded operators. When the operators S and T commute and the space X is a Hilbert space then non-singularity implies invertibility; for Banach spaces this question appears to be still open ([9], pp. 73-74). In general it is sufficient for left, right and middle invertibility that (4.9) holds for a pair (S', T') such that

(4.12)
$$(S', S), (S', T), (T', T), (T', S)$$
 are commutative.

The reader may suspect that there is an analogue for Theorem 4 with "invertibility" in place of "non-singularity": the author has been unable to find it. The invertible analogues of the conditions (4.1) and (4.2), and of (4.7) and (4.8), are not hard to find — each consists of either a column or a row from (4.11): the reader is invited to think up invertible analogues for (4.3) and (4.4). Theorem 4 should also have an analogue for "weak exactness": thus (3.2) is equivalent to implication

$$(4.13) SU = TU = 0 \Longrightarrow U = 0,$$

the weakly exact analogue of (3.3) is

$$(4.14) VS = VT = 0 \Longrightarrow V = 0,$$

and the weakly exact analogue of (3.4) is

$$(4.15) \qquad (-S \quad T) \begin{pmatrix} -U' \\ U \end{pmatrix} = (V \quad V') \begin{pmatrix} T \\ S \end{pmatrix} = 0 \Longrightarrow (V \quad V') \begin{pmatrix} -U' \\ U \end{pmatrix} = 0.$$

It is not hard, starting from the "invertible" versions of (4.1) and (4.2), and of (4.7) and (4.8), to write down corresponding weak versions of these four conditions.

The next observation is again based on Gonzales ([7], Theorem), and has also been noted by Curto ([5], p. 72):

THEOREM 5. If (S_1, S_2, T) is commutative then there is equivalence

(5.1)
$$(S_1S_2,T)$$
 non-singular \iff (S_1,T) and (S_2,T) non-singular

and equivalence

(5.2)
$$(S_1S_2, T)$$
 invertible \iff (S_1, T) and (S_2, T) invertible.

Proof. Consider first invertibility: if $S_1'S_1 + T_1'T = I = S_2'S_2 + T_2'T$ then

$$I = S_2'(S_1'S_1 + T_1'T)S_2 + T_2'T = (S_2'S_1')S_1S_2 + (S_2'T_1'S_2 + T_2')T;$$

conversley if $S'_{12}S_1S_2 + T'_{12}T = I$ then

$$(S'_{12}S_2)S_1 + T'_{12}T = I = (S'_{12}S_1)S_2 + T'_{12}T.$$

This proves (5.2) for left invertibility, and similarly for right invertibility. Towards middle invertibility, suppose that

(5.3)
$$\mathbf{R}'\mathbf{S}' + \mathbf{S}\mathbf{R} = \mathbf{I}$$
 with $\mathbf{S} = \mathbf{U}\mathbf{T}$, $\mathbf{S}'\mathbf{U} = \mathbf{U}'\mathbf{T}'$ and $\mathbf{W}'\mathbf{T}' + \mathbf{W}\mathbf{U} = \mathbf{I}$:

then

$$U = R'S'U + SRU = R'U'T' + UTRU$$

giving

$$WR'U'T' = WU(I - TRU) = (I - W'T')(I - TRU)$$

and hence

(5.4)
$$(\mathbf{W}\mathbf{R}'\mathbf{U}' + \mathbf{W}')\mathbf{T}' + \mathbf{T}(\mathbf{R}\mathbf{U}) = \mathbf{I}.$$

The implication $(5.3) \Longrightarrow (5.4)$, which we have just proved, gives forward implication in (5.2) for middle invertibility if we take

(5.5)
$$\mathbf{T} = \begin{pmatrix} T \\ S_1 \end{pmatrix}$$
, $\mathbf{T}' = \begin{pmatrix} -S_1 & T \end{pmatrix}$, $\mathbf{S} = \begin{pmatrix} T \\ S_1 S_2 \end{pmatrix}$ and $\mathbf{S}' = \begin{pmatrix} -S_1 S_2 & T \end{pmatrix}$

with

(5.6)
$$\mathbf{U} = \begin{pmatrix} I & 0 \\ 0 & S_2 \end{pmatrix}, \ \mathbf{U}' = S_2, \ \mathbf{W} = \begin{pmatrix} I & 0 \\ T'_{12}S_1 & S'_{12}S_1 \end{pmatrix}, \ \mathbf{W}' = \begin{pmatrix} 0 \\ T'_{12} \end{pmatrix}, \\ \mathbf{R} = \begin{pmatrix} T'_{12} & S'_{12} \end{pmatrix}, \ \mathbf{R}' = \begin{pmatrix} -S''_{12} \\ T''_{12} \end{pmatrix}.$$

Conversley if

(5.7)
$$\begin{pmatrix} -S_1' \\ T_1' \end{pmatrix} (-S_1 \quad T) + \begin{pmatrix} T \\ S_1 \end{pmatrix} (S_1'' \quad T_1'') = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$$

then since again $\begin{pmatrix} T \\ S_1 S_2 \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & S_2 \end{pmatrix} \begin{pmatrix} T \\ S_1 \end{pmatrix}$ we have

$$\begin{pmatrix} I & 0 \\ 0 & S_2 \end{pmatrix} = \begin{pmatrix} -S_1' \\ S_2 T_1' \end{pmatrix} \begin{pmatrix} -T & S_1 \end{pmatrix} + \begin{pmatrix} T \\ S_1 S_2 \end{pmatrix} \begin{pmatrix} T_1'' & S_1'' \end{pmatrix}$$

giving
$$\begin{pmatrix} 0 \\ S_2 \end{pmatrix} = \begin{pmatrix} -S_1' \\ S_2 T_1' \end{pmatrix} T + \begin{pmatrix} T \\ S_1 S_2 \end{pmatrix} S_1''$$
 and hence

(5.8)
$$\begin{pmatrix} T \\ S_1 S_2 \end{pmatrix} S_1'' = \begin{pmatrix} S_1' & 0 \\ -S_2 T_1' & I \end{pmatrix} \begin{pmatrix} T \\ S_2 \end{pmatrix}$$

and also

(5.9)
$$\binom{I}{0} = \binom{-S_1'}{S_2 T_1'} (S_1) + \binom{T}{S_1 S_2} T_1''.$$

Combining (5.8) with

(5.10)
$$\begin{pmatrix} -S_2' \\ T_2' \end{pmatrix} (-S_2 \quad T) + \begin{pmatrix} T \\ S_2 \end{pmatrix} (T_2'' \quad S_2'') = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$$

gives

$$(5.11) \qquad \begin{pmatrix} S_1'' & 0 \\ -S_2T_1' & I \end{pmatrix} = \begin{pmatrix} S_1'S_2' \\ S_2T_1'S_2' + T_2' \end{pmatrix} (-S_2 \quad T) + \begin{pmatrix} T \\ S_1S_2 \end{pmatrix} S_1'' (T_2'' \quad S_2''),$$

which combines with (5.9) to give

(5.12)
$$\binom{I}{0} = \binom{T}{S_1 S_2} (T_1'' + S_1'' T_2 S_1) + \binom{S_1' S_2'}{S_2 T_1' S_2 + T_2'} (-S_2 S_1).$$

From (5.11) and (5.12) we get

(5.13)
$$\begin{pmatrix} S_{1}' & 0 & I \\ -S_{2}T_{1}' & I & 0 \end{pmatrix} = \begin{pmatrix} S_{1}'S_{2}' \\ S_{2}T_{1}'S_{2}' + T_{2}' \end{pmatrix} (-S_{2} & T & -S_{2}S_{1}) + \\ + \begin{pmatrix} T \\ S_{1}S_{2} \end{pmatrix} (S_{1}''T_{2}'' & S_{1}''S_{2}'' & T_{1}'' + S_{1}''T_{2}''S_{1}),$$

from which we can read off

(5.14)
$$\begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} S_1' S_2' \\ S_2 T_1' S_2' + T_2' \end{pmatrix} (-S_1 S_2 \quad T) + \\ + \begin{pmatrix} T \\ S_1 S_2 \end{pmatrix} (T_1'' + S_1'' T_2'' S_1 \quad S_1'' S_2'').$$

This is backward implication in (5.2) for middle invertibility, and completes the proof of (5.2). With the information displayed in the proof of (5.2), the argument for (5.1) can be left to the reader.

For bounded linear operators between Banach spaces, (5.1) follows from the spectral mapping theorem for the Taylor spectrum, and then (5.2) from the corresponding theorem for the "Taylor split spectrum" ([11], Theorems 11.9.10, 11.9.11). Our derivation of forward implication in (5.2) is based on the corresponding argument for non-singularity ([10], Theorem 4.3; [6]); our derivation of backward implication in (5.2) also follows from the corresponding argument for non-singularity, which is what is given by Gonzales [7]. The reader may find it entertaining to try and carry out the matrix juggling in terms of operator calculations; he may also like to try and do the non-singularity argument (5.1) in a general ring, using conditions (4.13)-(4.15).

If $T: X \to X$ is linear then its hyperrange and hyperkernel are the subspaces

(5.15)
$$T^{\infty}(X) = \bigcap_{n=1}^{\infty} T^n(X)$$

and

(5.16)
$$T^{-\infty}(0) = \bigcup_{n=1}^{\infty} T^{-n}(0);$$

when T is continuous on a normed spaces X neither of these need be closed. If we write

(5.17)
$$comm(T) = \{ S \in BL(X, X) : ST = TS \}$$

for the commutant of T and

(5.18)
$$\operatorname{comm}^{-1}(T) = \operatorname{comm}(T) \cap BL^{-1}(X, X)$$

for the invertible commutant of T, then we can collect the following

LEMMA 6. If $T \in BL(X,X)$ is arbitrary then

$$(6.1) T^{-1}T^{-\infty}(0) \subseteq T^{-\infty}(0)$$

and

(6.2)
$$T$$
 essentially one-one $\Longrightarrow T^{\infty}(X) \subseteq TT^{\infty}(X)$.

If $S \in \text{comm}(T)$ then

(6.3)
$$ST^{-\infty}(0) \subseteq T^{-\infty}(0) \text{ and } ST^{\infty}(X) \subseteq T^{\infty}(X).$$

If $S \in \text{comm}^{-1}(T)$ then

(6.4)
$$(T-S)^{-1}(0) \subseteq T^{\infty}(X) \text{ and } T^{-\infty}(0) \subseteq (T-S)(X).$$

Proof. This is Theorem 7.8.3 of [11].

We shall call the operator $T: X \to X$ self-exact if the pair (T,T) satisfies (0.1):

$$(6.5) T^{-1}(0) \subseteq T(X),$$

n-exact if (T, T^n) satisfies (0.1):

$$(6.6) T^{-1}(0) \subseteq T^n(X),$$

and hyperexact if

$$(6.7) T^{-1}(0) \subseteq T^{\infty}(X).$$

There are various equivalent forms of these conditions:

THEOREM 7. If $T: X \to X$ is linear and $n \in \mathbb{N}$ and m + k = n + 1 then

$$(7.1) T^{-1}(0) \subseteq T^{n}(X) \Longleftrightarrow T^{-k}(0) \subseteq T^{m}(X) \Longleftrightarrow T^{-n}(0) \subseteq T(X).$$

and

$$(7.2) T^{-1}(0) \subseteq T^{\infty}(X) \Longleftrightarrow T^{-\infty}(0) \subseteq T^{\infty}(X) \Longleftrightarrow T^{-\infty}(0) \subseteq T(X).$$

If $T = TT^T$ is regular then

(7.3)
$$T^{\wedge}T^{\infty}(X) \subseteq T^{\infty}(X) \text{ and } T^{\wedge}T^{-\infty}(0) \subseteq T^{-\infty}(0).$$

If $S \in \text{comm}^{-1}(T)$ then

$$(7.4) (T-S)^{-\infty}(0) \subseteq T^{\infty}(X) \text{ and } T^{-\infty}(0) \subseteq (T-S)^{\infty}(X)$$

and

(7.5)
$$T^{-\infty}(0) \cap (T-S)^{-\infty}(0) = \{0\}$$

and for each $m, n \in \mathbb{N}$

(7.6)
$$T^{m}(X) + (T - S)^{n}(X) = X.$$

Proof. The first half of this comes from Lemma 1 and Lemma 2, taking U and V to be powers of T. For the last part factorise $(T^m - S^m)^n$ in two ways to see that $((T-S)^n, T^m)$ satisfies (4.9)-(4.11) for each m and n:

(7.7)
$$S^{mn} - r_{m,n}(T,S)T^m = (T-S)^n q_m(T,S)^n$$

for certain polynomials q_m and $r_{m,n}$.

We cannot replace m and n by ∞ in (7.6): for a counterexample take T=U to be the forward shift on $X=\ell_2$ and S=I.

DEFINITION 8. Call $T \in BL(X,X)$ hyper-regular if it is regular and hyper-exact. We shall say that T is "consortedly regular" if there are sequences (S_n) in $comm^{-1}(T)$ and (T_n^{\wedge}) in BL(X,X) for which

(8.1)
$$||S_n|| + ||T_n^{\wedge} - T^{\wedge}|| \longrightarrow 0 \text{ and } T - S_n = (T - S_n)T_n^{\wedge}(T - S_n),$$

and "holomorphically regular" if there is $\delta > 0$ and a holomorphic mapping $T_z^{\Lambda} : \{|z| < \delta\} \longrightarrow BL(X,X)$ for which

(8.2)
$$T - \lambda I = (T - \lambda I)T_{\lambda}^{\wedge}(T - \lambda I) \quad \text{for each } |\lambda| < \delta.$$

Mbekhta ([18], Théorème 2.6) has essentially proved

THEOREM 9. If X is complete and $T \in BL(X, X)$ then

(9.1) T consortedly regular $\Longrightarrow T$ hyper-regular $\Longrightarrow T$ holomorphically regular.

Proof. If T is consortedly regular then, using (6.4), there is inclusion $T^{-k}(0) \subseteq \subseteq (T-S_n)(X)$ for arbitrary k and n, where S_n satisfies (8.1), and hence if $T^k x = 0$ then $x = (T - S_n)T_n^{\wedge}x$ giving

$$(I-TT^{\wedge})x = ((T-S_n)T_n^{\wedge} - TT^{\wedge})x \longrightarrow 0$$
 as $n \longrightarrow 0$,

and hence $x = TT^*x \in T(X)$. This gives, without completeness, the first implication of (9.1). Conversely suppose $T = TT^*T$ is hyper-regular and $S \in \text{comm}(T)$ with $||S|| \cdot ||T^*|| < 1$: using (6.3) and (7.3) and expanding $(I - T^*S)^{-1}$ in the geometric series gives

$$S(I - T^{\wedge}S)^{-1}T^{-1}(0) \subseteq \operatorname{cl} T^{-\infty}(0) \subseteq \operatorname{cl} T(X)$$

and hence

$$(I - TT^{\wedge})S(I - T^{\wedge}S)^{-1}(I - T^{\wedge}T) = 0,$$

which by (3.8.4.3) from the proof of Theorem 3.8.4 [11] says

$$(9.2) T - S = (T - S)(I - T^{\wedge}S)^{-1}T_{\cdot}^{\wedge}(T - S).$$

Specialising to scalar $S = \lambda I$ gives the second implication of (9.1).

The derivation of (9.2) is based on Caradus [4]; cf also Theorem 3.9 of Nashed [20]. If we observe

(9.3)
$$T^{\wedge}(T-S) + (I-T^{\wedge}T) = I - T^{\wedge}S$$

that $I - T^S$ sends the null space of T - S into the null space of T, then we can see why if T is Fredholm and $I - T^S$ is one-one then $\dim(T - S)^{-1}(0) \leq \dim T^{-1}(0)$ ([11], Theorem 6.4.5). Conversley if $T \doteq TT^T$ is hyperregular and $S \in \text{comm}^{-1}(T)$ has small enough norm,

(9.4)
$$(T-S)^{\Lambda}T + I - (T-S)^{\Lambda}(T-S) = I + (T-S)^{\Lambda}S \text{ with } (T-S)^{\Lambda} = (I-T^{\Lambda}S)^{-1}T^{\Lambda},$$

furnishing an invertible operator which sends the null space of T into the null space of T-S. In the Fredholm case this is the Kato zero jump condition [1], [24], [21].

Theorem 9 says that the hyper-regular operators form a "comutatively open" subset of BL(X,X), and hence that a certain kind of "spectrum" is closed in \mathbb{C} . We may also observe that the topological boundary of the usual spectrum is contained in this "hyper-regular spectrum":

$$(9.5) \{T \in \operatorname{cl}_{\operatorname{comm}} BL^{-1}(X, X) : T \text{ hyper - regular}\} \subseteq BL^{-1}(X, X)$$

We are claiming that if hyper-regular T is the limit of a sequence $T - S_n$ of invertible operators which commute with T then T must also be invertible. It follows from (9.2) that if T - S and $I - T^{S}$ are both invertible then so is T^{S} ; since this argument extends to T^{T} this also makes T invertible.

The spectral mapping theorem for polynomials extends to the "hyper-regular spectrum":

THEOREM 10. If ST = TS then

$$(10.1) ST self-exact \Longrightarrow S, T self-exact$$

and

(10.2)
$$ST$$
 hyper-regular $\implies S, T$ hyper-regular.

If ST = TS and (S, T) is middle exact then

(10.3)
$$S, T \text{ self-exact} \Longrightarrow ST \text{ self-exact}$$

and

(10.4)
$$S, T \text{ hyper-regular} \Longrightarrow ST \text{ hyper-regular}.$$

Proof. The first part is an extension of Mbekhta ([19], Lemme 4.15): if $(ST)^{-1}(0) \subseteq (ST)(X)$ then

$$T^{-1}(0) \subseteq (ST)^{-1}(0) \subseteq (ST)(X) = (TS)(X) \subseteq T(X),$$

and similarly for S and powers T^n and S^m . This gives (10.1) and most of (10.2): for the regularity of S and T observe that if ST = STUST and $(ST)^1(0) \subseteq (ST)(X)$ then (I - STU)(I - UST) = 0 giving (since ST = TS)

$$TSU - STU^2TS + UTS = I$$

now apply (3.1). Conversley, for (10.3), use (4.1)–(4.4):

$$(ST)^{-1}(0) \subseteq S^{-1}(0) + T^{-1}(0) \subseteq S(X) \cap T(X) \subseteq (ST)(X).$$

This gives (10.3) and most of (10.4): the regularity of ST is (3.1) again.

The middle exactness condition in the second part is unnecessarily strong: it misses the rather easy

(10.5)
$$T \text{ hyper-regular} \Longrightarrow T^n \text{ hyper-regular}.$$

Three aplications of Lemma 1 show that, if ST = TS,

(10.6)
$$(S^2, T^2), (T^2, S^2)$$
 exact

is sufficient for (10.3): by (1.1) (S^2, T^2) and (T, T) exact imply (S^2T, T) exact and (T^2, T^2) exact and (S, S) exact imply (ST^2, S) and hence (ST, S) exact; then (1.2) says that (S^2T, T) and (ST, S) exact imply (ST, ST) exact.

One situation in which all the invertibility and non-singularity conditions for (S,T) are satisfied is when we can write

$$(10.7) S = q(A), T = r(A)$$

for an operator $A: X \to X$ and polynomials q and r without non-trivial common factor. In general polynomials q and r have a unique "highest common factor" hcf(q, r) determined by the logical equivalence

$$(10.8) \{q, r\} \subseteq (\text{Poly})p \iff \text{hcf}(q, r) \in (\text{Poly})p,$$

together with the requirement that it be "monic" (unless either q or r is 0, in which case also hcf(q,r)=0). It is now familiar that, by the Euclidean algorithm,

(10.9)
$$hcf(q, r) \in (Poly)q + (Poly)r,$$

so that there are polynomials q' and r' for which hcf(q,r) = q'q + r'r. If in particular hcf(q,r) = 1, so that q and r have no non-trivial common factors, then (in the algebra Poly) the pair (q,r) satisfies all the invertibility conditions (4.9)–(4.11) (since the analogue of (4.12) holds). This extends to the pair (S,T) = (q(A),r(A)), with (S',T') = (q'(A),r'(A)) whenever $A:X\to X$ is an operator: thus if (10.7) holds then the non-singularity conditions (3.2)–(3.4) are satisfied.

LEMMA 11. If $A: X \to X$ is linear there is equality

(11.1)
$$\sum_{\lambda \in \mathbf{C}} (A - \lambda I)^{-\infty}(0) = \bigcup_{0 \neq p \in \text{Poly}} p(A)^{-1}(0)$$

and

(11.2)
$$\bigcap_{\lambda \in C} (A - \lambda I)^{\infty}(X) = \bigcap_{0 \neq p \in Poly} p(A)(X).$$

Proof. The left hand side of (11.1) is obviously included in the right; conversley if $p = qr \in \text{Poly}$ with hcf(q, r) = 1 then by (4.4)

(11.3)
$$p(A)^{-1}(0) = q(A)^{-1}(0) + r(A)^{-1}(0).$$

More generally if $p = q_1q_2 \dots q_n$ is a finite product of factors q_j of which no pair has any common factors then the null space of p(A) is the sum of the null spaces $q_j(A)^{-1}(0)$; but by the fundamental theorem of algebra p is a product of polynomials of the form $(z - \lambda)^k$ for distinct complex numbers λ . This proves (11.1). Similarly, the right hand side of (11.2) is included in the left, and the opposite inclusion follows by the inductive extension of equality (4.3):

(11.3')
$$p(A)(X) = q(A)(X) \cap r(A)(X)$$

if p = qr with hcf(q, r) = 1.

The operator $A: X \to X$ is described as algebraic if there exists a non-trivial polynomial $p \in \text{Poly for which}$

$$(11.4) p(A)^{-1}(0) = X,$$

and as locally algebraic if

(11.5)
$$\bigcup_{0 \neq p \in \text{Poly}} p(A)^{-1}(0) = X.$$

The intermediate notion is that A is boundedly locally algebraic if there is $k \in \mathbb{N}$ for which

(11.6)
$$X = \bigcup \{p(A)^{-1}(0) : 0 \neq p \in \text{Poly, degree}(p) \leqslant k\}.$$

For bounded linear operators between Banach spaces, an application of Baire's theorem says that $(11.5) \Longrightarrow (11.6)$ ([14], Theorem 15; [22], Theorem 4.8; [23], (3.4)); our interest here is to expound Kaplansky's lemma ([14], Lemma 14; [22], Theorem 4.8; [23], (3.5)), which says that $(11.6) \Longrightarrow (11.4)$:

THEOREM 12. If $A: X \to X$ is boundedly locally algebraic then it is algebraic.

Proof. If A is locally algebraic in the sense of (11.5) then by (11.1) there is equality

(12.1)
$$\sum_{\lambda \in \mathbb{C}} (A - \lambda I)^{-\infty}(0) = X;$$

for a boundedly locally algebraic operator to be algebraic it is necessarry and sufficient that it have a finite set of eigenvalues (12.2)

$$\pi^{\text{left}}(A) = \left\{ \lambda \in \mathbb{C} : (A - \lambda I)^{-1}(0) \neq \{0\} \right\} = \left\{ \lambda \in \mathbb{C} : (A - \lambda I)^{-\infty}(0) \neq \{0\} \right\}.$$

We claim that if the set $\pi^{\text{left}}(A)$ is finite then the condition (11.6) must fail: for if $\lambda_1, \lambda_2, \ldots, \lambda_m$ are pairwise distinct eigenvalues of A, with corresponding eigenvectors x_1, x_2, \ldots, x_m , and $p \in \text{Poly}$ is a polynomial, we claim that there is implication

(12.3)
$$p(A)\left(\sum_{j=1}^{m} x_j\right) = 0 \Longrightarrow \{x_1, x_2, \dots x_m\} \subseteq p(A)^{-1}(0) \Longrightarrow \{\lambda_1, \lambda_2, \dots, \lambda_m\} \subseteq p^{-1}(0),$$

forcing degree $(p) \geqslant m$. To see why the first part of (12.3) holds argue that

(12.4)
$$hcf(q,r) = 1, \quad q(A)y = r(A)z = 0, \quad y+z=0 \Longrightarrow y=z=0$$
:

this is because the pair (S,T)=(q(A),r(A)) satisfies the condition (3.2) so that equality y+z=0 puts y=-z in $q(A)^{-1}(0)\cap r(A)^{-1}(0)=\{0\}$. To apply (12.4) to the first part of (12.3) take

$$y = x_j, \ z = \sum_{i \neq j} x_i, \ q = z - \lambda_j, \ r = \prod_{i \neq j} z - \lambda_i.$$

To see why the second part of (12.3) holds observe that

$$(12.5) p(\lambda_i) \neq 0 \Longrightarrow hcf(p, z - \lambda_i) = 1 \Longrightarrow p(A)^{-1}(0) \cap (A - \lambda_i I)^{-1}(0) = \{0\}.$$

When the operator A is algebraic then (12.1) becomes a finite direct sum decomposition of the space X: this decomposition makes it clear, as is observed by Aupetit [2], that if $k \in \mathbb{N}$ satisfies the condition (11.6) then (11.4) can be satisfied with degree $(p) \leq k$. When A is algebraic then each existing inverse $(A - \lambda I)^{-1}$ is expressible as a polinomyal in A: when X is finite dimensional this is one of the familiar applications of the Cayley-Hamilton theorem. We may also observe, as in the finite dimensional case [13], [17], that when $(A - \lambda I)^{-1}$ does not exist, then all the eigenvectors $x \in (A - \lambda I)^{-1}(0)$ lie in the range of a related polynomial in A: the simple observation is that if p(A) = 0 and p = qr with hcf(q, r) = 1 then

(12.6)
$$q(A)^{-1}(0) = r(A)(X)$$
 and $r(A)^{-1}(0) = q(A)(X)$.

We conclude by expounding another generalization of Kaplansky's lemma; the unpublished argument is due to Laffey ([16], Lemma 1; [23], (3.5)):

THEOREM 13. If the operator $A: X \to X$ is boundedly locally algebraic modulo a finite dimensional subspace $Y \subseteq X$, then is algebraic.

Proof. The assumption is that there is $k \in \mathbb{N}$ for which, for each $x \in X$, there is a non-trivial polynomial $p_x \in \text{Poly for which}$

(13.1)
$$\operatorname{degree}(p_x) \leq k \text{ and } p_x(A)x \in Y.$$

We are not assuming that the finite dimensional subspace Y is "invariant" under A in the sense that $A(Y) \subseteq Y$, but immediately replace it with the (possibly infinite dimensional) invariant subspace

(13.2)
$$Y^{\vee} = \bigcup_{p \in \text{Poly}} p(A)Y = Y + \sum_{n \in \mathbb{N}} A^{n}(Y)$$

generated by it, together with the induced quotient operator $A^{\vee}: X/Y^{\vee} \longrightarrow X/Y^{\vee}$. Applying Kaplansky's lemma Theorem 12 to A^{\vee} gives a non trivial polynomial (of degree $\leq k$) $p_0 \in \text{Poly for which}$

$$(13.3) p_0(A)(X) \subseteq Y^{\vee}.$$

If Y is of dimension m, with basis $y = (y_1, y_2, ..., y_m)$, then again by assumption there are non-trivial polynomials $q_1, q_2, ..., q_m$ (of degree $\leq k$) for which

(13.4)
$$q_i(A)Ay_i \in Y \quad (i = 1, 2, ..., m).$$

and hence complex numbers $(\lambda_{ij}) = B$ for which

(13.5)
$$q_i(A)Ay_i = \sum_{j=1}^m \lambda_{ij}y_j \quad (i = 1, 2, ..., m).$$

This gives

$$(13.6) Q(A)y = 0 \in Y^m,$$

treating the basis $y \in Y^m$ as a column matrix, where $Q(A) \in L(X,X)^m$ is the "operator matrix"

$$Q(A) = B \otimes I - q(A)(I \otimes A) =$$

(13.7)
$$= \begin{pmatrix} \lambda_{11}\dot{I} - q_{1}(A)A & \lambda_{12}I & \dots & \lambda_{1m}I \\ \lambda_{21}I & \lambda_{22}I - q_{2}(A)A & \dots & & \lambda_{2m}I \\ \dots & \dots & \dots & \dots \\ \lambda_{m1}I & \lambda_{m2}I & \dots & \lambda_{mm}I - q_{m}(A)A \end{pmatrix}.$$

It follows ([9], Problem 70; [12],(2.0.4) p. 108)

(13.8)
$$q_0(A)y_j = 0 \quad (j = 1, 2, ..., m) \text{ with } q_0(A) = \det Q(A) \in L(X, X)$$
:

since all the entries of Q(A) commute we can write adj $Q(A) \cdot Q(A) = q_0(A) \otimes I$, exactly as in the numerical case. It now follows $q_0(A)Y = 0$ and hence $q_0(A)\operatorname{Poly}(A)Y = \{0\}$ and hence

(13.9)
$$q_0(A)p_0(A)X \subseteq q_0(A)Y^{\vee} = \{0\}.$$

Our final observation explains why (13.5) was not replaced by something simpler: by construction

(13.10) $\operatorname{degree}(q_0) \geqslant m,$

which ensures $0 \neq q_0 p_0 \in Poly$.

REFERENCES

- APOSTOL, C., The reduced minimum modulus, Michigan Math. J., 32(1985), 279-294.
- AUPETIT, B., An improvement in Kaplansky's lemma for locally algebraic operators, Studia Math., 88(1985), 275-278.
- CARADUS, S. R., Operator theory of the pseudo-inverse, Queen's papers in pure and applied mathematics, 38, Queen's University, Kingston Ontario, 1978.
- CARADUS, S. R., Perturbation theory for generalized Fredholm operators II, Proc. Amer. Math. Soc., 62(1977), 72-76.
- CURTO, R. E., Applications of several complex variables to multiparameter spectral theory, in Surveys of some recent results in operator theory, Pitman Research Notes in Mathematics, 192, Longmans, 1988, pp. 25-90.
- 6. FAINSTEIN, A. S., Towards a spectral mapping theorem for the Taylor spectrum, in Spectral theory of operators and applications, 8, Azerbaidzan SSR Academy of Sciences, Baku, 1987, pp. 212-236.
- 7. GONZALES, M., Null spaces and ranges of polynomials of operators, Publ. Mat. Univ., Barcelona, 32(1988), 167-170.
- 8. GONZALES, M., HARTE, R. E., The death of an index theorem, Proc. Amer. Math. Soc., 108(1990), 151-156.
- 9. HALMOS, P. R., A Hilbert space problem book, Springer, 1982.
- HARTE, R. E., Invertibility, singularity and Joseph L. Taylor, Proc. Royal Irish Acad., 81A(1981), 71-79.
- 11. HARTE, R. E., Invertibility and singularity for bounded linear operators, Dekker, 1988.
- HARTE, R. E., Invertibility and singularity for operator matrices, Proc. Royal Irish Acad., 88A(1989), 103-108.
- HARTE, R. E., Cayley-Hamilton for eigenvalues, Bull. Irish Math. Soc., 22(1989), 66-68.
- KAPLANSKY, I., Infinite abelian groups, University of Michigan Press, Ann Arbor, Mich., 1954.
- KATO, T., Perturbation theory for nullity, deficiency and other quantities for linear operators, J. Analyse Math., 6(1958), 261-322.
- LAFFEY, T. J.; WEST, T. T., Fredholm commutators, Proc. Royal Irish Acad., 82A(1982), 129-140.
- LONDON, R. R.; ROGOSINSKI, H. P., Decomposition theory in the teaching of elementary linear algebra, Amer. Math. Monthly, 97(1970), 478-485.
- 18. MBEKHTA, M., Généralisation de la composition de Kato aux opérateurs paranormeaux et spectraux, Glasgow Math. J., 29(1987), 159-175.
- MBEKHTA, M., Resolvant géneralisé et théorie spectrale, J. Operator Theory, 21(1989), 69-105.
- NASHED, M. Z., Perturbation and approximations for generalized inverses and linear operator equations, in Generalized inverses and applications, ed. M. Z. Nashed, Academic Press, 1976, pp. 325-396.

- O'SEARCOID, M., WEST, T. T., Continuity of the generalized kernel and range of semi--Fredholm operators, Math. Proc. Cambridge Phil. Soc., 105(1989), 513-522.
- 22. RADJAVI, H.; ROSENTHAL, P., Invariant subspaces, Ergebnisse der Math., 77, Springer, 1973.
- 23. SINCLAIR, A., Automatic continuity of linear operators, Cambridge University Press, UK, 1976.
- 24. WEST, T. T., A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Royal Irish Acad., 87A(1987), 137-146.

ROBIN HARTE Queen's University Belfast, BT 7 1NN, United Kingdom.

Received December 12, 1989; revised July 3, 1990.