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INTRODUCTION

It is well known that the group of unitaries of any unital C*-algebra A, denoted by
U(A), is a deformation retract of the group of invertible elements, denoted by GL(A).
These groups and the space of nontrivial projections (self-adjoint idempotents # 0, 1)
of A, called the Grassmann space and denoted by P(A), carry important information
about the internal structure of A. The purpose of this article is to determine the homo-
topy groups m(U(A)), x(P(A)) (k > 0), and the group U(C(S*, A))/Us(C(S*, A))
in terms of Ko(A) and K;(A) in case A is a non-elementary simple C*-algebras with
real rank zero and stable rank one.

The homotopy groups m¢(U(M)) (k > 0), where M is a von Neumann algebra
without discrete summands, have been completely determined:

e (U(M)) = {K(M) k odd

0 k even,
where by discrete summands we mean the form My := @ M,_(C(X,)) for some

hyperstonean spaces Xo’s. The determination of m(U (/v?d)) remains open, since
it is reduced to determine 7(U,,), where Uy, is the unitary group of m x m full
matrix algebras over complex numbers. In turn, if 2m < k, 7¢(Uy,) remains unknown
in homotopy theory, since the problem is closely related to the fibration Uy —
— Uy — 8™, The reader is referred to the combination of [1, 8, 9, 14, 34, 35)
and the book [23] for the details.

If U (A) denotes the unitary group of the C*-algebra obtained by joining an
identity to the stabilization A ® K, where A is any unital C*-algebra and K is the
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algebra of all compact operators on a separable Hilbert space, then it follows from
the Bott periodicity of K-theory (see (23, III, 1.11; 7.7], for example) that

Ko(A) & odd

(Voo (A)) = {K1(A) k even.

If the groups of unitaries of the m x m matrix algebra over A (m > 1), denoted
by Umn(A), are concerned, the homotopy groups mr(Um(A)) change with respect
to the matrix size m in general, even in case A is a commutative C*-algebra. A
well known example is the algebra C(S3) consisting of all complex-valued continuous
functions on the 3-sphere ([5, 8.1.2(c)]). However, there are some, actually many,
classes of nonstable C*-algebras for which m(U(A)) (k > 0) are stable invariants;
ie., me(U(A)) = me(Um(A)) for all m > 1 and k > 0. M. A. Rieflel proved [31] that
if Ay is a non-commutative irrational torus, then for all m > 1

Ko(As)  k odd

m(Um(Ag)) = {Kl(Ae) k even.

Among his other relevant results in [39, 2.12; 40, 3.7], K. Thomsen proved, roughly
speaking, that if A is any C*-algebra, and if B is either an infinite dimensional simple
AF-algebra or a Cuntz algebra O, then for m > 0

Tom+1(U(A® B)) = Ko(A® B) and mam(U(AQ B)) =K,(AQ B),

where U(-) denotes the group of quasi-unitary elements of a C*-algebra (unital or
not). The author proved [46] that if A is a purely infinite simple C*-algebra (may
not be unital) and p is any nonzero projection of A, then for all m > 1

Ko (.A) k odd

rk(Um(.A')) 2 1(Um(pAp)) = {Kl(A) k even

Ki(A) k odd

me(P(A)) = mp(P(pAp)) = {Ko(-A) k even.

where A denotes the unital C*-algebra obtained by joining an identity to A in case
A is non-unital, and denotes A itself in case A is unital. To determine ;(U(A)), one
of the key points was our previous result that any purely infinite simple C*-algebra
has real rank zero (i.e., the set of self-adjoint invertible elements is norm dense in the
set of all self-adjoint elements; or equivalently, the set of self-adjoint elements with
finite spectrum is norm dense in the set of all self-adjoint elements [45; 44, part I;
13]). Then a weak (Serre) fibration

®p : U(A) — G, defined by pp(u) = upu®
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induces a long exact sequence of homotopy groups, from which mx(P(A)) were deter-
mined. '

In this article, by different techniques we prove (Theorem II in Section 2) that
if A is a non-elementary simple C*-algebras with real rank zero and stable rank one
(or equivalently, A has cancellation), and if p is any non-zero projection of A, then
forallm > 1

Ko (.A) k odd

Wk(Um(A')) =3 Wk(Um(pAp)) = {Kl(A) k even,

7t (P(A)) = me(P(pAp)) = {E;Ej; : zi:zero even,

mo(P(A)) = D(A)\{[0], (1]}, mo(P(pAp)) = D(pAp) \ {[0], [P]},

where D(A) denotes the local semigroup consisting of Murray-von Neumann equiva-
lence classes of projections in A. This result also completely determines the homotopy
type of the space of nontrivial symmetries (self-adjoint unitaries except +1 and —1)
of A, denoted by S(A), since S(A) is homeomorphic to P(A) via the map p — 2p—1.
Combined with the classic theorem of Whitehead in homotopy theory, Theorem II
leads the following isomorphism

U(C(X, A)/Us(C(X, A)) = K1(C(X, A))-

It then follows from Theorem II and the Bott periodicity that

Ko(A) @ Ki(A) & odd

U(C(Sk,f{))/Uo(C(sk»/I)) = { Kl(A) =) Kl(_A) k nonzero even.

The same conclusion holds also in cases A is a purely infinite simple C*-algebra or an
irrational non-commutative torus considered in [31]. Here, we remind the reader that
there is no known example of simple C*-algebras of real rank zero which neither is
purely infinite nor has stable rank one. The combination of the results in this article
and in [46] may have given a complete account of information about 7 (U(A)) and
m(P(A)) for all simple C*-algebras of real rank zero.

To prove our result, we will first consider halving projections in any simple C*-
-algebras of real rank zero (Theorem I in Section 1), which is analogous to the well
known fact that each projection in a factor can be halved (so can a projection in
many other von Neumann algebras [24, Chapter 6]). The arguments involved in
halving a projection in certain von Neumann algebras heavily rely on some special
features of von Neumann algebras, for example, the operations ‘v, A’ and the powerful
comparison theorem as well as traces. These, unfortunately, are not available in most
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C*-algebras. Despite the technical difficulties, we prove that each projection in any
simple C*-algebra A of real rank zero can be ‘approximately halved’, and a projection
of the multiplier algebra M(A) not in A can be exactly halved in case A is non-unital.
Consequently, a non-unital simple C*-algebra A of real rank zero is divisible in the

terminology of M. Rieffel [31]; more precisely,
A=Msn(A,) foranyn> 1.

On the other hand, a simple unital C*-algebra of real rank zero is approximately
divisible in the sense that A is *-isomorphic to a C*-algebra D, such that

M2:(An) C Dy € Manyi(An).

The above matrix algebras are over a hereditary C*-subalgebra A,, of A. This dis-
covery exposes a matricial structure of simple C*-algebras of real rank zero, which
combined with the technique in [34] and the Bott periodicity leads us to a complete
determination of the homotopy groups 7, (U(A)) and m,(P(A)) (n > 0) when A has
cancellation.

A few words left for the class of simple C*-algebras of real rank zero. This
class of C*-algebras has been intensively studied from various angles recently. All
purely infinite simple C*-algebras have real rank zero. Besides all type III factors
and the Calkin algebra, the Cuntz algebras O, (2 < n € o) and certain Cuntz-
-Krieger algebras O 4's are purely infinite simple, so are all generalized Calkin algebras
associated with purely infinite simple C*-algebras [45; 44; 43, 3.3). In addition to
all type II; factors, many interesting simple C*-algebras have real rank zero and
topological stable rank one. The reader is referred to Section 2, (2.8) of this article
for a list of examples of such C*-algebras, and to [13; 15; 20; 3; 4; 18; 22; 28; 41-46]
for more information.

The main body of this article was presented at the special sessions ‘C*-algebras
and non-commutative topology’ of the Annual AMS Meeting held at San Francisco,
Jan. 15-Jan. 20, 1991.

1. HALVING PROJECTION

The notation ‘py ~ p3’ is reserved, as usual, for the Murray-von Neumann equiv-
alence of projections p; and p; in a C*-algebra A; i.e, py ~ ps iff there exists a
partial isometry v € A such that vv* = p; and v*v = p;. [p] stands for the equi-
valence class of projections of A containing p, and D(A) denotes the set of equivalence
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classes of projections of .4, which is a local semi-group as mentioned earlier. Two el-
ements [p] < [q] iff p is equivalent to a proper subprojection of ¢, while [p] = m[q] iff
p is the sum of m mutually orthogonal subprojections equivalent to g.

A C*-algebra A is said to be non-elementary if A is neither a matrix algebra
over complex numbers nor the algebra K of all compact operators on an infinite
dimensional separable Hilbert space. In case A is a s-unital simple C*-algebra of real
rank zero, it follows immediately from [12, 2.8] that .4 is non-elementary iff .A has no
minimal nonzero projection.

1.1. THEOREM 1. Suppose that A is a non-elementary simple C*-algebra of real
rank zero.

(i) (Approximately Halving Projections) I p is a projection of A, then for any
integer n > 1 and any nonzero projection r of A there exist two subprojections py,
¢n of p such that

[Pl = 2"[pn] + [9s] with [gn] < [r] and [gn] < [pn].

In other words, p = (p{®p5®- - - ®pha)Dqn, where pl, ..., pha are mutually orthogonal,
equivalent subprojections of p and gy, is a projection equivalent to both a subprojection
of r and a subprojection of p}.

(ii) (Exactly Halving Projections) If, in addition, A is c-unital but non-unital,
and if p is a projection of M(A) not in A, then for any integer n > 1 there exists a
subprojection p, of p such that

[p] = 2"[ps] where p, € M(A)\ A.

In other words, there are mutually orthogonal subprojections p}, ..., p4s of p in M(A)
not in A such that pi ~pn (V1<i<2") andp=p\ ®phD - D pha.

1.2. Before giving the proof, we first take a look at the structure of simple C*-
algebras of real rank zero® and theirvhereditary C*-subalgebras. If B is any o-unital
hereditary C*-subalgebra of A, then B = (z.Az)~ for some positive element z of A.
The unit of B is a projection r in the Banach space double dual A** of A (actually, r
is the range projection of z, called the open projection supporting B). Then r is the
identity of M(B). It is clear that B is also simple, since A is simple. In case B is not
unital (i.e., r € A), applying Theorem I (ii) to the identity of M(B), we can find a
projection e, of M(B) not in B such that

[r] = 2*(en].

Immediately, we conclude that B is ‘divisible’ in the sense indicated in the following
corollary, which exposes a matricial structure of non-unital simple C*-algebras of real
rank zero:
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1.3. CorOLLARY. Suppose that A is a non-elementary simple C*-algebra of real
rank zero.
(i) If B is a unital hereditary C*-subalgebra of A (i.e., B = pAp for some
projection p € A), then for any integer n > 1 there exists a projection p, in B such
that B is *-isomorphic to a C*-algebra D,, with

Mzn(pnAps) C Dn C Mzny1(PnApn)-

(ii) If B = (zAz)~ for some nonzero positive element z of A, and B is non-unital,
then for each n > 1 there exists a hereditary C*-subalgebra B, of A such that

B = Mya(Bn).

(it) If, in addition, A is o-unital and p is a projection of M(A) not in A (in
particular, p is the identity of M(.A)), then for any n > 1 there exists a projection gn
of M(A) not in A such that

pAp = M2n(gnAgn), and hence pM(A)p = M2~ (M (gnAgn)).

We now turn to the proof of Theorem I, which is based on a previous result
of the author as follows. The Riesz decomposition property in [43 or 42] is the key
ingredient behind the lemma.

1.4. LEMMA ([44, Part III, Lernma 1.1]). If A is a C*-algebra of real rank zero
and if p is a full projection of A (i.e., the closed ideal generated by p is A), then for
any projection q of A there exist subprojections py,ps, - ..,pPn of p such that

pip; =0 if i £,

[p1] 2> [p2] 2 -+ > [pal,
and

lg] = [p1) + [p2) + - - - + [Pn).

1.5. THE PROOF FOR THEOREM I(i). We first deal with the case n = 1.
It follows from Lemma 1.4 that there exist partial isometries vy, va,...,v, in A
such that

r>0lup 2 U0 > e 2 Uiy,

and

L4
P=v10] D Vavs @ - - D v vy,
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We can assume that n = 2m for some m > 1. Otherwise, add v,41 = 0. Clearly,
Um41Vm Um42Vm—11 - - - » V2m—1V3, V2 U} are partial isometries of A with mutually or-
thogonal initial projections and mutually orthogonal final projections, since

(”m+i”31-:‘+1)(”m+i”r‘n—i+1)‘ = ”m+i”:n+i
and
(Um4iV_ip1) (UmaiVi_i41) S Vmoina Vi (1Si<m).
Set 21 = vam v} +vam—_1v3+ - -+ Um4105,. Then it is easy to check that z; is a partial

isometry of A such that

. _ - » - .
T1Z] = Um41Vm41 O Ums2Vng0 @ - - - D Vam—1Ygp_1 D V2mVay,
. * » * * * *
121 = V1{V3,,V2m V] © V2(V3p—1V2m-1)02 © *** © Vm(Vpnp1Um+1)0m,

(z127)(ziz1) = 0.

Set
wi = v (V] Vi = V3 _i41V2m~iq1) forl<igm.
Then
wiw! = v — vi(U;m_i+1U2m—i+1)v:
and

- —_ %y, — n* .
Wi Wi = Y5V — Vg i41V2m—i41-

It is clear that

r— V3 Vam > Wiwy 2 wiwy 2 - 2> wh Wy,

and

p—(z12] ® 2]z1) = Ww] B wow; O - - D W wy,.

We can now repeat the same arguments finitely many times to get partial isometries

Z3,%3,...,2; such that
i-1
ziz; @iz <p— E(:cjz; <) z;:c_,-)
j=1
and

-1
gtz v = ) (v10])(2}2;)(vr0}).
=1
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Set
1
DI
j=1
1
=) %z},
j=1
1
s=r— Z(vlv;)(z;zj)(vlv‘{).
j=1
Then

p=p1®p2Bs, s<r and p; ~ pa.

If s = r, by [43, 3.2] we can get two mutually orthogonal equivalent subprojections r;
and r2 of r, and then replace p; and p» by py & ry and p @ ro, respectively. Hence,
we can always assume that s < r. Now repeating the whole process to the projections
p1 and s, we can write

s=85 @5, ®s where sy ~ 52, 8 ~5" < py.

It follows that
p=(p1®s1)® (p2®s2) D5
i.e., [p] = 2[p1 @ 1] + [s”], as wanted.
We now deal with arbitrary positive integer n. Applying [43, 3.2], we get a
nonzero subprojection r, of r such that

@+ = Dlra] < [1)-
By recursively repeating the arguments for n = 1, we write

[Pl = 2[ps} + [s1]  with [s1] < [ra],
[pa] = 2[p] + [s2]  with [s] < [ra},

[Pn-1) = 2[pn] + [sn] with [s,] < [ra].

It follows that "
fp] = 2”[}"1] + Z: 2:’—1[&,].
i=1

It is clear that

n

Y2 s ) < (2% = D] <[]

i=1
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Choose a subprojection s of » such that

[s]=D_ 2.

=1

Repeating the above process to [s] and [p,], we can write

[s] = 2"[sp] +[gn] where [gn] < [Pn].

Then
(p] = 2"[pn ® 5]+ [an],  where clearly [gn] < [r], [gn] < [pa]-
The proof has been completed.

1.6. THE PROOF FOR THEOREM I (ii). Since pAp is also o-unital but non-unital,
we write [41, 1.2]

o0
p= Z ®p;  (the sum converges strictly),

i=1

where {p;} is a sequence of mutually orthogonal, nonzero projections of pAp. Applying
Theorem I (i) to p; and pz, we can write

p1=r1®s5®q, wherer ~sy, ¢1~4q]<p2

Let v; be a partial isometry in (ry @ s1)A(r; @ 51) and w, be a partial isometry in
(91 ® ¢1)A(q1 @ ¢}) such that

nvl =1y, vin =8, wiw] =g, wiw = q).
Applying Theorem I (i) again to p; — ¢} and ps, we can write
P2—q1=r:®528 ¢z, wherer;~s3, g2~ g5 < ps.

Then there are a partial isometry v, in (r2®s2).A(r2®52) and another partial isometry
wy in (g2 @ g3)A(g2 ® ¢5) such that

» * — . * PR
V2Uy = T3, VU2 = S3, WaW, = Q2, WoW2 = (5.

Repeating in this way, we find four sequence of mutually orthogonal projections, {r;},
{si}, {4¢:}, {4{}, two sequences of partial isometries {v;} and {w;} of A such that
Q) ri~si, g~ <piy1;
(i) ri ® s ® ¢i = pi — ¢}, where g := 0;
(i) vi € (r: @ 5:)A(ri ® 5i), wi € (¢ ®¢))Algi ® ¢);
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(iv) v =1, vy =5, wiw! =¢q;, wlw =gl

Set

o0
p=) (ri ®g),
i=1

[=<]

P2 = Z(si @ q:):
i=1

v= Z(v; + w;).
i=1

It is a routine to show, by construction, that p; and p, are mutually orthogonal
projections of M(A) such that

P1Op2=p.

It is again a routine to show that v is a partial isometry of M(A) such that
vw*=p; and v'v=ps,.

Then we can proceed in this way as many times as we want to conclude {p] = 2"[pn]
for some subprojection p, of p for n 2> 1.

2. HOMOTOPY GROUPS m,(Um{A4)) AND m.(P(A))

A unital C*-algebra A has cancellation iff [p — p'] = [¢ — ¢'] whenever two pro-
jections p, ¢ of M,,(A) and subprojections p’ < p and ¢’ < ¢ such that [p] = [¢] and
[#'] = [¢'] for all m > 1 [5, 6.4]. If A is non-unital, we say that A has cancellation if
pAp does for every projection p of A. We will denote the path component of U(.A)
containing the identity by Up(A).

2.1. ProrosiTION ([cf. 42, 3.4]). Assume that A has real rank zero and
cancellation (neither necessarily simple, nor necessarily unital). Then mo(P(A)) =
= D(A) \ {[0}, [1]}. In other words, two projections p and q of A are Murray-von
Neumann equivalent iff p and q are in the same path component of P(A) (equivalently,
there exists a unitary v € Uo(./{) such that vpv* = g.

Proof. If A is unital, the author proved [42, 3.4] that p ~ ¢ iff p and ¢ are
homotopic. The same proof also works for non-unital C*-algebra with real rank zero

and cancellation.

2.2. COROLLARY ([cf. 20, 3.2]). If u is any unitary of A and p is any projection of
M(A), then there is a unitary v € Up(A) suck that with respect to the decomposition
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r+(l-p)=1

vu = (1:)1 : ) , where u; € U(pAp) and uz € U((1 - p)A(1 - p)).
2

If, in addition, A has cancellation, this together with the Riesz decomposition of
Ko(.A) proved in [43] warrants the Riesz decomposition property of the ordered group
K.(A) = Ko(A)®K; (A) defined in [20, 3.2] for unital case, there an alternative proof
is given.

Proof. This is actually an immediate consequence of Proposition (2.1), or [42,
3.4], more precisely. Since upu* is homotopic to p, there exists a unitary v € Up(A)
such that vupu*v* = p. It then follows that vu has the above matrix form.

2.3. COROLLARY. Suppose that A is a C*-algebra with real rank zero and
cancellation.
(i) If p is a projection of A with [p] < [1 — p], then every unitary u € U(A) is
homotopic to a unitary with the form

(p 0 ) ,  where uo € U((1 - p)A(1 ~ p)).

O’U()

(The reader is referred to the proof of [46, 2.7), if this is not clear.)
(ii) If u is a unitary of A and p;,ps,...,pn are projections of M(.A) such that

POPp2®---Opn =1,

then u is path connected to a diagonal unitary u; @ uz @ - - - @ u,, with respect to the
above decomposition of the identity.

(iii) If, in addition, there exists 1 < i < n (we may assume i = n) such that
[p;] < lpn] for all 1 < j < n, then u is connected to a unitary of the form p; ® p» ®
@ - - -®Pn—1®uo for some ug € U(pa.Apn). (This isimmediate by applying Proposition
(2.1) or [42, 3.4] recursively n — 1 times.)

2.4. THEOREM II. Suppose that A is a non-elementary simple C*-algebra with
real rank zero and cancellation. If p is any nonzero projection of A, then for allm > 0

Tam(U(A)) 2= m2m(U(pAp)) = K1(A),
Tam+1(U(A)) = mam 41 (U (pAp)) = Ko(A),
Tam+1(P(A)) = Tom41(P(pAp)) = Ki(A),
Tam+2(P(A)) = Tam42(P(pAp)) = Ko(A)

mo(P(A)) = D(A) \ {{0], [1]}.
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The conclusion is also true if A is replaced by M, (./‘1') and p is replaced by a projection
in M, (A) for any n > 1 (since K.-groups are stable invariants).

We will spend the whole Section 3 to prove Theorem II. Here we have the following
remarks, corollaries and some specific examples in order:

2.5. REMARKs. (i) Here m¢(P(A)), 7(P(pAp)), m(U(A)) and m(U(pAp)) are
independent of the choices of the base points, which are omitted in the statements
and proofs to ease the notations. The reader may take the base point of P{A4) to
be any fixed non-trivial projection ¢, the base point of P(pAp) to be any nonzero
subprojection of p, the base points of U (/’l') to be the identity of A, and the base
point of U(pAp) to be the (local) identity p of pAp. In fact, since any two path
components of U(A) (or U(pAp)) are homeomorphic topological spaces, (U (A))
(or m(U(pAp))) are independent of the choice of the base point. Clearly, the orbits
of P(A) under the action of U(A) defined by u — uqu* are disjoint subspaces (more
precisely, the path components). For any fixed non-trivial projection ¢ in P{A), it
follows from Proposition (2.1) that the orbit of ¢ is the path component G, of P(A)
containing ¢. Hence, the homotopy groups m:(P(A),r) (k > 1) are independent of
the choice of the base point r € G;. Whenever such a base point r € G, is fixed, we

have
m(P(A),r) = me(Gg,r) forallk > 1.

Furthermore, it turns out that
me(P(A), p) = m(P(A),q)

for any two nontrivial projections p and ¢, no matter whether they are in the same
path component of P(A) or not, as the reader will see later from the proof. The same
explanation applies to the Grassmann space of the corner C*-subalgebra pAp.

(ii) If A is any unital C*-algebra and S(A) is the space of non-trivial symmetries
of A (i.e., self-adjoint unitaries neither +1 nor —1), then the map

p—2p-—1

is clearly a homeomorphism between P(A) and S(A). Clearly, S(A) is the disjoint
union of subsets (its path components) of Us(.A). We will see in (3.11) that

op : Up(A) — S(p) defined by u +» 2upu* — 1
is a weak fibration, where S(p) is the path component of S(A) containing 2p — 1.

In case A is simple with real rank zero, the combination of Theorem II and

Theorem B of [46) implies the following corollary:
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2.6. COROLLARY. If A is either a purely infinite simple C*-algebra or a non-
-elementary simple C*-algebra with real rank zero and cancellation, then

o(S(4)) = D(A) \ {[0], (1]},

7I’2m+1(8(./i')) = Kl(.A) and 1l’2m+2(8(./‘{)) = Ko(.A) (Vm P 0)
If the base points of both m(U(A)) and m(S(A)) are taken to be the identity,

then we have the following immediate comparison:
Tam41(Uo(A)) 2 Ko(A),  Tam+1(S(p)) = K1(A),

Tam+2(Uo(A)) 2 Ki(A), T2m42(S(p)) = Ko(A),

where m > 0 and p is any projection in P(A). This comparison provides a new
interpretation for Ko(A) and K, (A) as the homotopy groups of Up(A) and its subspace

S(p).

As a particular case, if A = M is a type II; factor, H. Schroder determined
71 (U(M)) in [34]. Our Theorem II offers some new information about the homotopy
type of the Grassmann space and hence the space of symmetries, which are written
down as the following corollary:

2.7. COoROLLARY. If M is a type II; factor, then
Tom41(P(M)) = Tom41(S(M)) = 0

and

Toam+2(P(M)) = Tom42(S(M)) = Ko(M).

2.8. ExaMmpLEs. Using their K-groups, one can read the homotopy type of
U(A) and P(A) if A is one of the following interesting C*-algebras with cancellation:

(1) all simple AF algebras (in particular UHF algebra) [19]

(2) all Bunce-Deddens algebras [10, 11];

(3) irrational rotation C*-algebras [15, 20];

(4) certain inductive limits of matrix algebras over algebras of continuous func-
tions on a circle or on an interval, among many others ([3, 22, 4]).

3. A PROOF OF THEOREM II

We will spend this whole section to prove Theorem II. Main ingredients in de-
termining 7,(U(A)) are the almost divisibility in Theorem I, the general homotopy
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exact sequence associated with a Serre fibration [36; Chapter 7, 2.10] or [37; Chapter
4, 4.7), Bott periodicity [23; IIL. 1.11 and 7.7) and the idea of H. Schroder in [34] for
determining the homotopy groups of type II; factors [34], while the ideas of [9] and
(46, Section 3] apply to determine mx(P(A)). For the convenience of the reader, we
will spend a few lines to outline the main frame of [34)] as follows.

3.1. SEVERAL KNOWN FACTS. If A is any unital C*-algebra (not necessarily
has real rank zero), we denote by GL(.A) the group of invertible elements. It is well
known that U(A) is a deformation retract of GL(A), and hence they have the same
homotopy groups.

As usual, the unitary group Up—1(A) of My,—1(A) is naturally embedded in the
unitary group Uy, (A) of My, (A) via the map

(6 1)
u— .
0 1
Similarly, all U, (A) is embedded in the unitary group U (A) of the C*-algebra
obtained by joining an identity to A ® K.
Set
A"=ADAD..®A (m copies),

Rm(A) = {z = (z;);2) €A™ : im}'z; € GL(.A)} ,

i=1

Sm(A) = {:c = (z;)l., € A™ :iz;z; = 1}.

i=1
Then several known facts are in order, whose proofs are in [34] (also, a parallel
treatment can be found in [30]).

(a) Rm(A) is an open subset of A™.

(b) Sm(A) is a deformation retract of Rp,(A).

(¢) Rm(A) = {(2:)2, € Am : &1,%2,...,Tm generate A as a left ideal }; Rm(A)
is denoted by Lg,,(A) in [31].

(d) If Rm(A) is dense in A™ (m > 1), then Rpm4r+1(C(5*%,A)) is dense in
C'(S",.A)mﬂ‘“, where C(S¥, A) is the C*-algebra consisting of all norm-continuous
maps from the k-sphere §* to A.

(e) I Rm(C(S*,A)) is dense in C(S*,A)™, then the homotopy groups
Te(Smyn(A)) =0forn > 1.

3.2. ProrosiTiON. If A is a unital C*-algebra with cancellation (not necessarily
with real rank zero), then the mapping

U (A) 5 Sim(A)
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defined by
11 Z12 ... Tim 0 ... 0 Zim
ZTa1 T2 ... Tom L Do
® . . . = 0
Imi Tm2 ... Tmm 0 ... 0 zmm

induces a Serre fibration with fiber homeomorphic to Up,—1(A), and hence S,,(A) is
homeomorphic to the homogeneous space Upy(A)/Upm~1(A) (the space of right cosets
with the quotient topology).

Proof. H. Schréder’s proof for type II; factors in [34, 4] works for C*-algebras
with cancellation. The cancellation property of A implies that each partial isometry
v of My (A) (m > 1) is implemented by a unitary [5, 6.4], i.e., there exists a partial
isometry v’ of M, (A) such that v + v’ is a unitary of M, (A).

3.3. HOMOTOPY EXACT SEQUENCE. Combining Corollary (2.2) or Corollary
(2.3) and the general homotopy theory in [36] or [37], we have the following long
exact sequence:

oo Tr41(Sm(A)) = Te(Um-1(A)) = m(Um(A)) = 71(Sm(A)) — - -

v — WI(S,"(A)) — Wo(Um_l(.A)) — Wo(Um(-A)) — 0.

The following proposition follows immediately from the above fact 3.1(d), (e),
Proposition (3.2) and the above long exact sequence.

3.4. ProroOSITION ([cf. 34]). If A is a unital C*-algebra such that tsr(A) = 1
(again A is not necessarily of real rank zero), then

 TE(Sk4n(A)) =0 foralln >3,

and hence :
Wk(Um(.A)) = 7rm(Um+1(-A)); m>k+3.

Consequently,
Tt (Ui 43(A)) = 7 (Ui ym(A)) = m(Uo(A)) (k2 0, m 2 3).
We point out that the above also follow from another parallel approach of M.
Rieffel in [31, Section 3] where he considered GL (.A) instead.

3.5. BorT PERIODICITY. If A is any unital C*-algebra, applying the Bott
periodicity of K-theory [23, III, 1.11;7.7], then

WZm(er (A)) = WO(Uoo(A)) = Kl('A)’
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and
Tom1(Voo (A)) = 11(Ueo(A)) = Ko(A).

3.6. Ku(A) AND Ku(pAp). We now reduce our attention to the particular case that
A has real rank zero and cancellation. We start with proving that for m > 1 and any

nonzero projection of A
Tom(U(A}) £ 72 (U (pAP)) = Ki(A),

and
Tam+1 (U(A)) € Tam 41 (U (pAP)) = Ko(A).

To do so, we first notice that K;{A) = K;(pAp) which is true for any simple C*-
-algebra; and Ko(A) 2 Kyo(A), since A has an approximate identity of projections
({5, 5.5.5)). Since A is simple, it is a routine to check that Koo(A) = Ko(pAp), since
for every projection ¢ of A ® K there exists n > 1 such that [¢] < n[p]. Hence,
Ko(A) = Ky(pAp), although A may not be o-unital. Applying these facts together
with the Batt periodicity to pAp, one has

WZm(Uoo (I’-AP)) ™~ "T'D(U‘% (pAp)) 2Ky (PAP) =K, (A))

and
Tam41(Uoo (DAD)) = 7:(Usc (pAP)) = Ko(pAp) = Ko(A).

Clearly, pAp & K is a hereditary (*-subalgebra (actually a corner) of A@ K. To
confirm our claim about 7, (I/(A)) we need to show that for any & > 1 and any

non-zero projection p of A
To(U(pAR)) = me(Uoo (pAP),

and

(U (A)) 2 75 (Vo (A)) & 7 (Uco (pAp)).

Consequently, 7 (U(A)) would be a stable invariant for cach k > 0. The key point in
our proof is the almost divisibility of A in Theorem I. The reader will see a comparison
between our vork and the divisibility defined in [31, Section 4] and his result [31, 4.13].

Recall that A has real rank zcro iff A has the (FS) property [13], while A has
(FS) iff A has the (HP) property [6, Section 2]. Hence, under the assumption that
RR(A) = 0, A has cancellation iff tsr{A) == 1, no matter whether A is unital or not.

Here we understand that tsr(A) := tst(A) in case A is non-unital.

3.7. PROPOSITION. Suppose that A is a C*-algebra of real rank zero (not neces-
sarily unital). Then tsr(A) = 1 iff A has cancellation.
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Proof. Since A has real rank zero, A has an approximate identity of projections.
Then it is readily checked by definition that 4 has cancellation iff p.Ap has cancellation
for every projection p of A. If tsr(A) = 1, then A has cancellation by the same proof
as in [5, 6.4]. Conversely, assume that .4 has cancellation. If z is any element of A,
there exists a projection p such that z is close in norm to an element with the form
pyp +t(1 — p) for some scalar t. Now the proof of [5, 6.4] applies to pAp. We can find
an invertible element with the form pzp+ t(1 — p) to approximate pyp + t(1 — p), and
hence approximate z in norm.

3.8. LEMMA. Suppose that A is a non-elementary simple C*-algebra with real
rank zero and cancellation. If p is any nonzero projection of A ® K, then

(U (A)) = (U (PAP)) = m(U(pAp)) V2 0.

Hence, m(U(pAp)) is independent of the choice of p.

Proof. Since pAp @ K is a corner of 4 ® K, we need only to show the following
two statement:
(i) For any k > 0, each norm-continuous map from the k-sphere $¥ to Uw,(A)

whose image contains the identity is homotopic to a norm-continuous map of the form

(v(') 0 )
0 1-p/)’
where v(-) is a norm-continuous map from S$* to the unitary group of p(A®K)p, while

the identity is contained in the image along the homotopy.
(ii) If a norm-continuous map from S$* to the subgroup of U, (A) consisting of

v 0
(0 1—p>
is homotopic to the identity in Uy (4), then it is homotopic to the identity via a path
with the form
v(,t) 0
( 0 1-p
Of course pAp also has cancellation and real rank zero. It follows [31, 3.1] that

elements of the form

) (0gtgl).

R1(pAp) = GL(pAp), and GL(pAp) is dense in pAp for any non-zero projection p.
We carry out the proof of (i) and (ii) by the following three steps.
Step 1. We prove that for each k > 0 there is a nonzero subprojection p; of p
such that
T (U(pAp)) = mi(Uzrr 4m(prApr)) forall m >0,

where ni can be any integer greater than k + 3.
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For each k > 0 choose ny > 0 to be any integer such that 2™* > k + 3. It follows
from Corollary (1.3) that pAp is *-isomorphic to a C*-algebra, say Dy, such that

Mzns (PeApr) C Di C Mook 41(PeApr) (< Mareym (prAps) for all m > 1).

for some nonzero subprojection p; of p. Of course 7 (U(Dy)) = 74 (U(pAp)) for any
k>0
We claim that

Wk((U('Dk)) o 7fk(U2"k (Pk.Apk)) = 7rk(U2"k +m(pk.Apk)) forallm> 1.
In fact, first, it follows from Proposition (3.4) that for all m > 1 the map

Tt (Uzms (PeAPE)) =2 T (Uzrr 4m (P Apr))

defined by
u(-) 0
wm([u()]n) = 23" 4m
L 0 Z Pr ® €
§=2mk 41 h

is an isomorphism, where the braket [-]5 denotes a homotopy class in m(-). Secondly,
the following maps

7 (Uzen (PrAPE)) —2 11 (U(D1)) 2 1 (Usma 4 (P Apr))  (m > 1)

o([u()r) = [(u(().) e(l)];.

defined by

and

v(-) 0
Ym([v()]n) = 2"k 4m
0 fi® Z Pr @ €4
§=2"k 42 h

are bijections, where e) equals to the difference between the identity of Mary 41 (pe.Api)
and the identity of D, and fi equals to the difference between the identity of D and
Mane 41(prAp:). Taking all three maps w, ¥, and ¢ into consideration and applying
Proposition (3.4), one easily sees that for each k£ > 0

7rk(Ug'w (pk.Apk)) = Wk(U('Dk)) = Wk(UZ“k +m(PkApk)) for all m > 0.
Therefore, for cach £ > 0

T(U(pAP)) = me(Uane ym (peApr)) for allm > 0.
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Step 2. We prove that every norm-continuous map u(-) from $¥ to U (A) is homo-
topic to a norm-continuous map from $* to U, (A) with the following form

UO(~) 0
for some m > 2™*,

m
0 I—Zpk®e.'i
i=1

where ug(+) is a norm-continuous map from $* to the unitary group of
m m
(Zpk ® Cii) (A®K) (Zpk ® eii) .
i=1 i=1

For any compact Hausdorff space X and any C*-algebra B it is well known that
cX,By=C(X)®B ([38)).

Consider the case X = S§* and B is a hereditary C*-subalgebra of A® K. Let {ex} be
an approximate identity of A ® K consisting of projections. It follows that '{1 ®er}
is an approximate identity of C(S¥,.A ® K) consisting of projections. It then follows
from [46, 2.6] that u(-) is homotopic to a norm-continuous map from $* to U, (A)
with the form

(w(-) 0 ) (with respect to g+ (1 - g) = 1),

0 1-g¢
ml
where ¢ is a projection of A ® K such that Z Pr ® ei; < ¢ for some m' > 2™+, Since
' i=1

A ® K is simple, it follows from the Riesz decomposition property in [43]

ml
n [Epk ® e;;] > [q] for somen > 1.

i=1

m

Set m = nm’. Then [E Pk ® e.-,] > [g]. Since two equivalent projections in a stable
i=1
C*-algebra are homotopic (or rather one can use Proposition (2.1)), there is a path

{uo(t) : 0 <t < 1} C U (A)

such that m
uo(0) =1, wo(1)quo(1)* < Epk ® eii.
=1
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(W(-) 0 )
0 1-g¢

ug(1) (wé-) 1 E q) uo(1)",

It follows that

is homotopic to

which has the desired form.
Step 3. We prove that if a norm-continuous map u(-) from S* to a subgroup of

U (A) consisting of unitaries with the form

w 0

m for some m > 2™*
0 1- Zl’k ® eii

i=1
is homotopic to the identity as a map from S* to Us,(A), then u(-) is homotopic to
the identity in the subgroup of Us,(A) consisting of unitaries with the form

v(-) 0

0 1- ZP& ® eii
i=1
First, C(S* x [0,1], A ® K) has an approximate identity, denoted by {1 ® ey},
consisting of projections, where the ‘1’ means the identity of C(8* x [0, 1]). If (AQK)!
denotes the C*-algebra obtained by joining an identity to A®K, of course each norm-
continuous path of the unitaries of C(S¥, (A & K)!) can be identified with a unitary
in

for some n > m.

C(S* x [0,1],(A® K)).

Using the same arguments as in Step 2, we can prove that u(.) is homotopic to the
identity via a path to the subgroup of unitaries of C(S*, (A4 ® K)!) with the form

(47 12,) eeten

m
where ¢ is a projection of A® K such that ¢ > Z D ® ei; for some m > 2™+ and

i=1

{wo(8): 0t <1}

is a path of unitaries of

C(s*,9(A® K)q).
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Furthermore, there is a path of unitaries
{vo(t) : 0 <t < 1} CU(A)

such that

n

vo(0) =1, wo(1l)que(1)* < Epk ® ey; for some n > m.

=1
The following path of unitaries leads u(-) to the identity with the desired form:
wo(,t) 0 )
1 1)*.
w(®) (770 Jw
The three steps together effect the proof of Lemma 3.8.
3.9. LEMMA. If A is a non-elementary simple C*-algebra with real rank zero and

cancellation, and if p is any nonzero projection of A, then

(U (pAp)) = m(U(A)) for k > 0.

Proof. Let p; be a subprojection of p defined in the proof of Lemma (3.8). If
{ex} is an approximate identity of A consisting of projections, then {1® e,} is an
approximate identity of C(S*,.4) consisting of projections. If u(-) is a unitary of
C(S*, A), applying [46, Lemma 2.6], there exists a projection ey > p of A such that
u(+) is close in norm (and hence homotopic) to a unitary with the form

(ulo(‘) 1—06,\)

(with respect to the decomposition e\ + (1 — ex) = 1), where u;(-) is a unitary of
C(S*,eaAeyp). On the other hand, if a unitary v(-) with the matrix form

(" 12s)
0 1- ex
homotopic to the identity of C(S*,.4), then applying [46, Lemma 2.8] to C(S* x

x [0, 1],.A7) we can further assume, by properly choosing a projection e, 2> ex of A,
that v(-) is homotopic to the identity via a path of unitaries with matrix forms

("2

{ni(8): (0<t< 1)}

where
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is a path of unitaries of C(S*,e,.Ae,). Since A is simple, there exists m > 2", where
2" > k + 3 such that
m[pk ® 611] > [e,\].

Now we can use a similar argument as in the proof of Lemma (3.8) (Step 2 and Step
3) to conclude that

T1(U(pAp)) = Tt (Voo (e Aey) = mp(U(A))  for k > 0.

3.10. Combining Lemma (3.8), Lemma (3.9) and the Bott periodicity in (3.5),
we conclude that
Tam(U(A)) = m2m (U (pAp)) = Ki1(A),

Tom+1(U(A)) = Tams1(U(pAp)) = Ko(A) for all m > 0.
It is clear from the proof that m4(U,(A)) = m(U(pAp)) for all n > 1 and k > 0.

3.11. ANOTHER HOMOTOPY SEQUENCE. Now we turn to the determination
of mx(P(A)) by using the same ideas as in [46, Section 3]. For each fixed projection
p € P(A), consider the following action ¢, : U(A) — P(A) defined by p, (u) = upu*
on P(A). Then ¢, is an open map. Since two equivalent projections are homotopic
by Proposition (2.1), the orbit of p under this action is the path component G, of
P(A) containing p. We can take any projection in G, as a base point of mx(P(A)).
In particular, we can take p as the base point. Clearly, e (P(A),p) = me(Gp, p) for
k > 1. Furthermore, it follows from the same proof as in [9, 5.1] that local cross
sections from a path component of P(A) to U(A) exists.

Set

U(p) = {uv € U(A) : up=pu}.

Then U(p) is a closed subgroup of U(A) whose elements have the form:

u= (t:)l 1? ) , where u; € U(pAp) and uz € U((1 — p)A(1 - p)).
2

The same proof as in [9, 5.2] yields that G, with the relative norm topology is homeo-
morphic to U(A)/U(p), the space of all right cosets of U(p) equipped with the quotient
topology. It follows from [37; Chapter 4, 4.10—4.13] that

0p : U(A) — G,
is a weak fibration with fiber U(p). If one composes the action ¢, with the map

g—2¢-1



MATRICIAL STRUCTURE AND HOMOTOPY TYPE 305

from G, to the corresponding path component S(p) of symmetries S(./i'), one has
another weak fibration described in Remarks (2.5)(ii).
It then follows from the general homotopy theory [36] or [37) that the following

long sequence is exact:

o= W1 (U(A)) = m41(Gp) — m(U(p)) — me(U(A)) — - -
BN 72(Gp) — m(U(p)) — Wl(U(.AT)) — m(Gp) — mo(U(p)) —
— 7o (U(A) = 7o(Gy) = 0.

3.12. PROPOSITION. Assume that A is a non-elementary simple C*-algebra with
real rank zero and cancellation. Then the following short sequences are exact:

0 — m41(Gp) > m(U(P)) S m(U(A) » 0 (k> 0).

Proof. 1t follows from (3.10) that
Tom+1(U(A)) 2 Ko(A) and mpm(U(A)) = Ki(A) (m 2 0).
Since U(p) = U(pAp) x U((1 - p)A(1 — p)), it is clear that
Tam+1(U(p)) = Ko(A) @ Ko(A) and mm(U(p)) = K1(A) @ K1(A) (m > 0).

It again follows from (3.10) that the inclusion map U(p) Lu (A) induces a surjective
map

(U (p)) > (U(A)).

Hence, the long exact sequence breaks into short exact sequences:

0 = mk41(Gp) — me(U(p) — me(U(A) — 0 (k> 0).

3.13. PROPOSITION. Suppose that A is a non-elementary simple C*-algebra with
real rank zero and cancellation. If p is any fixed non-trivial projection of A, then

Toam-1(Gp) = Ki1(A) and 7m(Gp) = Ko(A) forallm > 1.

Proof. The same proof as in [46, 3.4] works here.

3.14. It was pointed out in (3.6) that

Ko(A) = Ko(g(A®K)q) and K;(A)=K,(q(A®K)q)
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for any non-zero projection ¢ of A® K. It follows that
T (P(HAB®K)q)) = me(P(A)) VEk1.

The combination of 3.8-3.14 effects the proof of Theorem II.

3.15. REMARK. We would like to point out that the conclusion for mx(U(A)) in
Theorem II actually holds for C*-algebras satisfying the following conditions:
(1) A is a simple C*-algebra with the property (SP) (see [6]);
(ii) A has cancellation but does not have minimal projections; and
(i) sup tsr(p(AQK)p)=1.
pEP(ARK)

If, in addition, any two Murray-von Neumann equivalent projections are homo-
topic, then the conclusion for mx(?(A)) in Theorem II holds also. Of course a simple
non-elementary C*-algebra with real rank zero and cancellation satisfies these condi-
tions. However, we do not know any example of C*-algebras with non-zero real rank
and satisfying the above conditions. Hence, we choose not to state our result in a

more general form.

4. THE UNITARY GROUP OF C(X, A)

4.0. If X is any compact Hausdorff space and A is a C*-algebra, as usual let
C(X, A) stand for the C*-algebra of all norm-continuous maps from X to A equipped
with a norm || f(-)|| = sup |[£()||- Then it is well known that C(X, A) is *-isomorphic

teX

to C(X) ® A ([38]). Consider the unitary group U(C(X,A)) with the pointwise
multiplication. It is clear that each unitary u = u(-) of C(X, .A) can be regarded as a
norm-continuous map from X to U(A); i.e., U(C(X, A)) = C(X,U(A)). Obviously,
the identity component Up(C(X, A)) of U(C(X, A)) is a closed normal subgroup of
both C(X,Us(A)) and C(X,U(A)). Since Uy(A) is a closed normal subgroup of
U(A), C(X, Us(A)) is a normal and closed subgroup of C(X,U(A)).

The K-theory of C(X,.A) is under the control of the Kiinneth formula [5], but
the group U(C(X, A))/Us(C(X, A)) is not, where the group operation is induced by
the pointwise multiplication. Of course, the structure of this group depends on both
X and A, and can be very complicated; even in case X = S¥ and A is a full matrix
algebra over the complex numbers, the group remains unknown in general.

For the special cases when A is a non-elementary simple C*-algebra with real

rank zero and A either has cancellaticn or is purely infinite, then Theorem II and the
main result in [46] enable us to determine the group U(C{X, A))/Uo(C(X, A)).
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4.1. LEMMA. Suppose that A is a non-elementary, 'simple C*-algebra of real
rank zero, and A either is purely infinite or has cancellation. If p is any nonzero
projection in A® K, then the natural map from U(p(A ® K)p) to Us,(A) defined by
u+— u @ (1 — p) is a homotopy equivalence, where 1 is the identity of the unitization
of ARK.

Proof. It is well known that the unitary group of a C*-algebra is a homotopy
retract of the group of all invertibles which is an open subset. Thus, U(p(A ® K)p)
and Uy (A') are homotopy equivalent to CW-complexes. Theorem 1I asserts that the
natural map u — u @ (1 — p) induces isomorphisms between the homotopy groups
of U(p(A ® K)p) and of Us(A). The classical theorem of Whitehead asserts that
a continuous rﬁap between connected CW-complexes which induces isomorphisms
of homotopy groups is automatically a homotopy equivalence [33]. Especially, this
theorem applies to the identity path components of U(p(A®K)p) and of Us (A). The
conclusion of this lemma is then confirmed; here we notice that all path components

of the unitary group of a C*-algebra are homeomorphic topological spaces.
g g

4.2. THEOREM III. Assume that A is as in Lemma 4.1, and X is a compact
HausdorfT space. Then for each projection p in A® K

U(C(X,p(A® K)p))/Us(C(X,p(A® K)p)) = Ki(C(X, A)).
As a consequence,
U(C(S™*, p(A ® K)p))/Uo(C(S™™*, p(A ® K)p)) = Ko(A) & Ki(A),
U(C(S*™*2, p(A ® K)p))/Us(C(8™*?, p(A ® K)p)) = K1(A) ® K1(A), (m > 0).
REMARK. The same argument as for Theorem III shows that
U(C(X,A)/Us(C(X, A)) = K1 (C(X,.A))

as long as mx(U(A)) = me(Uso(A)) for k > 0. In particular, it holds if A is one of the

irrational non-commutative tori considered in [31].

Proof. By Lemma (4.1) the natural map between two spaces U(p(A ® K)p) and
Uso (.A7) is a homotopy equivalence. Then for any compact Hausdorff space X one has

(X, U(p(A ® K)p)] = [X, Uso (A)];

where [X,U(-)] denotes the set of homotopy classes of C(X,U(-)) (without base
points). It follows that

U(C(X, p(A ® K)p))/Uo(C(X, p(A® K)p)) = 70(C(X, U (A))) = K1(C(X, A)).
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In particular, if X = 8%, then it i:)llows from the Kiinneth Formula of K-theory
that
U(C(S*™, p(A ® K)p)/Uo(C(S*™ , (A ® K)p)) = Ko(A) & Ka(A),

U(C(S*™*2, p(A ® K)p))/Uo(C(5>™*2, p(A ® K)p)) = K1(A) ® K1 (A), (m > 0).

The two isomorphisms just mentioned can also be proved directly as follows. First,
two unitaries u;(-) and ua(-) are in the same path component of U (C(SF, A)) iff uy ()
is homotopic to uy(-) as maps in C(S*,U(A)). Secondly, the image of each map in
C(S*,U(A)) is contained in one of the path components of U(A). Using the fact
asserted in Theorem II that

K1 (A) = U(A)/U(A),

one sees that if the images of two elements u; () and ua(-) of C(X, U(A)) are contained
in the path components of U(A') corresponding to g1, g2 € K1(A), respectively, then
the image of the product w;(-)uz(-) is contained in the path component of U(A)
corresponding to g;92 € K;(A). These together yield

U(C(S*, A))/Uo(C(8*, A)) = [5¥, Us(A)] © K1(A)-
The conclusion follows from the fact (Theorem II and [46]) that
me(U(A)) 2 m(Uso(A)) (k2 0)

and the following general lemma:

4.3. LEMMA. If B is any unital C*-algebra, then
[§2™*%, Us(B)] 2 m2m+1(Un(B))

and

[$*™*2, Us(B)] = mam42(Uo(B))  (m 2 0).
Proof. This is a particular case of [36, Theorem 5, page 382]. It is an exercise to
give a direct proof.

4.4. REMARKS. (i) The relation between K-theory and the homotopy type of
the group U(A) of quasi-unitarics of a (*-algebra A, denoted by & A, was intensively
studied in {39, Section 2; 40, Section §]. We recall [39, 1.1] that

UA={ac A:a*a=a+a" =aa"}.
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If A is non-unital, it is easy to check that each unitary v € U (.f() can be uniquely
written as the form A - 1 — a for some complex number A with |A] = 1 and an element
a € A (by considering the natural quotient map from A to .A/.A). One can easily
check that a € U(A) and that U(A) is isomorphic to the kernel of the canonical
quotient map:

U(A) — U(A/A).

Thus, #(A) can be identified with a closed normal subgroup of U(A).
K. Thomsen proved [39, 40] that if A is any C*-algebra and B is either an infinite
dimensional simple AF-algebra or a Cuntz algebra O, (2 { n € o), then form > 0

T2m4+1(U(A® B)) = Ko(A4 ® B)

and

Tom(U(A ® B)) = K1(AQ B).

Both the results in [39, 40] and ours in [46] and this article have the same target on
non-stable K-theory and homotopy type, but are in different setting and end up with
different results. If some results of [39, 40, 46] and this article are reduced to certain
specific cases, we have some common corollaries. For example, the conclusions are
the same about the homotopy type of the unitary groups of the Cuntz algebras O,
(2 € n < +00) (see [46] and [39)).

(ii) Here we would like to point out that the homotopy classes of projections in
C(S*,.A) can also be described in terms of K-theory for certain C*-algebras by using
techniques similar to the ones in this article. Since it is further technical and beyond
the objective of this article, we will pursue the investigation elsewhere.

(1ii) The author is indebted to K. R. Goodearl for calling his attention via an
-email message to an inaccuracy in the statement of [43, 3.5]. We take this opportunity
to make a correction to [43, 3.5} which should have been stated as follows:

Assume that A is a non-elementary, sigma-unital, simple C*-algebra with
RR(A) = 0 and cancellation. Then

(1) Jo = () T is a proper closed ideal of M(A) strictly containing A. If,
7€S([p)o)
in addition, each P € Jj is continuous on $([p]o), then Jo is the intersection of all

closed ideals of M(A) strictly containing A.
(ii) M(A)/A is simple if and only if each projection P € M(A) is continuous on
S([plo) (this is equivalent to that A has a continuous scale [26]).

(iii) is the same as before.
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