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INTERPOLATION AND EXTRAPOLATION
OF WELL-BOUNDED OPERATORS

IAN DOUST

1. INTRODUCTION

It has been shown that an operator may exhibit quite different spectral behaviour
on the different L? spaces (see for example [8]). One might ask therefore whether
anything positive may be said about the behaviour of an operator on one LP space
knowing its behaviour on another. Questions of this type, concerning spectral in-
terpolation and extrapolation (or spectral permanence), were examined for spectral
operators by Oberai [15] (see also [9]) and Krabbe [13]. In this paper we shall give
some similar results for well-bounded operators; more specifically

(i) if T' defines a well-bounded operator on L** and LP2 must T be well-bounded
on L? for p; < p < ps, and,

(ii) if T is well-bounded on L? for p; < p < pa2, what can we say about the
behaviour of T acting on LP* and LP2?

As some of the metods allow alternative proofs of the earlier results on spectral
operators (at least for those operators with real spectrum), some of this material is
also included.

Well-bounded ~operators are those which possess a functional calculus for some
compact interval of the real line. That is, an operator T acting on some Banach space
is well-bounded if there exist real numbers a < b and K > 0 such that

b
ol < & 4 o)+ [ 'l

for all absolutely continuous functions on [a,b] (or equivalently for all polynomials).
These operators were introduced by Smart [18] to deal with problems of conditionally
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convergent spectral expansions. The spectral theory for well-bounded operators is
now well developed and includes a spectral theory reminiscent of that for self-adjoint
operators of Hilbert space. An important subclass of well-bounded operators are those
for which the above functional calculus is weakly compact, the so-called well-bounded
operators of type (B). Operators of type (B) possess a type of spectral resolution
known as a spectral family which allows a much simpler spectral theory as well as
a larger functional calculus than that available for general well-bounded operators.
Furthermore well-bounded operators of type (B) have found several important appli-
cations (see, for example, [3, 5]). It should be noted that well-bounded operators on
reflexive Banach spaces are automatically of type (B).

Scalar-type spectral operators are those which may be represented as an integral
with respect to a countably additive spectral measure. Such operators may also be
characterised by the existence of a weakly compact functional calculus for the con-
tinuous functions on their spectrum. Consequently, scalar-type spectral operators
possess a more powerful spectral theory than do well-bounded operators. The price
one pays for this, of course, is the exclusion of many natural operators with condi-
tionally convergent spectral expansions. Details of the theory of well-bounded and
spectral operators may be found in [10] or [12].

The main aim of this paper is to give necessary and sufficient conditions to ensure
the well-boundedness of operators that act on range of L? spaces. Interpolation of the
well-boundedness property is an easy consequence of the Riesz-Thorin Interpolation
Theorem. The extrapolation results are more difficult and rely, as do the ones for
spectral operators, on uniform bounds on the norms of the spectral resolutions. A
corrolary of the extrapolation results is that if an operator is well-bounded on L1(£2, x)
and on L? (2, u) for some p > 1, and if p(£2) < o0, then the operator must be of type
(B) on LY(£2,p). An example will be given in the final section to show that the
assumption that 4(£2) < co can not be removed.

Let (2, A, ) be a positive measure space and let L°(£2, A, 4) denote the vec-
tor space of all equivalence classes of measurable functions on 2. For 1 S p <
< oo, LP(£2, A, u), or simply L?, will denote the usual Lebesgue space of p-integrable
elements of L°(£2, A, 1). In the obvious way we shall say that a linear transformation
on L°(£2, A, p) defines a bounded operator on L? if L? is included in the domain of
the transformation and the restriction of the transformation to L? is bounded. If T
is such a linear transformation, we shall use the notation T, to denote the restricted
operator in those situations where is important to specify the appropriate domain.
Linear transformations will always be denoted by upper case letters and functions by
lower case ones, so there should not be any confusion in the use of [[T}|, as the norm
of an operator on L? and ||f||, as the norm of a function in L?. If X is a Banach
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space, LP($2, A, p; X') will denote the Lebesgue-Bochner space of X-valued functions.
The von Neumann-Schatten p-calsses of compact operators will be denoted by Cp,. As
usual B(X) will denote the algebra of bounded linear operators on X. Throughout
the paper the scalar field may be taken to be either the real or complex numbers,
although care must be taken to use the appropriate definitions when dealing with

spectral operators on real Banach spaces.

2. INTERPOLATION

The simplest results are easy consequences of the Riesz-Thorin Interpolation
Theorem. Theorem 1 says that the properties of being scalar-type spectral and well-
-bounded interpolate. Note that the proof uses just the functional calculus properties
of these operators and so is somewhat different to the proofs for spectral operators
found in [15]). Recall that a real scalar-type spectral operator is a scalar-type spectral
operator whose spectrum is contained in the real line. The following essentially well-
-known lemma shows that on most of the L? spaces, one may prove that an operator
T is scalar-type spectral by constructing a C(A) functional calculus for T for some
compact A C.C. '

LEMMA 2.1. Suppose that X Is a Banach space which contains no isomorphic
copy of ¢g, and that T € B(X) possesses a C(A) functional calculus for some compact
A C C. That is, there exists a bounded algebra homomorphism v : C(4) — B(X)
such that If g is a polynomial, then ¥(g) = g(T). Then T is scalar-type spectral.

Proof. First we shall show that o(T) C A. Suppose that there exists A € o(T)\ A.
Then rx(2) = (2—A)~! € C(4A) and so ¥(r») € B(X). This and the algebra properties
of ¥ imply that 3(r; ') = T— ) is invertible, which is a contradiction. Thus o(T) C A.

Suppose then that f € C(o(T)). By the Tietze Extension Theorem [11, 1.5.3]
there exists a continuous extension, f, of f to A. We can now define f(T) = f(T).
To show that this functional calculus is in fact well-defined it suffices to show that
if f =0 on o(T), then f(T) = 0. However, if f = 0 on o(T), then we may write
f = fi + f2, where |fi] < € on A and f, = 0 on a neighbourhood of ¢(T). By the
usual holomorphic functional calculus, f2(7T") = 0, and we may make || f1(T)|| as small
as we like by letting ¢ — 0. Thus f(T) = 0. Note that as it is always possible to

choose an extension f such that

sup | f(A)l = sup |f(A)],
YV reo(T)
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we have that
HADI <M sup |f(N)],
: Aeo(T)

where M is the norm of the C(A) functional calculus for T. It follows then that T
has a C(o(T)) functional calculus on X. As X does not contain a copy of co, the
proof of Theorem 2 of [7] implies that this functional calculus is weakly compact and

so T is scalar-type spectral. |

THEOREM 2.2. Suppose that 1 < p1 < p < p2 £ oo and that (2, A4,p) is a
positive measure space. Suppose also that T' defines a bounded linear operator on
LP (02, A, ) and LP2(02, A, 1) (and hence on LP(2, A, pt)). Then

(i) if T is real scalar-type spectral on LP' and LP2 then it is real scalar-type
spectral on L?;

(ii) if T is well-bounded on LP* and LP? then it is well-bounded (of type (B)) on

Lr.

Proof. (i) Since T, is scalar-type spectral on L?* it has a C(o(Tp,)) functional
calculus on this space. Similarly T}, possesses a C(o(Tp,)) functional calculus on L?2.
It follows that T" has a C(A) functional calculus on each of this spaces where A =
= 0(Tp,) Uo(Tp,) C R. Furthermore the density of the polynomials in C(A) ensures
that these functional calculi agree on LP* N LP?. The Riesz-Thorin interpolation
theorem then implies that T, has a C(A) functional calculus on LP. The result
follows from Lemma 2.1 since L? does not contain a copy of ¢; when p < oo.

(ii) Essentially the same proof as for part (i) works. Suppose that T has an
AClap, , bp,] functional calculus acting as an operator on LP* and an AC(ap,,bp,]
functional calculus acting as an operator on LP2. Let ¢ = min{a,,,@,,} and b =
= max{bp,,bp,}. Then by Riesz-Thorin T has an AC[e, b] functional calculus on L?
for all p € (p1,p2). This functional calculus must be weakly compact since L? is

reflexive.

REMARKS. (i) In general an operator may have different spectrum on different
L? spaces (see [2, 1, 17]). However this can not happen for spectral and well-bounded
operators. For spectral operators this is shown in [15] (see also [13]), whilst for well-
-bounded operators this is an easy consequence of Lemma 3.3 below. Note that the
proof of the Theorem 2.2(i) is rather easier if one assumes this fact; the point of
the above proof is that one does not have to consider the spectral measure for the
operator.

(i) Clearly the same results hold for certain other interpolation spaces as well.
For cxample they hold on the spaces Cp and the spaces LP(£2, A, p; X), as long as say
#{12) < 0o and X is reflexive (and so LP(£2, A, p; X) is reflexive).
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(1i1) The difficulty in using these methods to prove interpolation results for scalar-
-type spectral operators whose spectrum does not lie in the real line is that it does
not seem to be easy to show that the C'(4A) functional calculus for T on LP* agrees
with that on LP?, without considering the spectral measure for 7. If one knows in
advance thate these functional calculi agree (for example if an explicit formula for
the functional calculus is known), then clearly the same methods show that T}, is

scalar-type spectral on L? for all p € (p3, p2)-

3. CONSISTENCY AND DUALITY

In what follows we shall often work with spectral resolution of a well-bounded
operator. Of greatest importance will be the case when the well-bounded operator is
of type (B), and in this case this spectral resolution is known as a spectral family (of

projections).

DEFINITION 3.1. A spectral family of projections in a Banach space X is a
projection valued function E : R — B(X) such that
(i) E is right continuous in the strong operator topology and has a strong left
hand limit at each point in R;
(i) £ is uniformly bounded, that is there exists K such that ||[E(})|| < K for
all A € R;
(iii) E is naturally ordered, that is

E(ANE(p) = E()E(X) = E{min{}, u})

for all A, 4 € R;

(iv) E(A) = 0 (respectively E(A) — I) in the strong operator topology as A —
— —oo (respectively A — oo).
IfE(A)=0forall A <a €Rand E(A) = I for all A > b € R, then we say that E is

concentrated on [a, b].

Spectral families possess a Riemann-Stieltjes type integration theory. There is a
one-to-one correspondence between well-bounded operators of type (B) and spectral
families concentrated on some compact interval of the real line. If T is a well-bounded
operator of type (B), then it is related to its spectral family E (concentrated on the

compact interval J) via the formula

T = /@,\dE(,\).

J
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This integration theory may be used to extend the functional calculus for T to BV (J),

the algebra of all functions of bounded variation on J, by the formula
®
oT)= [ g
J

For well-bounded operators not of type (B) the situation is rather more complicated.
In this case the spectral resolution is known as a decomposition of the identity for
T. A decomposition of the identity for T is a naturally ordered family of projections
{F(X)}rer on X* concentrated on [a, ] C R, which satisfies certain natural properties

and which is related to T' by the formula
b .
(Tz,z") = b{z,z") — /(Z,F(/\)z*)d/\, zeX, e X"

Unfortunately, a well-bounded operator which is not of type (B) may possess many
such decompositions of the identity. Full details of the spectral theory of well-bounded
operators may be found in {10, Part 5].

Before we go further, it is important to show that if T is well-bounded of type
(B) on two distinct LP spaces, then the spectral families must agree, and conversely,
that if {E(X)}rer forms a spectral family on two L? spaces, then it defines the same
linear transformation on each space. These facts rest on the following well-known

result.

LemMma 3.2. Let (£2, A, 1) be a positive measure space and let 1 £ p, r < oo.
Suppose that {f,} is a sequence of functions in L (2, A, p; X) N L™ (22, A, p; X) such
that f, — g1 in L? and f, — g5 In L. Then g; = g, almost everywhere with respect
to p.

LEMMA 3.3. Suppose that 1 < p1 < p2 < oo and that (2, A, p) is a positive
measure space. Suppose also that T' defines a well-bounded operator (of type (B)) on
LP(£2, A, p) for all p € (p1, p2) whith

]
T= / ME,(A).
[ap,55)

pr) (] (pl)p2); then
E,(\f = E.(\f

(almost everywhere with respect to ) for all A€ R and all f € LP N L".
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Proof. Without loss of generality we may assume that a, = a, and that b, = b,.
Let J = [ap, by] and suppose that A\g € J. Define now the function g = x[q,,1,] t0 be
the characteristic function of the interval [a,, Ao} and suppose that f € LPNL". Then

[ amms = 5001

J

and

(5]
/ dNE (V) f = B (o).
J
Choose a uniformly bounded sequence g, of polynomials in AC(J) such that g, — ¢
pointwise on J. By [10, Proposition 17.5],

[} [
/ 9ndEp —»/ gdE, = Ep(Ao)
J J

@
in the strong operator topology. But / gndEpf = gn(T)f, 50 gn(T)f — Ep(Xo)f in

J
L? norm.
Similarly,
& @
9n(T) =/ gndE,f—>/ gdE.f = E.(Mo)f
J J
in L™ norm. The result now follows from Lemma 3.2. ]

LEMMA 3.4. Suppose that for each A € R, E(]) is an idempotent linear transfor-
mation on L°(2, A, ). Assume that 1 < p < r < oo and that {E(A)} defines spectral
families {Ep(A)} on LP(£2, A, i), and {E.())} on L"(§2, A, 1), both concentrated on
the compact set J C R. Then forall f€ LPNL", '

3] @
/ ME,(\f = / ME.(N)f (ae.).

J J

Proof. Let P denote the collection of partitions of J, partially ordered by inclu-
sion. Define o
I = / AdE,(A)
J
and similarly for T;. Fix f€ LPNL". For A={a = X;, A1, -, Ay = b} €P, let

fa = aB@)F + 3 4(EQ;) = BOy-)f

i=1
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We have that
I f = 111161171, Ja
in L? norms whereas
Trf = JPEI% fA
in L™ norm. Choose A, € P so that ||fa, — T fllp < 1. Now choose 4, > A, so
that ||fa, — T+ fllr € 1/2. The fact that A, > A, ensures that ||fa, — Tpf|l, < 1.

Continuing in this manner we can choose succesive refinements A, so that

Ifan = Tpfllp = 0
and
If4. = T+ fllp = O
It follows from Lemma 3.2 that T, f = T;. f (a.e.). [ |

For 1 < p < o0, let p’ denote the conjugate index to p, 1/p+1/p’ = 1. It is
trivial to show that if T' is well-bounded on L?, for some 1 € p < oo, then T* is
well-bounded on L?'. One would expect that if T and T* were both of type (B) that
the natural relationship between their spectral families would hold and indeed this
is the case. The proof of this requires some care however as the adjoint map is not

continuous in the strong operator topology.

THEOREM 3.5. Suppose that 1 < p < oo and that T defines a well-bounded
operator of type (B) on LP(£2, A, u) with

T = /®AdE(A).

J

Then T* is well-bounded of type (B) on L* (2, A, ) and

T = / ® MEOY).

J

Proof. Showing that T is well-bounded is easy, and since L?' (2, A, ) is reflexive,
T* must be of type (B). Let {F(A)}rer denote the spectral family associated with
T*. Our aim then is to show that F(A) = E())* for all A € R.

For A € R and 6 > 0, let g) s denote the absolutely continuous function which
is 1 on (—00,A], 0 on [A + §,00) and linear on [A, A + 8]. The proof of the spectral
theorem for well-bounded operators (see [10, p. 348]) shows that

E(2) = wot- lim g3 5(T)
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and
F(/\) = Wot—}ina g)\’g(T*).

(Here wot means that the limits are taken in the weak operator topology). Fix
functions f € LP(2, A, p) and ¢ € L (22, A, ). Then

(E()‘)fa 90) = }%(gk,ﬁ(T)fa 90) = }E%(f: gk,&(T)*SO) =

= hm(f, 9x,6(T")p) = (f, F(A)¢)-
Thus F(A) = E(\)*. u

Example 5.4 later will show that it is possible for T" to be well-bounded of type
(B) on L! without T* being of type (B) on L®. On the other hand Ricker [16] has
shown that all the well-bounded operators of type (B) on L are finite combinations
of projections. This allows an easy proof of the following result which we shall leave
for the reader.

PROPOSITION 3.6. Suppose that T is a bounded operator on L'(£2, A, 1) and
that T* is a well-bounded operator of type (B) on L*(£2,A,pn). Then T is well-
-bounded of type (B) on L*(£2, A, p).

COROLLARY 3.7. Suppose that 1 < p < oo and that {E(X)}rer forms a spectral
family on LP(£2, A, ). Then {E())*}rer forms a spectral family on LPI(.Q,.A,/,L).

Proof. Suppose first that {£(A)} is concentrated on some compact interval of
the real line. Then {E())} defines a well-bounded operator of type (B), say T, on L?.
By Theorem 3.5, {E(A)*} is the spectral family associated with T acting on L?'.

If {E(A)} is not concentrated on a compact interval, the required result may be
obtained by considering truncated spectral families

0, for A < —N,
En(}) = {E(A), for A € [-N, N),
I, for AZ N,
for larger and larger N. .

We end this section with a consistency result that shows that if E is a linear
transformation which defines a bounded operator on a range of L? spaces, then the
adjoints of the restriction of F to each of these spaces agree on the appropriate subsets
of the dual spaces. In other words, we may unambiguously write E*, without having

to specify which space we are considering E to be acting on.

LEMMA 3.8. Suppose that 1 < p, r < co and that E is a linear transformation
which defines a bounded operator on LP($2,A,p) and L"(£2, A, ). Then for all
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FELP(2,Au)NL(2,A,p),
(Ep)' f=(E)f

almost everywhere with respect to u.

Proof. Let M = IPNL" and let M’ = LP N L™ . Since M is dense in L? and L",
if g € M’, then E*g is uniquely determined by the requirement that

(Ef,9) = (f,E"g)

for all f € M. ]

The results of this section carry through immediately to the spaces L?(£2, A, u; X)

" for those Banach spaces X which make the corresponding Lebesgue-Bochner spaces
reflexive for 1 < p < 0. For other types of interpolation space such as the spaces Cp,
one has to prove an analogue of Lemma 3.2. For the Cj spaces this is easy and we

leave it for the reader.

4. EXTRAPOLATION

We now turn to the more difficult question as to whether it is possible to deduce
spectral information about an operator on LP! or LP? given information about the
operator on L? for p € (p1,p2). Lemma 4.1 is an easy consequence of the continuity
of LP norms with respect to p.

LEMMA 4.1. Suppose that 1 < p; < p2 < oo and that E is a linear transformation
which defines a bounded operator of norm at most K on LP(£2, A, u) for all p €
€ (p1,p2)- Then the domain of E can be extended uniquely so that E defines a
bounded linear operator of norm at most K on LP (2, A, u).

REMARK. This extension of course need not be proper. For example ¢! = L1(N)
is strictly contained in & for p > 1.

Proof. Let g be a non-zero simple integrable function. Then g lies in L? for
all p. Also since ||g||, is a continuous function of p (see [11, VI.11.30]), ||g]l,, =
= lim ||g|lp. Thus

p—p}

lim ||Egll,  lim Kllgll,

WEgllp, _ p=ri p—p} _

llolls, lim [lgl, = lim |lg[l,
p—p p—p]

K.
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It follows that £ can be extended uniquely to an operator of norm at most K to all
of L. [ ]

Theorems 4.2 and 4.3 say that to extrapolate the property of being scalar-type
spectral or of being well-bounded to LP!, one needs a uniform bound on the norms of
the functional calculi. Theorem 4.2 is closely related to a result of Oberai [15, Theorem
2]. It should be noted however that Oberai incorrectly claims an extrapolation result
to L™,

THEOREM 4.2. Suppose that 1 < p1 < pz < 00. Suppose also that T defines

a real scalar-type spectral operator on LP(£2, A, p) for all p € (p1,p2) and that T
is bounded on LP». Then a necessary and sufficient condition for T to define a real
scalar-type spectral operator on LP! is that there exists r € (p1,p2) and K < oo such
that

lg(Dllp < K sup |[g(N)]
Aeo(Tp)

for all g € C(o(Tp)) and for all p € (p1,7).

Proof. Sufficiency: It is well-known (see, for example [2, Proof of Theorem 3])
that if T' is bounded on L?* and L", then the spectral radius of T, is uniformly
bounded for p € [p1, 7). Thus, for a suitably large closed interval A C R,

o(T,)Cc A

for all p € (p1,7). Thus T has a C(A) functional calculus on L? for p; < p < r
of norm less than or equal to K. Again the fact that the polynomials are dense in
C(4) ensures that for g € C(A), the definition of g(T") agrees on all the L? spaces
(p1 < p<r). By Lemma 4.1 then, we can extend g(T") to an operator on LP! of norm
less than or equal to K )s\ug [¢(T)|. Thus T has a C(A) functional calculus on LP

and, since ¢g ¢ LP1, Lemne'la 2.1 implies that T is real scalar-type spectral.
Necessity: Suppose that T is real scalar-type spectral on LP for all p € [p1,p2).
Choose r € (p1,p2)- Then as above we can choose A C R such that ¢(T,) C A
for all p € (p1,7). Since T is scalar-type spectral on LP! and on L" it must have
a C(A) functional calculus on each of these spaces and hence, by the Riesz-Thorin
Interpolation Theorem, on each of the intermediate spaces, with uniform bound (say
K) on the norms of the functional calculi. Since o(T,) C A for each p € (p1,r), the
norm of the C(¢(7;)) functional calculus must be bounded by K as well. u

In practice these same tehniques can often be used to handle scalar-type spectral
operators whose spectrum is not contained in the real line. This is because one often

has an explicit description of the C(o0(T})) functional calculi, and so the potential
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problems of deciding whether these agree is avoided. See Remark (iii) after Theorem
2.2.

THEOREM 4.3. Suppose that 1 € p1 < p2 < 00. Suppose also that T defines a
well-bounded operator (of type (B)) on LP(£2, A, u) for all p € (p1,p2) with

T= /®AdEp()\).

[ap,bp]

A necessary and sufficient condition for T' to define a well-bounded operator on LP*

is that there exists r € (p1, p2) such that

M= sup {sup]]Ep()\)“p} < o0.
p1<p<r LAcR

REMARK. The condition that M be finite is equivalent to the condition that there
is a uniform bound on the norms of the AC (or equivalently BV') functional calculi for
T on each of the LP spaces with p; < p < 7. One consequence of Lemma 3.3 is that
the spectral families for T on each of the L? spaces are all concentrated on the same
interval [a,b] C R. Let 9, : BV([a,b] — B(L?) denote the algebra homomorphism
which maps g to g(T'), and let K, denote the norm of this homomorphism when
BV]a,b)] is equipped with the norm

llgltiBv = lg(8)| + var g.
[a,3]
That K, < M is a consequence of [4, Proposition 2.6] which shows that
lg(T)lle < lglllBv sup 1B (M)1]-

The reverse inequalify follows easily since ¥p(x[s,5)) = E(A).

Proof of Theorem 4.3. Sufficiency: Let g be a polynomial. Then, by the remark,
g(D)ll, € Ml|lglllsv.- By Lemma 4.1 then, ||g(T)|l,, < M||lglllev, and so T must
be well-bounded on L.

Necessity: This follows easily from Riesz-Thorin. If

lla(T)llp, < Klilglitsv

and for some r > p; ,
la(D)ll- < Lillglllzv
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then, by the Riesz-Thorin Interpolation Theorem,

lg(T)ll, < max{K, L}||glllzv

for all p € (p1,r). Thus if T is well-bounded on LP* and L", then we have a uniform

bound (say M) on the norm of its AC{a, b] functional calculus on every L? space with

p € (p1,r) and so for all such p, sup ||E(A)|, £ M. ]
AeR

If py > 1 then LP* is reflexive, so that we may deduce that if T satisfies the
conditions of Theorem 4.3, then it must be of type (B) on this space. If the underlying
measure space is finite (a hypothesis that has not been required thus far) then the
same conclusion holds for p = 1. As we shall see in the final section, this hypothesis

18 essential.

PROPOSITION 4.4. Suppose that 1 < p, » < oo and that (£2, A, p) is a finite
measure space. Suppose also that {E(A)}aer Is a family of linear transformations on
LO(02, A, p) such that

(i) {Ep(A)}arem forms a spectral family on LP(R2, A, i), and

(ii) for each A € R, E,.()) is bounded on L"(£2, A, p).

Then a necessary and sufficient condition for {Er(A)}aer to be a spectral family on
L7(£2, A, u) is that there exists a constant M such that for all A € R, ||E,(A)||» < M.

REMARK. It is clear that if {E,(A)}aer is concentrated on some interval, then

{Er(A)}rer is concentrated on the same interval.

Proof. Necessity is obvious.
Suppose first then that » < p. Let M = L¥ ¢ L". For f € M, the fact that
{Ep())} forms a spectral family implies that

E(p)E(A)f = E(min{g, A})f.
The density of M in L” ensures that
B, (4)E; (V) = Br(min{s, A}).

Thus {E,())} forms a naturally ordered family of projections on L".

It remains to show that {E,())} is strong operator continuous on the right and
has a strong operator left hand limit at each point in R.

Suppose that u € L™. Fix ¢ > 0. Since L? is dense in L™ we can choose v € L?
such that |ju — v||; < €. Then (and it is here that is important that u(£) < co),

I(EA +8) = EQ)ullr < IEQX + 6) = EQA)oll + I(EQ + &) = EQ)(w = v)ll- <
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< AR PI|(B(A+ 8) — EQ)ollp+
FUEQ + 8)ll + IEMIllu — ol < &+ 2Me.

for § > 0 sufficiently close to zero, since {E£())} is a spectral family on LP. Thus
{E-(\)} is continuous on the right at A in the strong operator topology. Showing
that a strong left limit exists is similar.

If p<r, then 1 <r < oo. As above {E(A)} forms a naturally ordered family of
projections on L. Since L" is reflexive, a theorem of Lorch [14] implies that {E,())}
has strong operator topology limits on both the left and the right at each point of R.
We need to show that for all X € R, the strong operator limit of E.(X + §) as § — 0%
is actually {E.())}. Let E € B(L") denote this limit. Then for all u € L",

(B +8) = Eully < p(2)/P77|(E(A + 8) ~ E)ullr — 0

as § — 0F. As L is dense in LP, this implies that {E(A + 6)} has strong operator
limit E as 6 — 0%. But since {E.())} is a spectral family on L?, E must equal E,())
on L? and so result is proved. a

THEOREM 4.5. Suppose that 1 < p; < p» < oo and that (2, A, p) is a finite
measure space. Suppose also that T defines a well-bounded operator (of type (B)) on
LP(£2, A, p) for all p € (p1,p2) with

®
T = / AE,(X).
[aPle]

A necessary and sufficient condition for T' to define a well-bounded operator on LP*

is that there exists r € (p1,p2) such that

M = sup {SUP ||Ep()‘)“17} < .
p1<p<r LAER

If this condition is satisfied, then T is well-bounded of type (B) on LF*.

Proof. We shall first prove sufficiency. As we have shown above, we may write
unambiguously that
T= /6 AdE(X)
[a,t]
on L? for p € (p1,p2). We shall show that this also holds on LP:. By Lemma 4.1,
E(X) defines a bounded operator on LP! for all A € R. The hypothesis gives a uniform
bound on the norms of these operators, so by Proposition 4.4, { £(A)} forms a spectral

family on LP:.
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@
Let S = / AdE(X) on LPr. It is not hard to see that S is a well-bounded

operator whichJextends T, on LP. That this extension actually equals T on LP* follows
since T, is bounded and L? is dense in LP*. That T}, is bounded is a consequence
of Lemmas 3.4 and 4.1. Thus we have shown that T defines a well-bounded operator
of type (B) on LP:.

Necessity is proved as in Theorem 4.3. |

COROLLARY 4.6. Suppose that (£2,.A, p) is a finite measure space. Suppose also

that T' defines a well-bounded operator on L*(£2, A, 1) and on L7 (92, A, i) for some
r > 1. Then T must be of type (B) on L}(2, A, n).

Proof. Choose a < b such that 7" has an AC[a, b] functional calculus on L! and
on L. Thus there exist M;, M3 < co such that for all g € AC(a, b]

lg(D)ll: < Milllgll|zv

la(Dll- < MzlllglllBv
Clearly then, if M = max{M;, M,}, then

lg(Tll» < Mliglllzv

for all p € (1,7). By Theorem 4.5 (and the remark after Theorem 4.3), T is well-
-bounded of type (B) on L!. n

In many situations it will be easier to apply this result by using the following
special case, which is a consequence of the fact that all self-adjoint operators on a
Hilbert space are well-bounded.

COROLLARY 4.7. Suppose that (£2, A, 1) is a finite measure space. Suppose also
that T defines a well-bounded operator on L'(£2, A, 1) and that T is self-adjoint on
L%(2, A, p). Then T is of type (B) on L(2, A, p).

So far we have concentrated on the “left hand” endpoint of the interval (p;, p2).
Similar results hold for extrapolation to the right hand endpoint, as long as pa # co.
In the next section we shall give an example of a linear transformation which is
scalar-type spectral, with uniform bound on the norms of its functional calculi on
L? for p € [1,00), but which is not scalar-type spectral on L. For the property of
well-boundedness however, we can get some information, even when p; = 0.

COROLLARY 4.8. Suppose that 1 < p; < p2 < 00. Suppose also that T' defines a
well-bounded operator on LP(£2, A, u) for all p € (p1,p2) with

T= / ®\EQ).

[ap 1bP]
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A necessary and sufficient condition for T to define an well-bounded operator on L2

is that there exists r € (p1, p2) such that

M = sup {supHE(/\)|lp}<oo.
r<p<pz LA€R

Proof. This is a standard duality argument. If 1 < p < oo, then we shall denote
by p’ its conjugate index, 1/p+1/p’ = 1. Under the hypothesis, T* is a well-bounded
operator on L? for all p € (p5, p}) with

T* = /(E AE(N)".
[a.b]

By Theorem 4.3, T* is well-bounded on LP2 if and only if there exists ' € (p},p})
such that

sup {suan(A)*np}: sup {suan(A)np}mo-
AER AER

pL<p<r’ r<p<p2
Since T* is well-bounded on L?2 if and only if T is well-bounded on LP2, the result
follows. [ ]

Note that, as the examples show, there is no analogous result to Theorem 4.5 by

which one may deduce that an operator is well-bounded of type (B) on L*°.

5. SOME EXAMPLES

The first example shows that it may not be possible to extrapolate the property
of being well-bounded of type (B) even if T is uniformly bounded on all the L? spaces,
and even if we assume that 7" has the stronger property of being scalar-type spectral
on L? for p > 1.

ExaMPLE 5.1. Define the projection E, on £ (n) by

Eo(z1,...,2,) = (-’51,%,...,%)

1
P

o = 1
It is easily seen that ||E,||, = (Z F) = Kp, say. Clearly K, < oo for p > 1.
k=1

[ee]
Let A, = 1/n. By considering ¢ to be equal to @ #(n), define the operator T by
n=1

o0

T = @ ME,. A simple calculation shows that |[T]|, = 1 for 1 < p € oo and that
n=1

o(T) ={0,1,1/2,1/3, ...} on each of these ¢ spaces.
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Suppose that ¢ is a polynomial. Then

oT) = B 4()En + (0 (I - @Eﬂ)

n=1

and so
lg(T)llp < sup [9(An) — 9(0)| Ky + 19(0)] < (2K, +1) sup |[g(M)|.
n Ae€o(T)

Thus, if p > 1, T has a continuous C(¢(T")) functional calculus, and so T is scalar-type
spectral on £ for 1 < p < oo and is well-bounded on £°°.
For m = 1,2, ..., define the functions g,, as follows:

1, ift>1/m;
am(t) = {mt, if t € [0,1/m)];
| 0, ift<0.
It is clear that gy, lies in C(o(T)) and AC(0,1] with ||gm||ec = |||gm]||lBVv = 1 (Where

have taken the left hand evaluation point in evaluating ||| - |||gv). If T were to have

a functional calculus for either of these algebras of functions then we would have to

have that m i,
9m(T) = (@E) ® ( ) %E,,).
n=1

n=m+1
Thus

m
1
)1 = su Eul1 = =.
lom(Dll > sup 1Enll =3

Since this last sum is unbounded as m ~— 00, it follows that T" cannot have a bounded
C(o(T)) or AC[0,1] functional calculus acting on 2! and so T is neither scalar-type

spectral nor well-bounded on this space. L]

The second example is of a transformation defined on L?(1,00) for all p > 1. This
transformation defines a well-bounded operator of type {B) whose spectral family
satisfies uniform bounds for p > 1 but which is not of type (B) when p = 1, thus
proving that Theorem 4.5 can not be extended to cover arbitrary non-finite measure

space.

ExaMPLE 5.2. Define projections E(A) for A € (0,1), acting on measurable
functions on (1, c0) by

A
(BEMAH)(@) = 1_—,\1/f(u)dU, t < 1/

f(@), t> 1/
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It is easy to see that each E()) is in fact a conditional expectation operator, and so
HEM)|p = 1for 1 < p < oo. For A < 0, define E(A) = 0 and for A > 1, define
E()) =1

We shall show now that for 1 < p < oo, {E(A)}rer forms a spectral family of
projections concentrated on [0, 1], acting on the space L?(1,00). The main difficulty
lies in showing that F(-) is right continuous in the strong operator topology and has
a strong left hand-limit at each point in R. Actually, we shall show that E(‘) is
everywhere strongly continuous. Suppose then that f € L?(1,00) and that 0 < p <
< A< 1. Then

( 1/A 1/n
225 [ foau- £ [ swan, e<uns
(EO)S — B(u)f)(t) = 4 o _1_#_ 7uf(u)du 1 v
ey , ;
\ 0, t>1/p.
1/x

Note that the function A — I—AX / f(u)du is continuous on (0,1). Now
1

1/x /A s P 1p

IEQ)f = E(a)flly < / =5 [ fwau- T [ rwa] ah
1 1

P 1/p

p 1/p

/ f(v)————/f(u)du dv <

1/
3 1/p /p

<37k /f<u)du— . / Flu)dul +
1/u 1/p PP
+ / f(v)-l—f; / flu)du| dvy =T+1I,

1/x 1

say. Term I clearly vanishes as (A — p| — 0, whereas

1/u 1p

1
Term II < /|f(v)|"dv +1%( ) p/|f(u)|du——>0

b
1/x
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as |A — u| — 0. Thus E(-) is strongly continuous on (0, 1).
Clearly E(-) is strongly continuous on (—o0,0) and (1, 00}, so it remains to check
the behaviour at 0 and 1. This will require a lemma whose proof we omit.

LEMMA 5.3. Let {Sx}rea be a uniformly bounded net of operators on a Banach
space X. Suppose that F is a dense subset of X such that for all y € X, S)y
converges. Then {S)}xea converges in the strong operator topology on B(X).

Again let 1 < p < 00, and let A € (0,1). For @ > 1, let
F*={f € L?(1,00) : f is constant (a.e.) on (1,0)}

and define F = |J F*. Clearly F is dense in LP(1,00). Suppose that g € F*. Then,
a>1
for A > 1/a,

1/ 1/A 4 p

I1E(1)g - EQ)gllp = /g(v> g(u)du wh =0
1

since g is constant on (1,1/X). By Lemma 5.3 then, E(X) converges to E(1) = I in
the strong operator topology as A — 1~.
Define now

Fo={f € LP(1,00) : f(t) =0 (a-e.) on (@,00)}.

Again F = |J F, is dense in LP(1,00). For g € F,, and X < 1/a,

a>1
1/A 1/A P 1/p
A
1 1
P
5 \e-ue |
< (m) /Q(U)du —0 asAi—0%.
1

Using Lemma 5.3 again shows that E(-) is strongly right continuous at 0. Note that
it is important here that 1 < p < 0o. We shall omit the straightforward proof that
{E(A)}rer is naturally ordered.

It follows then that {E(A)} defines a well-bounded operator of type (B) on
L?(1,00) for 1 < p < oo. Let the operator T be defined by

1/t 1/x

(Tf)(t):.tl.f(t)-/.l_"—A/f(u)dudA, t € (1,00).

0
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Let 1 < p < oo and as usual let p’ denote the conjugate index to p. For f € LP(1,00)
and p € L”'(l, 00) one can expand the right hand side of the following expression to
show that

(T,9) = 10— [(BOV, 0

so that T is the well-bounded operator associated to { E(A)}. Note that for 1 < p < oo
the norms of the projections E(A) are uniformly bounded by 1 on LP(1,00). By
Theorem 4.3 then, T is well-bounded on L!(1,00). We shall show however, that T’
is not of type (B) on this space. Actually, [6, Theorem 4.1] (see also [8, Lemma 1])
implies that T is scalar-type spectral on LP(1,00) for 1 < p < co.

By Lemma 3.3, if T were of type (B), then its spectral family would be given by
{E(A)}. Let

)= te(lo)

It is easily checked that f € LP(1,00) for all p > 1. Since f is positive, ||E(X)f|l1 =1
for all A € (0,1). Thus E(X) does not converge to E(0)f =0 (in L! norm) as A — 0%,
and so {E(A)} can not be a spectral family on L!(1,00). It follows then that T is not
of type (B) on L!(1,00).

It is easy to create analogous examples on spaces such as & or Cp. Forn 2 1

define the linear transformations P,, acting on sequences, by

1 ¢ 1o
P(2y,22,...,) = (;Zl’j,-~-,;Z$j,xn+1;zn+2»-'-) .
j=1

j=1

]

o~
n times

Acting on # with 1 < p < o0, P, — 0 in the strong operator topology as n — oo, so
it is possible to construct a spectral family {E(A)}rer by setting

0, forAgO0;
EQ)) = { P,, for A€ [1/(n+1),1/n);
I, for A > 1.

Furthermore, ||P,||, < 1 for all p. Note that {E())} does not form a spectral family
on £, so the same procedures may be used as in Example 5.2 to construct an operator
which is well-bounded of type (B) on # with uniformly bounded spectral family for
p > 1, but which is not of type (B) on £*.

For the spaces Cp, one can construct projections @, on Cj, by setting @, 4 =
= P,AP,. Again one may construct a spectral family from these operators on C), for

1 < p < o0, but not on Cj.
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The final example shows that due to the paucity of well-bounded operators of
type (B) on L*°, there is no analogous result to Theorem 4.5 for extrapolation of this
property to L.

EXAMPLE 5.4. Define the linear transformation T on L°[0,1] by (T'f)(t) =
=tf(t), t €[0,1]. A simple calculation shows that T is well-bounded on L0, 1] for
1 < p € oo (and scalar-type spectral for 1 £ p < 00). For 1 £ p < oo the spectral
family for T is given by

0, for A < 0;
EN)f = xpaf, for Ae(0,1);
I, for'A > 1.

Clearly ||E()A)|[p < 1 for all p. However it is easily checked that {E(A)} does not form
a spectral family on L*°[0, 1] so T can not be of type (B) on this space. Similarly, T
is not scalar-type spectral on L*°[0, 1], even though there is a uniform bound on the

norm of its C[0, 1] functional calculus on L?[0, 1] for all p.
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