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ON THE THEORY OF INDEX FOR TYPE III FACTORS

PHAN H. LOI

0. INTRODUCTION

In [8], V. Jones developed the theory of index for type II; factors and since
then index theory has led to many other important discoveries of properties of type
II; subfactors (cf. [15]), and has also found applications in the study of knots and
mathematical physics [9].

In [10], H. Kosaki extended the notion of an index to any (normal faithful)
expectation from a factor onto a subfactor. While Jones’ definition of the index is
based on the coupling constant introduced by Murray and von Neumann, Kosaki’s
definition of the index of an expectation relies on the notion of spatial derivatives due
to A. Connes as well as the theory of operator-valued weights due to U. Haagerup.

In [10], it was shown that many fundamental properties of the Jones index in the
type II; case such as the basic construction, the range of the value of the index, the
local index formula, etc., can be extended to the general setting.

For convenience, we shall say that N is a subfactor of finite index of M if there
is a normal faithful conditional expectation of M onto N that has finite index. Given
a subfactor N of finite index in M, how closely related are N in M7 It follows from
the definition N is of finite index in M if and only if M’ is so with respect to N'.
Thus a result of J. Tomiyama (cf. [18]) asserts that in this case, M and N must
have the same algebraic type. By the work of A. Connes, type III factors are further
classified into type III, factors for 0 < A < 1, a natural question is then: given a III,
factor M, what subfactors of finite index can M contain? In the II; case, if the Jones
index of N is finite with respect to M, then M and N share many common properties
such as hyperfiniteness, property T, property T, as shown in [15] and [16]. It is thus
reasonnable to expect that there ought to be a close relationship between the types
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of a given type III factor and its subfactors of finite index.

Another question that arises naturally is that, since a type III, factor, 0 < A < 1,
is the crossed product of a type Il factor by an action of Z or R, one may wonder if
the theory of index for type III factors is related to that for type II; factors.

This paper grew out of an attempt to study the theory of index along these lines.
Parts of it have been announced in [12]. The organization of the paper is as follows:

In section 1, after recalling the basic facts and properties about index theory from
[10], we present some elementary examples such as inclusions coming from crossed
products and fixed point algebras, inclusions of type I factors, etc.

In section 2, we will prove the main results of the paper. First we establish
the stability result concerning the type of a subfactor NV of finite index of a type
III, factor M, 0 < X < 1. The idea behind the proof is to compare the modular
theory of N to that of M, via the conditional expectation E. It turns out that in
the case 0 < A < 1, a certain discrepancy between the T-sets of M and N gives rise
to an obstruction for N to have finite index in M. Then by using the discrete and
continuous decompositions for type III, factors, A # 0, we show how the theory of
index for type III, factors, A # 0, can be reduced essentially to the theory of Jones
index for type Il factors. Finally we show that a subfactor of type Ill)= or III 1/m
of index m contained in the hyperfinite type III, factor R, for A # 0, 1, is unique up
to conjugacy.

The paper constitutes parts of the author’s doctoral thesis written at The Penn-
sylvania State University under the guidance of Prof. R. Herman, whose teaching

and support are gratefully acknowledged.

1. PRELIMINARIES

In this section, we recall some basic facts from the theory of index as developed
in [8] and [10]. Other useful references are [5] and [15].

All von Neumann algebras in this paper are always assumed to be separable. Let
N C M be a pair of factors, let E be a normal faithful conditional expectation from
M onto N, (the set of such expectations will be denoted by £(M, N)). Then there
is a uniquely defined operator-valued weight E~! from N’ into M’ that satisfies the
following equations of spatial derivatives:

dpo FE de
dy' Yo E-1

for all normal faithful semi-finite weights ¢ on N and %' on M’.

The index of E is defined to be (see [10]): IndE = E~1(1). Since N is a factor,
IndE is a scalar (possibly c0). E is said to have finite index if IndE < oo.
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If E has finite index, then ¢cE~! € &(N',M’), where ¢ = (IndE)~!, and
Ind(cE~!) = IndE.
We recall some of the main properties of IndE. (See [8] and [10] for proofs.)
(1) IndE does not depend on the Hilbert space on which M and N act.
(2) IndE € {4 cos? (%) ;n > 31U [4, 00].
(3) Ind(E o F) =IndE -IndF, for E € £(N,P) and F € £&(M, N).
(4) The following local index theorem holds.
Let p be a non-zero projection of N'N M. If E,(z) = E~(p)E(z)p, for
x € pMp, then E, € £(pMp,pN) and: '
(a) If IndE < oo, then IndE, < E(p)E~1(p).
(b) If p € (N’ N M)g, then IndE, = E(p)E~1(p).
(c) {ps} is a partition of the unit in (N’ N M)g, then

IndE = Y E(p;)"'IndE,,.

Thus IndE < 0o = dim(N'NM)g < o and IndE<4=N'NM =C.
Let us now consider some elementary examples where the index can be computed.
These examples are probably well-known, they are included here for they will used

later.

ExaMmpLE 1.1. Let G be a discrete group of outer automorphisms of the von
Neumann algebra A and H a subgroup of G. Set M = AxG and N = AxH.
Suppose that E € £(M, N) is the expectation for which E(ug) = 0, for any g € G\H,
then IndE = [G: H].

Proof. We may assume that M is acting standardly with a cyclic and separating
vector £ such that ¢ o £ = wg, where ¢ is a fixed normal faithful state of N. Let en
be the projection defined by: en(x€) = E(z)€, forz € M.

Write G = U giH as a disjoint union of H-cosets. Then it is easy to see that
i€l
{Ug;BNu;‘-}iel is a partition of the unit of {M,e,}".
Define F = JE~1(J - J)J. Then F is an operator-valued weight {M,ex}" into

M. We have:
E-'()=FQ)=F (Z ug_.eNu;_) = Eug,.F(eN)u;i = Zug‘.u;‘, = [G: H],
i€l i€l iel
where we have used the facts JenJ = ey and E~1(en) = 1 (see [10]). |

As an application of the calculations above, using the discrete decomposition for
type III, factors, A # 1, we can construct, for any positive integers m and n, an
example of a type III,m/n subfactor of a type III, factor, A # 1, which has index mn.
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ExAMPLE 1.2. Let M be a factor and G a discrete group of outer automorphisms
of M, and M€ the fixed point algebra of G. Then for any E € £(M, M), IndE = |G|.

Proof. We may assume that M is acting standardly. Let {u,,g € G} be the
canonical group of unitaries which implement . Since u,M'u; = M', G also acts on
M'. Denote this action by &’. As a is outer on M, so is o/ on M’. We shall need the
following result of Aubert [1, IL.4].

With M, o, G as above, if there exists an expectation T € £((M?), M’), then
there is an isomorphism ® from (M?)’ onto M'X G, which is the identity on M’
and such that ®oTo®~! = F, where F is the canonical conditional expectation from
M'x4'G onto M'.

There are two cases:

1) If |G| < oo, then as M X,G is the basic construction for M* C M, M C
C MX4G is anti-isomorphic to M’ C (M®)'. It follows from Aubert’s result that
there is an expectation F' € £((M?)’, M') such that IndF = |G|. Thus (|G|)~1F-!
must agree with E as the relative commutant of M* in M is trivial. So IndE =
= IndF = |G|. ’

2) If |G| = oo and suppose that IndE < oo, then T' = (IndE)~1E~1 € £((M*Y,
M') and IndE = IndT. On the other hand, by Aubert’s result, IndT = IndF =
oo, where F' is canonical expectation from M’/x,G onto M’. This contradicts our
assumption that IndE < co. Hence IndE = oc. [ |

The following result of [2] will be useful for the next two examples.

LEMMA 1.3 [2, Proposition 2.3]. Let N C M be von Neumann algebras, and P
a factor. For each E € (M ® P,N ® P), there is a unique F € £(M, N) such that
E=FQIdp.

Note that if M, N are factors, then IndE = IndF.

Now suppose that N C M are type I factors, and £ € £(M, N) has finite index.
Then there exist Hilbert spaces H, K such that N C M is isomorphic to B(H)® C C
C B(H)® B(K). Thus by 2.3, there is an F € £(B(K), C) such that E =Idp)® F.
Hence F can be viewed as a normal faithful state on B(K).

As IndF = IndE < oo, F~! is a normal faithful functional on B(K). Thus
there are positive, non-singular, trace-class operators A and B on K such that F =
= Try4, Tr(A) = 1, and F~! = Trp. Using 7.3 in [18], we infer that A = B~! and so
both B and B~ are of trace-class. This holds if and only if K is finite dimensional
and in which case, IndE = IndF = F~1(1) = Tx(B) = Tr(471).
~ We have thus shown the following:
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EXAMPLE 1.4. The inclusion N C M of type I factors has finite index if and
only if there exist Hilbert spaces H, K such that N C M is isomorphic to B(H)®C C
C B(H) ® B(K).

In particular, we see that in this case, the numbers 4 cos® (%) are never taken
on by the index.

Next we consider a pair N C M of type Il,, factors, together with an expectation
E € £(M, N) such that Tras = Try o E, where Tras and Try are some normal faithful
semi-finite traces on M and N. Suppose that IndE < oo, then there exist type II;
factors B C A such that N C M is isomorphic to A ® B(H) C B ® B(H). And
so by 2.3, £ can be identified with F ® Idg(x), where F is the trace conditioning
expectation on B C A. It follows that IndE = IndF, and thus in this context, the
type Il index is reduced to just the type II, index.

2. INCLUSIONS OF TYPE III FACTORS OF FINITE INDEX

In this section we will study the index theory for an inclusion of type III factors.
To this end we will need to recall some facts concerning the notion of an orthonormal
basis and some analytical formula for the index due to [15]. We state these results in
the setting of inclusions of properly infinite factors, their proofs are an easy adaptation

of the original arguments in [15] and can also be found in [12].

ProposiTION 2.1. Let M and N be properly infinite factors on the Hilbert
space H, and E € £(M, N). Let ¢ be a normal faithful state on N with ¢ o E = wg,
where £ is a cyclic and separating vector for M. Let ex be the projection defined by:
en(z¢) = E(z)¢, forz € M.

The following are equivalent:

(1) IndE < oo.

(2) for each = € {M, e, }", there is a unique y € N such that zex = yen;

(3) there is a u € M such that E(u*u) = 1, ueyu* = 1, and z = uE(u*z) Vz €
€ M; '

(4) there is a u € M such that ueyu* = 1.

ProrosiTION 2.2. (Pimsner-Popa estimates) Let M and N be properly infinite
factors and E € £(M, N) such that IndE < oo, then the following hold:
(IndE)~! = sup{c > 0; E(2) > cz,Vz € My}
= inf{||E(z)||;Vz € M with ||z]| = 1}
= inf{]|E(f)||;V nonzero projection f € M}
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The converse of Proposition 2.1 was shown to hold in some speci-al cases in [13],
and a simple proof in the general case has been obtained in [11].

The Pimsner-Popa estimates are remarkably useful alternatives to the original
definition of the index. Indeed, they have been proposed in [15] as an alternate
definition for the index. For instance, using these estimates, one can show (cf. {12])
that the relative commutant is always finite dimensional for any inclusion of factors
with finite index.

Let N C M be an inclusion of type III factors of finite index, we are going to
show the restriction on the type of the subfactor N. We consider the Il case first.

PRrOPOSITION 2.3. Let N C M be factors such that M is of type II1y. If there
exists an expectation E € £(M, N) having finite index, then N is of type Ill,.

Proof. The fact that N is of type III is a consequence of Tomiyama’s theorem.
If N is of type III, with 0 < XA < 1, then there exists a normal faithful semi-finite
weight ¢ on N such that the centralizer N¥ is a factor (cf. 21.6, 23.9, 29.12 in [18]).
If we set ¢ = @ o E, then since o¥ o E = Eo ¥ for all t, E: Z(MY¥) — Z(N¥) = C.
By the Pimsner-Popa estimates in Proposition 2.2, we have:

0 < (IndE)™" < inf{|[E(N)];0 # f € Z(M¥)).

But since Z(MY) is diffuse (cf. [18]) and ||E(f)|| = E(f) Vf € Z(M?), the above
inequality is violated. Thus N must be of type IIl,. [ ]

To consider the remaining cases where 0 < A € 1, we need the following result
which shows that, for an inclusion N C M of type III factors, a certain discrepancy
between the T-sets of M and N will imply that the index is infinite.

PROPOSITION 2.4. Let N C M be type Il factors and E € E(M,N). If there
exists a number t € T(N) such that nt ¢ T(M) for all nonzero integers n, then
IndE = oo.

Proof. Suppose on the contrary that IndE < oo. Then N’ N M has finite
dimension. Let p be a minimal projection in N’ N M and consider E, € £E(pMp, Np)
defined by:

Ep(pzp) = (E(p)) " E(pzp)p, © € M.

It follows from the local index formula that IndE, < IndE < co and (Np)'NpMp = C.
Moreover, the T-sets of Np C pM p satisfy the same hypothesis as in the proposition.
Thus without loss of generality, we may assume that N'N M = C.

Let t € T(N) be as stated. There is then a normal faithful state ¢ on N such
that of = Idy. Set ¥ = p o E, then a = o’? is an aperiodic automorphism of M
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such that N C M*. Moreover, M? is a factor (as N’ N M = C) which is globally
invariant under the modular group o¥, hence by Takesaki’s theorem (cf. [18]), there
exists a conditional expectation F' € £(M, M “) such that ¥ = 1 o F' or equivalently,
poE =pokE) oF, where F| denotes the restriction of £ on M®. Hence E = E10o F
by 11.3 of [18] and it follows that IndE = (IndE;)(indF) = oo because IndF = oo by
Example 1.2. We have reached a contradiction. Thus IndE = oo as was to be proved.

[ |

We record in the following a couple easy corollaries of Proposition 2.4.

COROLLARY 2.5. Let N C M be typelll factors and E a conditional expectation
in E(M,N). If IndE < oo, then there exist positive integers m and n such that
mT(N) C T(M) and nT(M) C T(N).

Proof. It suffices to prove the first inclusion. The second one follows from the
same arguments applied to the inclusion of commutants.

As IndE < oo, we may assume, as in the proof of 2.4, that NN M = C. Also
from the proof of 2.4, we see that for each nonzero t € T(N), there is an integer k
with 0 € k €< IndE and kt € T(M). Taking m to be the l.c.m of these integers, we
get mT(N) C T(M). ]

COROLLARY 2.6. Let N C M be type Ill factors and E a conditional expectation
in &(M,N). If IndF < oo, then

(1) T(M) is countable if and only if T(N) is;

(2) T(M) is dense if and only if T(N) is.

Since factors of type IIl, 0 < A < 1, are characterized by their T-invariants, by
combining Propositions 2.3 and 2.4, we obtain the restriction of the type of subfactors

of finite index of a type III factor.

THEOREM 2.7. Let M be a factor of type IIIy, 0 < A <1, and N a subfactor of
M. If there exists a conditional expectation E in £(M, N) of finite index, then N is

of the type Il m/x, for some positive integers m and n.

/

We should mention that without the extra condition of finite index, Theorem 2.7
doesn’t hold. In fact, it is possible to construct (as was done in [13]), for any 0 < A,
u < 1, an inclusion N C M such that M is of type III) and N is of type III,, which
is the range of a conditional expectation from M.

‘We shall see that in the case 0 < A < 1, an upper bound for the integers m, n
can be obtained.

Having now obtained the restriction of the type of subfactors of finite index of
any given type III factors, we look into the special case of 0 < A < 1. Since every
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type III, factor, for A # 0,1, can be decorﬁposed as the crossed product of a type Il
factor by an action of Z, it is then natura] to try to relate the index of a given type
III, inclusion to the type II; index. '

The next result shows that, under some mild condltlons a type III, inclusion can
always be decomposed into three inclusions: the top and bottom ones are, respectively,
a crossed product and a fixed point algebra by an outer action of a finite group, and
the middle one is determined by some 1nclu51on of type II; factors.

THEOREM 2.8. Let M be a factor of type IIl5, 0 < A < 1, and N a subfactor of
M of type Il n/n, where m, n are (coprime) positive integers. Suppose that there is
an expectation £ € £(M, N) with finite index and such that (N’ N M)g is a factor.
Then there exist:

(1) factors of type Illxm P and Q such that NC Q C PC M;

(2) normaj faithful conditional expectations F € £(M, P),G € £(P,Q), and H €
€ £(Q, N) which satisfy:

(a) E = HoGo F,IndF =m, IndH =n, so that IndE = mn(IndG).

(b) There ‘exists a common discrete decomposition for the pair of IlIym factors
@ C P, and IndG is equal to the Jones index for the pair of type II; factors, which
appear as the finite tensor components of the pair of type Il factors that give rise

to the common discrete decomposition of Q CP.
\

Recall that (N'NM)g = {z € N’ﬂM cB(z) ==z Vt € R}. We will need the
following well-known fact. Let G be a finite group of outer automorphisms of the
~ factor M, then M€ is isomorphic to M xG. ‘

Proof. Let‘; ¢ be a normal faithful state on N such that 0¥ = Idn, where S =

—%13;)\ s aljgenerator for T(N). Set ¥ = p o E. As mS € T(M), o}s = Adu

for some unitary u € Z(M¥). Since c%4|N = 0% = Id}v, u € ZMY)NN' C
C Z((N'NM)g) =C by hypothesis Thus u is a scalar and "'ms = Idps. This means
that if we set o« = o-s, then « is an outer automorphism of M with period = m. Thus

M*® is a subfactor of M of index m and containing N.

We claim that M*< is of type IIym. Accordmg to Theorem 2.4 and the remark
preceding the proof it suffices to calculate the T-set of M XoZm. To this end, applying
Proposition 2.9 in [17], we see that t € (M X4Zy,) if and only if there e)flsts some
integer r with 0 r < m such that a}l’ oa" is inner, i.e. 0':/’ +rs 1s inner. Note that the
" second condition in Sauvageot’s result is automatically satisfied due to the invariance
of ¢ with respect to a. As mS € T(M), t‘;he preceding condition is equivalent to the
fact that there!is an integer r with 0 € r < m such that a;/’ +rS+¢ms is inner for some

integer ¢, or o? is inner for some integers ¢, r with 0 L£r<m.

t+(r+gm)S
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Therefore t € T(Mx4oZy,) if and only if ¢ + kS € T(M) for some k € Z;

if and only 1ft+lc:S_lI ) for some k,l € Z;

if and only if t = (ml — nk‘)

/\forsomechEZ

As mjand n are assumed to be coprime, the latter condltlon occurs if and only
Z and so M is of

if ¢ is a multiple of 7—X Hence we obtaln T(MXoZy) = 1 o

type Iy

Set P = M and let F be the canonical expectation of M onto P, then IndF = m,
Yo F = ¢‘ so that po Eo F = @ o E, where E is the restriction of E on P. Thus
E=EoPF.

We observe that (N'NP) is a factor for (N'NP)z = N'NM*NMY = N'nMY =
= (N'N M)g. We also note that IndE < co.

Passing to the commutants, we have:

cE~1 € E&(N', P'), with ¢ = (IndE-1), N is of type IIIu(# A”‘/") and P’ is of
type Il | | Moreover, (N'NP), g1 = (N N P)E because a°E =oF, forallteR.

Applying the same argument as in the first part of the proof to the pair P’ C N’
and the expectatlon cE~1, we infer that there exist:

1)a subfactor Q of P which is of type ITI,n, (i.e., IIly=) such that P/ C Q' C N';

2) conditional expectations F; € E(N',Q'), F, € £(Q’, P’) such that cE-1
= Fy o F5,IndFy = n and (Q' N P)F, is a factor.

Set G = (IndF>)"'F; ' and H = (IndF;)~*F;!, we have N C Q C P C M,
E=HoGoF,IndH = n and (Q' N.P)¢ is a factor. Now let us concentrate on the
inclusion Q C P.

Let w be a generalized trace on Q, i, w(l) = oo and o% = Idg, where T =

r;ig/\ If p=w oG, then of = Adu, with u € Q' N Z(P?) C 2((Q' N P)g) =
So u is a scalar and ¢4 = Idp and hence p is a generalized trace on P. If v denotes
the unitary in @ which satisfies A™w = w 0 Adv as in 30.1 of [18], then @ = Q“x,Z,
where 8 is the automorphism defined by Adv. It is then obvious that A™p = po Adv,
and as in the proof of 30.1 of [18], this ensures that P = P?X4yZ as well. In other
words, thex%e is a common discrete decomposition for @ C P. Note also that @ C P?

are type Il factors.

The réstriction of G to P? then defines a conditional expectation onto @Q* which
is denoted iby G. Furthermore, 7y = 5 0 G, where 7, and 7 are the normal faithful
semifinite traces on P? and Q¥ obtained by restricting p and w.

If e is|a finite non-zero projection in @Q“, then e is also finite in P and thus the
pair Q¥ C P? is spatially isomorphic to (Q¥). ® B(H) C (P?)e ® B(H). By Lemma
2.3, G can 'be identified with an expectation of the form K ® Idp(x), where K is the
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trace preserving conditional expectation of the pair of type I, factors (Q“), C (P?)..
We have IndG = IndK = [(Q¥).: (P?).].

As IndG < o0, G satisfies the Pimsner-Popa estimates, hence so does the restric-
tion G and thus K. By Theorem 2.2 of [15], this implies that IndK and hence IndG
are finite.

By Proposition 2.1, there exists a w € P? such that for all £ € P?, we have
z = wG(w*z) and ww* = IndG. Since G(v*) = v* for all integers k, we see that the
identity £ = wG(w*z) holds for all finite sums z = _ zzv k. where the z;’s are in P?.
By the o-weakly continuity of G , ¢ = wG(w*z) for all z € P. By Proposition 2.1,
we conclude that IndG = ww* = IndG = [(Q¥).: (P?).).

REMARKS 2.9.

1) The assumption that (N’ N M)g is a factor is equivalent to the fact that
NN M is a factor and oF is trivial. Indeed, suppose that (N’ N M)g is a factor.
As IndE < oo, dim(N' N M) < oo. Since o is the modular group for the normal
faithful state E[N' N M, of = Ad(h"*), t € R, for some positive invertible element h
in NN M. But since h is actually in the center of N’ N M, which is trivial, o = Id
for all ¢ € R and so N’ N M is factor. The converse is obvious.

2) The condition that (N’ N M)E is a factor is only needed to show that for the
middle inclusion @ C P, a common discrete decomposition exists, since with a little
more effort, we can show that the top inclusion, and hence the bottom one, always
exists. For let ¢ and ¥ = ¢ o F be as in the Theorem, then o = a'g is an outer
automorphism of M and a™ = Adu for some unitary u in N' N Z(M¥). Let w be a
unitary in N’ N Z(M¥) such that w™ = u* and set # = Adw o a, then § defines an
outer action of Z,, on M such that N C M?. Similar computations as in Thorem 2.8
show that MP? is a type IIIx» factor. Set P = MP? and let F € £(M, P) be defined
as before, we have that E = E o F', where E is the restriction of E on P. Now the
preceding argument can be repeated for the pair P’ C N’ and the expectation c£E~?,
c¢= (IndE)~1.

3) For an inclusion N C M of type III, factors, 0 < X < 1, such that there
is a common discrete decomposition as in the middle inclusion in Theorem 2.8, it is
routine to check that the common discrete decomposition is essentially unique as in
the single factor case. And thus one can carry out a classification program of this
type of inclusion in the hyperfinite case by classifying the corresponding trace scaling
automorphism on a pair of type I, factors. These ideas are taken up further in [14]
to classify certain subfactors (up to conjugacy) of the Powers factor with index less
that 4.

As a consequence of Theorem 2.8, we obtain an upper bound for the integers m
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and n in the following.

COROLLARY 2.10. Let M be a Il factor, and N a subfactor of type IIl; nu/n,
where A # 0,1, and m and n are coprime. Then for any E € £(M,N), one has
mn < IndE with equality only if NN M = C.

Proof. 1If IndE = oo, then there is nothing to be proved. Suppose that IndF is
finite, then N’ N M has finite dimension. Let p be a minimal projection in N' N M
so that (Np) NpMp = C and let E, € E(pMp, Np) be as in Proposition 2.4. By
Theorem 2.8, mn £ IndE, < IndE.

If IndE = mn, then for any nonzero projection f in N’ N M we have:
mn < IndE; < E(f)E~Y(f) < mn.

This forces f =1,i.e., NNM=C. n

The next corollary shows that, for A # 0,1, the index theory for a pair of type
III, factors of index < 4 is mostly a type II; phenomenon.

CoROLLARY 2.11. Let N C M be factors. If M is of type IIIx, A # 0,1 and
E € &(M, N) has index < 4, then one of the following holds:

1) N is of type IlI2 or IIl,1/2 and IndE = 2.

2) N is of type Illys or I1l,:/s and IndE = 3.

3) N is of type Il and IndFE is equal to the Jones index for a certain pair of
type 11, factors coming from a common discrete decomposition of N C M.

Proof. As N'N M = C in this case, Theorem 2.8 and Corollary 2.9 imply that
N is of type I, m/n with mn < 4. The rest of the corollary follows easily from 2.8.8

The idea of relating the index of a type Il inclusion using crossed product to
the index of some type II; pair also works for type IIl; inclusions.

Let N C M be type III; factors and E € £(M, N) a conditional expectation. Let
¢ be a normal, faithful and semi-finite dominant weight on N. Then (cf. [18]) there
exists a strongly continuous unitary group {u,}seg in N such that o (u,) = e'**u,,
for allt, s € R. If ¢ = po E, then of (u;) = e*u, for allt, s € R also, and hence ¢ is
a dominant weight on M. In other words, the pair N C M admits a common discrete
decomposition, i.e., N C M is isomorphic to the inclusion of continuous products
N?xyR C M¥»yR, where 6, = Adu,, for t € R.

As M and N are type III;, M¥ and N¥are type Il factors. Furthermore, there
exist normal, faithful and semi-finite traces 74 and 7, on M ¥ and N¥, respectively,

such that ¢ = ry o E,, and ¢ = 7, 0 E,, where Ey and E, are the operator-valued
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weights from M and N into MY and N¥, respectively defined by:

o0
Ey(z) = / 0¥ (2)dt, z € M*;

-0

E(z) = / " o#(a)dt,z € N*.

-0
It is straightforward to check that Eo Ey, = E, o0 E. Thus the restriction of E to M¥
is the trace preserving expectation. Using the Pimsner-Popa basis and estimates, an
argument similar to that of Theorem 2.8 then shows that IndE (finite or infinite) is
the Jones index for the type II; tensor components of N¥ C M¥. We summarize the

preceding discussion in the following.

ProproSITION 2.12. Let N C M be type IlI; factors and E € E(M,N). Then
there always exists a common continuous decomposition for N C M such that the
index of E is given by the Jones index type II; tensor components of the pair of type

Il factors that give rise to the common continuous decomposition.

We remark that the common continuous decomposition in 2.12 is also essentially
unique as in the single factor case.

The rest of the paper is devoted to prove the uniqueness (up to conjugacy) of
subfactors of type IIIym or III,1;m of index m of the hyperfinite III, factor Ry.

First we show that an inclusion satisfying the conditions above can be easily
described by means of crossed product or fixed point algebra of finite discrete group

of outer automorphisms.

PROPOSITION 2.13. Let M be a factor of type 111y, 0 < A < 1, and N a factor
of M such that there is an expectation E € E(M, N) with IndE = m.

1) If N is of type IlIym, then N is the fixed poini algebra of an outer action of
Z,, on M.

2) If N is of type 1111/, then M is the crossed product of N by an outer action
of Z,,.

Proof. We note that in either case, N' N M = C, by Corollary 2.10.
1) Suppose that N is of type IIIym. Let ¢ be a normal faithful state on N with
0% = 1dn, where S = _—% If ¥ = g o E, then a = 6% is an outer automorphism

mlogA
of M with period m. As N C M® C M, there is an expectation F € E(M, M) with

IndF = m, hence we have M* = N.

2) Suppose that N is of type Il i/m. Let ¢ be a normal faithful state on N
such that o = Idy, where T = _mf%' If Y = po E, then a;/m = Adu, for some
o
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unitary u in M¥. As Adu™ = o§, which is identity on N, u™ is a scalar, which we
may assume to be 1. Set a = a"q’i Jm then « determines an outer action of Z,,, on N.

For any z € N, we have a(z)u = uz and so, a(z)E(u) = E(u)z. From the
outerness of @, E(u) = 0. Similarly, E(u*) = 0, for 1 < k < m — 1. Hence the
subfactor N; generated by N and u is isomorphic to the crossed product NxqZy,.
Thus there is an expectation F € £(Ny, N) with IndF = m. On the other hand,
by Takesaki’s theorem, there is an expectation G € £(M,N1). As NN M = C,
F oG =E. It follows that IndG = 1 and therefore M = Nj. [ |

REMARK 2.14. In case (1) of Theorem 2.13, there is an alternate description of
the structure of N C M as follows: let ¢ be a generalized trace on N, put y = ¢oE

2w
and § = " mlogA

M. By the discrete decomposition theorem of Connes, there is a unitary u in M,
such that a;/’(u) = Mty for all t € R and M is isomorphic to M¥ X quZ. Note that
N C M*%, where o = ag. Since a™ = Idys, there is an expectation F € £E(M, M%)
with IndF = m. Thus N = M® and so M¥ = N¥.

Thus for £ € M, z € N if and only if a(z) = z. Writing z = 3>, zpu®, we
have: ¢ = a(z) if and only if 3% z,u" = 3% A"Sz,u", because a(u) = AiSu.
Thus z = a(z) if and only if z, = 0 for all n ¢ mZ. Hence N = {N¥,u™}", and
N C M is isomorphic to N®XagqumZ C M¥ X aquZ.

.AsN'nM =C, ax’ls = Idps, hence ¥ is a generalized trace on

It turns out that with some extra assumption, any pair of factors N C M satisfy-
ing the conditions stated in Theorem 2.13 is unique up to conjugacy in the following
sense: for ¢ = 1,2, let N; C M; be factors and E; € £(M;, N;) be expectations.
The pairs N; C M;, i = 1,2, are said to be conjugate if there exists an isomorphism
&: M; — M such that ® o F; 0 1 = E,. Note that this implies that ®(N;) = N».

THEOREM 2.15. For eachi = 1,2, let N; C M; be factors. Suppose that M; is of
type IIx, XA # 0,1, and there exist expectations E; € E(M;, N;) such that IndE; = m
for some positive integer m.

If N1 and N, are of type IlIxm (or III,1/m ) and if My = My (resp. if Ny = N3),
then the pairs N; C M; i = 1,2 are conjugate.

Proof. Note that in both cases, the relative commutant is trivial by Corollary
2.10 and so, it suffices to show that there is an isomorphism from N; C M; onto
Ny C M.

1) Suppose that N, N are of type IHIxm and M; = M;. We may then assume
Mi; = M, = M and will show that there is an automorphism of M mapping N; onto
N>. Let E; € £&(M, N;) be the expectations with IndE; = m. As shown in 2.13, if

@; is a generalized trace on N, then N; = M**, where a; = 0'2‘, Y; = p; o E;, and
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27

—mlog
trace on M. Thus there exist some constant ¢ > 0 and a unitary v in M such that

%1 = ey o Adu by 19.5 of [18]. Hence 07* = Aduo o) o Adu* for all t € R.
- In particular, Adu o @y 0 Adu* = &y. Thus Adu is the automorphism of M that
does the job.
2) Suppose that Ny, N are of type III,1/» and ®: Ny — N, is an isomorphism.

3 Since the relative commutants are trivial, each 1; is also a generalized

. 27
Let ¢ be a normal faithful periodic state on Ny of period S = —ml—-j\- Set gy =

=po® 1 It follows that 9 is a normal faithful periodic state of penod S on Ny
and we have /> = ® o0 0 ®~! forallt €R.

From Theorem 2.13, if a; = 0'5 / a for each i = 1,2, then M; is naturally isomor-
phic to the crossed products N;Xq,Z,,. Since oy and a4 are conjugate by ®, it follows
that there is an isomorphism ¥ from Ny Xq, Zm onto NoXo,Zm, such that ¥(my,(2)) =
= 7a,(¥(2)), z € N;. Hence the pairs Ny C M; and N, C M, are conjugate. [ |

Restricting to the hyperfinite case, we have the following classification result.

CoROLLARY 2.16. For each X # 0,1, and for each positive integer m, the hy-
perfinite type I1I, factor contains a unique subfactor of type IlIxm or Ill,,;=» having

index m.
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