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DILATIONS AND SUBNORMAL OPERATORS
WITH RICH SPECTRUM

PATRICK J. SULLIVAN

0. INTRODUCTION

Let H be a separable, infinite-dimensional complex Hilbert space, and let L(H)
denote the Banach algebra of all bounded linear operators on . The paper [4] which
proved the existence of invariant subspaces for all subnormal operators initiated the
study of dual subalgebras of £(H). The main ideas of this theory and a detailed
bibliography as of 1984 can be found in [1]. More recent results can he found in [11],
[9], [6], [7], and [8].

In the theory of dual algebras, systems of equations have played a central role.
One consequence has been many dilation theorems for general classes of operators, cf
{1, chapter V] for some examples. However, these theorems apply only to contractions.
In this paper some of these dilation theorems are generalized to certain subnormal
operators, which need not be contractions.

1. PRELIMINARIES

For T € L(H) denote by o(T) (resp: 01(T)) the spectrum of T (resp: left
essential spectrum of T°); recall that T is a contraction if [|T| < 1. A contraction T
is absolutely continuous if the unitary part of 7" is absolutely continuous (or acts on
the space (0)). If K is another Hilbert space then H @K = {udv:ueH,v € K} is
a Hilbert space with |ju @ v|[2 = ||u||? + ||v||2. Moreover if T € L(K) and S € L(K),
then T®& S € L(H @ K) is given by T & S(u ®v) = T(u) & S(v). If M is a subspace
of H then Pxq denotes the orthogonal projection onto M. If M and NV are subspaces
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of H then MO N = MNNL. If S € £(H) and K is a supspace of H such that
K = M @ N where M and N are invariant subspaces for § and M 2 N then K is
a semi-invariant subspace for §. Moreover, Sx € £(K) denotes the operator PiSIK.
It is well-known that if K is semi-invariant for S then (S¥)x = (Sx)* for any % in N.
Also, if T is unitarily equivalent to Sk for some semi-invariant subspace K of S then
T is called a compression of S, or equivalently, S a dilation of 7.

Let D denote the open unit disc in C and T denote the unit circle. Let m denote
Lebesgue arc-length measure on T. Let H®(D) = {f analytic on D: sup{|f(})| :
DM < 1} < oo}, If f € H®(D) then ||l = sup {|f(A)| : A €DB}. If V C D, then
NTL(V) is the set of all ¢* € T such that there exists a sequence {};}5%; C V with
An — €' nontangentially. It is well-known that NTL(V) is a Borel subset of T. A set
V C D is called dominating for T if m{T\NTL(V)) = 0. It is well-known that V is
dominating for T if and only if ||f||cc = sup {[f(A)}| : A € V}, for all f belonging to
H®(D) (cf. [3, Theorem 3]).

Much of this work takes place in the context of dual algebras, and the notation is
as in [1]. Some of the notation and definitions are reviewed here for the convenience
of the reader. The Banach algebra £(H)} can be regarded as the dual of C,(#), the
trace class operators on M, via the pairing (T, L) = t¢(TL), T € L(M), L € Ci(H).
The weak* or ultraweak topology on L£(H) is the topology induced by this pairing.
A dual algebra A is a weak* closed, unital subalgebra of £(#). Let *.A denote
the preannihilator of the dual algebra A, that is *A = {£ € Ci(K) : (4, L) =
=0 for all A € .4}. Then A may be identified with the dual of the Banach space
Qua = C1(H)/* A via the pairing

(1.1) (A, [L]a) = tr(AL),A€ A, L €Ci(H)

where [L] 4 denotes the coset of L in Q4. The weak* topology induced by this pairing
on A coincides with the relative weak” topology on A (cf. [1, Proposition 1.19]). For
z and y belonging to H, * ® y denotes the rank-one operator in Ci(H) defined by
(z ® y)(u) = (u,y)z, for u € H. If A € L(H) then tr(A(z ® y)) = (Az,y). Note that
(1.1) implies that if A € A and 2 and y belong to X, then

(1.2 (A [z ®@yla) = (Az, ¥)n.

If 7" € L(H), then Ay denotes the ultraweakly closed subalgebra of L(H) gener-
ated by 7" and the identity. We write Qr instead of @4, and the coset of L in Qr is
written [L]p. The following definitions are taken from [1].
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DEFINITION 1.3. Let A be a dual algebra, and let # and m be cardinal numbers
such that 1 € m,n < Ro. We say that A has property (Am,») if for every array
{[Li;]:0< 1<m0<
< m} and {y; : 0 < j < n}such that [Li;] = [z; @y;] for 0L i <m0 j<n

j < n} of clements of Q4 there exist sequences {z; : 0 < i <

Property (A, ) is usually written as property (A,).
Let L' = LY(T). It is well-known that £®° = L®(T) is the dual space of L*
under the pairing (f,g) = (27) 1/ fgdm, f € L*°, ¢ € L'. Furthermore, H® =

= H*(T) is a weak®-closed subspace of L, and +{H) is the subspace Hj = {f €
2n

€Lt f(eMe™dt =0 for n = 0,1,2,...}. It follows (cf. [1, Proposition 1.19])
that H‘x? is the dual space of L'/H], where the duality is given by the pairing:
(ol = (2m)~) f fodm, [ € H® [l € I’ /H). T T € £(H) is an absolutely con-
tinuous contra.ctiorTl, and f € H®, then we can define f(T) using the Sz.-Nagy-Foiag
functional calculus. Let @7 : H® — Ar be the map given by &7(f) = f(T); then
there exists a bounded, linear, one-to-one map ¢p : Qr — L!/H} such that ¢ = &r
(cf. [5, Theorem 3.2] or [14, Theorem I11.1.2)).

DErFINITION 1.4. A(H) is the set of all absolutely continuous contractions T €
€ L(H) such that &7 is an isometry; A is written instead of A(H) when no confusion
will result.

Note that if 7" € A then both ¢ and @7 are invertible.

DeriNITION 1.5. If n and m are cardinal numbers such that 1 € n,m < Rg,
then A, , () is the set of all absolutely continuous contractions 7' € L(H) such that
T € A(H) and Ay has property (Rm,n). An(H) is usually written as A, (H). When

no confusion will result A, , is used instead of A, (H).

If T € A and A € D, then [Ch]r = ¢7'([P2]), where [P,] € L'/H} and Py(e')
is the usual Poisson kernel function, Py(e') = (1 — |A{?)]1 — Xef*|=2. It is well-known
that if f belongs to H*°(D), then {f(T), [Cilr) = f(}).

If W is a set of vectors in ‘H, then W denotes the smallest (closed) subspace of
‘H containing W.

The proof of the following elementary proposition about functions in H* is left
to the reader.

PROPOSITION 1.6. If h € H®(D) and Xy € D, then there exists a function
g € H®(D) such that h(X) = h(Xg) + (A — Xo)g(A) and ||g]leo < 2(1 — Xo) | Allco -
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2. SOME DILATION THEOREMS

The following proposition is the basic tool of this paper.

Proposition 2.1, Let S € L(H) be a subnormal operator such that 1(S) N D is
dominating for T. Let A € L(H) be any absolutely continuous contraction, and L be
any countable subset of H; then there exist subspaces M and N invariant for S with
M D N and a closed one-to-one linear transformation X : P(X) — M & N such
that:

a) D(X) Is a dense linear manifold in H containing L,

b) The range of X is dense in MO N,

c) If z € D(X), then Az € D(X),

d) SpmenXz = XAz for all 2 € D(X).

Before proving Proposition 2.1 some of its implications will be examined. The
conclusions of this theorem are identical to a theorem about operators in Ay, (cf. [1,
Theorem 5.3)). Moreover, Proposition 2.1 is a very weak dilation theorem. However
for certain special cases of the operator A stronger results can be obtained. This next
theorem and proof are similar to [1, Proposition 5.4].

THEOREM 2.2. Suppose S in L(H) is a subnormal operator with 0y(S) N D
dominating for T and {A\;}$, is any sequence of (not necessarily disjoint) points
from D. Then there exists a semi-invariant subspace K for S such that Sy is unitarily
equivalent to a normal operator N in L{H) whose matrix relative to some orthonormal
basis {e;}32., for H is the diagonal matrix Diag({\s}32,)-

Proof. Let A be any operator in £{H) such that each Ay for 0 < k < oo is an
eigenvalue for A of infinite multiplicity. Let L be a set of vectors in H which contains
an infinite number of linearly independent eigenvectors corresponding to each A;. Let
M, N and X be as in Proposition 2.1. Let T = Smen. Using conclusion d) of
Proposition 2.1 it follows that each Xz is an eigenvalue of 7" of infinite multiplicity.
Therefore one can construct easily by induction an orthonormal sequence {fi}3%, in
MO N such that Tfy, = A fx for 0 < k < co. Let K =y {fi : 0 < k < o0}. Then
X is an invariant subspace for T and T'|K is unitarily equivalent to N. Regarding K
as a subspace of H one easily sees that K is semi-invariant for S and Sk is unitarily
equivalent to N.

The following corollary and its proof are similar to [1, Corollary 5.5]

CoROLLARY 2.3. Let S be as in Theorem 2.2. Then there exists K, a semi-
invariant subspace for S, such that dim(K) = R¢ and Sx = 0.
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Proof. Let Ay = 0 for 0 < k < oo and apply Theorem 2.2.

COROLLARY 2.4. Let § be as in Theorem 2.2. Then there exists N € Ry, and
K, a semi-invariant subspace for S, such that Sx is unitarily equivalent to N.

Proof. Let {A;}$, be any sequence in D that is dominating for T. Apply
Theorem 2.2 to obtain K, a semi-invariant subspace for S, such that Sx is unitarily
equivalent to N = Diag({\¢}32,). We see that N is a completely non-unitary normal
contraction and ¢(N)ND is dominating for T. Therefore N € Ay,, (cf. [L1, Theorem
1.13)).

Corollary 2.3 and Corollary 2.4 have many important consequences. To see how
Corollary 2.3 can be used look at [1, Proposition 9.1, Theorem 9.2, Corollary 9.3,
Corollary 9.4, Corollary 9.6]. Corollary 2.4 allows us to apply the dilation theory of
Ax,. We give an example.

THEOREM 2.5. Let S be as in Theorem 2.2, and let {4;}32, be any sequence of
strict contractions acting on Hilbert spaces of dimension less than or equal Ro. Then
there exists a semi-invariant subspace K for S such that Sx Is unitarily equivalent to
B 4.
j=1

Proof. Apply Corollary 2.4 to S to obtain a semi-invariant subspace M for S

such that Sps belongs to Ax,. Let T = Spq. Now apply [1, Theorem 5.11] to obtain
oo

a semi-invariant subspace K for T' such that Tx is unitarily equivalent to @1 Aj.

Regarding K as a subspace of H it is easy to see that K is semi-invariant for S and
Sk is unitarily equivalent to T and the proof is complete.

The following notation will hold for the remainder of this section. Let S € L(H)
be a subnormal operator with ¢;.(S) N D dominating for T. Let M € L(K) be the
minimal normal extension of S. Let E(-) be the projection-valued spectral measure
for M and N = M|gm)x. It is an easy consequence of the spectral theorem that N
is normal and a completely non-unitary contraction. It will be shown later that in
fact N € Ax, (E(D)K).

This next proposition is the essential ingredient in the proof of Proposition 2.1.

ProPoSITION 2.6. If {[L;i;]n : 0 < ¢,j < oo} Is an arbitrary array of vectors
in Qn, then there exist sequences {x;}2, and {y;}52, C H such that [Ly]y =
= [E(D)z; ® E(D)y;] for 0 < 4,5 < co.

The proof of this proposition will require several lemmas and is given after the
proof of Proposition 2.1

Proof of Proposition 2.1. Let {e;}{2, be a sequence that is dense in A and
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contains L. Let [Li;]v = ¢n'da(fei ® e;]4), for 0 € 4,5 < o0. Since N € A(E(D)K),
$y’ must exist. Apply Proposition 2.6 to obtain sequences {z:i}20, {yi}§20 CH
such that [Lij]y = [E(D)z; ® E(D)y;]x for 0 € i,j < 0o. Suppose 0 < 4,j,k < oo,
then (Ake.‘, e,-) = (Ak, & ® ejla) (from 1.2)

= (N*, o5 da(le; ® e;]4)) since A* = &, 85 (N*), ¢ = &4, and ¢} = Iy.

= (N*¥, [Li]n) = (N¥,[E(D)z; ® E(D)y;]n) from the constructions of [L;;]nx and
the sequences z; and y;

= (N* E(D)z;, E(D)y;)p()x from (1.2)

= (M* E(D)z;, B(D)y;)x since N = M|z

= (E(D)M*z;, E(D)y;)x since E(D) is a spectral projection of M.

= (M*z;, E(D)y;)x since E(D) is self-adjoint.

= (S*z;, E(D)y;)x since z; € H and S = M|y

= (S*z;, PuE(D)y; )3 since S*z; € H

Let y; = PyE(D)y;. Therefore (Ake,-,ej) = (S%a;,9;) for 0 < i,j,k < oo.
Let M =y {S*z; : 0 € i,k < co} and M, =y {S**q; 1 0 € j,k < 00} Let
N = M N M}, Note that M and N are invariant for S and M O N. Write z; =
= z; + w;, where z; € M © N and w; € N, then (S*zi,§;) = (S* %, 3;) + (S*wi, ;).
However, S*w; € N/ C M+ and Y; € M. which implies that:

(2.7 (Skzl'a ¥i) = (Skziaif) = (Akeivef)‘
Let T = Spon, 50 S*z; = T%2; + v, where v € N, hence:

(2.8) (8% zi,y) = (T*z,y) forall ye M,.

m m

Define a map Xy as follows: X, (z p;(A)e.-) = z pi(T)z;, where {p;}32; is a set
i=0 i=0

of polynomials with complex coefficients. Since {e;}52, is dense in M, X is defined

on a dense linear manifold of % which contains L. Then Xo is a well-defined, closable

linear transformation whose closure is one-to-one. The linearity of X, is obvious

and to prove the rest of the assertions it suffices to show that if {{pﬁ")};’;"o},;”:o are
Mp Mg

sequences of polynomials such that Iignz pgﬁ)(A)e; =e and li:angn)(T)z; =2,

1=0 i=0

then e =0 iff z = 0.

However e = 0 iff for every positive integer s and every sequence of polynomials

&
{45}i=¢ it follows that | e, qu(A*)ej ] =0.
. j=0

j=0

8
However (e,qu(A*)ej) =0 iff
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hm (Zp(n)(A)e,,Z g;{A* )ej) =0 iff

i=0

hmz Z(qJ (A)p; ")(A)e., ej) =0 (g; is the polynomial whose coefficients are
=0 j=0
the complex con_]ugates of the coefficients of g;) iff

l1mZZ(qJ(S)p ")(S)z, ;) = 0 (using (2.7)) iff

i=0 j=0
hm (Zp(")(S)z,,Zq,(S*)y,) =0iff
=0 j=

lim (ipf")mzz-,qu (s*)y;-) = 0 (using (2.8)) iff

i=0 j=0
8
(2 ) 4;(S")5;) = 0.
Hence e = 0 iff for every positive integer s and every sequence of polynomials
8
{Qj};.:o, (z,Zq,-(S*)gjj = 0. However this last condition is true iff z € ME.

However 2 € MO N, so z € M{ iff z = 0. One can now conclude that X is
well-defined, closable and the closure of X, is one-to-one. Let X denote the closure
of Xo. It is easy to see that L is contained in D(X) and that D(X) is dense in H. We
now show that the range of Xy is dense in M © A which will imply that the range
of X is dense in M © N. The range of X, is E pi(T)z; » where s ranges over all

i=0
positive integers and {p;}:_, ranges over all sets of polynomials. However p;(T)z; =
s

= Pmon(pi(S)z;) and E pi(S)z; ¢ is dense in M. Therefore the range of Xj is
dense in MOSN. Now suppose w € D(X). Then there ex1st sequences of polynomials
{{p; n)},_o %_, such that hmZp( )A)e. =w and 11m2p( )(T)z = Xw. Note

1=0 =0

that Aw = lignZApf")(A)e,- € D(X). So TXw = Iimz TH™(T)z = X Aw. This
i=0 i=0
completes the proof of Theorem 2.1. '

In order to prove Proposition 2.6., several lemmas are needed. The techniques
used are similar to those used to show that a contraction whose essential spectrum
is dominating for D belongs to Ay, (cf. {12, pp. 7-28] and [5, pp. 130-134]). The
following lemma is due to C. Apostol.

LEMMA 2.9. Suppose A € 63.(S)ND and {£,}52, C M is an orthonormal se-
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quence such that [|(S—=X)z,[| — 0, then |[z, — E(D)z,|| — 0 and |[(N =) E(D)z, | —

— 0.

Proof. Decompose K = E(D)K ¢ E(C\D)X, and M = N@® N’ and 2, =
= E(D)z, @ 2z, relative to this decomposition. Note that [|(S — M)zg||? = ||(M~
=N)za|? = (N — A)ED)z,]|? + ||(N' = X)zal|>. This show that ||(S — A)za|l — 0
implies that {|(N — A)E(D)z,|| — 0 (which proves the second assertion in the lemma)
and |[(N” = A)z,|| — 0. Since o(N') € C\ D, N’ — X must be bounded below. So
there exists ¢ > 0 such that ||[(N’ — A)z,||2 > c|jzn|?. Clearly, [|zn]|> — 0. However
Iza||? = ||zn — E(D)2,||*> which proves the first assertion of the lemma.

ProrosIiTION 2.10. The set oi.(N) N D is dominating for T, hence N €
€ A(E(D)K).

Proof. Choose X € 01.(S) ND and an orthonormal sequence {2,}3, C X such
that ||(S—A)z, |} — 0. (Such sequences always exist, cf. [10, Theorem 1.8.8].) Consider
the sequence {E(D)z,}3%; C E(B)K. Since z, — 0 weakly so does E(D)z,. Also
Lemma 2.9 implies that ||E(D)z,|| — 1, so without loss of generality assume that
E(D)z,, # 0 for all n. Lemma 2.9 also implies that ]|(¥V — A)E(B)z,|| — 0. Therefore
A € g1¢(N), (cf. [10, Theorem 1.8.8]). This shows that (7.(S) N B) C (o7.(N) N D)
and the first statement of the lemma follows easily. The fact that N € A(E(D)K)
now follows from {13, Theorem 3.1].

Notice that the assumption that ;.(S) N D is dominating for T is important
in Proposition 2.10. If S were the unilateral shift of infinite multiplicity then the
essential spectrum of S is D~. Therefore the essential spectrum of S intersected with
D is dominating for T. However M, the minimal normal extension of S, is the bilateral
shift of infinite multiplicity. Therefore M|E(D)K is the zero operator.

The following lemma is similar to [5, Lemma 4.7].

LEMMA 2.11. The closed absolutely convex hull of {[C)]n : A € 0:.(S) ND} is
equal to {[Z] - |[L]n]l < 1}.

Proof.  Suppose f € H*®(D), then ||[f(N)]| = {Iflle = sup{|f(})] : X €
€ 01.(S) NDB} = sup {|{F(NV),[Coln)] : A € 01.(S) N D}. These equalities are true
because N € A and 07.(S) N D is dominating for T. The result now follows using [5,
Proposition 2.8].

LEMMA 2.12. Let p € 01.(S)ND and {2,}3%,; C H be an orthonormal sequence
such that ||(S — p)zn|| — 0. Then for all w € E(D)X we have ||[E(B)z, @ w]n|| — 0
and [|[w @ ED)]n|| — 0.

Proof. By the Hahn-Banach Theorem there exists a sequence {h,}32, C H*(D)

n=1
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such that ||haljee = 1 and ||[[E(D)zn, ® wln| = {(An(N),[E(D)zn ® wIn) =
= (hn(N)E(D)z,, w). Using Proposition 1.6 one finds a sequence {gn}s>; C H*(D)
such that hp(A) = hAa(g) + (A — p)ga(}) and ||gn]lee < 2(1 — p)~1. Therefore,

(hn(N)E(D)zy, w) =

= (ha(4)E(B)zp, w) + (gn(N)(N — p) E(D)zn, w)

< en()[(ED)zn, )] + lan (W[l N — 1) ED)zall

However, |hn(p)| < 1 for each n, E(B)z, — 0 weakly, ||ga(N)|} < 2(1 — p)~! for
each n and Lemma 2.9 implies that ||(N — p)E(D)z,|| — 0. This clearly implies the
first assertion of the lemma.

Now choose another sequence {h, 3., € H®(D) such that ||h,]|c =1 and

IwRED)zulN]| = (ha(N), [W®E(D)znln} = (hn(N)w, E(B)z,). Apply Propo-
sition 1.6 again to obtain {g,}%%, € H*®(D) with the same properties as above. This
implies that (h,(N)w, E(D)z,) =

= (ha()w, E(D)22) + (N = 1)gn(N)Yw, B(D)an)

= (ha()0, (D)) + (g(N ), (N — 12)* E(B)2n)

< Ihn(W) 1w, ED)z2)] + llgn [ [V = 1) E@)zall.

However, |hy(g)| < 1 for each n, E(D)z, — 0 weakly, |lgn(N)|| € 2(1 — p)~* for
each n and Lemma 2.9 implies that [|[(N — p)* E(B)zn|| = |[(N — p)E(D)z,a|| — 0.
This proves the second assertion of the lemma.

LemMMA 2.13. Let p € D and {z,}3%, C H be an orthonormal sequence such
that ||(S — p)en|| — 0. Then ||[E(D)z, ® E(D)zs]n — [Culn|l — 0.

Proof. Use the Hahn-Banach theorem to find a sequence {h.}52, C H*(D)
such that ||hnlle = 1 and [[E(D)zn ® E@)za]y — [Culnll = (Aa(N), [E(D)zn®
®E(D)z,)n — [Cyuln). Use Proposition 1.6 to obtain {g,}5%, C H*(D) with the
indicated properties. Compute:

IlE(D)2zn ® E(D)zn]n — [Culn|| =

= (ha()I + (N — p)gn(N), [E(D)zn ® E(D)zn]n — [Culn)

= ha(W){{L, [E(D)2n ® E(D)zn]n) — (I, [Culn) I+

+{(N — #)gn(N), [E(D)zs ® E(B)zn]n) + (¥ = )9 (N), [Culn)
= ha()(|ED)zal[* = 1) + (gn(N)(N — p)E(D)zs, E(D)2a) +0

< [Ba () HIED)zall* — 1| + llga (N[N — p) E(D)an| | E(D)zn]|-

However, [|E(B)zy|| — 1, |ha()| < 1 for all n, |lgn{N)|| € 2(1 — |p})~? for all n,
and Lemma 2.9 implies that ||(N — p)E(D)z,|] — 0, and the proof is complete.

<

For a proof of the following lemma consult [12, Lemma 3.8].

LEMMA 2.14. Let {M\}iy C 01.(S) ND. Then there exists an orthonormal
family {e¥ : 0 < k < m,0 < n < oo} C H such that li'snn(S — Ax)ek|| = 0 for
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0<k<m.
ProPoSITION 2.15. Suppose [Lln € Qn with ||[L]n]| € 1,6 > 0, and {&}5_,,
{n-}?—, CH. Then there exists =,y € H such that:

(2.16) el lolf < 1
(2.17) I[Ely — [ED)z @ E@)lx] < ¢

(218)  [[E(D)z ® ED)n.lnll < ¢, |ED) ® E@lnll < for 1< r<p.

Proof. Apply Lemma 2.11 to obtain {}; }’_1 C 0:.(S) ND such that [j[L]n—
-E SO\ 1Nl <3 S where {&; }, € € and Zw | < 1. Since {X;}7% C or.(S)N

i=1 i=1
ND, Lemma 2.14 1rnphes the existence of an orthonormal family {ef, : 1 { n < 00,1 <
m

€ J € m} C ‘M such that lign”(S — A5)ei|l = 0. Define z = Z&jé‘;i and y =

i=l
m

Z el ., where the choice of n; will be specified. The sequence {n;}7L,; will be

deﬁned inductively. First n, is chosen sufficiently large that:

(219) ICxln ~ [ED)el, ® E@)e,Inl < 5
(2:20) IE®)e}, ® BE@)Inll < o for 1< T <P
(221) i NED): ® E@)ep Inll < = for 1< <p.

Condition (2.19) is possible because of Lemma 2.13. Conditions (2.20) and (2.21)
are possible because of Lemma 2.12. Suppose j > 1 and n; has been chosen for all
1 < k < j,n; is then chosen sufficiently large that:

(2.22) 1w — [E(D)el, ® ED)el, Inll < &
(2.23) I[ED)ef,, ® ED)n,]n|| < —— I 5 for 1<r<p
(2.24) IED)ér ® E(D)el, In|l < —=— for 1K r<p

I5|
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(2.25) I[E(D)ek, ® E(D)el, ]NII < (3(m? — m)|§;8:)) e for 1< k<

(2.26) IE(D)el,, ® E(DYek, In|l < (3(m® — m)|66;]) ' for 1< k< j.

Condition (2.22) is possible using Lemma 2.13. Conditions (2.23)-(2.26) are possible
using Lemma 2.12. To finish the proof it must be shown that  and y as defined
above satisfy (2.16)-(2.18).
m .
First note that ||z||? = [|gl|> = ) _ |6;% < 1, since {ef, : 1< < m, 1< n < o0}
r

j=t
1s an orthonormal family. Therefore (2.16) is satisfied.

Now compute ||[L]xy — [E(D)z ® E@)y)~]| < ||[L]v — f:ﬁf[c,\,]n

-+
Jj=1
+( 2280 In = Y SFE(D)e],, © ED)e], In |1+
j=1 j=1 [
+12_ G [E(D)el,, ® BD)el, v - [E(D)z ® ED)ylw
i=1
The term |[[L]y — 2 6j2 [Ca;In| is less than % because of the choice of the se-
Jj=1
quence {A;}.
m m
The term || 87[Cx, v — Y 62[E(D)el,, ® E(D)el, In | =
i=1 j=1

252 ([Cx1n — (E(D)e], ®E(D)e{;j}N)? <

Z 16; PHC, v [E(D)B ® E‘(D)G‘Z.J.]N” < % since

m
> " 18;1* < 1 and conditions (2.19) and (2.22) hold.
i=1

m

1> 6ED)el,, ® E(D)e, In

i=1

- (f: E(D)a.-e;‘”) ® (f: E(D)s;el )}

> 3 6:6;[E(D)e,, © ED)ei, In)
i£j
<Y S I661IED)E, © ED)e, In)ll <

i#j

The term

< <
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< ZZ 6:6;1(3(m* — m)|8;6;]) "€ using conditions (2.25) and (2.26).
i#j

£
3

Now compute ||[[E(D)z® E(D)n.n||= [{ E(D) (Zéje’,',j) }@E(D)nr] £
i=1 N
< Z [6;|[I[E(D)ef,, ® E(D)n. || < €, using conditions (2.20) and (2.23) and the fact
i=1

m
that Y 161 < 1
§=1

A similar computation using conditions (2.21) and (2.24) shows that ||[E(D)®
®E(D)y]n|| < €. This completes the proof of the proposition.

Proof of Proposition 2.6. Note that Proposition 2.15 says that Proposition 2.6 is
(roughly speaking) approximately true. To show that Proposition 2.6 is really true
requires some results from [2]. Define B: H x H — Qn by B(z,y) = [E(D)z®
®E(D)y]n. It is easy to see that B is a continuous bilinear map. Now Proposition
2.15 says that B satisfies the property Ap; relative to H and #, (cf. [2, p. 320,
Definition 5.4]). Then [2, p. 332, Theorem 7.2] implies that Proposition 2.6 is true.

The above construction shows that there is a close relationship between N and
S. Proposition 2.2 says that N belongs to Ay,. Since S may not be a contraction one
cannot expect S to belong to Ay,, but does As have property (Ax,)? The following

proposition and example show that this need not occur.

PROPOSITION 2.27. Suppose 1 € n < Ro,T € L(H) and Az has property (Ry).
Suppose there exist A € C and [L,]r € Qr with the property that {p(T),[Lalr) =
= p(A) for all polynomials p. Then there exist M and N, invariant subspaces for T,
such that M D N, dim(M 6 N) > n, and Tamenw = Mmew-

Proof. For 0 < 1,7 < n,let [Ly]r = 0if i # j and [Li]lr = [La]r if i = j. Since
Ar has property (A,) there exist sequences {z; : 0 € i < n} and {y; : 0 < j < n}
such that [Lijlz = [z: @ y;]r. Let M =y {T%z; : k > 0,0 < i < n} and M, =y
{T**y; :£>0,0<j<n}. Let N = MﬂMJ'

Choose z € MO N. Since z € M there exist sequences of polynomials

{{p; k)},__o},c 2, where mg < n and z = hmz )(T)x,. Suppose s < n and {g;}{-o
1=0

j=0

are polynomials, then ((T - A)z, Eq,- (™ )yj) =



DILATIONS AND SUBNORMAL OPERATORS WITH RICH SPECTRUM 41

= li’:n ((T - A) (zk: pgk)(T):l:.') ,jz;:o q; (T*)!If')

i=0

= lim Zk: 3T - NP (T, 45(T)ys)

i=0j=0
= iy S @Dz, 3) - Ao e, 05T}
(Deﬁne-;;l;omlals ol (n) = up{(1)g; (1) and B () = P ()T (1))

= lim S S D)z, 15) - 0P D)

(If § # ;0 ;}::n (@ (T)zi, 45) = (6P (T)zs,35) = 0 because [z; ® yjlr = [O)r.)
- hmZ(a(k)(T)ﬂ?i: w) — M5 (T)zi, w)

§=0
(Note trl:at ry =min{mg, s))

= llmZ((au(T) [LAD - A(b“(T), [LA]))
(because [z: ® yilr = [Lalr)
= hmZ(a(k)(J\) AE(A)) = 0.

1z0
Hence (T — ))z is perpendicular to M., which means that (T — A)z € /. There-

fore, Prmon (T —A)z = 0 for all 2 € MON. This means that Prmgy (T— A )|man =
=0, or Trmen = Muon-
To complete the proof it must be shown that dim(M & N) 2 n. Let v =
= Pmeonzi. Then {w; : 0 € i < n} is a linearly independent family of vectors in
m

M & N. To see this suppose m < n, and Za;w; = (, where o; € C. Obviously,
i=0

Za,x, €N C ML, In particular one sees that (Z a,z.,y,) =0for0Lj<n
i=0 i=0

However, (Za.a:.,y,) = Ea,(z.,yj) = Ea,(I [ @ g1 Za,(l Lijlr) =

= oj{I,[Ly]r) = a; for 0 < j < m. Therefore, aj=0for 0 < j < m. This shows
that {w;} is linearly independent.

* Example 2.28. Let A denote Lebesgue area measure on C. Let L?(4,D) denote
the Hilbert space of all measurable functions on B which are squareintegrable and
M, the operator on L?(A, D) defined by (M, f)(z) = zf(z). Let N = M, @2 acting on
L?(A,D)®C. It is easy to see that N is subnormal (in fact N is normal) and ¢1,(N) =
= D~. We now show that Ax does not have property (Az). Suppose the contrary is
true in order to obtain a contradiction. The element [L]y = [(061)®{0&1)]x has the
property that {(p(N),[L]n) = p(2) for all polynomials p. Therefore Proposition 2.27
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implies that there exists X such that: K = M &N where M and A are invariant for
N, M D N, Nx = 2Ix, and dim(K) = n > 2. Let {f; ® ai}ogi<n be an orthonormal
basis for K, with f; not the zero function for ¢ » 1. (Note that at most one of the f;
can be the zero function.) Compute: N{(fi® o) = 2fi ® 20 = (2fi ©204) +(9: B 5i),
where g;®f; € N'. This implies that 3; = 0 and gi(2) = (2~2)fi(2) almost everywhere
on D. Since g; 30 € M and f; Da; € MO N it follows that g; is orthogonal to f;, i.e.
(M; — 2)f; is orthogonal to f;. Let h; = ||fil| =2 fi for i 2 1. So (M, — 2)h;, h;) = 0,
or (M_h;, h;) —2 = 0, which implies that (M, h;, h;) = 2. However, ||M,|| = ||hl]| = 1.
This is a contradiction.
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