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STRONG RESONANCE PROBLEMS FOR
ELLIPTIC SEMILINEAR BOUNDARY
VALUE PROBLEMS

MARTIN SCHECHTER

1. INTRODUCTION

Let A be a linear elliptic partial differential operator on a domain @ C R™ such
that the boundary value problem

(1.1) Au=AuinQ, Bu=0ondQ

is selfadjoint and has a discrete set of isolated eigenvalues of finite multiplicities
bounded from below and no other spectrum (i.e., no essential spectrum). Let A,
be one of these eigenvalues, and let f(z,t) be a Caratheodory function on £ x R. We
say that the boundary value problem

(1.2) Au—du= f(z,u)in Q, Bu=0ondQ
is resonant like at infinity if
(1.3) lim inf f(z,)/t < 0 < lim sup f(z,t)/t, |t|— co.

There has been considerable research concerning resonant problems beginning with
the work of Landesman and Lazer [4)] in which sufficient conditions were given for (1.2)
to have a solution. In studying such problems, one can differentiate between different
degrees of resonance depending on how closely f(z,t)/t approximates 0(cf., e.g., [2,9]).
Thus one can consider cases ranging from the situation in which im sup |f(z,1)/t|
s unbounded to the case when f(z,t} — 0as |t| — oo (in [9] we distinguish six
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categories). It appears that the more closely f(z,t) approximates 0, the more difficult
it is to solve (1.2). Following Bartolo-Benci-Fortunato [2] we call the situation

t
(1.4) f(z,t) =0, F(z,1):= /f(z, s)ds bounded as ¢t — oo
)

strong resonance. Only a few authors addressed this situation (cf., [2, 13, 9]). In [2],
Bartolo-Benci-Fortunato assumed f(z,t) = f(t),

(1.5) tf(t) = Oas ft| — oo
(1.6) F(t)<bo, teR
(1.7) F(t) — b as [t] - co.

In [13], Thews assumed that f(z,t) = f(t) is odd. We assume in [9] that

(1.8) lim inff F(z,v)dz > By, v € N(A)
llell—oo Ja

(1.9) lim suptf(z,t) < Wi(z) € L)

|¢]=+c0

(1.10) flz,t) = 0 as [t| — oo

and

(1.11) min(O,Bl) < 2(01 + Bo)

where

Bl =V/S; Wl(z)dz

and ¢; is the infimum of the energy functional corresponding to (1.2) on a subspace.
In the present paper we continue our work on strong resonance. Actually, we
allow a slightly more general situation in which

(1.12) 17z, ) < C(It]" + 1)
for some constant ¥ < 1, We assume

(1.13) lin‘1 sup[2F(z,t) —tf(z,1)] € Wi(z) € L}(Q)

[t{—o0
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(114) bo < [ Fao)dz, (Av0) < Ml
[y}
and
(1.15) / Wi (2)dz < 2bo.
4]

Since this result has little overlap with the other work mentioned, we believe that
much more will have to be done before optimal results can be obtained for the strong
resonance case.

The method we have used is a new variation of the mountain pass lemma. The
situation concerns an orthogonal decomposition H = M @ N of a Hilbert space into
closed subspaces, dim N < 0o. We assume that there is a continuously differentiable

functional G on H satisfying for some R > 0

(1.16) G(v)<mo, vEN, |lvf|=R
(1.17) G(w)<my, vEN, |b]|<R
(1.18) Gw)2ms, weM, |[w|>R
(1.19) Gw)yzm, weM

If mg < m, then the standard mountain pass arguments can be used to find stationary
points (or approximate stationary points). However, if mg > m, the usual theory does
not work. Our method is to find a mapping @o(v) of the set v € N, |jv]| = R into H so
that o links M and satisfies G(po(v)) < m. We then replace the set v € N, [[v]j = R
by the set into which it is mapped by ¢g. In general, this cannot be done. We have
been able to do this when ms > mg and there is a 7 < 1 and an £ > 0 such that

(1.20) (G'(u), ) < rllull IG' ()]

holds for all u & H such that |jul| = R and G(») € mo + €. Details of the method are
given in the next section. The application to the problem (1.2) is given in Section 3.

2. AN ABSTRACT THEOREM

We now present an abstract theorem in Hilbert space which will be used in finding
our solutions. Let

(2.1) H=M®N, M#H,M%{0},dimN < oo
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be an orthogonal decomposition of a Hilbert space H into closed subspaces. Define
Br = {u€ H| |lu|| < R}

Bp:={ue H| |lu| > R}
0Bg = {u € H| |||l = R}

Let G be a continuously differentiable functional on H. We assume that there is an
R > 0 for which the following assumptions hold:

L-[(a))G(v) € mo,v € 3B NN [(B)]G(v) € my,v € BRNN

IL [(¢)]G(w) 2 m3 > ma,w € BRN M [(b)}m := infarG > =00

II1. There are a 7 < 1 and an g9 > 0 such that

(2.2) (G'(u), ) < 7l IG"()l}
holds for all u € 8Bg satisfying
(2.3) G(u) € mo + ¢o.

We let ¥ denote the set of all positive nonincreasing functions ¢ on [0, 00} such that
o0

(24) / $(t)dt = co.
1

We have

THeOREM 2.1. Under the above hypotheses, for each € W there are a constant
¢,m £ ¢ € my and a sequence {ur} C H satisfying

(2.5) _ G(ux) = ¢, G'(we)/¥(lluxl) — 0.

Proof. Assume first that m < mg. If the theorem were false, there would be an
€ >0 and a ¢ € ¥ such that

(2.6) P(llull) < G/ ()]
holds for all # in the set

(2.7) Qo = {u € H]m —3e < G(u) Lmy + 36}.
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In fact, if no such ¢ > 0,7 € ¥ exists, then for each k, 1 we can find a u; € H such
that

m — (1/k) < ¥(|lurl)/k
(note that ¥/k € ¥). For a subsequence there is a ¢ satisfying m < ¢ £ m; such that
(2.5) holds. We may assume that 3¢ < minfeo, mz — mg]. Let

Q = {u € Qolm — 26 < G(u) < my + 2¢}

G:={vEQIm—-e < G(u) L m +¢}
Q2 = H/Q and
77(“) = d(ua Q?)/{d(u’ Ql) + d(ur QZ)]

Note that
Qo C H = {u € H|G'(u) # 0}.

For each a < 1 — 7 there is a locally Lipschitz continuous mapping Y (u) of H into
itself such that

(2.8) 1Y ()l € 1,(G'(w), Y (w)) > af|G'(w)ll,u € H
and
(2.9) (Y(u),u) < 0,u € QuNéBr

(cf., e.g.,[9]). Let o(t,v) be the (unique) solution of
(2.10) o'(t) = —n(e(®))Y (¢()),t € R,0(0) = v

for v € Br N N. Here we make use of the fact that n(u)Y (u) is locally Lipschitz on
the whole of H. We observe that o(f, v) never enters Bg. In fact we have

dlle(t, v)||*/dt = 2(o,0") = ~2n(o)(0, Y (v)).

Moreover, every point of dBg is the center of a neighborhood in whick n{u)(x, Y (u)) €
< 0. Hence dfjo(t,v)||?/dt > 0 whenever ¢(t,v) € 8Br. We also have

(211)  d(G(a(t))/dt = (G'(0),0") = —n(a)(C' (), Y (0)) < ~an(a)||G'(o)]| < O.
Thus

(2.12) G(o(tz,v)) € Glo(t,v)) S mo, 11 <ty
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In particular, this shows that o(t, v) can never intersect M. For it cannot intersect
that part of M inside Bgr, and hypothesis II(a) shows that it cannot intersect that
part of M in Bg. Let T satisfy

RA4T
o / Y()dt > 2.
R

If there is a t; < T such that o(t;,v) ¢ Q;, then
G(o(T,v)) < G(o(t1,v)) <m—¢

in view of (2.12). On the other hand, if o(t,v) € Q1 for 0 < ¢t < T, then (2.8) and
(2.11) imply

T
G(o(T,v)) - G(v) < —& / 16 (o2, 0))l|dt <
¢

T T
<-a / W(llott, )l < —a ] Bllvll + t)dt =

R+T

T
= _ao/ Y(R+1)dt = —a R] P(r)dr < =2¢.

Hence

(2.13) G(o(T,v)) <m—¢, vEIBrNN.
Define

(2.14) wo(v) = o(T,v), vE€BBRNN.

Then o(v) is a continous map of dBg N N into H such that any continuous map ¢
of Bp U N into H which satisfies

(2.15) @(v) = po(v),v € 0BR NN
must satisfy
(2.16) W(BRNN)NM # V.

To see this let P be the orthogonal projection of H onto N and let ¢:(v) be any
continuous map of Bg N N into H such that

i(v) = o(t,v), v€HBrNN.
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Since Po(t,v) # 0 for v € 8Br N N and 0 < ¢ £ T, the Brouwer degree i( Py, Br N
N, 0) is defined and satisfies

i(Ppy, BR O N,0) = i(P, Bk N N, ) = L.

=nce (2.16) holds. Let S denote the set of all continuous maps ¢ of Br N N intoc H
which satisfy (2.15), and define

(2.17) ¢i= ;xelis' UEIB%NG(ga(v)).

Then (2.16) and hypothesis II(b) imply ¢ > m. We shall show that ¢ < my. If there
did not exist a sequence satisfying (2.5), there would be a § > 0 and a ¢ € ¥ such
that (2.6) holds for all u in the set

Qb :={u€ H| G(u) — ¢ £ 36}.
If necessary, we reduce § so that it satisfies 36 < €. Let
Q = {u € Q| |G(v) — | < 26}

Q1 =={ue Q1 IG(u)-c| < é}

@3 = H/Q' and let m (u) be defined for the @} in the same way n(u) was defined for
the @;. Let Y(u) be any locally Lipschitz continuous map satisfying (2.8) (there is
no need for it to satisfy (2.9)), and let (¢, u) be the solution of

o(t) = ~m(e@)Y (o(t)), t € R,0(0) = u.

By (2.8) we have

(2.18) lioa(t, u) — ul| < |t
and
(2.19) dG(o1(t,u))/dt = (G'(01), 01) = —mi(e1)(G'(01), Y (1)) €

< —em(e)l|G (1)l €0

Thus
G(a’l(tz, u))gG(al(tl,u)), 11 < is.

In view of the definition (2.17) of ¢, there is a ¢ € S such that

(2.20) G(p(v))<c+46, veEBrNN.
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Let
(2.21) M = max [lp(v)]

and pick T so that

. M4+T
(2.22) o f H(t)dt > 26.
M

For any v € Bp N N, if there is a t; < T such that oy(t;,¢(v)) ¢ Q} then (2.20)
implies

Gi(e(T, ¢(v))) € Glo1(ts, p(v))) < c 6.
On the other hand, if 1(¢, ¢(v)) € @} for 0 <t < T, then (2.19) gives

T
G(ov(T,p0) = Gle () < —a [ G (@a(t, p)lde <
0

T T
<= [ Wlllost, o)t < o [ (M + )it =

M4T
—a J W(r)dr < —25.
Thus
(2.23) Glon(T, o)) <c~6, veBrNN.
Let
(2.24) £1(v) = 01(T, p(v)), v€BrNN.

Then ¢, € S since n;(u) = 0 for u ¢ Q' and wo(v) € @' for v € 6BR N N. But then
(2.23) contradicts (2.17). Hence the conclusion of the theorem must hold.

Assume next that mg < m. In this case we need not go through the first part of
the proof to find o but merely take ¢o(v) = v on 8Br N N and take 36 < m — my.
We then proceed as before.

Finally, we show that ¢ < m;. To see this let ¢(¢, v) be the solution of (2.10) for
each v € BR N N. Then (2.11) implies that

G(e(T,v)) < G(v) £ my, vEBrNN.
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Since (T, v) satisfies (2.15), it is in S. Hence (2.17) gives

£ T <Lm.
°< By ST ) <m

This completes the proof. u
3. SEMILINEAR BOUNDARY VALUE PROBLEMS

Let A be a selfadjoint operator on L2(), where € is a (bounded or unbounded)
domain in R®. Let f(z,t) be a Caratheodory function from @ xR to R (measurable in
z for every 1 and continuous in ¢ for almost every z). We are concerned with finding

solutions of

(3.1) Au= f(z,u), u€ D(A).

A function u € D := D{|A|*/2) will be called a semistrong solution of (3.1) if
(3.2) a(u,v) = (f(z,u),v), v€D

where
a{u,v) = (Au,v), u,v€D, a(u)=a(u,u)
and

(%ﬂ=LM@WMm o2 = ().

In many situations it can be shown that a semistrong solution of (3.1) is a solution.
We shall avoid this question and refer to a semistrong solution as a solution. We make
the following assumptions:

(A) A has no essential spectrum in (—o0,0] and
(3.3) N = @rgoN(A~X)

is finite dimensional. Moreover, if u € N(A) and © # 0, then v # 0 ae.

(B) There is a number p such that 1 < p € 2 and
34 |7, 1) < V(PP + V(2)W(2)

where V(z) > 0 is such that multiplication by V(z) is a compact operator from D to
LP(Q), W € IP' (Q),p' = p/(p — 1). We take

llull = a(u) + Kilu|?
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where K is such that 4+ X > 1.
(C) If we put

Fz,8) = / f(z, 5)ds

and
H(z,t) :=2F(z,t)—tf(z,1)

then we assume

(3.5) bo < f F(z,v)dz,ve N
¢}
(3.6) lim sup H(z,t) € Wi(z) € L}(Q)
|t|—o0
(3.7) H(z,t) < Wo(z) € L}(Q), t€eR
and
(3.8) by = / Wi (z)dz < 2bo.
¢
We have

THEOREM 3.1. Under hypotheses (A)-(C), problem (3.1) has a semistrong so-
lution.

Proof. We show that the hyporheses of Theorem 2.1 are satisfied. We take D as
a Hilbert space H and put

(3.9) Glu) = afu) — 2 / F(o,u)dz.
o
It follows that G € C*(D,R) and that
(3.10) (G'(w),v)p = 2a(u,v) - 2{f(z,u),v), uw,v€D
(cf., e.g., [11]). We take

(3.11) N=@PNA-)), M=DnN-

Ag0
By hypothesis (A4), N is finite dimensional. In particular, the norms [ju|p and [bul]
are equivalent on N. Let ¢ > 0 be such that

(3.12) by + € < 2by.
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By (3.5) and (3.11)
(3.13) G(v) £ ——2/ F(z,v)dx < —2by, v € N.
Q

Let Ay be the smallest positive point in o(A4) (there is one since 0 is not in oe(4)).
Then

(3.14) lwlih < (1+ KA7Ha(w), we M.
Hence by (3.3)
(3.15) G(w) > a(w)~ C /ﬂ (Vwl + WiVwl)de >

2 a(w) = C'(Vull” + [W]lp||Vellp) — oo as {[w]lp — oo

since p < 2. Thus (3.13) and (3.15) show that hypothesis I and II of Section 2 hold
with mg = m; = —2by and R sufficiently large. We now show that hypothesis III
holds as well with 7 any number satisfying 0 < 7 < 1 and gy = ¢.

Let N’ be the orthogonal complement of the nullspace N(A) of A in the subspace
N. Thus N = N(4) @ N’. Since |a(v)|*/? is a norm on N', it is equivalent to |[v|ip
on this subspace. I claim that for all R sufficiently large the inequality (2.2) holds
for all u € Bg satisfying (2.3). If this were not the case, there would be a sequence
{ur} C H such that

(3.16) llerllp — oo, Gluz) < mo+¢
and
(3.17) (G'(u), ure)p > Tllusllp IG'(we)llp-

By (3.9) and (3.10) we have

(3.18) (G'(w), w)p = 26(u) +2 / H(z, u)dz.
i

Thus

(3.19) (G’(uk), uk)p < 2(m0 + £ 4 bg).

Hence, the only way (3.17) can happen is if

(3.20) liex(lp 1|G'(us)llp < C-
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Let u = vg + vor + wg, where vp € N’,vor € N{A) and wy € M. Then
(G'(ur), we)p = 20(wi) — 2(f(z, ue), we).
Consequently by (3.3) and (3.4)
(3.21) %a(wy) < €+ C' fn (Vs P~ |Vaws| + W]V )de <
<C+C"(flully + Dllwellp-
Similarly
(3.22) 2la(ve)l < C + C"((fuelly + Dilvello.
Let ¢4 = |jug||p, @it = ug/tx Then [|fsflp = 1 and
lléix. + e |lp — 0
by (3.21) and (3.22) since p < 2 Hence
Boelld = Kllorll* — 1.

Thus there is a renamed subsequence such that @ — 0,%; — 0 and Jgr — %o in
L%(Q) and a.e. Since 9, Z 0 we have 9 # 0 a.e. and

lukj/t;; = |ﬂkl -3 lﬁgl # 0 a.e.
Thus |ux| — oo a.e. This implies
lim sup H(z, ux(z)) € Wi(z) a.e.
k—o0

in view of (3.6). Consequently

(3.23) lim sup/ H(z,up)de < by
k00 Ee
and
(3.2¢9) lim sup(G'(ug), ux)p € 2(mo +¢+5) <0
k—co

by (3.18) and (3.11). This contradicts (3.17). Hence hypothesis II is satisfied for any
R sufficiently large. We may now apply Theorem 2.1 to conclude that for each ¢ € ¥
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there is a ¢ < m; that and a sequence satisfying (2.5). If we take ¢(t) = 1/(1+1¢),
then

(3.28) (1 + flurllp)IG (ur)llp — 0

and (3.20) holds. If #; = ||ug|lp — oo, then the argument following (3.20) implies
that (3.23) holds. By (3.18) and (3.12)

(3.26) lim sup(G'(u:),ur)p < 2(c+0) <0
. k=0 :
since £ € my = mg = —2bp. But this contradicts (3.25). Hence the £; are bounded.

Thus there is a renamed subsequence such that uz — u weakly in D and a.e. in Q.
Hence (cf., e.g., [11])

(G (ux), v) = 2a(u, v) = 2(f(x, ur), v) = 2a(u, v) — 2(f(2, u),v) = (G'(u),v)
for all v € D. Thus u is a solution of (3.2). u
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