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ON THE SPATIAL MATRICIAL SPECTRA OF OPERATORS

D.R. FARENICK

INTRCDUCTION

Contemporary spectral theory for (bounded linear) operators on Hilbert spaces
.accomodates a variety of settings where extended notions of spectrum play a key role,
be it in the introduction of joint spectra for a several variable theory, or in the notion
of the spectra of an algebra. In single operator theory, there are occasions when it is
natural to enlarge the notion of spectrum so as to admit matrix or operator values
as spectral values. For example, a matrix-valued reducing spectrum is the natural
spectral object in the study of n-normal and essentialy n-normal operators {9], [12],
[14], and an operator-valued reducing spectrum occurs natturally in the classification
of operators up to approximate unitary equivalence [5], [16]. The formal study of non-
reducing matricial spectra seems, at this time, to be confined to portions of [1] and {6];
in particular, the conditions defining the full (non-reducing) matricial spectrum have
yet to be adequately discussed, though properties of this spectrum have already been
partly explored. Therefore, it is the purpose of the present paper to study, somewhat
systematically, the general ideas leading to a matrix-valued spectrum for operators
on Hilbert spaces. Much of the groundwork for the study of matricial spectra has, it
should be noted, already been done before now, most notably in the works of Pearcy
and Salinas [11], [12], Bunce and Salinas [1}, and Hadwin {5],{6].

The emphasis here will be on a matricial spectrum that arises from spatial rather
than algebraic considerations, and on how properties of an operator show up in this
spectrum. As is explained by Davis in [3], it is resonable to expect that matrix-
valued spectra better reflect the characteristics of an operator than the (numerical)
spectrum does — knowing the action of an operator on one of its invariant subspaces
is necessarily more informative than knowing only individual eigenvalues, for example.
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One program, therefore, is to pass from approximate eigenvalues to finite-dimensional
approximate restrictions and obtain matrix-valued analogues of the approximate point
spectrum and the defect spectrum; but it is less than clear that the end result yields a
suitable notion of spectrum. Another program, stemming from a suggestion credited
to Arveson and carried out in part by Bunce and Salinas, considers spectral elements
to be approximate compressions to rationally semi-invariant subspaces of finite di-
mension. However, in the literature there is little indication given to why such an
object ought to be considered as the ‘correct’ definition of a matricial spectrum. One
objective, therefore, of this paper is to make sense of this program. Specifically, it will
be shown that Arveson’s definition of the spatial matricial spectrum can be arrived
at in a manner whereby the spectrum is made large enough to possess a hierarchical
property, namely that & x & spectral elements of an » x n spectral element of T be
k x k spectral elements of T as well whenever 1 < k < n, but is not made so large as
to not coincide with the usual numerical spectrum when n = 1.

The paper is organised as follows. In Section 1 the matrix-valued spectra that
function as analogues of the reducing spectrum and left spectrum are reviewed, along
with their spatial components. In Section 2 and Section 3 the spatial matricial spec-
trum is defined and its fundamental properties are studied. The two main theorems
establish the spectral hierarchy of the spatial matricial spectrum and its upper- semi-
continuity property. The final section, Section 4, consists of computations of these
spectra for certain classes of operators.

PRELIMINARIES AND NOTATION

Throughout, H will denote a complex separable Hilbert space with inner product
(z,9), and B(H) will denote the algebra of (bounded linear) operators on H. The
spectrum of an element T of a unital Banach algebra A is denoted by o(T), and
C*(T) denotes the unital C*-algebra generated by T'; the C*-algebra of complex
7 X 7 matrices is denoted by M,,.

We will make use of two notions of equivalence in B(H). Two operators S, T €
€ B(H) are unitarily equivalent, denoted by S ~ T, if § = U*TU for some unitary
operator U, and are approximately (unitarily) equivalent, denoted by S ~, T, if
S= li,l;n UaTU, (norm limit) for some sequence of unitary operators U,,. All of the
spectra studied in this paper are invariant under approximate unitary eqivalence.

Elements of the set N of natural numbers are denoted by ¢,7,k,m,n, whereas
#, v will denote cardinal numbers between 1 and countable oo inclusive. The Hilbert

space C” is taken to be the finite-dimensional space C if v = n and to be I,{N)
if v = oo,
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If L is a self-adjoint linear manifold in a C*-algebra A, and if ¢ : L — Ap
is a continuous linear mapping into a C*-algebra Ag, then let ¢, denote the map
Lo M, — — Ay ® M, given by ¢, = o @ id,,, where id, is the identity map on M,.
The map ¢ is called completely positive if ¢, is a positivemap for all n € N. We will
have occasion to refer to the following important and well known theorem (see [10]).

EXTENSION AND DiLATION THEOREM. If A Is a unital C*-algebra, if L C A is
a self-adjoint linear manifold with 1 € L, and if p : L — B(H) is a unital completely
positive map, then

(1) (Arveson’s Extension Theorem) ¢ has a completely positive extension to A,
and

(2) (Stinespring’s Dilation Theorem) ¢ dilates to a *-homomorphism; that is,
there is a Hilbert space Hy, a unital x-homomorphism = : A — B(H,), and an
isometry V : H — Hy such that p(a) = V*n(a)V for every a € A.

It is well known that for each completely positive map ¢ there is a minimal
dilation which is unique up to unitary equivalence; we will refer to this dilation as
“the Stinespring decomposition” of (.

For each T € A, denote by CP™(T') the set of all unital completely positive maps
C*(T) — M,. This set is endowed with the BW-topology by identifying CP"(T)
with a certain weak”-compact subset of the unit ball of the dual of the Banach space
C*(T)® M,, (see [10; Chapter 6] for explicit details); hence, CP"(T') is BW-compact.
Indeed, the separability of C*(T) ® M,, implies that CP"(T) is metrizable in the BW-
topology, and so CP"(T) is actually sequentially BW-compact. As for convergence in
CP"(T'), we note that the range space of every map in CP™(T) is finite-dimensional,
and so, by [10;6.3], a sequence {p;} C CP*(T) converges to ¢ € CP"(T) if and only
if for every A € C*(T"), {g;(A)} converges (in norm) to ¢(A).

1. LEFT AND REDUCING MATRICIAL SPECTRA: A REVIEW

The left spectrum o1(T) of an element 7' in a unital C*-algebra A is the set of
all A € C such that T — A1 has no left inverse in A. For operators T € B(H) the
left spectrum has a spatial description: A € oy(7) if inf ||z — Az|| = 0, where the
infimum is over all unit vectors £ € H. This defines, of course, the approximate point
spectrum of 7' and the definition extends easily to one with matrix values, as will
soon be discussed. As a purely algebraic phenomenom, the notion of left invertibility
is not immediately suited to carry over with matrix values, for there is no direct way
of defining the corresponding one-sided resolvents. Hence, we are forced to view the
failure to be left invertible in a different and, perhaps, indirect context. A very nice
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way of thinking of the left spectrum, which makes no reference whatsoever to left
invertibility, was suggested by Bunce and Salinas and is given in the theorem below.

By a state, we mean a positive unital linear functional.

THEOREM 1.1 ([1]). The left spectrum of T € A is the set of all complex numbers
©(T) obtained from all states ¢ on the C*-algebra C*(T') that satisfy @(T*T) =

= o(T")e(T).

Proof: We may assume, by using a faithful unital *-representation of C*(T') as
an algebra of operators, that T" acts on a Hilbert space H. If A € 07(T), then there
exist unit vectors z; € H such that Iignlszk — Azgll = 0. Let o1 be the state on
C*(T) defined by ¢ (A) = (Azk,zi) for A € C*(T); by the weak®-compactness of
the state space, there is a subsequence of states pp weak®-convergent to a state ¢.
Thus, (T*T) = imps(T°T) = lim|[Tzs||" = A = ¢(T")e(T)-

Conversely, if ¢ is a state on C*(T’), then there is a unital *-representation = of
C*(T') on a Hilbert space H, and a unit vector z € H, such that for every A € C*(T),
@(A) = (x(A)z, z). If in addition, A = @(T") and ¢(T*T) = ¢(T*)(T), then

l7(T)z|f® = p(T*T) = o(T*)p(T) = |7(T), z)* < ||7(T)=l?,

and so m(T)z = Az by the Cauchy-Schwarz inequality. Hence, A € o1(T'). u

In moving to matrix values, the role of states in the above theorem must be taken
by some suitable class of unital positive linear maps C*(T') — M,,. The proof suggests
that the class CP*(T) of unital completely positive maps C*(T") — M,, provides an
appropiate analogue: the weak®-compactness of the state space is generalized by
the BW-compactness of CP*(T’), and the representation of states as 1-dimensional
compressions of *-homomorphims is generalized by the Stinespring representation of
elements of CP™ (T} as n-dimensional compressions of +-homomorphisms.

DEFINITION. Suppose that T € B(H), that ¢ is a unital completely positive map
C*(T) — My, and that A = (7).

(1) A€ II"(T), the n x n left matricial spectrum of T, if o(T*T) = o(T*)p(T).
If, in adition, ¢(K) = 0 whenever K is a compact operator in C*(T'), then A € II?(T),
the left essential matricial spectrum of T. A is in the spatial component II?(T) of
I™T) if ||TVi — Vi A|| — 0 for some sequence of isometries V3 : C* — H. See [1].

(2) A € R*T), the n x n reducing matricial spectrum of T, if ¢ is a unital
*-homomorphism. If, in addition, ¢ annihilates the compact operators in C*(T’), then
A € RP(T), the reducing essential matricial spectrum. A is in the spatial component
R3(T) of R*(T) if ||TVi — Vi A]| +||T™* Vi — Vi A*|] — 0 for some sequence of isometries
Vi : € — H. See [11].
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The theory of the reducing matricial spectrum was put forth and developed in
[11] and [12] by Pearcy and Salinas, and they found that the n x n reducing essential
matricial spectra classify n-normal operators up to unitary equivalence modulo the
ideal of compact operators. A spatially defined operator-valued version of the reducing
spectrum for Hilbert space operators was introduced by Hadwin; he proves, using
Voiculescu’s theorem [16], that a reducing spectrum based on operator rather than
matrix values contains sufficiently many elements to determine every operator up to
approximate unitary equivalence [5;3.6].

The left matricial spectrum is studied extensively in [1]. Elements of II"*(T) are
unitarily equivalent to restrictions of representations of T' to n-dimensional invariant
subspaces: that is, if ¢ : C*(T) — M, is a unital completely positive map such that
o(T*T) = o(T*)p(T), and if p = V*7V is the Stinespring decomposition of i, then
V(C") is an n-dimensional invariant subspace for #(T"). The pertinent calculation,
due to Choi, is

0= p(I"T) = p(T*)e(T) = (VV*5(T)V = (T)V) (VV*x(T)V — x(T)V),

and so #(T)V = VV*x(T)V. If, in addition, ¢ is a x-homomorphism, then V(C")
reduces m(T").

It should be mentioned that, unlike the case n = 1, not all of the elements of
II™(T) need lie in the spatial component II7(T'); some special cases are studied in {1].
It is important to note, however, that the left essential matricial spectrum and the
reducing essential matricial spectrum do lie in the respective spatial components of
II*(T) and R*(T') and that the isometries that define the elements of these essential
matricial spectra can be chosen so that they converge weakly to zero [1], {11].

For most of the remainder of the paper, we will concern ourselves with the spatial
components of the above sets.

Plainly, the set II7(T') funcions as a matrix-valued analogue of the approximate
point spectrum of the operator 7. Observe that if V : C" — H is an isometry
and A € M, is such that ||[TV — V 4|| < ¢, then the n-dimensional subspace V(C") is
approximately invariant under 7" in the following sense: if P € B(H) is the projection
of H onto V(C") (i.e., P = VV™), then

(1= PYTP| = |TVV* = VV*TVV*| < [TV = VV TV} [V*]| =

= [TV = VYTV = VA+ VA)|| [TV — VV*VA| + [[VV*|| |TV — VA|| < 2.
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The “action” of T on the range of V is approximately the action of 4 on C”. Similarly,
if A€ M, and if V : C* — H such that ||TV - V4| < € and ||T*V - VA*|| < ¢,
then V(C") approximately reduces T : if P = VV*, then P projects H onto V(C"),
and, by a computation similar to the one above, ||TP — PT|| < 2¢, and the action of
T and T on th.e range of V is approximately that of A and A* on C».

The terminology employed in [6] calls elements of II?(T") approximate restrictions
and clements of R7(T) approximate summands of 7. Bona fide restrictions and
summands are found in the sets [I$(T) and R2(T), which are the natural analogues

“of the po_i_xfﬁ;s‘pectn«lm and the set of reducing eigenvalues.

Finally, all of the spectra defined up to this point enjoy a hierarchical property.
For the spatially defined spectra, this is to say that R¥(A) ¢ R¥(T) and IT¥(2) C
C I¥(T) for all A € RMT) and all 2 € IMT),and forall1 g k< n.

We conclude this section with an elementary theorem which illustrates that the
sets II7(-) do indeed behave very much like the approximate point spectrum.

THEOREM 1.2. The spatial component of the left matricial spectrum is compact
and nonempty. In fact when H has infinite dimension, A ® 1y € I¥*(T) for every
A € I}(T) and for every k € N. In addition, if T is compact, then invertible elements
of IT}(T) are elements of II§ (T).

Proof: Since II}(T) is contained in the ball centred at 0 € M, of radius ||T||, to
show the compactness of II7(T') it is enough to show that the complement of II(T)
is open. This is achieved by following the scalar version verbatim: if A ¢ II™(T), then
there is a § > 0 such that ||TV — VA|| > 6 for every isometry V : C* — H, and so if
€= %6, then the £-ball centred at A does not intersect II7(T); thus, the complement
of IT*(T) is open.

Suppose that 7' is compact and that A € IP(T) is invertible. There exist isome-
tries V; : C® — H such that 0 = lim||T'V; — ¥;4|]. For the basis vector e, of C*, the
sequence {T'V;e;}; has a convergént subsequence {T'Vg 1e;} converging to a vector
w1 € H (because T is compact). The equation 0 = %THTVJG.I — Vp,14}| implies that
Vs,1der — wy as B, 1 = co. Similarly, for e, the sequzance {T'Vg,1€2}p,1 has a conver-
gent subsequence {TVj 22} converging to a vector ws, and likewise, Vp 2Aez — ws
as 3,2 — oo. By a continuation of this process until the n-th basis vector e, of C" is
reached, we conclude that there is a sequence {V;} of isometric maps of C” into H
such that

lim Vs de = wy = imTVper forall k=12,...,n,

and such that 0 = liénHTVp — Vg A||. Because A is invertible, {Aex};_, is a linear
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basis for C*, and so a map V : C" — H can be defined on every £ = ka/lek eC
: k
by
VE=limVpt = > Grn;
p k=1

the operator V is an isometry, since V3 — V strongly. Moreover, for every tEeCn,
| TVE = VAL = lién |1 TVg€ — VaAE|l €

< Wm(lIT V€ = Vagll + ITV5 = VoAl lletl + ||V (48) — V(46)i) = 0.

Thus, TV = VA,

Now assume T is arbitrary. If A € I?(T), then, by [1;4.8], there exist isometries
V; : C* — H with mutually orthogonal ranges such that liJ;nHTV_,- - V;4]| = 0. Fix
k € N and, for each m € N, let Wy, : C¥* — H be the isometry Vi @ ... © Vitm;
then forevery £ =6, ®...0 ¢ € C* o C¥,

lim_ [[TWiné ~ Win(A ® 1:)é]l < lim D Il [(TVimgs = Vinaidll €

i=1

L 2 % m+n 2 %
< lim ; TV; — ;A =0.
< Jlim (; [I&ll ) ('_;m%l 1TV; — Vil )
Since the domain of the strongly convergent sequence of operators TWm — W (A® 1x)
(with strong limit 0) is finite-dimensional, the sequence in fact converges uniformly to
zero, and so A ® 1; € IT**(T). The nonemptiness of each HP(T) follows, therefore,
from the fact that the left essential spectrum of an operator is nonempty. a

2. ON THE DEFINITION AND PROPERTIES OF ¢¥ (-}

Let us now extend o(-) itself to a matrix-valued spectrum. The definition of
the matricial spectrum arrived at here is precisely the one put forth in [1], where
Bunce and Salinas attribute the definition to Arveson. There seems to be no good
explanation in the literature for why the proposed definition is a suitable one and
so it is hoped that this section fills this gap. In what follows, the definition of the
matricial analogue of o(-) is reached by approaching the definition with the intent of
establishing a spectral hierarchy.

Since o(T) = H(T)U HI(T*)", a natural suggestion is that the n x n spatial
matricial spectrum be defined by T2(T) U IP(T*)". In doing so, we find that the
definition reproduces 7’s spectrum when n = 1, and for every A € IMT)U IIY (T*)°
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there is a spectral inclusion o{A) C (7). Unfortunately, there is no higher spectral
inclusion: there are 7 € B(H) and A € ITF(T) U IT¥(T*)" such that

I} (A)UITHA*Y ¢ TH(T) U I(T")"

for some 1 < k& < n.

ExXAMPLE (CH. Davis). With the operators

A= 0 0

O =

1 0\
0 1 “,";nagz(" 1),
0 0

o O S e
(=T e B o R
S O O
[ o ]

we have that A € II3(T), 2 € T2(A*)", but 2 ¢ ITHT)U ITXH(T)".

Proof: The assertions A € II3(T) and 2 € IT2(A*)" are obvious. To prove tge
final assertion, we shall show that every nilpotent in II2(T) U IT2(T*)" has norm —=

V3
(the norm of 2 is 1).
Suppose that z,y € C* are orthonormal with z € ker T and such that z and y
span a 2-dimensional T-invariant subspace L on which T acts as

(0 (Ty, x))
0 0 )
Since ker T" is 1-dimemsional, the eigenvector z € L corresponding to the eigenvalue 0

must be a multiple of %(el — e3). Since y is orthogonal to z, and because T%y = 0

. . 1
(since y € L), a short computation shows that y must be a multiple of \/; (e1 +e2)—

4 ) 2
——\/%«33. Thus, the norm of each nilpotent in T2(T) is |(Ty,z)| = 7 #1.

If I' € IIZ(T™)" is nilpotent, then ||I|| = % as well, since I'* is a nilpotent of
ITZ(T). Hence, £ cannot be an element of IT2(T) U I2(T*)". |

In the example above, for £ to be a 2 x 2 spectral element of T' it is necesary to
define ¢'(-) so that it is large enough to include compressions of T to n-dimensional
semi-invariant subspaces. Recall that a subspace L of H is semi-invariant for T' €
€ B(H) if H admits a decomposition # = M @ L & N, where the subspaces M and
M @ L are T-invariant. This concept was introduced by Sarason in [15], where he
shows that semi-invariant subspaces are naturally associated with power dilations; his
fundamental lemma, is stated below.
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SARASON’S LEMMA. A subspace L is semi-invariant for T € B(H) if and only if
PT7 = (PT, L)™ for every m € N, where P is the projection of H onto L.

In this description, T has an operator matrix with respect to H =M S LO N
of the form

% * %
0 PT‘L * s
0 0 *

if and only if L is semi-invariant for 7.

Therefore, if for T € B(H) a matrix-valued spectrum is defined to be the set of
all A € M, such that there exist isometries V; : C* — H satisfying for every m € N
the equation 0 = lim [|V;*T™V; — A™||, then elements such as {2 in the above example
will appear as maiJ:ricia.l spectral elements. However, a definition such as this does
not always reproduce the (ordinary) spectrum of an operator. For example, for the
bilateral shift B on {3(Z), the point 0 would appear in a spectrum defined in this
way since every standard orthonormal basis vector for lo(Z) spans a 1-dimensional
semi-invariant subspace for B on which the compression of B to it is 0. This problem
is easily accounted for and remedied as follows. Note that this definition of a matrix-
valued spectrum involves only powers of the operator T’; that is, this spectrum depends
only upon the unital commutative Banach algebra generated by T. But the spectrum
of an element T in a unital (Banach) subalgebra A C B(H) is assured to agree with
the spectrum of T' as an element of B(H) only if A is a full algebra (i.e., A is full
in the sense that if an element of X € A is invertible in B(H), then X~! € A).
Therefore, in order to have agreement with ¢(7) in the case n = 1, the definition of
a?(T) should involve the least full unital commutative Banach algebra generated by
T: namely, the closure of the algebra of rational functions in T". For a compact set
X C C, let Rat(X) denote the algebra of complex rational functions with poles off
X. By the rational functional calculus, »(T') is a well-defined bounded operator on H
for every » € Rato(T'), provided that ¢(T) C X.

Let R(T) and R.(7") denote, respectively, the algebras of operators of the form
r(T) and r,(T"), where r € Rat(o(T)) and r. € Rat(c.(T)).

At this time we consider as well the spectrum that arises by allowing operators
on l(N) to be spectral values.

DEFINITION. Suppose that 7' € B(H) and 1 £ v £ 0.

(1) A € gy(T) if there exist isometries V; : C* — H satisfying liJ;nl[V}" r(TYV; ~
—r(4)|| = 0 for every r € Rato(T).

(2) A € 6¥(T) if A = ¢(T) for some unital completely positive map ¢ : C*(T) —
= B(C") that is multiplicative on the algebra R(T).
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(3) A € o¥(T) if A = (T for some unital completely positive map ¢ : C*(T')} —
— B(C¥) that is multiplicative on the algebra R.(T) and satisfies ¢o(K) = 0 whenever
K is a compact operator in C*(T).

REMARK. The definition of ¥ (T') given above differs from one put forth by Bunce
and Salinas in that they require ¢ to be multiplicative only on the (smaller) algebra
R(T), which leads to a larger essential matricial spectrum. Indeed, the referee has
pointed out that the 1 x 1 essential matricial spectrum of Bunce and Salinas produces
the closed unit disc in the case of the unilateral shift operator, when the usual essential
spectrum produces only the unit circle. With the definition given in (3) above, o1(T)
and o.(T) do coincide for all operators T'.

REMARK. Operator-valued versions of R7(-) and JT?(-) can be (and have been)
defined by enlarging the domain of the isometries to include C¥ for every 1 < ¥ £ oo.

TREOREM 2.1. Suppose that T € B(H),n€N, and 1 < v £ .

(1) o3(T) is compact, non-empty, and contains IT*(T) U II™*{(T*)".

(2) 63(T) = o(T) and o{(T) = 0.(T).

(3) (Spectral hierarchy) o#(A) C o¥(A) for all 1 € p € v and all A € o%(T).
(4) (Invariance) 6*(S) = o¥(T) whenever S is approximately equivalent to T
() o2(T) C o¥(T) C o*(T).

Froof: (1) If A € IT?(T), then there is a sequence of isometries V; : €* — H
with § = lijmlﬁTP} —V; A||. The maps ;(-) = V;*(-)V; on C*(T') are unital completely
positive, and so by the sequential BW-compactness of CP™{T), {o;} has a BW-
convergent subsequence {¢g} converging to ¢ € CP*(T). Let ¢ = V*7V be the
Stinespring decomposition of ¢; then A = ¢(T) and VA = n(T)V (because A is
a spectral element). Now suppose that » € Rato(T"). Because r(A) is completely
determined by the values of »,#/,... ,7"~! on the finite set ¢{A), any polynomial p
which satisfies p*)(¢) = #()(¢) for all 1 < k € n— 1 and for all ¢ € o(A4) (such as
the Lagrange- -Sylvester interpolating polynomial) necessarily satisfies p(4) = r(4).
Thus,

r(4) = p(4) = o(p(T))
=V'r(z(T))V  (because V(C") has finite dimension)
= p{r(T)) = Jim V3 r(T)Vs,
and so, A € o7(T). Similarly, I*(T*)* C ¢?(T). By Theorem 1.2, this shows that
o7 (T) is non-empty.

We now prove that o?(T) is compact. Consider the BW-closure V of the set of
spatial completely pesitive maps @y € CP™ (T). (Here, V is an isometry V : C* — H
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and gy (A) = V*AV for every A € C*(T').) Now intersect V with the (BW-closed) set
of those ¢ € CP™(T') which are multiplicative on the algebra generated by all rational
functions in 7T'; the resulting set Ry is BW-compact and every ¢ € Ry induces an
element (T} € ¢7(T"). Conversely, if A € ¢7'(T), then there is a sequence of spatial
completely positive maps () = Vi'(-)Vi such that ]i;ngak(r(T)) = r(A) for every
r € Rato(T"). Because R is sequentially compact in the BW-topology, this sequence
of spatial maps has a BW-convergent subsequence converging to a map ¥ € Rr;
hence, %(r(T)) = r(A) for every r € Rat ¢(T"). This shows that o7 (T) is the image of
the compact space R through the continuous map ¢ + (T}, and therefore, o7 (T")
is compact.

(2) By (1), o(T) = H(T) U I(T*)" C o}(T) C o(T). By definition, o7 (T) is the
spectrum o (T) of the image T of T in the Calkin algebra. Hence, o}(T) = o*(T) =
=g (7).

(3) Suppose that A € o%(T"),u € v, and 2 € o§(A). Thus, there are sequences
of isometries {V;}, {W;} such that ||[V*»(T)V; — r(A)}| — 0 for all r € Rate(T') and
(|W; f(A)W; — f(2)]| — 0 for all f € Rato(A4). Because V;W; is isometric for all j
and because Rato(T") C Rate(4) C Rato(£2), it follows from

W5 V3" r(T)V; Wi — r (D] < W7 (V' r(T)V; = r(AW;| + W} r(A)W; — r(2)]]

that ||W; Vi r(T)V;W; — r(2)|] — 0 for every r € Rato(T'), whence 2 € of/(T).

(4) We are to prove that S ~, T implies 6% (5) = o (T). It is straightforward that
ITY(8) = I¥(T) and IT¥(S*)" = OY(T™)" for every v, from which one conclusion is
that Rato(S) = Rate(T'). In addition, by approximate equivalence once again, there
is a sequence of unitaries U; such that ||U}r(T)U; — r(S)|| — 0 for every r € Rat(X),
where X = o(T) = o(S). f A € o4 (T) with ||V}*r(T)V; —r(4)|| — 0 for all r € Rat(X)
and for some fixed sequence of isometries V;, then

VUi r(8)U; Vs = r(M|| < [|UFr($)U; — r(D)] + Vi (T)V; = r(A)]

for all j and every r € Rat(X) implies that A € ¢%(S). The proof of the reverse
inclusion is analogous.

(5) The non-trivial inclusion is ¢%(T) C o¥(T). This is proved in [1;5.3] when
v=n €N and in [6;2.11(b)] when v = oo. |

Part (1) of the above Theorem seems to have been anticipated by Hadwin in [6];
in fact, he shows there that the assertion is false if n is replaced by v = co. Also in [6],
one find descriptions of the reducing and the left matrix- and operator-valued spatial
spectra of T in terms of certain operators approximately equivalent to T'. Items (3)
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and (4) of the following theorem complete the picture; the proof is based on the same
methods used by Hadwin in [6].

THEOREM 2.2. Suppose that T € B(H) and that 1 < v £ o0.

(1) A € RY(T) if and only if there is an operator S approximately equivalent to
T and an isometry V : C¥ — H such that SV = VA and §*V = VA",

(2) A € IIY(T) if and only if there is an operator S approximately equivalent to
T and an isometry V : C¥ — H such that SV =V A.

(8) A € 6¥(T) if and only if there is an operator S approximately equivalent to T
and an isometry V : €Y — H such that r(4) = V*r(S)V for svery r € Rat o(T); that
is, if and only if A has a rational dilation to an operator approximately equivalent to
T.

(4) If A € o%(T), then there exists an operator A on a separable space L and
an isometry V : C¥ — L such that T ~, T & A and r(A) = V*r(A)V for every
r £ Rato (T).

Proof: Items (1) and (2) are in Hadwin’s papers {6]. For (3) suppose that A €
o, (T) and that V; are isometries yielding ||V}'r(T)V; —r(4)|| — 0 for all » € Rato (7).
Let ¢(-) = V;(:)V; for each j. The space CP(C*(T),C";1) of unital completely
positive maps C*(T) — B(C”) is BW-compact and, therefore, {¢;} has a convergent
subnet {wg} converging to some ¢ € CP(C*(T),C¥;1). This is to say that ¢ is an
approximate compression, in the language of {6], of the identity representation id of
C*(T). Hence, by [6;2.4], there exists a representation p of C*(T") approximately
eqivalent to id and such that ¢ is a compresion of p; that is, ¢ = W*pW for some
isometry W. If we let S = p(T), then § ~, #d(T) = T and for every r € Rato(T),
o(r(T)) = W*p(r(T))W = W*r(S)W. But because pg(r(T)) — ¢(r(T)) weakly and
p(r(T)) — r(A) in norm, we have that (r(T)) = r(A); that is, W*r(5)W = r(4) as
desired. The converse follows from the invariance of the spectra under approximate
equivalence.

For (4), suppose that A € ¢%(T) arises from a completely positive map © with
canonical decomposition ¢ = V*xV and satisfying the condition that it map R.(T)
multiplicatively and that it annihilates the compact operators of C*(T'). By [6;2.3],
7 annihilates the compacts in C*(T") and so from Voiculescu’s theorem it follows that
T~ TOw(T). Let A=n(T) and L = H, and the result follows immediately. ®

The next result shows that the spectra are uneffected by the passage from the
algebra of rational functions in T to the larger algebra of holomorphic functions in 7.
However, the passage from the algebra in rational functions in T to the C-algebra
generated by T can affect the matricial spec‘t.rum, even though the numerical spectrum
is not altered. Example: if N is normal with spectrum the closed unit disc, then the
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set of matrices @(N) that arise from those ¢ € CP"(N) that are homomorphisms
on R(N) is precisely the closed ball of My, [6;p.227], whereas the matrices p(N) that
arises from those p € CP™(N) that are homomorphisms on C*(N), a C"*-algebra
containing R(N), are just the normal contractions in Mp.

If G C Cis an open set, then H(G) is to denote the algebra of holomorphic
functions on G. Via the holomorphic functional calculus, we consider the commutative
algebra Ag(T) = {f(T) : f € H(G)} whenever o(T) C G. Of course, Ag(T) contains
the algebra R(T") of rational functions in T'.

THEOREM 2.3. Suppose that T € B(H), G C C is an open set containing o(T"),
and 1 g v o0

(1) 0”(T) is the set of all p(T') that arise from those unital completely positive
maps ¢ : C*(T) — B(C") that are homomorphisms when restricted to Ae(T).

(2) o¥(T) consists of all operators A € B(C”) for which there exist isometries
Vi : C¥ — H satisfying for every f € H(G) the equation 0 = Ii;n”V; F(TWe — f(A)].

Proof: Only the non-trivial inclusions will be proven.

(1) Suppose that @(T) € 0*(T); here, p|r(r) i8 a homomorphism. Assume
that f € H(G), and let I" C G be closed simple piecewise differential contour in G
containing ¢(7) in its interior. By the Cauchy formula,

=L gy

10 = 5= [ FOCI-Tac.
For each { € I', the rational function r¢(z) = (¢ — 2)"! is an element of Rato(T);
hence, ¢(r(T")) = r¢(¢(T)) for every ¢ € I' and thus

@) = (55 [ () = 5 [ #OptrelT)e =

= 57 1O = 5 [ HOC1 = o) aC = (D)
Therefore, by the holomorphic functional calculus, the restriction of ¢ to Ag(T) is a
homomorphism.

(2) For A € 0%(T), suppose that the V} are isometries satisying, for every r €
€ Rate(T), lign_llv;r(T)Vk — #{A)l| = 0. For each k € N, define wi : I' — [0,00)
by ws(§) = [[Vire(T)Vi = r¢(A)ll; by hypothesis, limwi(¢) = 0 for every { € I
Moreover, these continuous functions are uniformly bounded: if My = max{jjr¢(T)|] :
¢ € '} and My = max{||r¢(4)|| : ¢ € I'}, then 0 £ wi({) < (Mr + M,) for every
¢ € I'. Therefore, by the dominated convergence theorem,

dim [ w1 =o.
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Let f € H(G) be the function described in (i); if C denotes the maxirum of ail {f({)]
as { varies through I', then

Jim V2 £ — H < o i [ 1QUIVEr@V = re(a)l 1] <

< £ Jim [ aollact=o.

Since our choice of f € H(G) was arbitrary, the assertion is now proved. ®

3. THEOREMS ON ORTHOGONAL ADDITION AND UPPER-SEMICONTINUITY

This section is devoted to the proofs of two theorems. The first has to do with
the addition of spatial spectral elements using direct sums; the second concerns the
upper-semicontinuity of the spatial matricial spectrum. Some care must be taken in
these theorems to ensure that the elements eventually constructed are spatial, not
just spectral.

We begin with the addition theorem. Bunce and Salinas note in [1;p.773] that a
general addition theorem for elements of the spatial matricial spectrum cannot hold
because the orthogonal direct sum of two semi-invariant subspaces need not once
again be semi-invariant. Nevertheless, essential elements can be added along with a
single spatial element.

THEOREM 3.1. Suppose that T € B(H), 20 € I12°(T), A¢ € o¥°(T), and that
vo+ vy + - -+ 1 = v (cardinal arithmetic).

(1) If 2 € DV(T) for L i< k, then B @ 2 & - @ 2 € T2 (D).

QA€o (T) for1Kigk, then LoD A & --- B Ay € 0¥ (T).

Proof: Only (2} will be proved; the proof of (1) is similar and easier. By hy-
pothesis, for 1 € ¢ € k there exist unital completely positive maps ¢; : C*(T) —
— B(C¥) such that the restriction of each ¢; to the algebra R.(T) is a homo-
morphism, 4; = @;(T), and @;(K) = 0 whenever K € C*(T) is compact. Let
p=v1+ --+uvg. Themap ¢ =@ & ® ¢ of C*(T) — B(CH) has the necessary
properties to place o(T) = A; @ - - - ® Ag in ¢2(T). Therefore, to complete the proof
of the theorem we will show that if A € ¢*°(T) and £2 € o#(T), then A® 2 € 0}(T),
where v = vp + .

By replacing T with an appropriate operator S ~, T, we may assume that there
is a single isometry V : € — H satisfying V*r(T)V = r(A) for every r € Rato(T)
(Theorem 2.2). Because 2 € o#(T), there is, by Theorem 2.2, an operator A on 2
Hilbert space L and an isometry W : C# — L satisfying r($2) = W*r(A)W for every
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r € Ratoe(T) and T ~, T @ A. Using the isometry V @ W, it is readily seen that
AdReai(Te®A)=ol(T). &

The second theorem to be proved in this section is stated below.

THEOREM 3.2. Suppose that T' € B(H). To each open subset U C M, contain-
ing o™(T) there corresponds an ¢ > 0 such that ¢7(S) C U whenever [|S —T|| < e.
That is, the set-valued function o?(-) is upper-semicontinuous.

‘The theorem is proved by considering first its sequential statement: if T; =T,
if A; = A, and if A; € ¢7(T}) for each j, then A € o?(T). There is no problem in
showing that A € ¢™(T') (see Lemma 3.5); again, the main difficulty lies in showing
that A is obtained spatially. The proof of Theorem 3.2 follows the line of reasoning
suggested by work of Bunce and Salinas in Section 4 of [1].

Lemma 3.3 ([4;3.5.6]). Suppose that e > 0 and that &1,...,6, € H. There exists
€' > 0 having the following property: whenever ny,...,n, € H satisfy |(ni,9;)—
—(&:,&;)| € € for every 1 < 4,j < n, then there is a unitary operator U such that
(U — &l < e foreach 1< ig n.

LeMMA 3.4 (¢F. [1;4.7]). Suppose that ¢ = V*xV Is the Stinespring decom-
position of some unital completely positive map of C*(T') into M. If the restriction
of ¢ to the algebra of rational functions in T is a homomorphism and is in the
BWe-closure of all maps of the form X +~ W*XW, where W is an isometry and
X € C*(T), then there exists a sequence of isometries Wy : C* — H such that
[{WeEr(T)Wy, — r((T))|| — 0 for every rational function r with poles off of o(T’).

Proof: There is no loss in generality in assuming that the space H, on which
7(C*(T)) acts is a subspace of H. Let {r;}, be a dense subset of Rate(T’) with ri(2) =
=1, and let {e1,...,e,} be an orthonormal basis of C". Select k; we will construct
an isometry Wy with the property that ||[Wyr;(T)Wier — r((1))er| < (Iri(T)|f+ 1)
for every 1 < i & k and every 1 <! < n. With ¢ = k™! and the nk vectors r;(T)Ve;
for 1 i<k, 1< j < n, Lemma 3.3 provides us with an ¢’ > 0 having the properties
stated there. Using this &', the assumption on ¢ is that there exists an isometry
Vo : € — H such that |lp(r(T)) — Viri(T)Vo|| < €’ for all 1 £ ¢ € k. Because
o(r:(T)) = V*n(r;(T))V, the inequality of the preceding sentence implies that

[(x(rs(T))Ver, Vem) — (ri(T)Voer, Voem)| < €

forall 1 € i < k and 1 € I,m £ n. Therefore, by Lemma 3.3, there is a unitary
operator Uy such that forall 1 i<k, 11 n,

N

x]

NUxr:(T)Voer — w(rs(TH)Ver|| <
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In particular, it follows from r;(2z) = 1 that [|[UrVoer — V|| < k71 for each !. Define
Wy =UgV. Forevery 1 i< kand 11 <0,

Wird(T)Weer — r(p(T)eill <

S IV HIUer(TYUE Ver = n(r:(THV el €
SNUeril DY Ver — Urri(T)Voer|| + [[Usri(T)Voer — 7(ri(T))Ver|f €

< (@l +1).

In M, the strong and the norm topologies coincide and so the above inequality
proves that li{n“W,’; ri(TYWr — @(r:(T))|| = 0 for each 7. Because ry, 7y, ..., are dense
in Rato(T), the assertion is proved. B

LEMMA 3.5. Suppose that T,T; € B(H) with T; — T, and suppose that p; is
a unital completely positive map of B(H) into M, that is a homomorphism when
restricted to the algebra of rational functions in T;. Suppose further that ¢;(T;) —
— A. Then there is a unital completely positive map ¢ : C*(T) — M, that is a
homomorphism on the algebra of rational functions in T and is such that A = ¢(T).

Proof: The hypothesis is that 4; = ¢;(T}) € o™(T;) for each i; because () is an
upper-semicontinuous function, it follows via the spectral hierarchy that ¢(4) C (7).
If r € Rato(T') is given, then there is an open set V C C containing ¢(7T") that excludes
the (finitely many) singularities of », and by the upper-semicontinuity of the spectrum
there is an integer N such that #(T}) is defined whenever i > N. Therefore, when we
refer to li{n 7(T;), we mean that we begin with the sequence r(Tw), r(Tn+1), - .-, and
similarly for imr(4;).

The map '%’) :r(T) — r(A) is a weli-defined homomorphism. Moreover, this map
is a complete contraction, for if [r; ; (T)]f'j=1 € R(T) ® M, then

lrs s (N = tmlfrs j (Am)H] = lim [{[re s (om (Tl =

= lim||om (rs,; (T )| < tim||fri s (Ten)]If = Nl s (TY-

(Observe that we have used that each ¢, is completely contracitve.) Thus, the map
¥ R(T) + R(T)" — M, sending A + B* to %(A) + ¢(B)" is completely positive
[10;3.4] and extends, therefore, to a completely positive map ¢ : C*(T) — M, that is
plainly multiplicative on R(T). o

LEMMA 3.6 Suppose that T, T; € B(H), A; € o™(T}), and that T; — T, A; — A.
Then 4 & ¢?(T).
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Proof: For each ¢ there exist a sequence {tp; }j of unital spatial maps tp}() =
= (V]‘)*()(V;) on the separable C*-algebra generated by {T, T;}; such that

r(A;) = lim g} (r(T;)) for every r € Rato(T;).
i

For each %, let ¢; be the limit of some BW-convergent subsequence of {go;}J By
hypothesis,
@i(r(T3)) = r(4i) — r(4) = p(r(T)) as i — oo,

for every r € Rato(T), where the meaning of ¢;(r(Zi)) and the definition of ¢ are
taken as in Lemma 3.5. Thus, ¢|r(z) is a homomorphism and is in the BW-closure of
{pilr(r}, and so p|r(r) is approximated by the maps {(p; I'R(T)},-,j also. Lemma 3.4
asserts that there is a sequence of isometries W such that (r(T)) = li;n Wer(TYWy
for every r € Rato (7). Hence, 4 € o7 (T). [ |

Proof of Theorem 3.2: If the assertion of the theorem is false, then there exists
a sequence {7} in B(H) converging to T but such that o7(7;) ¢ U for every j. So,
by choosing A; € o7(T;)\U and selecting any limit point A of the sequence {4;}, we
have that both A € U and, by Lemma 3.6, 4 € ¢7(T) C U, which is an absurdity.
The assertion of the theorem is, therefore, true. |

4. COMPUTING THE MATRICIAL SPECTRUM: SOME EXAMPLES

Having spent some effort investigating properties of the matricial spectrum, it
is appropriate to turn now to some examples. A natural question one could ask is
“what is the spatial matricial spectrum of a normal operator?”. In this section some
computations are made for a number of classes of operators.

An approximate eigenvalue A of an operator 7' is said to be normal if
T = Al)*z;|] — 0 whenever ||(T — Al)z;{| — 0. It is clear that every spectral
point of a normal operator, or more generally every approximate eigenvalue of a hy-
ponormal operator, is a normal approximate eigenvalue. As well, it follows from the
work of Hildebrandt {8; Satz2(ii)] that if an operator has its approximate point of
spectrum contained entirely on the boundary of its numerical range, then each of
its approximate eigenvalues is normal. The spatial component of the left matricial
spectra of these operators is described in full bellow.

EXAMPLE 1. If every approximate eigenvalue of T' is normal, then

(1) I} (T) = RY(T) for every n and every matrix in II}(T) is a normal matrix.
If a sequence of isometric maps V; : € — H satisfies |TV; — V;A|| — 0 for some
A€ M,, then ||T*V; — V; A*|| — 0 as well.
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(2) If Ay,..., Aq are Isolated eigenvalues of finite multiplicity v1,...,vq, and if
Aq.’.l, .’. .y )p 'E Hc(T), theﬂ

Ml @ @ Apl,, € TN(T),

p
where 1 € p; € v; for j = 1,...,q9 and Z p; = n. Conversely, every matrix
i=1

A € IT™(T) is unitarily equivalent to a matrix constructed in this way.

Proof: (1) (a) Assume that A € II™(T) and ||TV; — V; Aj| — 0 for some isometries
V; : €% = H. If [T*V; - V; A*|| =5 0"as"well, then plainly IT(T) = R}(T). We begin
by proving that A must be normal.

Since A acts in finite dimensions, it is normal if and only if A*z = A\*z whenever
Az = Xz. Assume that latter equality holds for a unit vector z and an eigenvalue A.
For every j,

[A*2 — A%z} = [|A"V}" Viz — A*ViViz|| €
<INV} Vi = VT Vil + 1V T Vi = A°7; Vel €
SV Vi z = T*Vizl + [[Viz [V T — ATVl =
= |[T*(Vi2) = A"(Vi2)ll + [ITV; —~ V34|
Now because ||T'V;z=AV;z|| — 0 and because X is a normal approximate eigenvalue of
T, it follows that {|T"Vjz — A*Vjz{| — 0. Hence, the preceding system of inequalities
yield
I3z — A7z} < Jim (| T7V;2 = X Vizl| + ||TV; — V3Al)) = 0,
thereby establishing that A is normal.
r
Next, decompose A according to its spectral structure: 4 = ZC;E,-, where

i=1

€1,-..,Cp are the distinct eigenvalues of 4 and Ey, ..., F, are the corresponding spec-
tral projections. For every z € C",

() o )

i=1 i=1

T*Viz - V4% =

P

S ¢ )Y Bz

=1

P
<Y T - GOV Bzl

=1

If E;z # 0, then E;z is an eigenvector of A corresponding to the eigenvalue {;, and
therefore, for each 1 € 4 < p, {Vj(Ziz)}; is a sequence of zero vectors, or is a
bounded sequence of approximate eigenvectors of T' corresponding to the approxi-
mate eigenvalue {; of T (we are making use of the hierarchical property). But by
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hypothesis, these approximaie eigenvalues are normal approximate eigenvalues, so
1(T™ — {F1)V; Eiz|| — 0 for each i. Hence,

P
0< Jim ITViz = VA% < fim 32T = GV B =0

This proves that lim ||[T*V; — V; A*|| = 0, as desired.
i
(2) Because every approximate eigenvalue is normal, IT.(T") is precisely RL(T),
and so the results of Salinas [13] on the reducing essential spectrum apply here.
Since 1 € p; S yjforall j=1,...,¢, there exist orthonormal vectors 7, . .., x{‘j
in ker(T" — );1) such that the matrices [(T=J, )] are scalar matrices with eigenvalue
A; for all 1 € j < ¢. Since the eigenspaces of 7 are mutually orthogonal, the direct

q
sum Ag of these matrices is an element of IT §(T), where p = Z gj. Let Hy denote

the reducing subspace of T on which the action of T is given f:’);le, and let Vp map
C# isometrically onto Hy so that TV, = VyAqe.

For the elements Agi1,...,2,, given € > 0, there exist mutually orthogonal
projections Qg+1,...,Q, of infinite rank and nullity such that each (7"~ Al)Qiis a
compact operator of norm no greater than ¢, and the range of each ); is orthogonal
to Ho [13;4.1,4.2]. Therefore, there exist isometries V; : C# — Qi(H) such that
fTV; — Vi(\1)|| < € for every ¢ = {g +1),...,p; hence, TV: — Ve Al < ple, where
Ve= W@ Vi1 @ @®Vp and A= Ao ® Agg1lpuy,, ® @ Aply,. This shows that
A e IT).

Conversely, a matrix 4 € II*(T") is normal, by (a), and so its spectrum is con-
tained in [7(T"); we need only verify that the multiplicities of those eigenvalues ¢ of
A which are isolated eigenvaiues of T do not exceed the dimension of ker(T — ¢1).
Therefore, suppose that A has such an eigenvalue ¢, say of multiplicity p; let H,
denote the kernel of 7' — (1, and let » denote its dimension. Suppose, on the con-
trary, that 4 > v. Decompose H as a sum of T-invariant subspaces: H; & H, é" Note
that o(T] HEL) = o(T) \ {¢}. Since {1, € II#(T), there exist orthonormal vectors
mf yeeey mg € H such that for each B the first » of these vectors lie in the subspace H,
(and the rest lic in H}), and such that lignH(T - Cl)xfl] =0 forall 1 £ j < u. This

means that the sequence of vectors f, € H} are approximate eigenvectors of T, the
restriction of T' to H-, corresponding to the approximate eigenvalue ¢ of T, contrary
to the fact that ¢ & o(T). Hence, we must have y < v as desired. n

The next two examples iliustrate how properties of an operator can be deduced
from higher dimensional spectra in a way unavailable with simply the approximate
point spectrum. Part (2) of Example 2 can be arrived at in a manner similar to the
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computation of IT"(T) given in 1] for the Donoghue shift operator, however the proof
given below is direct and typical of what is involved in 2 x 2 spatial spectral problems.
Example 3 shows that I72(-) characterizes normality for algebraic operators.

EXAMPLE 2. Suppose that T is quasi-nilpotent.
(1) If T is actually nilpotent, and if T2(T) = {0}, then T = 0.
(2) If T is compact and is without eigenvalues, then II}(T) = {0}.

Proof: (1) If.T#.0, then there is some m > 2 such that 7~ £ 0 and T = 0.
Thus, there exists a vector £ € H for which T™~12 = 0; therefore, the subspace
- spanned by {T™~2z,T™ 1z} is a 2-dimensional T-invariant subspace. But II2(T) =
= {0}, and so T™~1z = T(T™~2z) = 0, contrary to T™ 'z # 0. Thus, T must ke 0.
(2) Assume that n > 2. Because every element of IT}'(T') is nilpotent, it is enough

to establish that I73(T) = {0}, for this would imply that every 2 € IT}(T) is zero

0 A
(by the spectral hierarchy and part (1)). f A= ( 0 0) € IT¥(T), then there exist

unit vectors zp, yx € H with
(zk,yx) = O for all k € N and klim |Tzel = klix{‘lo WTye — Aze)| = 0.

Since T is compact, {T'yx } has a convergent subsequence {T'ys } converging to a vector
z € H. The equation 0 = li;nnTyp —-Azg|| implies that z = lign)\zp and ||z|| = Al
Thus,

Tz = ).li;nsz = A(0) (since[|T2g|| — 0);

hence, z € kerT = {0} and A = 0. [

EXAMPLE 3. If T is an algebraic operator, then T is normal if and only if every
matrix in II2(T) is normal.

Proof: The 2 x 2 left matricial spectrum of a normal operator, algebraic or not,
always consists exclusively of normal matrices, so the necessity of the hypothesis is
. evident.

To prove that the hypothesis is sufficient for normality, first note that the spec-
trum of 7T is finite and each spectral point is an eigenvalue; this follows from T being
algebraic. Suppose that a(T) = {)}. Then T — Al is nilpotent-and T3(T — A1) =
= IT}(T) — {A12} consists entirely of matrices that are both nilpotent and normal;
therefore, IT3(T — A1) = {0}. By (1) of Example 2, this implies that T = Al. For
the general case, if A € o(T) and if T denotes the restriction of T to the gener-
alized eigenspace ker(T — Al)", where k is the algebraic multiplicity of A, then the
preceding arguments apply to T the conclusion is that ker(T' — )\1)'c = ker(T — A1).
Because H is an algebraic direct sum of the generalized eigenspaces of T', all that
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remains is to prove that the eigenspaces of T’ are mutually orthogonal. To this end, if
X pt € o(T) are distinct eigenvalues with correponding eigenvectors z, y respectively,
then £ = sp{z,y} is a T- invariant subspace and Tj. is unitarily equivalent to an
element of II2(T), and therefore, T is normal. Thus, the eigenvectors z,y of Ti¢
correponding to the distinct eigenvalues A, 4 must be orthogonal. This proves that T’
is normal. |

The remainder of the examples concern the spatial component of the full matricial
spectrum.

ExaMPLE 4. If zero isa boundary point of the numerical range of a quasinilpotent
operator T, then o?(T) = {0}.

Proof: If A € o™(T), then A must be nilpotent; therefore, to show that A = 0
it is enough to show, by (1) of Example 2, that II2(4) = {0}. Thus, suppose that

0
2= ( 0 :) € II?(A). The numerical range of 2 is a disc centred at 0 of radius

=|w] and this disc must lie within the closure of the numerical range of 7. However,
the hypothesis states that 0 is a boundary point of the numerical range and so the
disc W(£2) must be degenerate. Hence, w =0 and A =0. u

The classical Volterra integral operator is one of many quasi-nilpotent operators
that satisfy the hypothesis of Example 4, however different techniques are needed to
determine whether the matricial spectra of general Volterra integral operators can
have non-zero nilpotents.

ExXAaMPLE 5. If a contraction T has the closed unit disc for its spectrum, then
o?(T) is the closed unit ball of B(C").

Proof: The hypothesis implies that the essential numerical range W.(T) of T is
the closed unit disc and so, from o(T) N OW.(T) C RY(T) [13;3.3], we have that
8D C RI(T). Suppose that A is a contraction on C”. By the Sz.-Nagy dilation
theorem, there exists a unitary operator U/ on a separable space L and an isometry
V : €% — L such that A™ = V*U™V for every m € N. Because o(U) C 8D C RL(T)
and U is normal, we have that T' ~, T & U by [13;4,9] and, therefore, that ¢¥(T") =
= o¥(T ® U). Hence, it is clear that A™ = W*(T @ U)W, for all m, for some
isometry W : C* — H & L. Finally, because rational functions on the closed unit disc
can be approximated uniformly by polynomials, it follows that r(A) = W*r(T@ U)W
for every r € Rato(T). |

As is shown by Example 5, for normal operators T, one cannot expect that
o} (T) = R}(T), for n > 1, unlike the scalar case. The following example shows some
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cases where such equality can oceur.

ExampLE 6. If T is a normal operator such that every continuous function on
o(T) is approximated uniformly by functions in Rate(T), then o (T) = RJ(T).

Proof: By Theorem 2.2, if A € o%(T), then there exists a (normal) operator
S ~g T on a separable space L and an isometry V : C¥ — L such that #(4) =
= V*r(S)V for every r € Rato(S). The hypothesis is that Rate(S) is uniformly
dense in C(0(S)) and so R(S) is dense in C*(S) and the map X r V*XV is,
therefore, a *-homomorphism C*(S) — B(C”). Thus, 4 is a direct summand of §
and an approximate direct summand of 7. ‘

Conversely, it is clear that RY(T) C ¢¥(T). X

ExaMPLE 7. The following operators T satisfy o;(T) = Rj(T): selfadjoint
operators, unitary operators, compact normal operators, and normal operators with
spectrum that neither has interior nor disconnects the plane.

Proof: Lavrentiev’s theorem states that for compact planar sets X, all continuous
functions on X can be approximated uniformly by polynomials if and only if X is
nowhere dense and does not disconnect the plane. The spectra of all of the normal
operators mentioned above, with the sole exception of the unitaries, have spectra that
fulfil the sufficiency part of Lavrentiev’s theorem and, consequently, the result follows
from Example 6. In the case of the unitary operators, every continuous function on
the unit circle or some compact subset thereof can be approximated uniformly by
rational functions and so Example 6 applies once again. )

REMARK. If 7' is a normal operator such that (T is nowhere dense and has
conected complement, then 7 is a reductive operator. Actually, T is more special in
that T is reductive in an asymptotic sense, meaning that ||TP; — P;T}| — 0 whenever
P; are projections satisfying ||(1 — P;)TP;]| — O (see Harrison [7]). What, then, is
the spatial matricial specirum of an arbitrary reductive normal operator 7

In M,, the set of normal matrices is nowhere dense, and so the left matricial
spectrum of a normal operator never has interior. The concluding example, given
below, shows in particular that the left matricial spectrum of a normal operator will
be much larger than the left matricial spectrum if the essential spectrum has interior.

EXAMPLE 8. The spatial matricial spectrum has interior whenever the essential
spectrum has.

Proof: Because 0.(T") = H.(T) U II.(T*)", one of the two sets in this union
must have interior, if 0.(T) has. Assume, therefore and withoutloss in generality,
that I7,(T") contains the closed unit disc. Then there is an operator S approximately
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S:TQ(N *)1
0 =

where N is normal and has spectrum D~. Let P be the projection onto the (S-
invariant) subspace that N acts upon; let I" be a smooth contour containing o(T') in
its interior. Then for any r € Rato(S) (note: 6(S) = o(T)),

equivalent to 7" such that

. T-¢y? 0 0
Pr(S)pim) = "%LT(C)P 0 (N=¢D)™ o« d¢ =
0 0 */ \pean)
=~ [LHOW - c)iag =)

whence N € 0°(S) = 02°(T). By the spectral hierarchy it follows that the closed
unit ball of B(C”), which is the spectrum of N by Example 5, is contained within
oy (T). |
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