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GAUGE INVARIANT STATES OF 0.,

MARCELO LACA

1. INTRODUCTION

As is customary, Ou will denote the universal C*-algebra genarated by an infi-
nite sequence of isometries, {v; : j = 1,2,...}, with mutually orthogonal ranges, as
introduced by Cuntz in [2]. For each A € T the correspondence 7, : v; + Av;, j =
= 1,2,... extends uniquely to an automorphism of O, also indicated by .. The
fixed point algebra of this action, F, coincides with the C*-subalgebra generated
by the products of an equal number of isometries as of their adjoints. There exists
a unique conditional expectation @ from Oy onto Fe,, corresponding to the process
of averaging over the gauge orbits. This gives rise to a method for extending states
from Foo to states of O, analogous to the inducing construction in a C*-dynamical
system. If w is a state of Fo we denote by @ its gauge invariant extension w o & to
Owo. Such state extensions of product states of F,, were first studied by Evans in [3]
and later by Araki, Carey and Evans in [1]. We consider here the relation between
states of F, and their gauge invariant extensions to (., induced via the conditional
expectation @. The present study arcse from trying to understand better the pair-
ing construction of [8] concerning the definition of an abstract index for continuous
parameters of endomorphisms of B(H). In particular, it became important to find a
good source of examples of ergodic endomorphisms with infinite index and to develop
criteria to decide when two endomorphisms are conjugate a task which was started
in [4]. As it turns out, the representation theory of the Cuntz algebra O is at the
heart of the matter, and the path goes both ways for one can use the endomorphisms
to gain insight on those representations. The results presented here hold, with the
obvious modifications, for all the C*-algebras 0. For finite n some of the claims
made here are trivially verified, while some others have been obtained by different



382 MARCELO LACA

methods (for product states) in {3] and [1] and, more recently, in [9] for n = 2. We
have thus concentrated our study to @o,. The main result appears in Section 4 where
we characterize the pure states of F, which induce pure states on O, hence which
give ergodic endomorphisms of B(#). The same analysis, based on the spectral sub-
spaces of the gauge action, yields a necessary and sufficient condition for two factor
states of Fo, to induce quasi-equivalent states on Oo. In Section 5 those results are
interpreted when the states being extended are of product type, in which case one
can give computable criteria for pureness and quasi equivalence of the corresponding
gauge invariant states.

2. FROM Fo TO Qoo AND BACK

For each m € I, G,, will denote the spectral subspace {z € O : 1(z) =
= A™Mz for A € T} of the gauge action of the circle group T on Og. It follows from [2]
that Gm is the closed subspace generated by products of the form v;, ---v;, v}, - v},
with k,1 2> 0 and k — I = m. It is then easy to see that G}, = G_., and that G,,G,

spans a dense subspace of G, 4. Moreover Go = Fo, and each Gy, is an Fo, module.

Suppose now w is a state of Fo, and let @ = wo & be its gauge invariant extension.
Let 7 denote the associated GNS representation of O on the Hilbert space H with
cyclic unit vector 2, so that @(z) = (n(z)#2, 2). In order to understand the relation
between w and & it is convenient to study the canonical decomposition that the
spectral subspaces induce on the restriction of 7 to the subalgebra Fo,. If we let
Hym = 7(Gm) 12 for m € Z, then the H,,’s are a doubly infinite sequence of 7(Fo)-
-invariant subspaces of % which are mutually orthogonal and span the whole space.
That they are mutually orthogonal follows from the fact that if z € G, ¥ € G, and
m # n, then (n(2)92, 7(y)?) = ©(y*z) = 0 because y*z € G;n—pn. Cuntz showed in
[2] that elements of the form

-1 m »
z= 3 ol 4+ fvi m=0,12..; f; € Fuo for lil < m,

J==-m j=1

are dense in Oo, thus the corresponding set of vectors, {n(z)f2}, is dense in H. It
is easy to see that v;l’ { fi € G)j| and that fiv] € G;, from which it follows that

@ Hm = H-
mel .
For each integer m, Py, will denote the projection onto H,, and =, will denote

the associated subrepresentation of x[{F. By the above disscusion, Po € 7(Fu )’
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for all m € Z and Z Py, = I, yielding a decomposition of 7[Fq :
meZ

(2.1) T Feo = @'n’m on H = @'}im.
mel meZ

Since £2 is cyclic for 7o(Feo) on Ho, we see that my is (unitarily equivalent to) the
GNS representation of Fo, associated with w. It is not clear that the remaining Pr,
are nontrivial, and in fact, a quick look shows that for the Fock representation of [3],
P, = 0 for all m < 0. To avoid such trivialities we will restrict our attention to the es-
sential states defined in [4], equivalently, to representations  satisfying Z';r(vj vi) =

J

= 1.

LEMMA 2.1. If z € G, then 7(2)Ppy = Pnypm(z) for allm €N.

Proof. If y € Gy, then m(z)(7(y)2) = 7(2y)2 € Hm4p, and since vectors of the
form n(y)f2 are dense in H,, we conclude that

(2.2) m(z) P = Pgpm(z2)Pm meL

Now notice that #* € G.., and apply the above argument to z* in place of z
and Hm4p in place of My, to obtain 7(z*)Prip = Pmip—pT(2*)Pm4p for m € Z. By
taking adjoints,

Prypn(z) = Pmipm(z)Pm mel

which together with (2.2) completes the proof. n

o0
Denote by o the endomorphism of B(H) defined by a(A) = E?r(vj YAT(v;)*. Tt

follows that a(Py) = Za’r(vJ)Pmﬂ(vJ ZPm_,.l'/r(vJ)?r(vJ) = Pp4y for m € Z.
i=1
Thus, for any S € B('H) we have a(P;SP;) = Piy1a(S)Pjy1 and, identifying the space

B(H;;H;:) of bounded linear operators from H; into H; with the subspace F;B(H)FP;
of B(H), we can say that a sends B(H;;H;) into B(Hj11; Hig1)-
It was proved in [4] that 7(Fo)' = [) e*(B(H)) so the restriction of & to
k>0

7(Foo)' is an automorphism. Thus, whenever A € 7(Fo) and k € Z, the element
oF(A) € m(F) exists and is uniquely determined.

We may now describe 7{Fo, )’ in terms of the decomposition obtained above. Let
Z(m;, 7;) denote the Banach space of intertwining operators between the representa-
tions m; and m;, i.e. T(m,m;) = {T € B(H;;Hi) : mi(=)T = Tmj(z)(V)z € Fool-
Then

(2.3) T(Fo) ={S € B(H) : BiSP; € I(m,x;) (V)i, j € Z}.
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Notice that if S &€ Z(x;,,7;j,) is extended to an operator (also denoted by S) on H by
letting it vanish on the orthogonal complement of H;,, then S € m(Feo)'.

ProprosiTION 2.2. For each pair of integers i, j, the endomorphism & induces an
isomorphism of Banach spaces from Z(7;, 7;) onto Z(miq1, Tj41).

Proof. Linearity and boundedness pose no problem since we are dealing with
the restriction of a bounded linear map. The point is to prove that « is a bijection
between the two subspaces of B(H).

Suppose Ty € I(m, ;) and view Ty as an operator on H by the identification
mentioned above, so T' € 7(F)' by (2.3). There exist 7=y and T} in 7(F ) such
that a(7_1) = Tp and & }(T1) = Tp. Necessarily Ty = P_T_1Pj_; and T} =
= Piy1T1 Pj41, so that Ty € Z(miqy, mj41) and Ty € Z(mi-1, Tj—1). We have proved
that o(Z(mi—y, mj1)) D I(m;, 7;) and that e(Z(m:, 7;)) € Z(miy1, 7541), for arbitrary
1,j € L. It follows that a(Z(m;, m;)) D Z(mi41, 7j41), which completes the proof. @

Setting ¢ = j it follows that the restriction of o to mp(Fo)' establishes an
isomorphism between 7o(Feo )’ and 7;(Foo ) for each j € Z. If the state w of Fo, being
extended is pure then g is irreducible, so the above implies that all the representations
appearing in the decomposition (2.1) are irreducible.

In order to extract some information about the 73 ’s in the case when w is a factor
state, we analyze the effect of & on the centers of the m’s. Although a(m(Fo)) may
be strictly contained in #{F)", o behaves well on the centers. Let C denote the
center of 7(Feo) in B(H), and let Cp, denote the center of mm(Feo)' in B(Hpm).

ProprosiTiON 2.3. With the above notation, a(C) = C and a(Cp) = Cmy; for
m € Z so that « restricts to an automorphism of C and to an isomorphism from Cp,
onto Crmq1 .

Proof. Since a restricts to an automorphism of 7(Fu, ) it further restricts to an
automorphism of C.

To prove &{Cm) = Cm41 take Q € C, then @(Q) € Ty (Fx) and a~(Q) €
€ Tm-1(Fw). U T € Tms1(Foo) then o*(T) € mm(Foo) so that ¥} T)Q =
= QaT}(T). Applying o*! to both sides it follows that

To*(Q) = oH(Q)T  for T € mma1(Foo)'.

Thus &(Q) € Crny1 and @~ *(Q)Cm_1, and since m is arbitrary, ¢(Cm) = Cpy;. B

CoRroLLARY 2.4. If w is a factor state, then wm is a factor representation for
eachm € 4.

Proof. The center of m is trivial because w is a factor state so the above implies
that all the €,,, are trivial. -]



GAUGE INVARIANT STATES OF O 385

Finally we give a description of the commutant of 7(Qc) in terms of the decom-
position of M into invariant subspaces Hm. Let S = PiSP; be the (4, §)t* entry in
the matrix of S corresponding to the decomposition of H. Then

(2.4) m(Ow) = {S € B(H) : «(Sij) = Sis1 j41 (V)i,j €T}

The justification is as follows: § € (O )’ if and only if a{S) = S by Proposition 3.1
in [4]. Since a(Si;) = (@(S))i1 j+1, this is the case if and only if a(S;;) = Siy1 j41-
Note that S;; € Z(m;, ;) because 1(Ox) C 7(Feo)'-

3. SHIFTING STATES

Whenever w is a state of Foo, a*w will be the positive linear functional defined by
a*w(z) = Zw(vj zv}). This map o* was introduced and studied in [4] to sidestep the

absence of ;,n endomorphism at level of the C*-algebra F,. There it was shown that
w is singular if and only if ||a*?w|| — 0 as p — 0o, and that it is essential if and only if
a*Pw is a state, i.e. ||a*Pwl|| = 1, for all p > 0. These definitions also make sense if w 1s
assumed to be a state of (., and the corresponding characterizations of essential and
singular states hold true. It is convenient to include here some notation associated
with the structure of @s. The orthogonality of the ranges of the isometries makes it
possible to define an inner product on their closed linear span £ = Span{v; }i2, via
{z,y)] = y*z, where z and y are in £. Since the Hilbert space norm and the operator
norm coincide, £ becomes a Hilbert space inside Ou. The isometries in £ are the
unit vectors and {v;}§2; is an orthonormal base.

Along the same lines, let W denote the set of products of k isometries among
the generators {v;}52; and let E* be the closed linear span of Wi, then a similar
argument shows that £¥ is a Hilbert space and W is an orthonormal basis. Moreover,
the mapping e; ® - -- @ ex — €, -- -} extends to a unitary operator from £E onto
£¥. The fixed point algebra Fo, can then be scen as the unital C*-subalgebra of the
infinite tensor product (K(£)+ CI)®* generated by elementary tensors of the type
Ki®  ®K,®I®I - where K; €K(£)and n=1,2,..; see [3].

In order to study the representations appearing in the decomposition 7[Fe =

= @ 7w up to unitary and quasi-equivalence, we need to examine the orbits of the
meX

state w under powers of a*. Although o** has been not defined for k < 0, because
there are different states of Fo, which have the same image under o, one can define
a ”quasi-inverse” for a* in the following way: If w is a state of Foo (or of O ), let

(3.1) Brw(z) = w(vizv) 2 € Foo (or O).
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The particular choice of v; is not essential to our purposes for one readily verifies that

for each 7, the unitary operator Us; = v1v] + v0] + Z vjv; establishes the unitary
J#ld

equivalence of w(v] - v1) and w(v} - v;).

The map B* shifts states in the opposite direction that o*, by tensoring on the
left with the pure state of K(£) corresponding to the unit vector v € £.

LEMMA 3.1. Ifw is essential state of Fy,, then:
i) o*f*w = w, and

i) Bro*wiw.

The same is true for an essential state of O,

Proof. For 1) we only need to calculate,
00 o«
o' frw(e) = Zﬁ‘w(vja:v;-‘) = Ew(v; vjzvivy) = w(vivizviv) = w(z)
j=1 i=1
whenever z € Fo,. For ii), let m, be the GNS representation associated with w, then

Bratw(z) = o (vizw) = Zw(vjvfsz}') = Z(ww(a:)n'w(vlv;‘)ﬂ,Ww(vl,v;-')ﬂ).
i=1

j=1

This yields f*a*w << w at once, for it shows that B*e*w is a normal state in .
Since w is assumed to be essential,

o o0
z’rw(”j”:)fw(vlv;)n = Eww(”i”;)ﬂ =0,
i=1 i=1

and since {2 is cyclic it follows that the set {mu(v;0})2: j = 1,2,...} is generating
for m,. The proof is then finished with an application of the following lemma, which
is an analogue of the essential uniqueness of the GNS construction. E

LEMMA 3.2. Suppose 7 is a representation of a C*-algebra A on a Hilbert space
M, and let p be the state of A determined by a positive, trace-one operator T € B(H)
Assume further that the range of T is generating for n(.A); then  is quasi-equivalent
to the GNS of p.

Proof. Let 7, denote the GNS representation associated with p, it is immediate
that 7, << 7, because p is normal in 7. We must show that there is no nontrivial
subrepresentation of 7 disjoint from =, for which it suffices to show that there is no
such central subrepresentation. Let & be an orthogonal set of vectors diagonalizing
T, corresponding to the nonzero eigenvalues of T, so that the range of T is spanned
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by the &, and p(z) = Tx(Tn(z)) = Z(w(m)&,&) for z € A. If P, is a central

1
projection in 7(.4)’ and its associated subrepresentation, 1, is disjoint from 7,, then

p(z) =D (P + P)n(z)(Py + P16, &) = Z(W(Z‘)Pﬁi, P&+

+ 3 (n(z) P&, Pi&) = pa() + pi ().

The positive linear functional py is clearly normal in 7, = Pym, hence =,, is
absolutely continuous with respect to 71. On the other hand, py < pso that 7, << 7,.
Since ; and m, were assumed to be disjoint, we must have py = 0 hence Pi&; =0 for
all ;. This concludes the proof because P is in the commutant of 7(A) and the set
{&;}, assumed to be generating for 7(A), is separating for 7(A)', which yields P, = 0.

a

DEFINITION 3.1. A state w of Fu is periodic if there is a positive integer p for
which o*Pw is quasi-equivalent to w. The smallest such integer is the period. If no
such integer exists, w is said to be aperiodic.

We define the quasi-orbit of w (under both a* and its “inverse” *) to be the
set of quasi-equivalence classes corresponding to the states a"*w and g**w for k 2 0.
By Lemma 3.1 the periodic states of period p are those with exactly p points in
their quasi-orbits, and the aperiodic ones are those with infinite quasi-orbits. Tor
states of O, the coneept of periodicity is uninteresting: all essential states of On are
quasi-invariant. (They have period 1.)

ProrosITION 3.3. For every essential state w of O, we have a™w Awipru.

Proof. Let (7,7, 12) be the GNS triple associated with w, then
B w(z) = (w(z)r(v) 2, 7(v1)N2).

Since 7(v1 )2 is cyclic for 7(Dw ), it follows that  is unitarily equivalent to the GNS
representation of #*w. Applying the above argument to ¢*w in place of w we obtain
a*w & f*a*w, and since §*a*w 4w by Lemma 3.1 ii), the proof is finished. B

The following proposition characterizes the quasi-equivalence classes of the sum-
mands appearing in (2.1) as those in the quasi-orbit of w.

PRroOPOSITION 3.4. Suppose that w is an essential state of Foo and that m,, for
m € Z are the representations appearing in the decomposition (2.1) of 7] F, then

i) For m 2 0, #,, Is unitarily equivalent to the GNS of f*™w, and

il) for m < 0, T is quasi-equivalent to the GNS of a*l™lw,
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Proof. Assume m > 0. The vector #(v{*)f2 is cyclic for 7, (Fo) acting on
Hm, and since {(mpm(z)7(v7) 2, 7(vP)2) = (z(vi™2v]) 2, 2) = f*™w(z), assertion i)
follows from the uniqueness of the GNS representation. To prove ii) let k = |m| and
observe that if 2 € F, then

ou(z)= Y wlszst) = Y (n(s26" )0, 2) = Y (m(2)n(s*)2, 7(s*)N),
SEWs SEW sEW:
where Wj denotes the collection of all products of k isometries chosen from the v;’s.
Since w is essential, Z w(ss™) = I, hence the set {x(s*)f2: s € W;} is generating

; - SEW;
for Tm(Feo) on Hpm. The assumptions of Lemma 3.2 hold and it follows that 7y, is

quasi-equivalent to the GNS of o**w. .

COROLLARY 3.5. Ifw is a factor state, then its quasi-orbit consists of (equivalence
classes of) factor states of the same type.

Proof. If w is a factor state, then 7 is a factor representation, so by Proposition
2.4 m,, is a factor representation for each m € Z. This proves that o**w and g**w
are factor states. They all have the same type because 7 (Foo ) = a™(70(Fx)’') and
type is preserved by taking commutant. [ ]

COROLLARY 38.6. Ifw; and ws are factor states, and wy vgawg, then a**w; £ a**w,
and f*w; L B**ws for all k > 0.

Proof. Use the previous corollary and the fact that two factor states are quasi-
equivalent if and their average is also a factor state. u

Note that the above two corollaries can also be derived from the generalization
of Powers criterion for quasi-equivalence obtained in [4].

4. GAUGE INVARIANT STATES

In this section we examine the questions of unitary and quasi-equivalence of gauge
invariant states. The main results are a necessary and sufficient condition for quasi-
equivalence of the gauge invariant extensions of factor states and a characterization
of the gauge invariant states which are pure. This, in turn, allows us to classify-the
corresponding ergodic endomorphisms of B(H) up to conjugacy. The first step is to
establish that the process of gauge invariant extension is well behaved vis a vis the
relations of unitary and quasi-equivalence.

PRropPoOsITION 4.1. Unitary equivalence, absolute continuity and quasi-equiva-
lence of states are preserved by gauge-invariant extension.



GAUGE INVARIANT STATES OF O 389

Proof. Suppose p~w as states of Fo, and let (m,H, 12) be the GNS triple of @.
7o is then unitarily equivalent to the GNS of p, so there exists a unit vector €, cyclic
for mo(Feo) on Hg such that p(z) = {mo(2)€,€) when z € Foo.

The formula {r(z)¢,£), interpreted for z € O, defines a state which is gauge
invariant and coincides with 7 on F, thus which is equal to p on Oy. Since £ is
cyclic for the action of Oy on H, it follows that & is unitarily equivalent to 7.

To prove that p ~< w implies p << @, let R be the density operator of p in .
Extend R to all of 7{ defining it to be zero on the orthogonal complement of Ho. The
formula Tt (Rw(z)) defines a gauge invariant state which coincides with p on Fe,
hence is equal to 7. It follows that p << &@.

By exchanging the roles of p and w we derive the quasi-equivalence result, for
quasi-equivalence means mutual absolute continuity. a

It may come as a surprise at this point that it is not necessary that p be quasi-
equivalent to w for p to be quasi-equivalent to &. This is, however, implicit in Propo-
sition 3.3. Since it is always true that @< o*@, it suffices to consider any state w of
Feoo which is not quasi invariant, i.e. not quasi-equivalent to p = a*w. As established
by the following theorem, this is basically all that can happen, at least for factor
states.

THEOREM 4.2. Suppose that w and p are two factor states of Fo,. The following
are equivalent;
i) @ and p are quasi-equivalent.
i) There exist p > 0 such that o*?w L p or a*pLw.
iii) The quasi-orbits of w and p coincide.

Proof. i) = ii). Since 7z and 77 are quasi-equivalent representations of O, so
are their restrictions to Fu, thus, in the notation of (2.1),

(4.1) P mom* P mm-

mel meZ

It follows that

w0 << @ Tms
mel
and since 7o and each 75, are factor representations, there exists some m € Z for
which 7z o .2 75m. Let p = |m|. By Proposition 3.4,if m < 0, w L a*?p; while if m >
>0, wA B*Pp, in which case o*Pw < a*?*Pp L p so statement ii) follows.
ii) = iii). If o*Pw < p, then the quasi-orbit of w contains that of p; conversely,
since w & B*Pa*Pw A B* p, the quasi-orbit of p contains that of w.
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iii) = i). If the quasi-orbits coincide then p is quasi-equivalent to either o**w or
B*?w for some nonnegative p. Thus 7 is quasi-equivalent either to a*Pw = a™f& or to
B*%w = (*7w. In both cases Proposition 3.3 yields 72 @. a

The next theorem determines exactly which gauge invariant states are pure; it
extends results about quasi-free states obtained in [3] for dim& < co.

THEOREM 4.3. The following conditions are equivalent for a state w of Foo:

(1) @ is pure;

(2) w Is pure and aperiodic;

(3) w is pure and restriction of the GNS represention of @ to F, is multiplicity-
free;

(4) w is pure and T Is Its unique extension.

Proof. Let (m,M, ) be the GNS triple associated with @. If w is pure, the
decomposition of 7[F, consists of irreducible representations, determined by the
quasi-orbit of w under o* and $*, as was proved Proposition 3.4. Since w is aperiodic
if and only if all its a* and B*-translates are pairwise disjoint, we see that (2) is
equivalent to (3).

Suppose (2) holds, then the intertwining operators Z{m;, ;) are trivial (for ¢ # j
by aperiodicity, and for i = j by irreducibility), in which case the characterization
of the commutant of Oy given by (2.4) vields 7(Og ) = CI. Conversely, if w fails
to be pure aperiodic, then at least one of the Z(my, ;) is nontrivial and the same
characterization (2.4) shows that & is not pure. Therefore (1) is equivalent to (2). To
show that (1) and (4) are equivalent let & be an extension of w, then

2x

/ () =3(z) + € Oun.

a

I in addition & is pure, then the normalized integral over each subinterval of [0, 27]
must also equal @(x), because for each such subinterval one can write @ as a convex
linear combination of the corresponding normalized integrals. Hence, the function

A= G(na(z))

is constant for each £ € Oy and & = w.
That (4) implies (1) is the well known fact that if a pure state has a unique state
extension, then this extension is pure.

We may now apply the preceding results to give a necessarily and sufficient
condition for conjugacy of endomorphisms of B(#). Suppose w and p are aperiodic
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pure states of Fa, so that by Theorem 4.3 their gange-invariant extensions @ and p are
pure. Then the endomorphisms associated to these states are ergodic by Proposition
3.1 of [4], and they are conjugate if and only if the states & and 7 are quasi-free
equivalent.

Thus, two ergodic endomorphisms coming from gauge invariant states are con-
jugate if and only if there exist a positive integer p and a unitary of;eratot U on the
Hilbert space £ generated by the isometries {v;};»1 such that &*Pw is quasi-equivalent
to poyy or a*Pp is quasi-equivalent to wovyy. Equivalently, |la*w —~a***?poyy|| — 0
as n — oo for some integer p and some unitary U on £.

The following theorem shows that at least part of Theorem 3.5 of [1] also holds
for gauge-invariant extensions of essential factor states of Oco.

THEOREM 4.4. The gauge invariant extension of an aperiodic essential factor
state of Foo is a factor state of Q.
Proof. Let w be an aperiodic essential factor state of oo and let #[Foo = €D 7m

meL
be the restriction to Foo of the GNS representation of @. By aperiodicity, if ¢ # j,

there are no nontrivial intertwining operators between m; and =;, so Z(m,m;) = (0)
and we have that

T(Oo) = {S€B(H): Sy =6&;6'(S0); 4,5 €2, So€ mo(Foo)'}-

by the description given in 2.4. If we now consider an element @ in the center,
Q € T{Os) N#(Os)", then Q is diagonal and is determined by its (0,0)™ entry.
Moreover Quo = PyQP; commutes with Sp for all Sy € mo(Feo)’, hence Qop is in the
center of mo(Foso)', hence Qoo is in the center of wo(Foo)’, which is trivial because w
is a factor state. Therefore Qoo is a scalar and so is @. |

5. QUASI-FREE STATES

In this section we consider quasi-free, i.e. gauge invariant extensions of product
states of Foo. The underlying idea is that essential product states of Foo behave
as the product states of the UHF algebras of pure type n*. The results on quasi-
equivalence of product states of UHF algebras given in [5], were extended in [4] to
essential product states of Fn,. For convenience we review briefly the basic facts about
product states of Fo, and a very useful inequality involving the Hilbert-Schmidt and
the trace norms of operators on Hilbert space.

With the tensor product picture of Fo, mentioned in Section 3 in mind, a product
state of Fo is determined by a sequence {4;} of positive operators on £ such that
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TrAj < 1for j > 1. The state wi,;) is then defined by the formula

n
waK1®- oK@ Iol--)=[[Ir(K;4)
i=1
o0
together with wy4.1(J) = 1. Such a state is singular if and only if H’I\' (A4;) =0, and
1

is essential if and only if Tr (4;) = 1 for every j > 1.
The essential product state corresponding to a sequence of positive trace-one

operators 4; € K(£) is denoted by wy = @u 4;, and its value the elementary tensor
. ;
o0
o --ohGidld...is H'D: (T;A;). Since a* corresponds to the right shift in the
1

o
infinite tensor product it follows that a*ws = P w4 41+ This leads to the following
=1
theorem, which states that a celebrated result about equivalence of states of UHF
algebras from [5] also holds for essential product states of Foo.
0 o
THEOREM 5.1. Suppose wy = @ua; and wp = Qup; are two product states
i

1
of Foo corresponding to the sequences {A;} and {B;} of positive trace-one operators
on £. the following are equivalent:
(1) wa and wp are quasi-equivalent.

@ [ITx(AfB}) #0 for some m e N.

(3) Y_ll4F BHIE < oo,
1

Before giving the proof we recall the Powers-Stgrmer inequality {7, Lemma 4.1]:
If A and B are positive operators on a separable Hilbert space, then

(5.1) |A% - BY|3 < ||4 - B}s.

As usual, || - ||z, indicates the Hilbert-Schimidt norm, and || - ||; the trace-class norm.
An argument borrowed from the proof of Lemma 4.2 of [7] yields another useful
inequality.

LEMMA 5.2. If A and B are positive operators on a separable Hilbert space,
then

(5.2) |4 - Blly < (14%||2 + |BE{l2)||AF - B},

Proof. If either A or B is not of trace class then ||A%|y + ||B¥|lz = oo and

the inequality is trivially satisfied, so assume A and B are of trace class. In this
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case, hoth X = A% and Y = B¥ are Hilbert-Schmidt operators with Hilbert-Schmidt
norms || X|jz = j{Aﬂ% and ||V, = [‘Bﬂ% With this considerations, the inequality
to be proved becomes X7 = Y4 € (JX]|z + Y)Y — Yila. Let {€i}ien be an
orthonormal hasis diagonalizing Y, so that Y&, = y;:&; for i € N, where the y;’s are the
eigenvalues of Y. Further, let I/ be the partial sowmetry 1 the polar decomposition
X% -Y2=[]X%--Y?. Then

X2 =Y =TI X = Vi = e (X% - Y) = Z{U‘(X"’ - Y26, &) =

i

z

= TR - 25,6 = SO (X + 0K — 06 &) =

= STUX 58 N +306) = S (X - V)&, (XU +UY)E) =

=D Y UN R ENG (X UG,
i

The last equality holds because the inner product can be calculated using the co-
cfficients corresponding to any orthonormal basis. We can now apply the Cauchy-
Schwarz inequality to this double summation and obtain

1
Z

%
IX* = Y2 < (Zt«x - Y)ai,am‘-’) (Zi«sj,(xm UY)&)P)
ij i,J

2]~

3
= (Z o - Y)f,-uﬁ) (Z v + rw')a-n?) = [1X = Y[LIXU + Ul
Sinee U7 is partial isometry, ||[NU + UY |2 < {|X |z + {[Y][2, hence
(1X* = V2|l < 11X = Y20 Xl + 1Y]l2)

as claimed.
If in addition to the bypothesis of the lenumas, Tr A = TrB = 1, then the
following double inequality holds:

1

l4% — B < ||A4 — Blly € 2||4% ~ B3|},

Moreover, since {|4% — B3||2 = Tr(A% — B¥)2 = Tr (4 + B — A3B} - Bi4}) =
= 2(} — Tx (A7 B%)) the double inequality above yields:

(5.3) 21— Te(A3B?)) < ||A - B|l; < 2v2(1 - Tr (AZB%))3.
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With the aid of (5.3) we are ready to give the proof of Theorem 5.1.

Proof. Since ||a@*™(wa — wpl|| = supl| é Amai = éBm-l—j“h it follows from
Proposition 3.6 of {4] that the states w : anjd=3u3 are qxja;;-equiva.lent if and only if
sup Il ® Amyj ~ ® Bptjlli — 0 as m — oo. The evaluation of this trace norm in
terms of the mdlvxdual members of the sequences {A } and {B;} is not easy so one
consideres (5.3) with ® Amqj in place of A and @ Bpm4j in place of B to see that

=1
quasi-equivalence occurs 1f and only if

k
mf’II- ®Am+}®3i+j —1 asm— o0,

j=1
m-k
le,lfandonlylfmf H Tr(A B? )-—->lasm—+oo
Jemal

In view of the fact that the numbers ’IS:(A;“ B}) are all between 0 and 1, the
above happenes if and only if their infinite product starting at m is not zero for some
m € N. Therefore conditions (1) and (2) of Theorem 5.1 are equivalent . It is easy to
see that condition (2) holds if and only if E (1 Tr (A B %)) < 00, which happens

if and only if ZHAJ? - BJ?H% < oo. Thus conditions (2) and (3) are seen to be
1
equivalent. n

As a consequence we mention the corresponding result when the states considered
are pure, that is, when each A4; and B; is a rank-one projection. For this it becomes
convenient to alter the notation slightly, and considering unit vectors in the ranges of
those projections, we label the states with the corresponding sequences of unit vectors
(which are determined only up to scalar multiples).

COROLLARY 5.3. The two pure product states ® wy; and ® wy; of Foo cOIre-
=1

sponding to the sequences of unit vectors {f;} and {QJ} in £ are umtanl_y equivalent
(e o]
if and only if'Z(l ~= [{f;, gi}]) < 0.
i=1
Proof. Since 1 < 14+ |( fj , 951 € 2 convergence of the series above is equivalent to

convergence of the series Z (1 = l{fi,g;)|?). In view of the formula for the Hilbert-
i=
Schmidt distance between two rank-one projections, this is a restatement of condition

(3) of Theorem 5.1. The corollary follows because for pure states quasi-equivalence is
the same as unitary equivalence. L
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Of course this can be combined with the results of Section 4 to obtained the
following two corollaries.

COROLLARY 5.4 (Quasi-equivalence of quasi-free states of O ). Suppose wy =
o0

o0
= Quwas and wg = @ wp are two product states of Foo; their gauge invariant

=1 =1
extensions W4 and &g are quasi-equivalent if and only if there exists an integer p

o
such that E HA} - B}ﬂ,]l% < co.
j=lpl
Proof.. It follows at once from Theorem 5.1 and Theorem 4.2. |

If the product states under consideration are pure, the corollary says that &y is

o0
quasi-equivalent to @, if and only if Z (1~ Sy, 954pM) < 0o for some p € Z. We

J=lpl
underline the fact that quasi-equivalence cannot be replaced by unitary equivalence

at this point because gauge invariant extensions of pure states need not be pure. In
fact, the pure product state @ wy;, induces a pure quasi-free state of Qo if and only

o0
if 1t is aperiodic, that is, if and only if Z (X —={fj, 9i+p)l) =00 for each p € Z.
i=|p!
CoroLLARY 5.5. (Unitary equivalence of pure quasi-free states). Suppose Ty
and Wy are pure quasi-free states extending the pure aperiodic product states @ wy;
and @ uwy; respectively. Then they are unitarily equivalent if and only if there exists

[ o]
an integer p € Z such that Z (1= U{fi5,g540)]) < 00.
i=lrl

Proof. The states are pure because they extend aperiodic states, so we can
replace quasi-equivalence by unitary equivalence in the application of Corollary 5.4.
[ ]
Finally, suppose o is the ergodic endomorphism of B(H) induced by the pure
aperiodic state @uwy,, and similarly 8 is the one induced by @w,;. Then o is

e o]
conjugate to B if and only if Z (1 = {fi,Ugj+pd]) < oo for some integer p and

some unitary U on £. In other words, the sequences of rank-one projections on &

determining the states are such that by shifting one of them and “turning” each of

its terms by the same unitary U, they become close in the Hilbert-Schmidt norm, in
o0

the sense that Z |Py; = UP,,,, U*||3 converges.
i=lpl
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