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OPERATOR SPACE STRUCTURES AND THE SPLIT PROPERTY

FRANCESCO FIDALEO

1. INTRODUCTION

Recently the split property for inclusions of von Neumann algebras and its rela-
tions with the nuclearity condition of suitable maps was studied and relevant appli-
cations was given (see [1-8)).

Given an inclusion A C B of factors with B acting standardly on the Hilbert
space H with cyclic and separating vector, the nuclearity of the maps

P, :a€ A (2,Jaf2) € B,; di,:aeAr—»Agaﬂe’H

assures the split property for A C B. Conversely, if A C B is a split inclusion, the
above maps are nuclear for a dense set of cyclic separating vectors for B, see [1}].
Hence it can be of interest to characterize the sphit property for A C B in terms of
the properties of the above maps constructed via a fixed cyclic separating vector for
B. Moreover, in several papers [9-13], the general theory of the operator spaces was
developed and, in [10], an explicit description of the predual of a W*-tensor product
was given.

In this paper we characterize a class of linear maps between operator spaces,
the matrix-decomposable operators, that seem to be the natural substitutes, in the
operator space context, of the nuclear operators in the Banach space context. This
characterization furnishes an equivalent condition for the split property in terms of
the above Ll-embedding associated with a fixed cyclic separating vector for B.

For the reader’s convenience we collect some preliminary results about the oper-
ator spaces contained principally in [10] of which we need in the following. Details
and proofs can be found in [9-12].
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For an arbitrary normed space X, X; denotes its (closed) unit ball. We consider
a normed space V together with a sequence of norms || ||, on M,(V), the space of
n X n matrices with entries in V. For a,b € M,, these norms verify:

1y D lestls < ] 8] el

i) flv1 @ valln4m = max {Jjualln, l[v2llm)

(the above products are the usual row-column ones and make M, (V) a bimodule on
M,.). This space with the above norms is called an (abstract) operator space.

ET: VW, T, :My(V) = M, (W) are defined by Tp(a)i; = T(a;;). T is said
to be completely bounded if sup ||T5{| = ||T)|lce < +o0; M(V, W) denotes the set of
such maps between V, W. Complete contractions and complete isometries have an
obvious meaning. It is an important fact (see [12]} that a linear space V with norms
on each M, (V) has a realization as a concrete operator space i.e. a subspace of a
C*-algebra, if and only if these norms verify the properties in (1.1).

Given an operator space V and f = M,(V*), the norms

Alln = sup {I[{(f (). k)50l : v € Ma(V)1, meN};
(FNanyn = fij(vrr) € Mg
determines an operator structure on V* that becomes itself an operator space.
Given operator spaces V, W, V ®, W and V @, W denote respectively the
algebraic tensor product with norms for u € M, (V ® W) given by

(1.2)

Nulla = inf{|la]] [vil ]l 11811}

where the infimum is taken on all the decompositions

U= Zﬁ’ikvij ® wifi

with @ € M, pg, v € My(V), w € My(W), B € My ; and [[u||v the norms determined
by the inclusion VW C B(H®K) if V C B(H), W C B(K); the last caracterization
does not depend on the specific realization of V', W as concrete operator spaces. The
completions of these tensor products are denoted respectively by VW, V@W and
are referred as projective and spatial tensor product; these tensors are themselves
operator spaces (see [9-11]). Moreover one can completely and isometrically identify
V* ®v W with the finite rank maps in M(V, W) and, as W is complete, we have the
inclusion V*®W C M(V, W) (M(V, W) is itself an operator space; see [10]).

We now consider the linear space M;(V) for any index I as the I x I matrices
with entries in V such that

llvll = sup [v4]] < 400
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(A denotes an arbitrary finite subset of I). For every index set I, M(V) is in
a natural manner an operator space via inclusion My(V) C B(H ® £2(I)) if V is
realized as a subspace of B(H). Of interest is also the definition of K;(V') as those
elements v € My(V) such that v = lim v3. Obviously M;(C) = M; = B(£%(I)) and
K;(C) = K; = K(£2(I)), the set of all the compact operators on £2(I). For V complete
we temark the bimodule property of My(V) over K; because, for a € Ky, o? 4

are Cauchy nets in M;(V) and its limits define unique elements av, va that can be

v, v

calculated via the usual row-column product.
We conclude these preliminaires with two results for complete operator spaces
contained in [10, sect.3]. We indicate with co any index set with denumerable cardi-

nality.
PROPOSITION 1.1. u € My (VW) satisfies [[ulja < 1 iff

(1.3) u = alv® w)f

where a,  are n x o002, 00? x n complex matrices; v € Mo (V), w € M(V) and
lleelt 121l 1wl 1|81l < 1. One can furthermore choose v € Koo(V), w € Koo (W).

The simbol v ® w above indicates the co? x co? bounded matrix with entries in
V @a W defined by
(1.4) (v ® W) k), = Vis @ Wit

Because of the above discussion about the bimodule property of M;(V) and the
fact that a, 8 € Ko, one can write

(1.5) Ups = Zar,ikvij ® wkiBii,s

where the sum is unconditionally convergent in M, (V®W).
The following important result concern the description of the predual of a W*-
tensor product in terms of the preduals of its individual factors.

THEOREM 1.2. let A, B be von Neumann algebras. The predual (A®B)., with
its operator space structure, is completely isomorphic to A.®B..

The detailed proof of the above results can be found in [10, sect. 3].

2. THE MATRIX-DECOMPOSABLE OPERATORS

We characterize a class of completely bounded operators which seems to play an
analogous role to that of the nuclear maps in the Banach space context. To simplify

we only deal with complete operator spaces.
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DeFINITION 2.1. A linear map T : V — W is called matrix-decomposable if we
can find matrices & € My,007, B € Moo2,1, f € Moo (V?*), w € Moo (W) such that

(2.1) Tv = a(f(v) ® w)f
We indicate by D(V, W) the set of such maps and define on D(V, W) a norm
given by

ITlls = inf {{ledl I 71I Tlell 111}

where the infimum is taken on all the decompositions (2.1) for T'.

Following the discussion contained in the introduction, one has for T' a summation
analogous to that in (1.5). It is easy to see that such summation is unconditionally
convergent in the norm topology of B(V, W) (Indeed one can easily see that such sum
converge unconditionally in (D(V, W), || ||s). Moreover, if T has the form (2.1), there
exists w = o f @ w)f € V*®W such that T = I{w) € V*®W C M(V, W) where I is
the mapping given in [10, (4.3)] and T is completely bounded.

We have the following

ProposITION 2.2. (D(V,W)),|| ||s) is a Banach space.

Proof. If T € D(V, W), one has ||T|| < |la|| | f]l il ||8]] and, taking the infimum
on the right, one obtains ||T|| < ||7|s and ||T||s is nondegenerate. We now prove that
an absolutely summable sequence {T,} C (D(V,W),|| |l|s) is norm summable. Let
{Tw} an absolutely summable sequence with Ty, = a(n)(fin) ® W(n))B(n) and, for fixed
e > 0, lemyllll fem)llllwenIHBmyll € [|Tulls+; we can choose the above decomposition
such that {lagm|l = |8u)lls 1fim)ll = llwmyl| = 1; moreover Yon I Tnlls < +o0.

We consider the row matrix aj; = o)f;; with entries in M2 and, as
Moo3(Meo3) 2 Mgy, it is itself a row-matrix in Mgo2. Analogously the matrices fix =
Siybix, wit = w(iydit, Bt = Brybri are respectively matrices in Moo (V*), Moo(W) and
column-matrix in My3a. One easily verifies that 7' =Y., T, = o(f @ w)B € D(V, W)
and [[Ts < llod] 118 = S Kegesl? < So(lITale + £). Hence we obtain, for
arbitrary € > 0, [|Tlls < 5, 1 Tnlls + €. |

We now consider the linear space My(D(V,W)) and note that if
T € M,(D(V,W)), T has a decomposition as
(22) Tv = a(f(v) @ w)B
where @ € M, o2 and § € Mg, f, w are as above. We can define in a natural
manner the norms on M, (D(V, W)):

ITlls = int{llell |71 Hlell 1141}
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where the infimum is taken on all the decompositions (2.2).
A natural mapping '

X M, (V*RW) = M, (D(V, W)

arises from our definition; this mapping is a complete surjection, furthermore we have

THEOREM 2.3. D(V, W) with the above norms is a complete operator space and
X is a complete quotient mapping.

Proof. Obviously ||X()|ls < ||u||a; however the same proof of that of theorem
3.1 of [9] tell us that D(V, W) is a complete operator space. We now verify that the
6-norms are the quotient norms on all My (D(V, W))’s. Let £ > 0 be fixed arid suppose
that ||T)|s+¢& < inf{||u]|a : X(x) = T} holds for some T' € My (D(V, W)). Then there
exists u = a(f ® w)f € Mp(V*8W) such that X(u) = T and |lof| || Hw|l 18Il €
[ltls + & < Nlulla < llell 1A 1wl 18]] but this is a contradiction. |

One cannot conclude nothing about the injectivity of X but, if W verifies the
(operator) approximation property then

X ML (V*@W) — M, (D(V, W)

is injective for every operator space V (see [10, sect. 4]).
Besides one also has the so called ideal property for D.

PROPOSITION 2.4. Let X, Y, Z be operator spaces and Ty : X Y, T5: Y — 2
be linear mappings.
i) If T} € M(X,Y), Tz € D(Y, Z) then TyT; € D(X, Z) and

=Tl < 11726l 1]l B;
ll) IfT e D(X,Y), T € JM(Y, Z) then ToT, € 'D[:X, Z) and

1T2Tills < | T2lleallTals-

Proof. a). There exists scalar matrices a, J and f € Moo(Y*), 2 € Mo (Z) such
that Toy = a(f(y)®2)8 and ||f]| < l|T2|[s + ﬂTj]E (¢ fixed) but TyTiz = a(f(T12)®
z)B where foTy € Moo (X*) with |[f o Tu{| < [|f]] lT1leB (see [10, (3.2)]). We obtain
T,Ty € D(X, 2) and ||T2Th||s < ||[foTi]l € I 1T ller < 172l Thllc B +¢. The proof
of ii) is similar if we note that Toy € Moo(Z) for y € Meo(Y) and || T2y|| < || T2]lcallyll-

|
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In the light of the above considerations, D(V, W) seems to play a similar role
to that of the nuclear operators in the Banach space context and one can prove the
following

ProprosiTion 2.5. Let V, W be operator spaces and T : V +— W a nuclear map

with ||T||. its nuclear norm (as an operator between Banach spaces, see [14]).
Then T' € D(V, W) and ||T{ls < [T},

Proof. Let € > 0 be fixed. Then there exists nonzero functionals {f,} C
(V*)1, nonzero vectors {w,} C Wi and a £'-positive sequence {A,} such that Tv =
YonAnfa(v)ws and 3 A, < |IT|lw + 6. We define oy = ,\,-%6.7, fix = fibig, wj1 =
widin, B = A ,é 81s. One can easily verify that the above matrices give a decomposition
for T as Tv = a(f(s) @ w)f and [Ts < llall 1l = 55, A < 1Tl +e.

: |

Finally, analogously to the nuclear operator setting, we give a suitable geometrical
description for the range of a matrix-decomposable injective operator. We start with
an absolutely convex set @ in an operator space V and we indicate with E its algebric
span. We consider a sequence g = {Q,,} of sets such that

1) @1 = Q and every @, is an absolutely convex absorbing set of M, () with
@n CM,(Q);
ii) Qmtn N (Mm(E) @ MH(E)) =CQm @ Qn;

iii) for z € Q, then z € AQ,, implies bz € A@y, 2b € MA@, where b € (My);.

We say that a (possibly) infinite matrix F with entries in the algebric dual of E
has finite g-norm 1if

(2.3) Flq = sup {[IF2(@)l] : ¢ € Qn; nEN; A} < +o0
where F4 indicates an arbitrary finite truncation corresponding to 4; the numerical
matrix F3(g) has entries as those in (1.2).

DEeFINITION 2.6. An absolutely convex set @ C V is said to be g-decomposable
(where q is a fixed sequence as above) if there exists matrices a, £ as in definition 2.1,
an infinite matrix F of linear functionals as above with || F||gq < +o0 and v € M (V)
such that every q € @) can be written as

(2.4) q = a(F(q) ®v)s.

We note that the sum in (2.4) is unconditionally convergent in V.
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One can easily see that a g-decomposable set is relatively compact, hence bounded
in the norm topology of V and therefore E, together the Minkowski norms determi-
nated by the §,’s on M,{£), is a (not necessarily complete) operator space and the
canonical immersion E — V is matrix-decomposable. We now consider an injective

completely bounded operator 7" : V + W and the sequence qp given by
ar = {Tu(Ma(V)1)};

for such sequences the properties i)-ii) are automatically verified and if T(V1) is qp-
decomposable we call it simply T-decomposable and indicate the gp-norm of ¥ by

||F|lz

THEOREM 2.7. Let V, W operator spaces and T :— W a completely bounded
injective operator. T € D(V, W) iff T(Vy) is a T-decomposable set in W.

Proof: It is easy to verify that, if T € D(V, W) is injective, one can write for T
a decomposition

Tv=of(v) @ w)A

and a, fo T, w, B furnish a decomposiﬁon for T(Vy). Conversely, if T(V;) is a
T-decomposable set in W, with

7= a(F(g)@w)p; ¢ € T(V1),
then a, FoT, w, # give, as usual, a decomposition for 7" and T € D(V, W). |

The definition of a decomposable set may appear rather involved; this is due
to the fact that the inclusion M,(V); C M,(V}) is strict in general; but, for an
injective completely bounded operator T' as above, the T-decomposable set T(V)) is
intrinsecally defined directly via T'.

3. AN EQUIVALENT CONDITION FOR THE SPLIT PROPERTY

We consider an inclusion A C B of factors with separable preduals where B acts
standardly on M with cyclic separating vector 2 with A, J its modular operator and
conjugation relative to £2. Together with B we consider the opposite algebra B® of
B (the appearence of the opposite algebra B? is well explained in [1, sect. 1] in the
correspondence setting) which is x-isomorphic to B’ via

(3.1) € B j(z)=J2*J € B';

the inverse of (3.1) is given in the same way where B? is identified with B as a linear

space.
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Following [1], we give an equivalent condition for the split property for the inclu-
sion A C B in terms of the natural embedding

(3.2) @, :be B=L®(B)w— (2,Jb02) € L' (B)

where we identify in a natural manner L'(B) with (B%).. The following other em-
bedding is also of particular interest (see [2]) -

(3.3) b, be B AR e L*(B)= .
We start with the following

PROPOSITION 3.1. The mapping @, in (3.2) is completely bounded as a map
between B and (B°)..

Proof. With the identification (3.1) the map becomes &, (a)(j(b)) = (ab$2, £2) and
8, (@) GO = llwpg(c)]] With @ € Mp(B), b € My(B'), and ¢ has entries ¢ k), =
asjbrr. Asw = ("£2, £2) is completely positive hence completely bounded with |jwlics =
1 (see [13, prop. 3.5]), we obtain

12 ()OI < llall Il

Taking the supremum on the unit balls of My(B), My(B') and on p,¢ € N we have
done. u

Let M be a von Neumann algebra, X a normed space and F' C X* a separating .
set of functionals. A continuous linearmap T : M +— X is said to be normal (singular)
according to the functionals f o T on M are normal (singular) for every f € F (for
the definition of singular functional on a von Neumann algebra see [15]). It is easy
to see that the unique map which is at the same time normal and singular is the
zero mapping. In the above discussion, if X is also a von Neumann algebra and F is
its predual, the normal maps are just those ultraweakly continuous and we have for
arbitrary bounded map T the decomposition given in [15, page 128] in its normal and
singular parts

T=T"+T°
and
(34) I, il < Tl < T+ 1Tl

As My(V*) can be identified with M(V,My) for arbitrary index set I (see {10,
we can decompose f € Me(M*) (M a von Neumann algebra) in its normal and
singular parts f*, f? given by the normal and singular parts of its entries. One has

(3:5) (F)ig = Fi, (FP)is = £
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and the inequalities (34) for f (hence f® € Moo (M.)).
The following lemma is analogous to the lemma 2.1 of {1].

LEMMA 3.2. Let M be a von Neumann algebra and V an operator space. If
T € D(M,V) is a normal map with respect to V*, then T has a decomposition

Ta = aff(a) ® v)8

where « is a row matrix, f is a column matrix as in Definition 2.1; f € Moo (ML), v €
Moo (V) and |le|| || £l livIl 161} is arbitrary close to the é-norm of T

Proof. Suppose that T'a = o f(a) ® v)8 where o, v, 3 are as above and f €
Moo (M) with || fl] < ||T]ls +&. We can decompose f in its normal and singular parts
f*, f°; then we have

Ta = a(f*{a) @ v)B + a(f*(a) @ v)B

where the above summands are well defined, respectively normal and singular, opera-
tors in D(M, V) via (3.4). We than have that T — a(f"(') ® v)f is, at the same time,
normal and singular and must be the zero mapping.

Therefore

T=a(f*()ov)8
and |[Tfs < LS < 1UFIl < 1ITMls + & u

We remark that the above lemma also works for T' € M, (D(M, V)).

We recall that the inclusion A C B of von Neumann algebras is said to be split
if there exists a type I factor N such that AC N C B.

We are now able to prove the announced equivalent condition for the split prop-
erty.

THEOREM 3.3. Let 4 C B be an inclusion of factors with separable preduals
and w a faithful normal state of B. Let ®, : B s (DB°). be the mapping associated
tow given in (3.2). The following statements are equivalent.

i) A C B is a split inclusion.
i) $yja : @ € A (2,Jaf2) € (B°). is a matrix-decomposable map i.e.
D, 14 € D(A,(B%).).

Proof. i)=ii)). As A C B is a split inclusion, A V B’ naturally isomorphic to
ARB' (see [3]) and &,(a)(j(})) = (abf2, 2) uniquely extends to a normal state of
A®B'. As B’ is #isomorphic (hence completely isometric) to B% by Theorem 1.2
there will exist o, # matrices as in Definition 2.1 and f € Moo (As), 9 € Moo((B%)4)
such that &, (a)(j(8)) = a(f(a) ® 9(§(b)))B. Hence P4 € D(A,(B°).). ii)=i).
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Suppose that &é,14 € D(A,(B°).). By Lemma 3.2 #,(a)(j(})) = w(a @ b) defines a
normal state on the W*-algebra ARB°. Let A D A be a von Neumann algebra with
separable predual containing A and consider a normal state & of A®B? which extends
w. The map &, : 4 — (B°), given by &,(a) = &(a®-) is a completely positive normal
map which extends &,4 (let A be a C*-algebra and f € M,(A*). Here f is said to
be positive if Z fij(ai;) 2 0 whenever a € M,(A)4, the positive part of M, (A)).
Hence &, |4 is é;:tendible and the proof is now complete (see [1, sect. 1]). . |

Finally we can consider, in an obviously manner, the following map ¢, : B —

(B'). given by

(3.6) & :be B (b-2,02) € (B).

or, equally well the images of the unit ball of A under &,,®, in (B°),,(B’).
respectively.
Summarizing, we liave the following

THEOREM 3.4. Let A C B be as in the previous theorem. The following state-
ments are equivalent.
i) A C B is a split inclusion.
ii) @,14 € D(A, (B°).).
iii) The set {(-£2,Jaf2): a € A, ||a|] < 1} is §,-decomposable.
iv) @14 € D(4,(B').).
v) The set {(a-2,£2) :a € A, ||a]| < 1} is $,-decomposable.

Proof. Immediate by the above considerations and theorem 2.7. |

For the non factor case the conditions ii)-v) are all “almost” equivalent to the
split property, namely there will exist a normal *-homomorphism of AR B’ onto A V
B’ carrying a @ b to ab. In quantum field theory where A = U(0) C u(é) =B
is an inclusion of local algebras of observables (O C int(O) are suitable compact
regions in Minkowski space), one can prove, under general assumptions, that the above
homomorphism is in fact an isomorphism and the condition of matrix-decomposability
for @, 4 turns out to be equivalent to the split property (see [1, remark 4]).

4. COMMENTS

It could be very interesting for several application in quantum field theory (see
[2-7]) to provide an equivalent condition for the split property of the inclusion A C B
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directly in terms of @, : a € L®(A) A;,/"a[? € L?(B) but this approach seems to

be hard.
One can consider the following commutative diagram

be Lo(B) o (02,759) € L'(B)
(4.1) &\ /e
A2 e L(B)
where in (4.1)
(4.2) ¥z e L*(B) — (AY%.2,J2) € L'(B).

Obviously A C B is a split inclusion iff ¥(P2(A;)) is a $,-decomposable set
and one could indirectly characterize the split property in this way. By this charac-
terization one might establish, in quantum field theory, relations between the split
property for the inclusion #(0) C U(D) of local algebras and the properties of the
maps a € U(0) > e~ PHaf2; 3 > 0 based on the Hamiltonian operator via the images
of the sets {e=#7 a2 : a € U(0), }; 8 > o under ¥, in L' (U(0)). However, for this ap-
proach, one needs new ideas about the appropriate space substitute of the p-mappings
(see [16]) considered in [2]. But one would have a more direct characterization of the
split property in terms of the L?-mapping @,.

For a better understanding of the above problem, one could start from the com-
mutative case treated in [1, sect. 3] where the operator structure plays no role. In
this case, the problem can be expressed in the following simpler form.

Let (X, ) be a probability measure space and § C L*™(X,u) a nuclear set
in L}(X,u). One has to characterize the properties of § considered as a set in
LP(X,1); 1 < p < 400, which are equivalent to the L!-nuclearity. Unfortunately,
also this problem seems to be rather difficult.
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