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THE C* PROJECTIVE LENGTH OF
n-HOMOGENEQUS C*-ALGEBRAS

N. CHRISTOPHER PHILLIPS

INTRODUCTION

The quantities C* projective length cpl(A4) and C* projective rank cpr(A) were
introduced in [10], to do for projections what the C* exponential length [14] and C*
exponential rank [8] do for unitaries. For a unital C*-algebra A, let P(A4) denote the
set of projections in A. Then cpl(A) is the supremum of the rectifiable diameters of
the connected components of P(4). Also, cpr(A) is the smallest element of the set
{0,1,1+¢,2,2+e¢,...,00} such that any two homotopic projections in A are unitarily
equivalent via a product of at most that many x-symmetries (selfadjoint unitaries).
Here, we say that p and ¢ are unitarily equivalent via a product of n <€ *-symmetries
if for every £ > 0 there is a product s of n x-symmetries such that [|sps* —¢|| < €.

The purpose of this paper is to give bounds on the C* projective length and rank
of C(X) ® M,. The main results are as follows. If dim(X) < d then cpl(C(X)® M,,)
and cpr(C(X) ® M,) are finite for all n, for n > 2d + 4 we have

(*) cpl(C(X) @ My) € 37 and epr(C(X)® M,) £ 6 +¢,

and for n > 5d + 3 we have

(%x) epl{C(X) @ M,) £ 27 and cpr(C(X)® M,) < 4+e¢.

On the other hand, if By, is the closed unit ball in R™, then

(##%) cpl(C(Bei42) @ Ma) > (21 — 2)7 and cpr(C(Bsi+2) @ M3) 2 (41 - 3)

We will obtain the lower bounds (*+**) as a corollary of a general relationship
involving, in its simplest form, cer(B® M3), cpr(B® M), and cpr(B). The basic idea
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behind this relationship first appeared in [15], and was restated as Proposition 2.10 of

[10]. We introduce here a refinement which allows us to obtain, for certain C*-algebras

B, upper bounds on cer(B ® M,,) for large n which actually decrease as n — o0. The

conditions we need on B are tsr(B) < oo (tsr(B) being the topological stable rank of

B [12)), cer(B ® My} < co for some & 2> tsr(B), and Sl;—ll). epr(B® M,) < co. It seems
n>k

to be often easier to verify all these conditions than it is to estimate cer(B @ M,)
directly. We will use this result, together with the upper bounds () and (*#), to shed
some new light on the still rather poorly understood behavior of cer(C(X) ® M,).
This paper consists of three sections. The first section contains various prelimi-
naries needed for the proofs of () and (*+). The second section contains the proofs of
(#) and (*x), and also a somewhat better estimate which holds if X is a contractible
finite complex. Since algebras of sections of locally trivial M;-bundles (with trivial
Dixmier-Douady class) force their way into our proofs anyway, we find it convenient
to state our results for this slightly more general sort of algebra. Section 3 is devoted
to the relationship between the exponential and projective ranks discussed above, its
analog for the exponential and projective lengths, and some consequences. In partic-
ular, it contains the proof of (*#*) and some new upper bounds on cer{(C(X) ® M,).
The first two sections of this paper are a revised and improved version of Section
3 of the preliminary version of [10]. Section 3 is an improved and expanded version
of several results which appeared in Sections 2 and 3 of the same preliminary version.
I am grateful to Peter Gilkey, who helped me greatly improve Lemma 1.5 (3).

The original conditions for (*) and (%x)} were n > 7(d + 2) and n 2 5 for large d,
respectively. It is the improvement in Lemma 1.5 (3) that enabled me to reduce them
ton> 8d+3 and n > 2d+ 4.

1. PRELIMINARIES

In this section, we prove, or merely state for convenient reference, several results
that will be used in the proofs of the upper bound results of the next section.

Our basic approach to obtaining upper bounds on ¢cpl(C(X) ® M,) is as follows.
Let p, ¢ € C(X) ® M,, be homotopic projections. Let u be a unitary with upu* = ¢.
Assume, as we may, that p and g have rank at most % Choose a subprojection
p1 of p, with a certain rank depending on n and dim(X). Set ¢; = upyu*. By
a small perturbation, we will arrange to have range(pi(z)) N range(q:(z)) = {0}
for each z. This will enable us to find a projection e; such that p;,q; < €; and
rank(e;(z)) = 2 rank(p;(z)). From this, we will obtain a projection fi < 1—e; which
is unitarily equivalent to py and g¢;. Then fi is also orthogonal to py and ¢, so we
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can find *-symmetries v; and w; which conjugate p; to fi and fi to ¢;. We now
repeat this process, with (1 — p))[C(X) ® My](1 = p1) replacing C(X) ® My, (and
therefore @ = rank(1 — p;) replacing n), and with = p— p; and 7§ = viwyqw;v; = p1

A k
replacing p and g. Note that we now have rank(p) < g— _ rank(p,)

. If n sufficiently
large compared to dim{.X), this process will terminate after, say, { steps, and we will
have cpl(C(X) ® M,) € 2 + €.

Since we have to consider fairly arbitrary corners in C(X) ® M,, we may as well

consider such algebras to begin with,

NoOTATION 1.1. Let X be a compact metric space, and let V be a vector bundle
over X. Then L(V) denotes the locally trivial bundle of matrix algebras whose fiber
over z € X is L(V;), the C*-algebra of bounded operators on the fiber V;. If Eis a
locally trivial bundle of matrix algebras over X, then I'(E) denotes the C*-algebra
of continuous sections of E. If p € I'(L(V})) is a projection, the pV denotes the
subbundle of V' whose fiber over z is p(2)(V;).

LemmMa 1.2. ([9], Proposition 4.2) Let X be a compact Hausdorff space, and let
E be a locally trivial M,-bundle over X. Then the following are equivalent:

(1) E = L(V) for some n-dimensional vector bundle V.

(2) I'(E) = p(C(X) @ K)p for some rank n projection p € C(X) ® K, where K
is the algebra of compact operators on a separable infinite dimensional Hilbert space.

(3) The Dixmier-Douady invariant of E is trivial.

LEMMA 1.3. Let X be a compact Hausdorfl space, and let V be a vector bundle
over X.

(1) The assignment p — pV is a bijection from projections in I'(L(V)) to sub-
bundles of V.

(2) Projections p,q € I'(L(V)) are unitarily equivalent if and only if pV 22 ¢V
and (1 —p)V = (1 — q)V as vector bundles.

Proof. Immediate. [ |

LEMMA 1.4. ([10], Lemma 3.4) Let A be a unital C*-algebra, and let p,q € A be
unitarily equivalent orthogonal projections. Then there exists a *-symmetry v such
that vpv = q.

I am grateful to Peter Gilkey for suppling part (3) of the next lemma. (Also see
Theorem 2.5 of [4].) The symbol (z) denotes the least integer n such that z £ n.

LEMMA 1.5. Let X be a finite simplicial complex of dimension at most d. Then:

(1) Every vector bundle over X of dimension k > <d2;1> has a trivial direct
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summand of dimension k — <§—g—l~>

(2) Two stably isomorphic vector bundles of dimension at least <-2-> are isomor-

phic.

(3) If E and F are vector bundles over X with dim(F) — dim(F) 2> <‘_d; 1)!

then F' Is isomorphic to a direct summand of E.
Proof.
(1) This is Theorem 8.1.2 of [7].
(2) This is Theorem 8.1.5 of [7].

(3) If dim(E) = <i—g—1> then F' = 0, and the result is trivial. Therefore we

may assume dim(F) > <é> Let W be a vector bundle such that F @ W is trivial.

2
Use (1) to write £@& W = V & (X x C*) with dim(V) = (f—;-i> . Then

n = dim(E) + dim(W) — <d—gl) > dim(E) + dim(W).

Set I = n — dim(F) — dim(W). Then W & F = X x C"~!. Therefore

E@(XxCY2EeWeF=2Va(XxC)oF.

Using (2) and dim(F) > <g>, we obtain

E=zVa(XxCheF,

showing that F is isomorphic to a direct summand in E. |

LEMMA 1.6, Let r,s,n € N withr+s5 < n, and let p € M, be a projection of
rank r. Then the set S of projections ¢ € M,, of rank s such that ¢(C")Np(C") # {0}
is the union of finitely many submanifolds of P(M,), each of (real) dimension at most
2(r—1D)+2(s - 1)(n—-ys).

Proof. For 1 € k < min(r,s), let S; be the set of projections ¢ € M, such
that ¢(C") N p(C") has (complex) dimension exactly &. Then S is the disjoint union
of the sets Si. We will now prove that S is a submanifold of P(M,) of dimension
2k(r — k) + 2(s — k)(n — 3).

Let G be the set of projections g, of rank %k such that ¢3 < p. Then Gj is
essentially the set of subspaces of p{C") = C" of complex dimension k, which is a
Grassmannian manifold of real dimension 2k(r — k). For each ¢1 € Gy, let Ga(q1)
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be the set of projections g2 of rank s — k such that gz < 1~ ¢1. Then Gi(q1) is a
Grassmannian of real dimension 2(s — k)(n — s), since (1 — ¢1)(C*) 2 C"*. The

set G = U {q1)} x Ga2(q1) is a locally trivial smooth fiber bundle over Gy, and
01€G1
therefore a manifold of dimension dim(G;) + dim(Ga(g1)) (for any ¢1 € Gi1). The

formula f(g) = (g1, ¢ — ¢1), where g1 is the projection onto q(C*) N p(C™), defines a
diffeomorphism from Si onto an open subset of G. (This subset is open because its
complement {(q1,g2) € G : dim(g2(C*) N p(C™)) > 1} is closed.) Therefore S is a
manifold of the required dimension.

To prove the lemma, it remains to prove that the largest value of this dimension

occurs when & = 1. A calculation shows that
dim(8;) — dim(Sp 1) =n—(s+7r) +2k+1>0.
[ ]

LEMMA 1.7. Let X be a finite simplicial complex of dimension d, let V be an n-
-dimensional vector bundle over X, let po, qo € I'(L(V)) be projections with constant
ranks r and s respectively, and let € > 0. Assume that d < 2(n — (r + 5) +1). Then
there exist projections p,q € I'(L(V)) such that ||p — poll, |l¢ — gol| < € and, for
every z € X, p(2)(Vz) Nq(z)(Vz) = {0}. For any such p and q, there is a projection
e € I'(L(V)) of constant rank r + s such that ¢ 2 pand e 2> ¢.

Proof. We will construct the perturbation first on the 0-skeleton, then the 1-
_skeleton, etc., finishing with the d-skeleton. Using the method of proof of Lemma
2.5 of [8)], we reduce to the case of constructing the perturbations on a given k-cell,
given that the required properties are already satisfied on its boundary. Since a k-
cell is contractible, V is trivial over it, and so we can reduce to the case I'(L(V)) =
= C(X)® M,. Applying a homeomorphism, we can assume we are given po, go on the
closed unit ball B, ¢ R*, with k < d, and that po(z)}{(C")Ngo(x)(C") = {0} for every
z € 8By, = S*~1. Using contractibility again, po is unitarily equivalent to a constant
projection, and we may therefore assume pg is a constant projection, pp(z) = p for
all z. Now T = {§ € M,, : FC" NpC™ = {0}} is an open subset of P(M,), so we can
assume go(z) € T for ||z|| > 1 — 36 for some § > 0. We can furthermore approximate
go arbitrarily closely by a projection which agrees with go for ||zf| 2 1 -4, stillis in T
for ||z|| > 1—36, and is smooth for ||z|| > 1—26. Using the proof of the Transversality
Homotopy Theorem ([5], page 70), we can, by a further arbitrarily small perturbation
on {z € By, : ||z|]| < 1 — 26}, find a projection ¢ which is transverse to each of the
finitely many submanifolds of the previous lemma, using 7 in place of p. One checks
that, for each of these submanifolds M, one has dim(By) + dim(2} strictly less than
the dimension 2s(n — s) of the space of rank s projections in My, using the previous
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lemma and the inequalities £ < d and d < 2(n — (r+ s) + 1). Transversality therefore
implies that the range of ¢ does not interest any of these manifolds. Therefore p = po
and ¢ form the required perturbation.

It remains only to prove the existence of e. Let Wz = span(p(z)Vz U ¢(2)Vz).
Since p(z)V; Nq(z)V,; = {0} for all z, the obvious vector space homomorphism a(z) :
1 p(z)Ve @ q(z)Ve — W, is bijective for all 2. Therefore z — W, is a vector bundle,
isomorphic to pV @ qV. It is a subbundle of V, and we can simply let e(z) be the
orthogonal projection from V, onto Wy. |

LEMMA 1.8. Let X be a compact metric space of dimension at most d in the sense
of [6], and let V be an n-dimensional vector bundle over X. Then there exist finite
simplicial complexes X of dimension at most d, n-dimensional vector bundles Vi over
Xk, and maps ¢ : I'(L(Vi)) — I'(L(Vi41)) such that I'(L(V)) = lim I'(L(Ve))-

Proof. We note that by Theorem 1.7.7 of {2], all three of the usual definitions of
dimension agree for compact metric spaces. By Theorem 1.13.5 of {2] there exist X
as in the statement and maps X4} — Xi such that X = lim X. (I am grateful to
Dusan Repovs for supplying this reference.) Then C{X)® K =lim C(X:)® K. By
Lemma 1.2 there is a rank n projection p € C(X) ® K such that plC(X)® K]p =
& I'(L(V)). Standard methods produce [ and a projection ¢ € C(X:) ® K whose

image ¢ € C(X) ® K satisfies ||¢ — p|]| < % Then g is unitarily equivalent to p in
(C(X) ® K)*. In particular, ¢ also has rank n, and g[C(X)® K]g = p[C(X)® K]p =
= ['(L(V)).

Dropping the initial terms of the sequence, we may assume that ! = 1. We may
furthermore clearly replace each X; by the union of the connected components of
Xi which intersect the image of X in X, and restrict ¢; appropriately. It is now
easily seen that g, has constant rank n. Let gi be the image of ¢; in C(X;)® K, and
use Lemma 1.2 to produce an n-dimensional vector bundle V; such that I'(L(V;)) =
 q[C(Xr) ® K]gr. The vector bundles Vi and the maps ¢; : gx[C(X) ® K]gx —
— Qi 41[C(Xk+1) ® K]qr41 clearly satisfy the conclusions of the lemma. a

2. UPPER BOUNDS ON THE PROJECTIVE LENGTH OF C(X)® Mn

-We prove in this section that cpl{(C(X) ® M) < 27 if n > 5d + 3, and that
cpl(C(X)@M, ) < 3wifn > 2d+4. We obtain better results if X is a contractible finite
complex. We actually state and prove our results for n-homogeneous C*-algebras with
trivial Dixmier-Douady class (compare Lemma 1.2), since the method of proof forces

us to consider such algebras anyway.
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These results are analogs for projective length and rank of results in Section 3
and 4 of [9]. Note that, unlike [9], they give explicit estimates on how large n must

be, and they give smaller upper bounds than those implied by [9].

THEOREM 2.1. Let X be a compact metric space of dimension at most d, and
let V be a vector bundle over X of dimension n > 5d + 3. Then

epl(F(L(V))) € 27 and cpr(I'(L(V))) < 4 +e.

Proof. By Proposition 2.11 of [10] and Lemma 1.8, we may assume X is a finite
simplicial complex of dimension at most d. We may obviously further assume that X
is connected.

Let r = [ ] the greatest integer less than or equal to =, Let 1 be the mteger

2"
closest to —0, round down if -—0 is halfway between two integers. This gives ——— 3n 10 —5 <

Int+4

€N <
We claim that the following seven inequalities are satisfied:

(1) " <%>

.Let ro =7 —ry.

o o>
o o> (41),
g non> ().

o nmri )5 0
o o> (453).
0 s (2,

To verify (1), note that

3n-5_15d+4 _3d_d_ Jd—1
> > LAY S-iniA o
T R ?2>2><2>
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For (3),
3(3n+4) _n-12_ d-1

10 10 = 2

2
n—3ri2n-— -5

. . . . . d—1 2 d-1
Now n—3r; is an integer, and there are no integers in the interval [ - = ——) .

2 5 2
Therefore n — 3r, > ——, and, again because n — 3r; is an integer, it follows that
n—3r 2 <%> . For (6),
) e (7] 2(3n—-5) 3n _n-10
n—r1—3r2—n+211—3[§]Bn—f-T——f-— 1‘0

=12 d—1
10 ?,< 5 >,so (6) follows.

For the remaining inequalities, note that

3n—5 4
ry > —
R TIET

since d > 0. Therefore ry > 1, so (4) follows from (3). Also,

We have already proved that n

n-an+13 () 41>
using (3), and (2) follows. Similarly, (5) follows from (6), and (7) follows from (6) if
re 2 1 and from (4) if r, = 0.

Now let p and ¢ be homotopic projections in I'(L{V')). Since X is connected,
they have the same constant rank, say s. Replacing p and ¢ by 1 —p and 1 — ¢ if
necessary, we can assume s < 2. Since s is an integer, this gives s € r. Using Lemma
1.5 (1), Lemma 1.3 (1), and inequality (1), we can write p = p; + p» where p; and
p2 are orthogonal projections with s; = rank(p;) < r; and with p,V trivial. The
homotopy from p to ¢ yields w € Up(I'(L(V))) such that wpw* = ¢. Set ¢; = wp;w*,
and note that p; is homotopic to g;.

We will now find, for arbitrary € > 0, a unitary u; with cel(u;) < = + g— and
u1piu] = ¢;. By Lemma 1.7 and inequality (2), there are arbitrarily small perturba-
tions p; and 7, of p; and ¢; such that p,(z)V; Ng,(z)V; = {0} for all . Then there
is, also by the same lemma, a projection e; € I'(L(V)) of constant rank 2r; such that
P1,7; <€ €1. According to Lemma 1.5 (3) and inequality (2), there is a subprojection
f1 of 1 —e; such that fiV = p;V. Note that (1 -5,)V, (1 - f1)V, and (1 -7,)V
are stably isomorphic vector bundles of dimension at least » — r;, and so they are
isomorphic by Lemma 1.5 (3) and inequality (4). Therefore, by Lemma 1.3 (2), we
have f; unitarily equivalent to $, and §;. By Lemma 1.4 there are *-symmetries vy, vz
with v15,v1 = fi and vafiva = §;. There are also unitaries v3 and v4 close to 1 such
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that vsp; v} = P, and vaq,v§ = q1. Then for F;,; close enough to p1, q1, the unitary
U = v4Uav V3 satisfies u1piu; = ¢ and cel(w) < 7T+ 3
To finish the proof, we now find a unitary u, in

A== gLV —q) = T{L{1 - q)V))

such that cel(uz) < » + £ and ug(wypoul)uly = q2. Then v = [uz + (1 — @1)]wy
will be a unitary in I'(L(V)) such that cel{u) £ 27 + £ and upu® = ¢q. The re-
lation cpl(I'(L(V))) € 27 will follow from Theorem 1.9 of [10], and the relation
epr(I'(L(V)) € 4+ ¢ will follow from Theorem 2.4 (1) of [10]. )

As before, Lemma 1.7 and inequality (5) imply that we can perturb u;p;uj and
g2 by an arbitrarily small amount to get projections P,,7, € A such that there is a
projection ey € A of rank 2ry with P,, g, < e2. It follows from Lemma 1.5 (1) and
inequality (6) that there is fo < (1—¢1)—e2 such that foV is trivial of rank s», and so
isomorphic to both 5,V and §,V. Also the vector bundles (1—¢:—5,)V, (1-q1—f2)V,
and (1 — q; — §,)V are all stably isomorphic, and so isomorphic by Lemma 1.5 (2)
and inequality (7). So, using Lemma 1.3 (2), we see that B,, f> and f2,q, are pairs
of unitarily equivalent orthogonal projections in A, and the existence of u3 follows in
the same way as above. a

CoROLLARY 2.2. (Compare [9], Corollary 3.5.) For each integer d > 0 there are
numbers Cy(d) < oo and Ca(d) < oo such that for any n and any compact metric
space X of dimension at most d,

cpl(C(X) ® M) < Ci(d) and cpr(C(X) @ Mn) < Ca(d),

Proof. Define
Ci(d,n) = sup{cpl(C(X) ® M,) : X is compact metric, dim(X) < d}.

It is easy to see, by factoring out the determinant, that if p,g € C(X) ® M, are
homotopic projections, then there is a homotopically trivial u : X — SU, such that
upu* = ¢. It follows from Lemma 3.1 of [9] that there is a finite upper bound,
depending only on n and d = dim(X), for cel(u) for such unitaries u. Theorem 1.9
of {10] therefore implies that Ci(d,n) < oo for all d and n. For fixed d, the previous
theorem implies nler;o sup C1(d, n) £ 27. So Cy(d) = sup C1(d, n) < co. We now get
C2(d) from Theorem 2.4 of [10]. " u

The inequalities (1) and (3) of the proof of Theorem 2.1 imply by themselves
that n is at least approximately 2d. By splitting projections into three pieces instead
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of two, we will see that we can indeed get cpl(I'(L(V))) < 37 for n 2> 2d+4. No
significant improvement is made to the allowed values of n by allowing more pieces,
except in the special case of contractible spaces, dealt with in Theorem 2.4 below.
Even in the cases analogous to the previous theorem and the next theorem, we obtain
better results for contractible spaces.

THEOREM 2.3. Let X be a compact metric space of dimension at most d, and
let V be a vector bundle over X of dimension n > 2d + 4. Then

epl(F(L(V))) € 37 and cpr(I'(L(V))) € 6+¢.

Proof. We only describe how the proof of the previous theorem needs to be

. . . n
modified. As before, we may assume X is a connected finite complex. Let r = [5]'
and choose integers ry and rp to satisfy the following inequalities: ‘

n 1 n 1 n 3 n 1
e =+~ —~2K =+ =.
gTiSnsgtgyand gogsnsgts
. n n 1
Set r3 = # — r; — rg. If n 15 even, then we actually have rlzzand rgzg-z,so
that
r<n n n 1 _3+1
3%7317\8 ¢4 8w
that is
n 1
L —
(*) '3\8+4

. n 1 . - . n 1
If » is odd, then r = 3”5 and an estimate similar to the above gives rg £ - + =

8 8
; since

. . .. n—
Thus, (*) holds in this case also. One can similarly check that ra 2
n 2 4 and r3 is an integer, this implies r3 > 0.
We now claim that the inequalities (1)-(7) of the previous proof hold, along with:

(8) 2An—ry—ry—2r3+ 1) > d.
(9) n——rl-rg-3r32<fi——;-l->.
(10) n—1'1—1‘2-—1'32<g>.

It suffices to prove (1), (3), (6), and (9), along with the inequality r; > 1. Indeed,
(2) follows from (3) as in the proof of the previous theorem, and similarly (5) follows



THE C* PROJECTIVE LENGTI OF a-IIOMOGENEOUS C*-ALGEBRAS 263

from (6) and (8) from (9). Also, (4) follows from (3) and r1 > 1, (7) follows from (6)
if ro > 1 and from (4) if r» = 0, and (10) follows from (9) if 3 > 1 and from (7) if
rg = 0.

We now verify (1), (3), (6), (9), and »; 2 1. For (1),
n 1_d 3_d d—1
"1?1—3254-2?53(7).
For (3),
n 1 n 3_d 1
n—3r1?,n—3(z+-2-)-—z—§>§—§.
. . . d-1
Since n — 3ry is an integer, we have n — 3r; 2 ) , which is (3). For (6)
3n 3d 1_d 1
n—r1—3r22—8~—227—§;§——§.

Now (6) follows as above. For (9),

n 1 n 1
n—rl—r2—3r3;n—(Z+§)—(§+§)—3(

! i— is the same as the least integer

Ly oro7 d=1
1) "4 772 %

= I

The least integer greater than or equal to d;

, 50, since n — ry — rp — 3rg is an integer, we obtain (9).

greater than or equal to

Finally, 1 2 3; since d > 0 and r; is an integer, we do in the fact get ry > 1.
Now let p, ¢ € I'(L(V)) be homotopic projections, of constant rank s. As before,
we may assume s < ; Using Lemma 1.5 (1) and inequality (1) (from the previous
proof), we can write p = p; +p2+p3, asumof orthogonal projections with rank (p;) <
< r; and poV and p3V trivial. The rest of the proof is essentially the same as the pre-
vious proof, conjugating first p;, then p2, and finally p3 to appropriate subprojections

of g. [ ]
If X is contractible, then all vector bundles are trivial. This makes possible

k
an improvement of the previous results, which we give next. The term (5"_—2) .

k
3 . . . .
. (2 (5) - 3) accounts for the errors in rounding to integers, and can be omitted

entirely if n is divisible by 2(2* — 1); see Remark 2.5 below. In any case, it is not
excessively large for small values of k and large values of d. Note that our theorem

applies in particular to the closed unit ball in R¢.

THEOREM 2.4. Let X be a contractible finite complex of dimension at most d.

Let .
2k —1 2k 3\°
"z (2'“-2)‘” (%'—2) (2(5) “3)’
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for some integer k > 2. Then

epl(C(X) @ My,) < km and epr(C(X) @ M,) < 2k +e¢.

Proof. For 1 < 1 £ k define, by induction on I, a number #; to be the largest
integer satisfying

1 d
M) n<g(aor-mna-ge1),
or ry = 0 if the right-hand side of (1) is nonpositive. Note that, for I = 1, the
right-hand side is % n-gz 4+ 1], enabling the induction to start. We now prove the

following four relations by induction on {:

o) 4
(3) ri+dr<(l- "’)(n ) ()1_1,
4) Pt 2 (1—2')(11 ) ()I.{.l,

(5) 0 <.

First, note that (5) is obvious from (1), given the restriction that v = 0 if the
right-hand side of (1) is nonpositive. To start on the others, note that for 1 =
= 1 the inequality (2) follows from the fact that ry is the greatest integer satisfying (1).

Inequalities (3) and (4) are just disguised forms of (1) and (2). (Note that the condi-
tion on n implies Zi"—3 +1]>0)

So assume (2)-(4) hold for I, and the right-hand side of (1) is strictly positive.
Then, using (1) and (4),

wcd (oo (-8) - (3) 1] -44) -
- (n-2) 5(3)'

Adding this to (3) gives (3) for /+1. Also, using (3) and the fact that ry is the greatest
integer satisfying (1),
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(oo (-5)+ @) ]-£0) 5
e (o943

which is (2) for I + 1. Adding it to (4) gives (4) for I + 1.

If on the other hand the right-hand side of (1) is nonpositive, then ri4.) is chosen
larger than called for by (1). This does not affect the proof of (2), and hence also of
(4), for 1 + 1. To get (3), observe that we are adding riy1 = 0 to the Ieft‘. hand side,

while the right-hand side is a nondecreasing function of ! (since n > ) So (3) also
holds for [ 4 1. Thus, we have proved (2)-(4).
We now claim that

(6) "'1+"'+7'k>[‘g'],

ny. . . n . . . .
where [—] is the greatest integer with [5] £ —. Since vy + - - 4 r; is an integer, it

2
suffices to prove that ry + -+ 2

w|:

. Using (4), we see that it is enough to

t\:lv—t

> 2
2

(1-2-F (—g) (—) +1>-'21—1.

Some algebra shows that this inequality is exactly the condition on n in the statement

show that

(3]

of the theorem.

Now let p,q € C(X) ® M, be homotopic projections. Then they have the same
rank, say s. Replacing p and ¢ by 1 — p and 1 — g if necessary, we may assume
s< [2] . Since X is contractible, p is unitarily equivalent to the constant projection
po(z) = 1, ® 0, (Where 1, € M, and 0,., € M,_,). Conjugating p and ¢ by the
unitary involved, we may assume p = pg. Also, since p and ¢ are homotopic, there is
a unitary u such that uqu* = p.

At this point, we divide into two cases, the first of which is 3r; > n. Combining

this inequality with (1), and ﬁoting that (1) holds because r) # 0, we get -232 >d-2.

Let s; = min(s, [g]), and let p; < p be the constant projection p(z) = 1,, ®0p,_,,.
Let ¢) = u*piu. We have

2(n—2sl+1)>2(232+1) > d,

so Lemma 1.4 enables us to perturb p; and ¢ slightly so as to get projections P,
and g, such that 5,(z)(C") N7, (z)(C") = {0} for all z, and a projection ¢ of rank
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25y such that p;,7; < e. Now (1 —€)(X x C") is a trivial vector bundle (since X is
contractible), and has rank at least i > 51, s0 there is a projection f € 1 — e which
is unitarily equivalent to both p; and §,. It follows, as in the proof of Theorem 3.1,
that there is a unitary u; such that cel(u;) < 7 + € and wiq1u; = p1.

If s; = s, we have shown that the rectifiable distance dr(p, ¢) satisfies dr(p, ¢) <
w4+ €. If not, we further split into the two subcases k =2 and k > 3. If k = 2, set

welg]-B)efple

The condition on n is n 2 -3—(! + 3. Therefore

89 = s — s1. Then

2
(7) on—s51~2+1)=2n—s~s5341) 2 ?+3>d
Also,
n—s5;—3sag=n—5~25 2 -g--—%

If n > 8, this implies

(8) n—s; —3s 2 0.

For n = 5,0, or 7, one can check directly that
n-—s —3s 2n-— [E]

5 -3 (5] - 5)) >0

thus yielding (8) in these cases also. (If n £ 4, then d = 0, and the algebra C(X)@ M,
has real rank 0 and cancellation. Therefore the conclusion of our theorem follows
from Theorem 3.2 of [10]). The inequalities (7) and (8) suffice to be able to apply
the argument of the previous paragraph to the rank sy projections ps = p— p; and
g2 = wiqru] — p1 in (1 — p1)(C(X) @ Mu)(1 — py) = C(X) ® Mp_,,. The result is a
unitary v € C(X) @ M,_,, with cel(v) < 7+ ¢ and vgov* = po. Setiing us = py + v,
we get cel(uzu;) < 27 + 2¢ and (ugty)g(usui)* = p. Thus drp, q) < 27 + 2¢. Since
D, ¢, and € > 0 are arbitrary, the theorem is proved in this case.

If k> 3, set s = min (s s1, [%]) The assumption 3r; > n and the require-

ment r; < -;— (n - -g + 1) imply that n > :%d — 3. Therefore
2n—s51—-2s3+1) 2 -+2 d.

It is clear that n — sy — 3s3 2> 0. Therefore the method of previous paragraph,
applied to the rank s; subprojection p, = 0 ® 1,, & 0,,_,,—,, and the corresponding
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rank s, subprojection ¢z = uju*puut < uygui — p;, produces a unitary uz with
cel(uz) < m+¢ and uguyq(uguy)* > p1+p2. M sy = s—s;1, we have dr(p,q) < 2w+ 2¢,
and we are done. Otherwise set s3 = 5 — 87 — s2. Then

s<lz]-[5]-[fl<5+¢

Since sg is an integer, we have sz £ 1. Therefore
An—s51—52—2s3+1)=2(n—-s—-sa+1)22n-s)2n>d
(the last step following from the condition on n in the statement of the theorem) and
n
n—s1—32——3332n—s—22-2-—220

(since if k > 3 then n > 4). Another step similar to the one at the beginning of this
paragraph shows that dr(p,q) < 37+ 3¢. Since 3 £ k and ¢ > 0 is arbitrary, we are
done in this case.

It remains to consider the case 3r; € n. We inductively define s; = min(s,r;)
and s; = min(s — &) — -+ — §j~1,7;). The relations (5), (6), and s < [g imply
that the s; are nonincreasing and sum to s. Let the nonzero s; be 83,...,8; then

E (by (6)). We now claim that ! steps, of the sort used in the argument for
3ry > n, yield a unitary v with cel(v) < I(r + ¢) and vgv* = p. This will show
dr(p,q) < l(z + &) € k(7 +¢€) for any £ > 0, and prove the theorem. Just as above,
the conditions we need for the j step are:

(9) 2n=sy = —s51—28;+1)>d
and
(10) n=g§ = —s55.1—3s;+120.

Relation (9) follows from the relation obtained by substituting #; for s;, which is
exactly (1) for j. (Since 0 < s; < 7; and s; # 0, we have r; # 0, so (1) does in fact

hold.) The relation (10) will follow from (9) provided s, < 5~ 1. By assumption,

3r1 € n, and we therefore have

1 d 1 d
11>2(n—§+1) 5(37’1—5-{-1)

from which we obtain:
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using (5). This proves (10) and completes the proof of the theorem. |

REMARK 2.5. The extra constants in Theorems 2.1, 2.3, and 2.4 are present
to account for the rounding errors that accumulate because the ranks of projections
must be integers. Possibly they can be improved by paying more careful attention
to the number theory. For example, in Theorem 2.1, if d is odd and at least 3, and
n = 5d — 5, then the proof goes through using r; = % and rp = 21%, yielding
cpl(C(X) ® My) < 27. Similarly, in Theorem 2.4, if d = 2(2* — 2)m for some integer

2k —1 ,
m, and if n = (F—? d, without the extra term, then in the proof of the theorem

we can take r; = 2871, and obtain cpl(C(X) ® My) < kn.

3. A RELATION BETWEEN THE EXPONENTIAL AND PROJECTIVE RANKS

In this section, we will present an improvement and generalization of Proposition
2.10 of [10]." As a consequence we will show that projective length and projective
rank can be arbitrarily large. (See Theorem 3.10 and Corollary 3.11.) Our result
also sheds some further light on the belavior of cer(C(X)® M,) as a function of n
(see Corollary 3.9) and provides tle first concrete evidence for a connection between
exponential rank and topological stable rank [12] (see Theorem 3.8).

The idea we exploit here first appeared in the proof of Theorem 2.2 and Corollary
2.3 of [15]. The version we present here incorporates a slight refinement, which allows
us (unlike [15]) to obtain in good cases upper bounds on cer(B ® M,,) which actually
decrease with n. (See Theorem 3.8 and Corollary 3.9).

DEFINITION 3.1. Let A be a unital C*-algebra. Then U(A) is the unitary group
of A and Up(A) is the connected component of U{A) which contains the identity. If
p € A is a projection, then we say that the inclusion pAp — A is injective on U JUa if
the map U(pAp)/Uo(pAp) — U(A)/Uq(A), induced by u — u 4 (1 = p), is injective.
In matrix notation, with respect to the decomposition 1 = p+(1 —p), this is the same
as saying that if u € U(pAp) and

(g ?) € Us(A),

then u € Up(pAp).

We will use the following two conditions for injectivity on U/Uy. Here, tsr(A) is
the topological stable rank [12].

ProrosiTioN 3.2. (1) If m > n > tst(A) then the standard inclusion A® M, —
— A® M,, is injective on U/Us.
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(2) IfU(pAp) is connected then pAp — A is injective on U [Ug.
Proof. (1) follows immediately from Theorem 2.10 of [13] and (2) is obvious. W

QOur main result relating exponential and projective rank and length, Theorem
3.6, is essentially a combination of the next two propositions. It is not quite a corollary,
but it follows by joining the proofs together in a fairly trivial manner.

In the following results, {&) means the least integer n 2 @, and [o] means the
greatest integer n € . In arithmetic operations on cpr(A) and cer(A), we disregard
the ¢ in values of the form n + ¢.

PROPOSITION 3.3. Let B be a unital C*-algebra, and assume that the inclusion
B — My(B) (in the upper left corner) is injective on U/Us. Then

(1) cel(B ® Ma) < cpl(B ® Ma) + “*158— ) 4o

(2) cer(B ® My) < (%cpr(B ® A42)> + <%cer(3)> +l4e.

The € in (2) can be omitted if %cpr(B ® M,) is not an integer.

The proof requires the following lemma, which will also be needed for the proof

of the next proposition.

LeEMMA 3.4. Let A be a unital C*-algebra, let p € A be a projection, and let
u € U(A). Then for each £ > 0 there is v € U(A) such that v commutes with p and

(1) cel(uv*) < cpl(A) + e.

(2) uv* is within ¢ of a product of at most cpr(A) *-symmetries.

Proof. By Theorem 1.9 of [10], there is w € U({A) with cel(w) £ cpl(4) + ¢ such
that wpw* = upu*. Set v = w*u, so that uv* = w. Then v commutes with p and

cel(uv*} < cpl(A) + £. This gives (1), and (2) now follows from the proof of Theorem
2.4 (1) of [10]. »

Proof of Proposition 3.3. (1) Let ug € Ug(B @ M2) and let ¢ > 0. Use Lemma
3.4 (1) to find u; € U(B @ Mz) which commutes with

=0 o)
=0 o
and satisfies cel(uouf) < cpl{(B ® M3) +¢. We can write
(5 )
U =
0 vy
with vy,vp € U(B). The hypothesis B — My(B) injective on U/Uy implies that
v1vg € Up(B). Using the midpoint of a suitable path, choose wy, ws € Up(B) such
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that wyws = vyvs and cel(wy), cel(w2) < %cel(B) + €. Define

(v‘{unm 0 )
Uz = .
0 Wo

The relation wiws = v1v2 gives vow) = vjw; = (wivy)*. Therefore

uu‘_(w’{v; 0 )_(0 1)( 0 (w;m)*)_ss
E0 0 wwy) N1 0/ \wy, 0o )TN

where s5; and s, are *-symmetries. We can write wyu} = 5152 = (is1)(—is2), where
is; and —isy have spectrum in {+i} and therefore have exponential length at most
T
—. Thus
2

cel(ujus) < cel(isy) + cel(—isp) € 7.

Also clearly
cel(uz) < max(cel(viwyvy), cel{wa)) = max(cel(w; ), cel{w2)) < .;—cel(B) +e.
Putting our estimates together gives
cel(ug) < cpl{ B M)+ %cel(B) + 7+ 2.

Take the infimum over € > 0 and then the supremum over up € Us(B ® M3) to get
the result.

(2) The basic idea of the proof of (2) is the same as the proof of (1), so we only
describe the differences. We choose the same u; as before, noting that uguj is within
¢ of a product yo of at most | = ¢pr{B ® M;) *-symmetries by Lemma 3.4 (2). If
there are fewer than I of them, we add for convenience enough trivial ones (factors
of 1) to bring the length of the product to exactly I. We approximate v, to within
¢ by a product of at most cer(B) exponentials, and divide this product as nearly in
half as possible to obtain w; and ws. Then u» is within € of a product z of at most

1 N . .
m= -2-cer(B)> exponentials. Also, uju} is a product of two *-symmetries as before.
Therefore

up = (uguy)(ugul)us = z(you1u3)z = 2y2,

where [z — 1]| < 2¢ and y = youguj = s1--- si42 is a product of ! + 2 +-symmetries.
If | is even, then

(+2)=

cel(y) < cel(isy) + cel(=isz) + - - - + cel(isyy1) + cel(—isig2) € 3
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Therefore y is within € of a product of exponentials by Theorem 2.8 (iv) of [14].

l . . o ns
So ug is within 3¢ of a product of 3 + 1 + m exponentials, proving (2) in this case.

If ! is odd, we will assume 2 arcsin (%E-) < T As above, there is ¢, a product

2
1+1

of exponentials, such that ||c — sasg -+ s142|] < £. Then |lug — s1¢2]| < 3¢, so
|ls1 — uoz*e*|| < 3e. We will show that ugz*c* is an exponential, thus writing up as a

product of 3 + 1+ m exponentials. This will prove (2) without the €, as required

in the final part of the theorem for this case, and complete the proof.
e . . s . .
We can write is; = exp(ia) with [a|| € 3 Therefore iugz*c* = exp(ih) for

some selfadjoint h, by Corollary 2.4 of {14]. It follows that ugz*e® = exp(i(h — (g—) .
1)), as desired.

PROPOSITION 3.5. Let A be a unital C*-algebra, and let p,q € A be projections
with p+q = 1 and ¢ Murray-von Neumann equivalent to a subprojection of p. Assume
pAp — A is injective on U[/Uy. Then:

(1) cel(A) < cpl(A) + cel(pAp) + 7.

(2) cer(4) < -;-cpr(A)> + cer(pAp) + 1 +¢.

If cpr(A) is odd, the € in (2) can be omitted.

Proof. (1) Let » < p be a projection which is Murray-von Neumann equivalent to
q. Write elements of A as 3x 3 matrices relative to the decomposition 1 = (p—r)+r+q,
and use the equivalence of r and ¢ to identify the subalgebra (r + ¢)A(r + ¢) defined
by the lower right 2 x 2 block with ¢Aq ® M.

Let ug € Up(A) and let ¢ > 0. Use Lemma 3.4 (1) to find u; € U(A) which
commutes with p and satisfies cel(ugu}) < cpl(A4) + €. With respect to our matrix

decomposition, we have

up=|ca ¢ 0
0 0 v
Set
11 c2 O 1 00 1 0 0
up= | wea; wveas 01 =10 0 1 0 6 o |ug.
0 0 1 010 0 v 0

Then uju} is a product of two *-symmetries. Furthermore, pusp € Uos(pAp) because
pAp — A is injective on U/Uy, so that cel(puzp) < cel(pAp). We therefore get, just
as in the proof of the previous proposition,

cel(up) < cel(uou}) + cel(uyuz) + cel(uz) <
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< cpl(A) + € + 7 + cel(puap) < cpl(A) + cel(pAp) + 7 + €.

Since ¢ > 0 is arbitrary this proves (1).

(2) The proof is obtained from the proof of (1) by the same sorts of modifications
used to obtain the proof of (2) from the proof of (1) for the previous proposition. We
omit the details, ]

THEOREM 3.6. Let A be a unital C*-algebra, and let py, p2,¢1,92 € A be projec-
tions with py + pa + q1 + q2 = 1. Assume that py is Murray-von Neumann equivalent
to pa, that each ¢; is Murray-von Neumann equivalent to a subprojection of p;, and
that pyAp, — A is injective on U/Uy. Then

1
(1) cel(A) < cpl(A) + max epl((pi + ¢i)Alps + i) + §cel(P1Ap1) + 2.

(2) cer(4) € < %cpr(A) + %p;;tfgcpr((m + ¢:)A(pi + qe))> + <%cer(p1Ap1)> +
+2+4¢.
In (2), the € can be omitted if the term inside the first {---) is not an integer. If
g2 = 0, then the projective length or rank of (p2 + ¢2)A(p2 + 42) can be omitted from

the maximums.

Proof. (1) This is obtained by putting together the pieces of the two preceding
propositions in the following way. Given up € Up(A), we first choose u; which com-
mutes with p; + ¢; so that cel(uou}) < ¢pl{A) + ¢, as in the first step of the proof
of Proposition 3.3. The argument in the first steps of the proof of Propositien 3.5,
carried out in parallel on (p; + ¢1)ui(p1 + ¢1) and (p2 + g2)u1(p2 + g2), produces u;
of the form

up = diag({vy, 1,v2,1)

with respect to the decomposition 1 = p1 + ¢ + p2 + q2, satisfying
cel(u1u3) < max cpl((pi + i) Alp: + ¢:))-

Now v1v3 € Up(p1Ap1) because pyApy — A is injective on U/Up. Therefore we can
apply the rest of the proof of Proposition 3.3, in the ij entries of this matrix for
1,7 = 1,3, to get cel(uz) < %cel(plApl) + =. This proves (1).

(2) We do all the steps in the same order as in (1), using parts (2) of Propositions
3.3 and 3.5. We combine all of the *-symmetries at the end so as to get

< %cpr(A) + % max cpr((p; + ¢:)A(p; + qi)))

rather than

<%cpr(A)> + <% max cpr((pi + ¢:)A(p: + ‘1"))) :
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The remark on the case g2 = 0 is clear. |

We note that a slightly weaker theorem can be obtained as a direct corollary of
Propositions 3.3 and 3.5. It requires more inclusions to be injective on U/Uy and
gives a larger bound in (2) if both cpr(A) and maxcpr((p: + ¢;)A(pi + @:)) are odd.

As discussed before Proposition 2.10 of [10], we would really like to eliminate the
cpr and cpl terms, and get cer(B ® M) < cer(B) or even cer(B® M3) € -l-cer(B) +b
for some constant b. Such a formula, however, cannot hold in general, as is clear from
the proof of Theorem 3.9 below.

We now apply our results to large matrix algebras. We will eventually take
B = C(X), and we usually have cel(C(X) ® M) = oco. Therefore from now on
we restrict to the exponential rank case. The following theorem can be viewed as a
weak analog for exponential rank of results proved in [1] (see Theorems 2 and 20) for
lengths of products of commutators and triangular matrices. It is weaker because of

the appearance of the term b = sup cpr(B ® M;). However, computations done here
k2n
and in [10] suggest that this number is often small.

THEOREM 3.7. Let B be a 'um'tai C*-algebra, let n > tst(B), and let b be
an integer such that cpr(B ® My) < b+ ¢ for all k > n. Then for r > 0 and
2'n < k < 27t1n, we have

cer(B ® My) < <3"> + [2"'cer(B & My)]+4+¢.

Proof. We first prove by induction on r that

b
(%) cer(B ® Marn) < [(3 +2 < >) (1-27")4+27"cer(B® M,,)]
For r = O this is trivial. So suppose (*) holds for some r > 0. Since n > tsr(B),

Proposition 3.2 (1) implies that B ® Mzrn — B ® Mar41, is injective on U/Us.
Therefore Proposition 3.3 (2) applies to B ® Mar,, yielding

(*#) cer(B ® Myrs1,) € <g> + (%cer(B ® Mgrn)> +1+e.

Using (%) for r, we get
< —cer(B® Mzr,,)> % + % [(3 + ( >) (1-2"")4+2""cer(B® M,.)] <

!

<

[ -3 L]

+ % <g>) (1=2"")+2"""lcer(B ® M,).

B
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Substituting this in (**) yields an expression which simplifies to () for r 4 1, except
without the brackets [---]. However, since cer(B @ Mar41,) € {1,1+¢,2,2+¢,...},
we can round down to the next integer, that is, insert the brackets. This completes
the inductive proof of ().

Now let r > 1 and 2°n € k £ 27%'n. Let py,p2, 01,92 € My, C B ® My be
orthogonal projections with rank(p;) = rank(ps) = 2"~'n and rank(g,), rank{gs) €
< 2"~ !n, such that p; + ps + ¢1 + ¢2 = 1. Then p;(B ® My)p; = B @ My.—1,. Since
r > 1 and n > tst(B), the inclusion py (B ® My)py — B ® M. is injective on U/Up by
Proposition 3.2 (1). Therefore Theorem 3.6 (2) and (*) yield

cer(BQ M) < b+ <% [(3 +2 <%>) (1-2""t) + 2"+1‘cer(B'® M,,)]) +2+e¢.

On the right hand side, we first use the inequality (T—;-> £ -’22 + % for m € Z, then
drop the factor 1 — 2=7+! and the brackets - - -], and finally round down to the next
integer plus ¢ (since cer(B® M) € {1,1+¢,2,2+¢,...}). This gives

cer(B® M) £ [b-t—%-{- (g+ <g>) +2_'cer(B®ﬂln)+2] +e=

= <32_b> + (2 "cer(B® M,)] + 4 +¢,

as desired.
If » = 0, the desired estimate is weaker than the one that follows from Proposition

3.5 by taking pof rankn and ¢g=1-p. [ ]

COROLLARY 3.8. Let X be a compact metric space of dimension d. Then for
n>5d+3 and 2"n < k € 27*n, we have

cer(C(X) ® M) < 10+ [27"cer(C(X) @ My)] +¢,
and forn > 2d+ 4 and 2"n < k € 27Hn, we have
cer(C(X) ® Mi) < 13+ [27"cer(C(X) @ M,)] +&.
Proof. This follows from the previous theorem; using the fact that tsr(C(X)) =

d
=3 +1 < 2d+4, 5d+3 ([12], Proposition 1.7), and using the estimates for b from
Theorems 2.1 and 2.3. |

It was shown in Theorem 3.4 of [9] that if X is finite dimensional, then

"lirgo sup cer{(C(X) @ Mp)) < 4.
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This corollary gives some limits on the values of n for which cer(C(X)® M,,) is large.
It also provides an alternate proof of Corollary 3.5 of [9], and suitable modifications
give an alternate proof of Theorem 4.7 of [9]. (This theorem plays a crucial role in [3]
and [11].)

We finish by proving that the projective length and rank can in fact be arbitrarily
large or even infinite.

THEOREM 3.9. Let B, denote the closed unit ball in R™. Then the C*-algebra
A= C(Bs:+2) ® M, satisfies

(21 = 2)ym < cpl(A) < 00 and 41— 3 £ cpr(4) < oo.

Proof. Let B = C{Bgi+2). Since U(B) is connected, Propositions 3.2 (2) and 3.3
(2) give
cer(A) € <%cpr(A)> + <%cer(B)> +1+e.

Now cer(A) > 2{+1 by Theorem 2.3 of [9], and cer(B) = 1 because B is commutative.
It follows that cpr(A) > 41—3. The lower bound on cpl(A) now follows from Theorem
2.4 (1) of [10]. Finiteness of both quantities follows from Corollary 2.2. n

Some slight improvements to the lower bounds are possible. Since we do not
believe they are close to being sharp, we will not worry about the details.

CoRroLLARY 3.10. (Compare [9], Corollary 2.6.) Let X be the Hilbert cube
[0,1]N, and let A = C(X) ® M,. Then cpl(A) = oo and cpr(4) = co.

Proof. This follows from the previous theorem and Proposition 2.12 of [10]. W
Unfortunately, we have no information on the following question: .

QUESTION 3.11. Are there analogs of the previous theorem and its corollary for
C(X)® M, with n > 2?7
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