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LIE SUBALGEBRA OF NORMAL ELEMENTS IN A
LIE ALGEBRA WITH INVOLUTION

MIHAI SABAC

1. INTRODUCTION

In [3], I. E. Segal has proposed the reduction of study of the representations
of a complex semisimple Lie group to the study of holomorphic representations by
normal operators. The peculiarity of such a representation (the product of two normal
operators is usually not normal) is discussed by T. Sherman in Lie algebra terms. He
obtains a decomposition of a representation of a semisimple Lie algebra by normal
operators into the sum of two representations which commute with each other; one
of this consists of skew-adjoint operators, the other consists of normal operators and

commutes with its contragradient.

In [6-10], some results concerning operatorially or topologically irreducible rep-
resentations of a class of Lie agebras (which may be of infinite dimension) by bounded
operators in a complex Banach space are obtained. In this context professor P. de la
Harpe asked me if it possible to give an analogue of Sherman’s result “for represen-

tations by ad hoc operators on some Banach space”.

In the following we give an answer when the operators of the representations are
generalized scalar operators [1]. At the same time we extend Sherman’s result to an

infinite dimensional Lie algebra which is ideally finite and semisimple.

1. Let £ be a Lie algebra over a field of characteristic different from 2 and
* : £ — £ an anti-automorphism of order 2. An element z of £ is normal if [z,2*] = 0,

self adjoint if 2 = 2* and skew if z = —2*.

The main result of Sherman [4] in Lie algebra terms is the following.
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THEOREM 1. Let G C L be a Lie subalgebra consisting of normal elements. Then
Gt =G+ +[6,0

is a Lie algebra and T = [G,G*] is an ideal in G% consisting of skew elements.
If G is a semisimple finite dimensional Lie algebra and the characteristic of the
field is 0, then
gt=GooI

where Go is the centralizer of the ideal T in G*. Hence, for z,y € § we can write
= 2o+ 21, ¥ = Yo + y1; To,yo are normal elements, z,,y; are skew elements,
[zo, 3] = [z1,50] = 0, [z0,45] = 0.

This theorem can be applied for representations on a Hilbert space H, because
there is the natural operation * (i.e., if # is an operator on H, z* is the adjoint
operator on H). ‘

In the case of an arbitrary Banach space such a *-operation must be defined. We
shall prove that one can define such a *-operation for some Lie algebras of generalized

scalar operators.

SECTION 2.

We begin by the transcription of the existence of *-antiautomorphism of order
two in Lie algebra terms.

LEMMA 2. Let £ be a complex Lie algebra. The following assertions are equiva-
lent:
(J) There is a mapping * : £ — L such that

(A+ B)* = A* + B*, (A)* =A%, (A*)* = A and [A, B]" = —[A", B’]

(3)) There is A C L a real vector space such that:

L=A®iA and i[A,B) € A for every A,B € A.

Proof. If (j) holds, A = {A € L|A = A*} and for A € £ we may uniquely write

A= A+ A +iA—A

2 2i

for every A€ L.
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Obviously, A is a real vector space, ¢ is skew iff ic € A and i[A, B] € A for every
A, B € A because [A, B]* = —[A, B] for every A, B € A. Hence (j)=(j).
If (ij) holds we may uniquely write for A € £

A=A +iA,y
We define in a natural way,
A* = A — i,
Clearly, A = A* iff A € A and the properties of * are obvious. So, (3j)=>(j) [ ]

REMARKS. If £ satisfies (j) or (jj) and A € £, we have:

1. [4, A*]* = —[A4*, A] = [4, A°)

2. A is normal iff [A, A*] is skew

3. A= A, +iAs, A1, Az € A, A is normal iff [A;, A7) = 0, A is self-adjoint iff
A=A €A, Aisskew iff A =14, € iA.

LEMMA 2. If £ is a Lie algebra over some field K of characteristic other than
two then the following assertions are equivalent:

(a) there is a K-linear mapping * : £ — L such that (A*)* = A, [A,B]* =
= —[A*, B*] for every A,B€ L

(B) there exists A a subspace of £, S a Lie subalgebra of £ such that,

L=AdS, [AACS, [A4S]CA

Proof. If we have (a) we put
A={A€eL|A= A"}, §={A]A" = -A}.
If we have (), we may uniquely write for A € £,
A=Ao+ A1, Ao€EA AES

and we can define
A‘ = Ao - Al .
|

DEFINITION 1. A complex Lie algebra which satisfies (j) or (jj) of Lemma 1 is
called a complex Lie algebra with involution or a *~complex Lie algebra.

Let X be a complex Banach space, B(X) the Lie algebra of all bounded operators
on X; [A, B = AB—BA. We can obtain a Lie algebra with involution in the following

way:
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Let A C B(X) be a real subspace such that,

()
{ [A,Bleid for every A, BE A

0#£0(A)CR forevery A€ A A#0
i.e., every nonzero operator of A has a nonzero real spectrum.

Then ANiA = {0} and £ = A@iA is a complex Lie algebra with involution.

DEFINITION 2. A C B(X) is called a space of self-adjoint operators if A is a real
subspace which satisfies (j) and every operator of A is a generalized scalar operator.

The following proposition is a direct consequence of the results of 1] (Chapter 4,
Theorem 1.11, Theorem 3.3 and Corollary 3.4; Chapter 5, Theorem 4.5 (§j)=(j))
because the spectrum of any operator of A is thin.

ProrosiTioN 1. Let A C B(X) be a space of self adjoint operators and let
L = A@iA the corresponding *-complex Lie algebra. The normal elements in L are
generalized scalar operators ¢ € £ having a spectral distribution U9 with U§,, €
€A Ul , €A

Proof. If g has a spectral distribution U9 and U}, , € A, U{ , € A we have
g=Uf , +iUL ,=Ui, 9" = UAﬁ and [g,¢"] = 0 because UfU-f\l = UAiUf = Uﬁ\',
(multiplicativity of spectral distribution ¢+ UZ see [1]).

Conversely, we have g = a+ib, a, b € A, a and b being generalized scalar operators
with spectrum on real line and [g, ¢*] = 0 implies [a,b] = 0. Then g is a generalized
scalar operator because a and b are commuting generalized scalar operators with thin
spectrum ([1], Chapter 4, Theorems 1.11, 3.3, 3.4).

A spectral distribution of ¢ may be obtained

Ug = (U° @ U"gocor+101)  © € CP(RY), Ufer = Ue¢ + Ulimy

where R is the field of real numbers, R? is identified with C and { and u denotes the
identity function of C. By [1] {Chapter 5, Theorem 4.5 (§j}=(j)) we have

b b —_
Uﬁgg = Uﬁn =a, Ulp,= U—-Imp|R =0.
Hence U, € A. I an analogous manner we have U] , € A. |

REMARK. When X is a IHilbert space, any normal operator on A has a spec-
tral distribution (given by its spectral measure} which verifies the above mentioned
property, where A is the space of all self-adjoint operators on A'.

The following corollaries are similar to Corollaries 1, 2 of [4].

COROLLARY 1. Let £ = A® iA be a *-complex Lie subalgebra in B(X). If
G is a complex Lie subalgebra of B{(X) consisting of generalized scalar operators g
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which have spectral distributions U? (g = U{) such that Uf_, € A, Ui \ € A,
then [U§*,U$?] = 0 for every g1,92 € G. If[g1,92] = 0, then [Ug,Ug*] = 0 for any
¢ € C®(R?).

Proof. We have g* = (Uf)* = U; and by Sherman’s theorem [g1,93), [ig1,95)
are skew. Then it follows (as in [4]) that [g1, g3] = 0 for any g1,93 € G.

CoROLLARY 2. Let G be a semisimple finite dimensional Lie subalgebra of a
*.complex Lie algebra A @ iA C B(X), where A is a space of sclf-adjoint operators
and G consists of generalized scalar operators g having a spectral distribution U9 with
U, € A Ui, € A. Then for every g € G we may uniquely write g = go + g1; go
has the same property as g and ig; € A. Moreover, for any h € G, if we similarely
write h = hg + hy, then [ho, g1] = [h1, 90] = 0 and [go, hg] = 0 (i.e., [Ui’",Ux"“] =0).

Finally we observe that a structure of *-Lie algebra may be implicitely contained
in an ordinary Lie algebra structure. A significant example is given by sl(2, C) with
basis {r, X4, X_} and relations [r, X] = 2X4,[r, X-] = -2X_, [X;, X_] = 7. We
have s1(2,C) = A®iA, A = spp{ir, X4, X_} and A satisfies (jj} of Lemma 1. The
*-operation given by A is the following:

(,\ p)*_(,"\ 'ﬁ). d= M +ikg = —Ap +idg,
v =X 72 = p1+ o = py — i,

A normal element is given by

A —
( s ) with [l
v = p

A skew element is given by

o i
(, 7 ) with ¢, 8,7 €R,
if —«a

and in this case the transcription of the Theorem 1 is obvious.

'ﬂ'l <

See | Dot

SECTION 3.

In this section we give an extension of the main result of {4], Theorem 1, to an
(infinite dimensional) ideally-finite semisimple Lie algebra.

An ideally finite semisimple Lie algebra is a direct sum of finite dimensional
simple ideals [5]. Now let £ be a *-Lie algebra and G C £ ideally finite semisimple Lie
subalgebra consisting of normal elements. Hence we may write G = € Gi, Gi simple
ideal of G, [G;,G;] = 0 for i # 7, [Gi,Gi] = Gi and [G,G] = G.
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We consider as in [4) Gt = G + G* + I, where T = [G,G*] is an ideal in G+
and Gy = {z € G*|[z,Z] = 0} is the centralizer of T in G*, which is an ideal in G*.
Obviously we have, Gt = @ G: + PG + Z[(_}.-,G;]. We have z* = —z for every

ii
2€I=[9,6")=)_[6:G]]and I* = 1.
r

If z € Go then ,the following equalities hold: [2*,7] = [z,Z*]* = [z,Z]* = {0}.

Hence Gj = Go because (2*)* = 2. For a sell-adjoint z € Gt and y € T we may write,

[z, 9l =[z,9]" = [¥", 2] = ~[v, 2] = [, 4].

This proves that {z,y] = 0. Hence, z = z* € ¢+ implies z € Go.
Let z,y be arbitrary elements of G. We have z + z* € Gy because z + z* is self
adjoint element of G*. But Gy is an ideal in G*. Mence,

Go > [y: z+ 2."] = [y, Z] + {yv Z‘]

and
[y,2) € Go+Z forevery y,z€G

because [y, 2*] € Z. So we have
G=[G,G]CG+T

and
Gt CcGo+1

since (Go+I)"' =Gy +I*=Go+7T.
We denote
Ty=6nI =7 GonIG;Gil

ik
Obviously we have
[Go,To] C [Go, I] = {0}, [Z,Z0] C [Z,G0] = {0}, [G.Z0] C [Go +Z,Z0] = {0}.
We will describe the action of adG on Z. Let z,y, 2 € G (normal elements in £) and

[[e+2,9], (2+2)] = [z+2, [y, (z+2)]] = [2, [, 2T+ 2, [v, 2]+ 2 [v, 2N+ 2, [v, 27T =

= [[z, 4], 2]+ [2, [y, "N + [2, [y, =" N + ([, 9], 2°)-

We have
[Z, [ya :!:‘]] = [Z, [y", 'r]] = [[Z, y*]:m] + [y* ' [z,:z:]]
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because [y, z*] is skew (i.e. [y,2*] = [y*, z]). Hence we may write,
[(z + 2,4, (= + 2)°] = [[2, 4], "] + 2z, Iy, "1 + " [z, 2]} + (2,9, 2°)
or equivalent,
Q) 2Alz [y 2] = (2 + 2,9 (2 4+ 2)"] = (2, 9], 2°] - [7, [2,2]) - [[2,9), 27)-
If we take z € G;, y € G;, z € Gk, by (1) there are the following possibilities
6,06, Gl =0, fori#j#k#5

[Gx, G5, G2} € (G5, Gi) = [Gr, G-

Also we have,
1G5, (G5, Gl = (G5, (6%, 951] € (G, G5] = 1G5, Gill

[gi,[Q'k‘gz]} C [gk»J;]) [Gh thG?]] C [‘Jh g:]-
We denote ;. = [G;,G;] (= [Gr, G5] = [G},Gi] = [GF,G5])- Then the above inclusions
give the following;:

G, Zix] CTix, forj#k (6,51 C Y Tx;, 16, Tis] C D Tje
P k k

If we suppose that the ground field is of characteristic zero then for j # k, adG|Z;;
are completely reducible because & is semisimple and Z;; are finite dimensional ideals.

Let Z; be a complement of Zo N Z;; in Z;;. We have
6, Zix) = 6. ToNZjr + L1 =[G, Th] C L1

But [G;,G} + Z;x] C Zj. Hence, by the same reason we may find 2 complement 1',:';c
(of Z;x in G + I;i) invariant to ad G;. We have,

1G5, Z;%] € I N Zin = {0},
Iix = (61,631 C IG5, Gt + L) = G5, Zix + T35 = (G5, Zia] C Ly
Hence Z;; = [G;,Z;x] and [G, Z;i] D Zjr. We obtain,
Z;ix CIG,Zix) C[G,Th] C 1.
It follows that Z;;, = Z;, hence Zo NZ;x = {0} for j # k and Zy = Z(]o NZj =
ik

= Zgo NZ;;. On the other hand, by theorem of [4] we obtain
j

GoNZjj = {2 €G}[2,Z;;] =0} = {0}
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because Z;; = [G;,G7) C G} = G; + G} + [G;,G}].

Hence, Iy = GoNZ = {0} and G* = Gy ®Z. So we have proved the extension of
the main result of Sherman’s Theorem 1 stated in introduction, for G an ideally finite
semisimple Lie algebra.
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