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SPECTRA FOR COMPACT GROUP ACTIONS

ELLIOT C. GOOTMAN(™) and ALDO J. LAZAR and COSTEL PELIGRAD(**)

1. INTRODUCTION AND PRELIMINARIES

Let (G, A,a) be a C*-dynamical system. For G abelian, the principal tool for
investigating the structure of the crossed product algebra G x o A has been the Connes
spectrum [17, Section 8.11). As Rieffel remarks in the introduction of [21], “it is a
very interesting open question as to how the Connes spectrum should best be defined
in the non-abelian case”. Furthermore, on page 40 of [16], Landstad remarks that in
a “good” definition of the spectrum, the kind of result one would want to generalize
is the theorem of Olesen and Pedersen characterizing the primeness of the crossed
product algebra in terms of the Connes spectrum [17, Theorem 8.11.10]. In this paper,
we present definitions of both the Connes spectrum and the strong Connes spectrum,
in the case of a compact group action, which do generalize both [17, Theorem 8.11.10],
and the main theorem of Kishimoto [11, Theorem 3.5] on the simplicity of crossed
product algebras.

Let (G, A, &) be a C*-dynamical system, with G compact. For 7 € G, the space
of equivalence classes of irreducible unitary representations of G, we denote by Hx
the finite-dimensional Hilbert space on which 7 acts, by d(x) the dimension of Hy,
and by xr the normalized character of 7, that is, x«(g)} = d(x)trace(r;1). To each
7 € G we can associate a projection Po(w) : A — A, defined by

Py(r)(a) = [G e (@)aga)dg, a€A.

The range A; () of Py(7), i.e., {a € A : Pa(w)(a) = a}, is the spectral subspace of A
associated with 7.

(*) Supported in part by NSF Grants nos. DMS-8801448 and DMS-9003075.
(**) Supported in part by a Taft Grant-in-Ad.
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A notion of spectrum for the action o of G on A, involving the spectral subspaces
A, (m), was defined and discussed by Evans and Sund [2] and Katayama [10]. Landstad
[16]) and Peligrad [18] observed that the spectral subspaces

Ay(m)={V € A® B(H,) : (o ®1d)(V) = V(14 ® 7,), g € G}

were more useful for studying the properties and ideal structure of the crossed product
algebra G x4 A. In this paper we shall consider two types of spectra whose definitions
involve Az(7). Note that Ay(7)* A2(7) is a two-sided ideal in (A ® B(H,))*®2¢7, the
fixed-point subalgebra of A ® B(H,) under the tensor product action of G. -

DEFINITION 1.1. (2) Sp(e) = {7 € G : cl(Aa(x)* A2(7)) is an essential ideal in
(A ® B(Hy))*®*7}.

(b) Sp(a) = {r € G : cl(Ax(m)* As(7)) = (A ® B(H,))*®% .

Corresponding to the above two Arveson type spectra for the action o, we have
two Connes type spectra. Let H*(A) denote the family of all non-zero a-invariant
hereditary C*-subalgebras B of A.

DEFINITION 1.2. (a) The Connes spectrum I'(er) = [1{Sp(a|B) : B € H*(A4)}.
(b) The strong Connes spectrum () = [W{Sp(a|B) : B € H*(A)}.

It is easy to see that if (G is abelian, Ay(7) can be identified with A;{#) and I'(«)
coincides with the usual Connes spectrum of a [17, Chapter 8], while, by the proof of
{20, Theorem 7.2.7], ?(rx) coincides with the strong Connes spectrum as defined by
Kishimoto [11]. This fact, as well as our two main theorems, that G x, A is prime
< Ais G-prime and I'(a) = G (Theorems 2.2, 3.8), while G x, A is simple < A is
G-simple and I'(a) = G (Theorem 2.5, 3.4), justifly our terminology (see [17, Theorem
8.11.10] and [11, Theorem 3.5]). Note that our definition of I'(«) differs from that of
[2] and [10].

In section two we present proofs, more or less of an algebraic nature, of our main
theorems. The proofs use both parts of the hypothesis concerning the action « of G
on A (i.e., that A is G-prime (resp., G-simple) and that the spectrum is full) to deduce
that the fixed-point algebra A* is prime (resp., simple) (Proposition 2.1, 2.4). From
this and results of [18], the conclusion concerning the structure of G x, A follows. In
section three we present different proofs of our main theorems. The nature of these
proofs is more representation-theoretic, and separates out the roles played by the two
parts of the hypothesis on the action a. Specifically, we prove that I'(e) = G if and
only if every non-zero ideal J of G x4 A is an essential subideal of an ideal of the form
G Xo I, I a G-invariant ideal of A (Theorem 3.7}, while I'{a) = G if and only if every
ideal J of G x4 A is of the form G x, I, I a G-invariant ideal of A (Theorem 3.3).
For the prime case especially, these proofs use methods of non-commutative duality
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theory and results of [5] concerning the structure of ideals of G x, A invariant under
the dual coaction. Unfortunately, our proof of the prime case also requires that the
dynamical system be separable,

We feel that there should be a relevant notion of spectrum for the action of a
non-abelian, non-compact group also, and results which would relate the spectrum to
the structure of the crossed product algebra. Perhaps a preliminary step in developing
such a notion would be a unified proof, valid for both compact groups and abelian
groups, relating the spectral properties of the action to properties of the crossed
product algebra. Such a proof is not yet at hand, and the main reason we present
both types of proofs of our main theorems is that it is not yet clear to us which of
our methods (if any) might contribute to a unified proof, covering both the abelian
and compact cases, as well as to an extended theory.

Finally, in Section 4, we discuss various circumstances in which I'(a) = F(a),
and present in Section 5 several counterexamples to natural questions and conjectures.
We close this section by establishing additional notation, and by making explicit two
results implicitly contained in [18].

For each pair 71,79 € G we let Sy, r, denote the closed subspace x., * (GxaA)#*
*Xx, Of G x o A, and for 7 € G, we denote the hereditary C*-subalgebra Sy » of Gxa A
simply as Sy (note that y is a projection in the multiplier algebra M(G x4 4)). A
function 2 € L!(G, A) is called central if a,(z(r~*sr)) = z(s) for all r,s € G. The
C"-subalgebra of G x, A generated by the (images of the) central functions will be
denoted I, There is a faithful conditional expectation P of G x4 A onto I given, for
z € L}(G, A), by

(Pz)(s) =La,(z(r'lsr))dr, s€eG.

Following (18], let Ir = I NS, and let I(x) = C(G) * xx, where C(G) is considered a
subspace of M(G x4, A). Then I(7) is *-isomorphic to the algebra of all d(7} x d(=)
scalar matrices, and there is a *-isomorphism of I(7)® I, onto Sy (see [18, Proposition
2.7]). We denote by 1 the trivial representation of G.

ProrosiTioN 1.3. Let 7 € G. Then T € Sp(a) if and only if the closure
cl(Sx,i * Si x) of the ideal Sy ; * S; » in Sy is essential in S,.

Proof. Let cl(Sy; * S; x) be essential in Sy, and assume 7 ¢ Sp(e), i.e., that
cl(A2(7)* A2(T)) is not essential in (A ® B(Hx))*®*%. It follows then from {18,
Lemma 2.10] that there exists ¢ > 0 in I, with P(ccl(Sz; * Six)e) = cP(cl(Sy; *
*Six))c = 0. Thus ccl(Sy; * Si x)c = 0 which, since ¢ € Sy, contradicts our hypoth-
esis.

For the converse, assume ¥ € Sp(a). By [15, Lemma 3] and [18, Lemma 2.10],
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P(cl(Sx,i * Si,x)) is an essential ideal in I,. The proof of Lemma 2.10 in [18] also
shows that P(cl(Sx;: * Six)) = Ix N (cl(Sx,i * Six)}. The image of I in I(7) @ I,
by the isomorphism of {18, Proposition 2.7] is x» ® Ir = {diag(z,...,z) : z € I, }.
Thus {diag(y,...,4) : ¥ € Iy Ncl(Sx; * S »)} is essential in {diag(z,...,z):z € I }.
Clearly this implies that the image of cl(Sx i * Si ) in I(7) ® Iy is essential in this
algebra, hence cl(Sy ; * Si x) is essential in Sy.

PROPOSITION 1.4. Let = € G. Then 7 € Sp(a) if and only if l(Sx i % Six) = Sx.

Proof. We omit the proof as it is completely similar to the proof of Proposition
1.3. |

2. SPECTRA AND IDEALS (PART 1)

For 7 € G, we represent elements of A ® B(H,) as d(r) x d(m) matrices over A,
i.e., as [ai;] with 1 <4, < d(x) and a;; € A. Also, we write [m;;(g)] for the matrix
of m(g) in a fixed orthonormal basis of Hyx, and P;;(r) for the map of A into A given

by P;j(m)(a) = d(w)/(;-;r.-j(g)ag(a)dg, ac A
ProposITION 2.1. Let (G, A, ) be a C*-dynamical system, with G compact. If
A is G-prime and I'(@) = G, then the fixed-point subalgebra A* C A is prime.

Proof. If A% is not prime, then there exist two non-zero positive elements ag, a; €
€ A® such that ayA%ag = (0). As A is G-prime, a;Aag # (0), and as the span of the
spectral subspaces {A;(7) : 7 € G} is dense in A, a1 A1(mo)ag # (0) for some mp € G.
Let B = cl(agAaq), so that B € H*(A). Using the fact that any [a;;] € Az(mo) is of
the form a;; = Pij(mo)(a) for some fixed a € A [18, Lemma 2.2}, it is easy to see that
By(mo) = (cl(apAao))2(me) = cl{@oAz(mo)ao), where, for z,y € A, by z[a;;]y we mean
the matrix with ij* element za;;y. As mg € I'(@), we have (recall Definitions 1.1(a)
and 1.2(a)) that cl(Bz(mo)* Ba(mo)) = cl(agA2(ma)*adA2(mo)ao) is an essential ideal
of (B @ B(Hqx,))*®% = ((cl{agAag)) ® B(Hx,))*®* 0. However, as a; A%ag = (0)
and as Az(mo)a2 Aax(my)* C A® @ B(Hn,), we have

() (a0A2(mo)" af)(Aa(mo)ad Az(mo)* Jag Aa(mo)ao = (0).
Regroup the terms in the left-hand side of (*) as
(aoA2('.'ro)*a?Az(ﬂ'o)ao)(anAg(ﬂo)‘dg}iz(ﬂ'o)ao).

As, by above, cl(agAs(mg)* agA2(mo)ag) = cl{Ba(mo)* Ba(ms)) is an essential ideal of
(cl(aoAao)®B(H,))*®24%s and as agAa(mo)*a? As(mo)ag C (a9 Aao®B(Hy, ))*®24 o=
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= ag(A ® B(Hy,))*®*d70qy, we have that ajAz(mo)ag = (0). It follows clearly that
aj A1(mo)ag = (0), a contradiction. Hence A% is prime. -

THEOREM 2.2. Let (G, A, a) be a C*-dynamical system with G compact. The
following are equivalent:

(1) G x4 A is prime;

(2) A is G-prime and I'(e) = G.

Proof. (2) = (1) For each # € G, the C*-algebras cl(As(7)*A4s(7)) and
cl(Aa(r)Az(7)*) are strongly Morita equivalent (Az(7) being an imprimitivity bimod-
ule). By Proposition 2.1, A* @ B(Hx) is prime, hence so is the ideal cl(A2(7)A2(7)*),
and the Morita equivalent algebra cl(Az(m)*Aa(7)). By definition of I'(«),
cl(Az(m)* Az(m)) is essential in (A ® B(H,))*®*7* and thus (A ® B(H,))*® " is
prime also. The result follows by [18, Corollary 3.12].

(1) = (2) That A is G-prime follows trivially. For B € H*(A), G xo B is a
hereditary C*-subalgebra of G x4 A, and thus G x, B is prime. By [18, Corollary
3.12] again, (B © B(H,))*®*" is prime, and Ba(7) # (0) (since By(7) # 0). Thus
the non-zero ideal cl(By(7)* By(7)) is essential in (B ® B(H,))*®** Vx € G, and we

are done. [ |
To prove an analogous result about simple crossed products, we need a prelimi-
d(=x)
nary lemma. For [a;;] € A ® B(H,), define tre;;] = Z dii.
i=1

LEMMA 2.3. Let (G, A, a) be a C*-dynamical system with G compact, and let
J be an ideal in A”. Then (cl(AJA))* = closed linear span{tr(Azx(w)JAz(7)*) : 7 €
€ G}.

Proof. As Ay(m)Ax(m)* C A*® B(H,), it is immediate that tr(Ay(x)J Az(r)*) C
C (AJA)*. Tor the opposite inclusion, let 7', 7% € G and let a € A;(x'), b €
€ A1(n?), w € J. Using the notation introduced at the begining of this section, we
have that a = P,(n!)(a) = EP.‘,‘(WI)(G), and thus by [18, Remark 2.1(iii)},

as(a) = Z r},»(s)P,—,-(vrl)(a), s € G,
%)

and similarly for . Thus

P(awb™) = /Ga,(awb*)ds =

= /G 714() Py (n) (@)w T2 (s) (P (x?)(5))" ds =
1,5,k

= Gprga d—(% Z, Py (r")(@)w(Py (r?)(B))",
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by the orthogonality relations. For 7! = #? = =, ZP,-,-(W)(a)(P,-j(w)(b))'

ij
= tr([zi;lw[y;]*) with z;; = PBj(r)(a) and w; = Pij(n)(b), so Plawd*) €
€ tr(As(m)J As(7)*), and equality holds. a

ProrosiTioN 2.4. Let (G, A, a) be a C*-dynamical system with G compact. If
A is G-simple and f(a) = G, then the fixed point algebra A* C A is simple.

Proof. Let J be a non-zero closed two-sided ideal in A®. We first prove that
for each 7 € G, tr(Az(m)JAs(m)*) € J. Let B = cl(JAJ), so that B € H*(A).
By hypothesis and the definition of I'(e), cl(Bz(7)*By(7)) = (B ® B(Hyx))*®*".
Using [18, Lemma 2.2], one can easily check that Ba(7w) = cl(JAaz(7r)J), so that
cl(Ba(m)* Bz2(7)) = cl(JAz(m)*JAz(m)J), while obviously (B @ B(Hy))*®™* =
= c)(J(A® B(Hx))*®247J). (Again, by j[a;:] we mean the matrix [ja;r]). Thus

l(JAz(m)* JAz(m)T) = cl(J(A ® B(Hy))*®247 ).
From this we deduce that
cl(Ag(7)J Az (7)* T Aa(n)J Aa(m)*) = cl(A2(m)J (A ® B(Hx))*®®™ J Az(m)*).

As Az(m)JAx(7m)* C A* @ B(Hy), we have Aqx(m)JAz(m)*JAz(m)JAz(x)* C J ®
®B(H,), and thus

J ® B(Hz) 2 Ax(m)J(A® B(Hy))*®*"J Aa()" 2 As(m)] Ax(7)",

so that tr(Ax(w)JAz(7)*) C tr(J ® B(Hs)) C J. [ ]

By Lemma 2.3, (cI(AJA))* C J. As A is G-simple, cl(AJA) = A, so that
A% = (cl(AJA))* C J. Thus J = A* and A® is simple.

THEOREM 2.5. Let (G, A, a) be a C*-dynamical system with G compact. The
following are equivalent:

(1) G x4 A is simple;

(2) A is G-simple and I'(a) = G.

Proof. (2) => (1). By Proposition 2.4, A* is simple. Hence the non-zero ideal
cl(Az(m)Az(7)*) C A* ® B(H.) is simple, and so is the Morita equivalent algebra
cl(Az(m)* Az(7)). By hypothesis cl(A2(m)* A2(7)) = (A® B(Hy))*®> ™, 50 the latter
algebras are all simple, and the result follows from [18, Corollary 3.7].

(1) = (2). That A is G-simple follows trivially. For 7 € G and B € H*(A),
G x4 B is a hereditary C"-subalgebra of G x4 A, and hence is also simple. By [18,
Corollary 3.7), Bz(7) # 0 and (B ® B(H,))*®* " is simple. Ilence the non-zero ideal
cl(Ba(7)* By(7)) = (B ® B(H,))*®** and 7 € I'(). [ |
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3. SPECTRA AND IDEALS (PART 2)

Recall that representations L of G x, A are in one-to-cne correspondence with
covariant pairs of representations (V, 1) of (G, A, ). For f € L!(G, A), the corre-
spondence is determined by L(f) = [ 7(f(s))V(s)ds, and, by abuse of notation, we
shall simply write L = (V, 7). Denoting also by L the extension of L to the multiplier

algebra M(G x4 A), we have, for f € L'(G), that L(f) = V(f) = / f(s)V(s)ds. In
G

particular, for 7 € G (G compact), L(xr) = Py, the projection of the Hilbert space
Hp on which L acts onto the subspace of [ on which V acts as 7. It follows that
the irreducible representations of S; correspond precisely to the irreducible represen-
tations L = (V, ) of G x4 A for which V 2 =, while the irreducible representations
of cl(Sr,: * Si x) correspond precisely to the irreducible representations L = (V, 7) of
G x4 A for which V 2 7 and V D i. These observations lead to the following:

LEMMA 3.1. Let 7 € G. Then

(a) T € Sp(e) ifand only if {L = (V,7) € (G Xo AY: V D 7 and V D i} is dense
in {L=(V,7) € (G xqo AY: V 2 7}, and

(b) 7 € Sp(a) if and only if {L = (V,7) € (G xa AV: V27 and V D i} =
={L=(V,7) € (G xs AY: V D 7}.

Proof. Propositions 1.3 and 1.4. |

By the above lemma, §1§(a) =G if and only if for each L= (V,7) € (G xq A),
V 2 i. Clearly this is equivalent to requiring that the closure of the ideal (G x4
A)xi(G xqa A) equal G xo A. An action with this latter property is said to be
saturated (see Section 7 of [20] for this and other equivalent formulations), and clearly
the condition I'(a) = G is equivalent to the action being liereditarily saturated ([20,
Section 7]). The approach to relating the ideal structure of G X4 A to the spectrum of
the action which we present in this section of the paper had its origin in the following
question, raised verbally by N. C. Phillips to the first-named author: is hereditary
saturation equivalent to every ideal of G x o A being of the form G x I, I a G-invariant
ideal of A?

We first investigate simplicity and the strong Connes spectrum, since this problem
is a bit more straightforward. I V is a representation of G on a Ililbert space H, we
denote by H; the subspace of H on which V acts as the identity representation iz, so
that H; = {s € H : V(s)z = 2 Vs € G}.

PROPOSITION 3.2. Let (G, A, «) be a C*-dynamical system with G compact, and
assume that I'(a) = G (i.e., that the action is hereditarily saturated). If L = (V,1)

Is a representation of G xo A on H, and a is an element of A with r(a)|H; = 0, then
7(a) = 0.
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Proof. Let S = {z € A: v(z)|H; = 0}. Then S is a closed left ideal of A, and, as
r(agz)|H; = V(g)r(2)V (g7 )| H; = V(g)7(z)|H;, S is a-invariant. Thus B = cl($*5)
is an a-invariant hereditary subalgebra of A, and if 7(S) # 0, then the restriction L
of L to G xq B is non-zero. Letting K denote the non-zero essential subspace of
this restriction, we have a non-degenerate representation L of G x4 B on K. Clearly
L= (V, %) where V is the restriction of V to K, and 7 is the double restriction of ,
from A to B, and from acting on H to acting on K. As by hypothesis S~p(a|B) =G,
it follows from Lemma 3.1 and the subsequent remarks that V acts as the identity
on a non-zero subspace K; C K. Clearly K; C H;. However, as r(S)|H; = 0, it
also follows that H; € K+, s0 I{; C Hi also, a contradiction to the assumption that

T(S5) #0.

THEOREM 3.3. Let (G, A, e) be a C*-dynamical system with G compact. Then
I'(«) = G if and only if every closed ideal of G x4 A is of the form G xo I, I a
G-invariant ideal of A.

Proof. =) Let J be an ideal of G x, A. By [7, Propositions 11, 12 and 13],
it suffices to show that J = Ind(ResJ), as ResJ is a G-invariant ideal of A and
Ind(Res J) = G x4 (ResJ). Rephrased in terms of representations (see 7, Proposition
9]), let L = (V, ) be a representation of G x4 A on H, with kernel L = J, so that
Ind(Res J) = kernel(Ind(Res L)). Here Ind(Res L) is the representation of G x4 A on
L*(G, H) corresponding to the covariant pair (A @ 1, ), where X is the left-regular
representation of G on L?(G) and, for a € A, s € G and { € L*(G, H), (7(a){)(s) =
= 7(o-1a)((s).

By the discussion prior to Proposition 3.2, our hypothesis implies that
cl({G xo A)xi(G xa A)) = G x4 A, so that the hereditary subalgebra S;, which is
precisely the algebra of constant functions from G into A* [22], is a full hereditary sub-
algebra of G x4 A. By [17, Chapter 4.1, to check that kernel L = kernel(Ind(Res L)),
we need only show that L|S; and (IndResL)|S;, when restricted to their essential
subspaces, have the same kernel. These essential subspace are H; (the subspace of H
on which V acts as the identitity) and (L?(G, H)); = the space of constant functions
from G to H. Accordingly, let 2 € S; be the function z(t) = a, Vt € G, and a € A®,
and suppose L(z)|H; = 0. As L(z) = [ r(z(t))V(t)dt, we have L(z)|H; = r(a)|H;.
By Proposition 3.2, L(z)|H; = 0 if aa?d only if v{a) = 0, which happens if and
only if #(a) = 0 (as kernel 7 is a-invariant). In turn, by the same argument as
above, applied to Ind(Res L), #(a) = 0 if and only if the restriction to L%(G, H); of
(Ind(Res L))(z) = 0, and we are done.

<=) If every ideal of Gx o A is of the form Gx oI, I a G-invariant ideal of A, then as
in the proof of Theorem 3.2 of [6], the assumption that the ideal c1({G x o A)xi(GX o A4))
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is of this form implies ¢l((G x o A)xi(G Xa A)) = G x4 A, so the action is saturated
and, by Proposition 1.4, §5(a) = G. All that remains is to show that the assumption
on ideals of G x, A implies a similar result for ideals of G x, B, B an o-invariant
hereditary subalgebra of A. By [13], G x, B is a hereditary subalgebra of G x4 A, and
thus every ideal is of the form (G x o B)N(G X o I), I a G-invariant ideal of A. We shall
be done once we show that (G X4 B)N(G XaI) = G xo (BNI). For 2 in G x4 (BNI),
write z = lim&,, 2, a continuous function G — BNI. As 2z, € (G xo B)N(G x4 I),
z also lies in (G Xo B) N (G Xa I), and (G x4 B) N (G Xa I) D G xo (BN I). For
containment in the other direction, let x lie in the C*-algebra (G xo B) N (G x4 I),
and let ¢ = wvw, u,v,w € (G Xa B)N(G x4 I). Write u = li&nun, v = li’l:ﬂv,1 and
w = limwy,, with u,, w, continuous functions from G to B, and v, continuous from
G to In Then u,v,w, is a continuous function on G with values in BIB. As I is an
idealin A, BIB C I, while BIB C BAB C B as B is hereditary. Thus BIB C Bnl,
UnUnty € G Xo (BN ), and & = uvw € G Xo (BN ) also. [ |

THEOREM 3.4. Let (G, A, &) be a C*-dynamical system with G compact. The
following are equivalent:

(1) G x4 A is simple;

(2) A is G-simple and T'(a) = G.

Proof. Follows trivially from Theorem 3.3. u

We now turn our attention to the question of prime crossed products. Note that
by Lemma 3.1(a) and the subsequent discussion, it is easy to see that Sp(a) = Ge
S {L=(V,7) € (G xa AY: V D i} is dense in (G xq AY & (G xXa A)x:(G Xo A) is
an essential ideal in G x, A.

ProrosiTion 3.5. Let (G, A, @) be a C*-dynamical system, with G compact,
and assume that I'(a) = G. If O is a non-empty open subset of (G x4 A) and a
is an element of A such that for all L = (V,7} € O, r(a)|(HL)i = 0, then for all
L=(V,7r}€ 0, 7(a) =0.

Proof. The proof is similar to that of Proposition 3.2. For convenience, if L =
= (V,7) we write 7 = ResL and we denote the set of all representations 7 of A
which are part of a covariant pair (V,7) = L € O as ResO. Let S = {z € A:
: 7(x)|(HL)i = 0 for all 7 = ResL € Res®}. Then § is an a-invariant closed left
ideal of A, and B = cl(S$*S) is an a-invariant hereditary subagebra of A. Suppose,
for some 2; € S and 7y = ResL; € ResO, that 71(z1) # 0. Then B # (0), and
also, letting W = {L = (V,7) € (G xo A) : 7(21) # 0}, we have that ONW is a
non-ecmpty open subset of (G x4 A). As G x4 B is a non-zero hereditary subalgebra
of G x4 A [13], it follows from the above and [17, Propositions 4.1.9, 4.1.10 and
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4.1.12] that {R € (G xo BY : R = L|G x4 B acting on L(G xo B)Hy, for some
L € O N W} is a non-empty open subset of (G xq BY. If L = {V, 1) then clearly
L(G x4 B)Hy = 7(B)HL € Hp, and R = (V’,7') where V' equals V restricted to
7(B)HL, and 7' equals 7|B acting on 7(B)Hr. Thus Hr C Hy, and (HR): C (Hz):.
On the other hand, for L = (V,7) € ONW, 7(B)|(HL): = 0so that (Hr); C (Hr)*,
and (HR)i C Hp € ((Hp):)*. Thus (Hg): = (0), contradicting the assumption that
Sp(a|B) = G and thus that (G x4 B)xi(G X« B) is essential in G x o B. Thus, indeed,
forall L = (V,7) € @ and all z in § (and in particular for z = a), 7(z) = 0. |

Before proceeding, we briefly recall some results from [7] and [5] concerning ideals
of A and of G x4 A. By [7, Proposition 11] and [5, Lemma 3.10], for each ideal J
of G X, A, there exists a unique smallest a-invariant ideal SubJ of A such that
G Xo SubJ 2 J. The ideal G x4, Sub J is invariant under the dual coaction & of G
on G x4 A (see [5]), and furthermore, every ideal of G X4 A invariant under & is of
the form G x4 I, I an a-invariant ideal of A [5, Theorem 3.4]. Thus, J¥, the smallest
&-invariant ideal of G x 4 A containing J, equals G X Sub J [5, Proposition 3.11}. The
map Res, introduced in the proof of Proposition 3.5, can be unambiguously defined on
ideals also, so that if L = {V, 7} is a representation of G x o 4, Res (kernel L) = kernel 7
[7, Proposition 9]. Before giving our characterization of the meaning of the condition
I'(@) = G (Theorem 3.7), we need the following preparatory lemma:

LEMMA 3.6. Let (G, A, a) be a separable C*-dynamical system, and let J be an
ideal of G xo A. Let a € Sub J and suppose that 7(a) =0 for all T = ResL, L € J.
Then a = 0.

Proof. Of course, we identify J with {L = (V,7} € (G xa A) : L(J) # (0)}.
Writing PR(G x o A) for the space of primitive ideals of G x4 A, we first show that if
P € PR(G xq A) and P 2 G X, Sub J, then there exists @ € PR(G X4 A) such that
Res@ = Res Pand @ 2 J. Forifnot, then (({Q € PR(Gx4A) : Res@ = Res P} D J.
But by the proof of Proposition 4.2 of [5], GxoRes P = [|{Q € PR(Gx,A) : ResQ =
Res P}, and we would have G x, Res P D J. By the discussion preceding this lemma,
it would follow that Res P 2 Sub J and thus that

P D G x4 Res P ([5, Proposition 3.11])

2 G X4 Sub J, a contradiction.

Now if a # 0, there exists L = {V, 7} € (G x4 Sub JY with (Res L){(a) # 0. Letting
P be the kernel of L, considered as an element of (G X, A), we have P 2 G x4 Sub J.
Choose @ as above, so that @ € PR(G x4 A) with ResP = ResQ and Q 2 J. Let
R = (W, o) € (G xq AY with kernel R = Q. Then we can view R as an element of J,
so that by hypothesis, (Res R)(2) = 0. As kernel {(Res R) = Res (kernel R) = Res@ =
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= Res P = kernel(Res L), (Res L)(a) = 0 also, a contradiction. Thus a = 0. |

THEOREM 3.7. Let (G, A,a) be a separable C*-dynamical system, with G
compact. Then I'(a) = G if and only if every ideal J of G xo A is essential in
J% =G xq SublJ.

Proof. =) Let J be an ideal of G x A. As in the discussion prior to Proposition
3.5, the assumption that Sp(e) = G implies that (G x4 A)xi(G x« A) is an essential
ideal in (G x4 A). Thus, to show J is essential in G x4 Sub J, it suffices to show
J N (G xq A)xi(G X A)) is essential in (G x4 SubJ) N ((G xa A)x:(G xo A)).
However, by the Morita equivalence of (G X4 A)xi(G X o A) with xi(G %o A)x: = Si,
it suffices to show that J M 5; is essential in (G x4, SubJ) N S;. Recalling that 5;
equals the set of all constant functions from G to A%, we see it suffices to show that
if a € SubJ N A% and (J N §;)é@ = (0), then & = 0, where & € G X4 A is defined by
@(t) = a, t € G. Accordingly, assume (JNS;)d = (0), and let L{V, 7} € J C (G x« A).
Then L(JNS;)L(&)|(HL)i = L(JNS;)7(a)|(HL)i = 0. Asa € A%, t(a)(HL)i C (HL)i.
If (Hp)i # 0, then L|J N S, acting on L(J N S;)H = (HL)i, is irreducible, and if
r(@)|(Hr)i # 0, then L(J N Si)r(a)|(HL)i # 0. Thus, if L € J and (Hr) # 0,
then 7(a)|(Hr); = 0, while if L € J and (Hz); = 0, clearly 7(a){(Hr)i = 0. As
a consequence, for all L = (V,7) € J, m(a)|(Hr); = 0. Thus, by Proposition 3.5,
VL = (V,7) € J, 7(a) = 0, and by Lemma 3.6, @ = 0. Thus certainly & = 0, and we
are done.
<) We assume every ideal J in G x4 A is essential in G x4 Sub J, and wish to
show that I'(a) = G. First we show that Sp(a) = G, i.e., that (G xa A)xi(G x4 A) is
essential in Gx o, A. By hypothesis, (Gx o A)xi(GX o A) is essential in an ideal of Gx oA
of the form G x4 I, I a G-invariant ideal of A. However, by the proof of Theorem 3.2
of [6], the only such ideal of the form G x I which also contains xi(G Xo A)x: = S;
is G x4 A itself. What remains to be shown is that for every non-zero a-invariant
hereditary subalgebra B C A, every ideal K of G x4 B is essential in an ideal of the
form G x o I, I an a-invariant ideal of B, so that by the argument above, Sp(a|B) = &
also. As G x4 B is a hereditary subalgebra of G xqo A [13], K = (G xo B)NJ for an
ideal J of G x4 A, and J is essential in G X, L, for L an a-invariant ideal of A. We
shall show K = (G x4 B) N J is essential in (G x4 B) N(G x4 L), which, as in the
proof of the second part of Theorem 3.3, equals G x4 (BN L}, and we shall be done.
Let € (G Xo B)N (G X L) and suppose ((G xo B)YNJ)z = 0. Let {eqa} be an
approximate identity in G xo B and let j € J. Then e}j*jes < |lj]|°e¢hea € GXxo Bso
egJ*jea € (G xo B)NJ and thus 0 = z*e}, j*jeaz = (jeaz)*(feat), 50 jeox = 0 and
asz € G x4 B, li;njeo,:c =j2 =0. As J isessentialin GxoLandz € Gxo L, £ =0.
n
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THEOREM 3.8. Let (G,A, «) be a separable C*-dynamical system, with G com-
pact. The following are equivalent:

(1) G xqo A is prime;

(2) A is G-prime and I'(e) =

Proof. (1)=(2). If the crossed product algebra G x4 A is prime, then certainly
A is G-prime, and as every ideal of G X, A is in fact essential in G x4 4, it follows
from Theorem 3.7 that I'(«) =

(2)=(1). Let J be an ideal of Gx o A. By Theorem 3.7 J is essential in Gx oSub J,
and we need only show that if A is G-prime, then every ideal of the form G xo I, I a
non-zero G-invariant ideal of A, is essential in G x4 A. Ilowever, as I is essential in
A, this follows from [14]. a

4. EQUALITY OF SPECTRA

Even when G is commutative, I'() is rather difficult to compute. In this section
we present several situations in which I'(e) = I'(a). Of course, we always have
I(a) C I'(e).

Before presenting the first situation in which equality of spectra holds, we need
the following;:

LEMMA 4.1. If a C*-algebra B is a finite direct sum of simple ideals, then each
hereditary C*-subalgebra of B is also the direct sum of a finite family of simple ideals.

m
Proof. Let B = @ I;, each I; being simple, and let D be a hereditary C*-
i=1

m

-subalgebra of B. Tor d € D, one has d = Zd,- with d; € (I;)4 for 1 < j < m.
Jj=1

Thus 0 € d < dfor cach j, hence {d; : 1 € j < m} C D as D is hereditary. It follows

that D = @ (DN 1;), each non-zero summand D N I; being an ideal of D and also a
simple C"-algebra, as it is a hereditary subalgebra of the simple C*-algebra I;.

PROPOSITION 4.2. Let (G, A, «) be a C*-dynamical system, with G compact and
with A G-simple. Suppose, for some I € PR{A), that the isotropy subgroup G =
={g € G:ay(I) =1} is finite. Then I'(a) = I'().

Proof. As A is G-simple, it follows from [7, Lemma 22} that the orbit of I
in PR(A) is all of PR{A), hence the isotropy groﬁp of every primitive ideal of A
is finite. We shall first prove that Sp(a) = Sp(a), and then, for B € H(A) and
J € PR(B), that G is finite. As B is G-simple, the first part of the proof will imply
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Sp(a|B) = Sp(a|B), and hence I'(a) = I'(a).

Let 7 € G, and denote by 8 the action @ @ ad 7 of G on A ® B(H,). Obviously
the latter is G-simple under the action of 8, Gr = Grgp(#,), and by [7, Lemma
22] not only is the f-orbit of I ® B(Hy) equal to all of PR(A ® B(Hy)), but also
the map of G/Gy onto PR(A ® B(H.)), given by ¢G5 — B,(I ® B(Hx)), ¢ € G,
is & homeomorphism. In particular, PR(A ® B(H,)) is Hausdorff, I @ B(Hy) is a
maximal ideal, and hence (A ® B(H.))/(I @ B(Hy)) is simple. We can apply to the
C*-dynamical system (A ® B(H.),G,B) Theorem 2.13 (i) of [8] to obtain an iso-
morphism between G xg (A ® B(Hx)) and (Gr x5 (4 ® B(Hx))/(I ® B(Hx))) ®
K(LY%G/Gr)). As Gy is finite and (4 ® B(H))/(I ® B(Hy)) is simple, it follows
from [21, Theorem 3.1] and the above isomorphism that G xg (A @ B(Hy)) is the
direct sum of finitely many simple ideals. Now by [22] the fixed-point subalgebra
(A® B(Hx))? is x-isomorphic to the hereditary subalgebra x:(G x5 (A ® B(Hx)))xi
of G xg (A® B(H,)) and is thus, by Lemma 4.1, also a finite direct sum of simple ide-
als. Obviously, then, any essential ideal of (A® B(H~))? coincides with (AQ B(Hx))?,
and §1§(a) = Sp(a).

Now let B € H*(A). First observe that B is G-simple as every ideal of B is of

the form I'N B, I an ideal of A. If I N B is a-invariant, then letting I; = [} ag(I),
geG
we have INB =11 N B. As A is G-simple, I; = (0) or A, so I; N B = (0) or B, and

B is indeed G-simple.

Now if I € PR(A) and I 2 B, then [ a,(I) 2 B. As B # (0), the G-simplicity
9€G
of A implies [ ay(I) = A, hence I = A. It follows that hull(B) = @ and, by [17,
9€G
Proposition 4.1.10], that I — I N B is a homeomorphism of PR(A) onto PR(B). As

ag(INB) = ay(I)N B, we have IN B = ay(IN B) if and only if I = ay(F). Thus, for
J € PR(B), Gy is indeed finite, so that gp(alB) = Sp(«|B) by the first part of the
proof, and I'(a) = I'(a). ]

ProrosiTioN 4.3. Let (G, A,¢) be a separable C*-dynamical system with G
compact. If A is G-simple and also a type I C*-algebra, then I'(a) = I'(a).

Proof. Let B € H*(A). As in the proof of Proposition 4.2, B is also G-simple.
Now let = € G and, as before, let # = a ® ad w, the action of G on A ® B(H.). As
B is type I and G-simple, it follows from [4, Lemma 3.2] that PR(B), and hence also
PR(B® B(Hy)), are Hausdorff and that, for P € PR(B® B(H)), that the G-orbit of
P equals all of PR(B ® B(H,)). Again, by [7, Lemma 22}, we get that gGp — B,(P)
is a homeomorphism of G/Gp onto PR(B® B(H{x)), and by [8, Theorem 2.13 (ii)] we
have a *-isomorphism between G x5 (B ® B(H,)) and a quotient of C*(H)}® K(H),
where H is a compact group and H is a Hilbert space. In particular, the primitive
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ideal space of G xg (B ® B(H,)), like that of C*(H), is discrete. The primitive ideal
space of (B® B(H))Pis likewise discrete [22], hence an essential ideal of (B® B(Hy))?
must equall all of (B ® B(H,))?, and Sp(a|B) = Sp(a|B).

An action o of G on a C*-algebra A is called pointwise unitary if for each 7 € A
there is a strongly continuous representation U of G on H, such that {U,r) is a
covariant pair for the system (G, A, a). The action « is called locally unitary if for
each 7g € A there exists a strictly continuous homomorphism v : G — U(M(A)) and
a neighborhood N of 1 such that for each 7 € N, (F oy, 1) is a covariant pair for
(G, A, ). These definitions were introduced in [19]. Clearly, every locally unitary
action is pointwise unitary, and it is proven in [19, Proposition 1.3] that for an action
of a second countable compact group on a separable continuous trace algebra, the
converse is also true.

A C*-algebra A is called n-homogeneous (n < 00) if each irreducible representa-
tion of A has dimension n. Fell [3] has shown that an n-homogeneous C*-algebra A
is *-isomorphic to the C*-algebra of all continuous sections vanishing at infinity of a
locally trivial bundle over A whose fibres all equal the n x n matrix M,. Conversely,
each such C*-algebra of continuous sections is an n-homogeneous algebra.

LEMMA 4.4. Let A be the C*-algebra of all continuous sections vanishing at
infinity of a locally trivial bundle over the locally paracompact space X = A, with
fibres M,,. Suppose a is a pointwise unitary action of G on A and {N;} is an open cover
of relatively compact subsets of X such that, for each i, the ideal of A corresponding
to N; is naturally isomorphic to Co(N;, M,,). Then '

(1) I(@) = N7 (2lCo(s, M),
(2) I(e) = Qf(aIC’o(Ns,Mn))-

Proof. (1): Let 7 € () I'(«|Co(N;, Mp)) and consider B € H*(A). If cl( Ba()" By (1))

is not essential in (B ® B(H,))*®** , then there exists a non-zero positive element
¢ in (B ® B(H,))*®*" such that By{m)*Ba(n)c = 0. For some i, c|N; # 0. Let
f : X — [0,1] be a continuous function that vanishes off N; and is identically 1
on some compact subset of N; on which ¢ is not identically zero. We can view f
as belonging to the center of A, and consider p = [pre) = [Skef], 1 < k1 < d(n),
as an element of A ® B(H,). Thus pc # 0 and the entries of pc belong to B’ =
= BN Co(N;, M,), which can readily be seen to be a non-zero a-invariant hereditary
C*-subalgebra of Co(Ni, My). Since pc € (B' ® B(Hx))*®*" and Bj(w)* By(r)pc =
0, we get a contradiction to = € Sp(«|B’). Thus cl(By(n)* Ba(r)) is essential in
(B® B(Hy))*®*47, and (\ I'(«|Co(Ni, M) C I'(e). The converse inclusion is obvi-

ous, and (1) is established.



SPECTRA FOR COMPACT GROUP ACTIONS 395

(2): As above, the inclusion I'(e) C ﬂf’(aICo(N,-, My,)) is readily checked, and
we need only show, for 7 € [ I'(e|Co(Ni, My)), that # € I'(a). Accordingly, let
i

B € H*(A), let £ > 0 and let b € (B ® B(H,))*®2d7. Let {p;} be a partition of
unity on X such that for each j, cl{z € X : ;{(x) > 0} is a compact subset of some
Ni(j)- Denote N/ = {z € X : p;(z) > 0} and let F be a finite set of indices such that
for j€ F, NJNK =@, K being the compact set {z : ||b(z)|| > ¢}. For each j &€ F
choose a function f; in Co(X) such that 0 < f; < 1, f|Nf =1, f;|(X\ Nisy) =0,
and denote by p; the element diag(f;,..., f;) € Co(Ni;)) ® B(Hx), and by B the
algebra BN Co(N; (j), My,). Obviously B/ is an a-invariant hereditary C*-subalgebra
of Co(Ni(jy, Mn) and p;b € (B? @ B(H,))*®*4*. Hence there exists h; € Bi(x)* Bi(r)
such that ||pjb— hj|| < €. Letting gj = diag(yp;,...,¢;) € C{)(N"(j), Mn)® B(Hy), we
have h = gjh;j € By(r)* By(m).
jeF 7

We claim that |[b — k|| < 3¢. Indeed, suppose £ € K. Then Z;pj(a:) =1,

and if z € N for some j € F, then ||b(z) — hj(z)|| < &. Thus III;T(G::; - h(z)]| =

= Z q,-(:c)(b(:c) —hj(z))|| < &. If now z € NI\ K then from ||b(z) — h;(z)|| < £ we

jeF

get ||hj(2)]| < € +[|b(z)|| < 2¢. Thus, if z € ( U N]’) \ K, we have ||b(z) — h(z)|| =
jEF

jEF JEF JjeF
Finally, if z ¢ (J N/ then ||b(z)|| < € and h(z) = 0 so ||b(2) — h(z)|| < €. We have
j€F

= ‘b(z) - qj(l‘)hj(x)“ <@+ |>_ Qj(m)hj(i‘)‘ <e+ ) pi@)hi(@)l < 3e.

proven cl(By(7)* By(7)) = (B ® B(H))*®* " and we conclude that 7 € I'(a). ®

PROPOSITION 4.5. Let o be a locally unitary action of a compact group G
on an n-homogeneous (n < oo) C*-algebra A whose spectrum A is compact. Then
I'(a) = I'(a).

Proof. We shall identify A with the C*-algebra of al! continuous sections van-
ishing at infinity of a locally trivial bundle of n x n matrix algebras over A. We are
going to show that each 7 € A has an open, relatively compact neighborhood N over
which the bundle is trivial, and such that I'(a|Co(N, My)) = I'(«|Co(N, M,,)). The
conclusion of the proposition then follows immediately from Lemma 4.4.

Let 7o € A and suppose that N’ is a relatively compact open neighborhood of
7o over which the bundle defining A is trivial and for which there exists a strictly
continuous homomorphism u : G — U(M(A)) such that

ag(a)(z) = py(z)a(z)py(z)*, a€A, geG zeN.
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Each z +— u,(z) is a continuous function from N’ to U(M,). For 7 € G let Py(z) =
= [ xx(9)py(z)dg € M,. Then z — Py(z) is a projection-valued continuous func-

tion on N’, and the representation g — p,(z) restricted to the range of Py(z) is
equivalent to a multiple of m, say nx(z)w, with n.(2) < co. The representation
g — pg(z) is equivalent to the direct sum Z @®ny(x)7, where only finitely many

arEG'
terms are non-zero. The continuity of P, implies that & — nx(z) is locally constant.

If p(zy) is equivalent to W = E nx(zo)7, with F a finite subset of G, then there is

TEF
an open neighborhood N* of zg such that the functions z +— ns(z), for 7 € F, are

constant in N”. Thus, since n = Z nx(zo)d(7), for z € N"u(z) is equivalent to

] mEF .
W, and we have shown that there is a representation W of G on C” and a function

z + v(z) from N" — U(M,) such that us(z) = v(z)W,v(z)*, g €G, z € N".

We claim now that, after passing to a smaller neighborhood of zg if necessary, the
function v can be chosen to be continuous. Indeed, let U, be the unitary group of the
commutant of {W, : ¢ € G}. We want to show that the map z — v(z)U; from N” to
U(M,)/U, is continuous. Let {z;} be a net converging to z in N”. The continuity of
the above map will be proven once we show that for each subnet {z;,} of {z;} such that
{v(z:;)} converges, we have li}n v(zs;)U1 = v(z)U;. Suppose v(z;) — s € U(My).
Then py(z) = sW;s*, g € G, hence v(z)~!s € U; which means that sU; = v(z)U;.
Now, by [1, p. 110], there is a neighborhood of v(zo)U; in U(My)/U; on which the
quotient map U(M,) — U(M,)/U; admits a continuous section. The claim made at
the beginning of this paragraph is established by composing this continuous section
with z — v(z)U;.

From the above, it follows that we have a representation W of G on C", a
neighborhood N C N’, and a continuous map v : N — U(M,) such that

to(z) = v(z)Wyu(z)', g€G, z€N.

One sees immediately that I'(a|Co(N,M,)) = TI'(adp|Co(N,M,)) =
= I'(ad W|Co(N, M,)), and that I'(a|Co(N, My,)) = I'(ad W|Co(N, M,)). More gen-
erally, if 8 is any action of G on a C*-algebra and v is an automorphism of that algebra,
then the spectra of 8 and of Yo S oy~ are equal. Now ad W on Co(N, M,) can be
identified with id ® ad W on Co(N) ® M,;, and clearly I'(id @ ad W) = I'(ad W) and
I'(id@adw) = I'(ad W), where in the last two equalities ad W is viewed as acting
on M,. By Proposition 4.3, I'(ad W) = I'(ad W), and we get I'(a|Co(N,M,)) =
= I'(a|Co(N, M,,)) as desired.
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5. COUNTEREXAMPLES

We conclude the paper with two counter-examples to what might be considered
natural conjectures. The first concerns equality of the spectra I'(e) and I'(a), which,
in light of Propositions 4.3 and 4.5, one might be tempted to speculate would be
equal for all actions on type I C*-algebras. The second concerns equality of the
spectrum of an action o of G on A and of the double-dual action d=a®ad)of G
on A ® K(L?*(G)), A being the left-regular representation of G. For G abelian, one
has I'(a) = I'(&) [11, Lemma 3.1] and I'(a) = I'(&) [17, Proposition 8.11.6].

The first example shows that we can have I'(e) # I'(a) even for an action
of a commutative compact group on a commutative C*-algebra. It also provides a
counterexample to a claim made in [9].

EXAMPLE 5.1. Let o be the action of G = Z; = {0,1} on A = C([-1, 1]) given
by
Q‘]_(f)(t) = f(_t)' feh te [_11 1]

For x € G = {x0,x1} let M, be the operator of multiplication by x on L*(G).
Then x ~ M, is a unitary representation of G. Denote by v the action ad A of G
on K(L*(G)) = B(L*(G)). By [12, Proposition 5.3] (see also {21, Proposition 4.3])
G x4 A is naturally isomorphic to the fixed-point algebra (4 @ B(L?(G)))*®". The
dual action of G on G X A is mapped by this isomorphism to the restriction of
id® ad M to (A ® B(L*(G)))*®". If we identify A ® B(L%(G)) with {[f;;] : fi; €
€ C([-1,1]), 1€ 4,7 €2} then

(A® BLY(G))*® = {[fij] : fut) = fea(=1), fra(t) = fur(~t), ~1 << 1}

and (id® Alxl)[f,'j] = [g.-j], where gis = f,'.' and gij = -—f,-j if ;é ] Consider the
following one-dimensional irreducible representations of (A ® B(L%(G)))*®":

m1([fis]) = f11(0) + f12(0),

m2([fi;]) = f11(0) = f12(0),

and their kernels P, = 73 1(0), k = 1,2. Clearly (id ® My,)(P1) = P2 ¢ Pi. Thus,
by {11, Lemma 3.4] I'(e) = {xo}. On the other hand, every non-zero a-invariant
hereditary C*-subalgebra of C([-1, 1]), that is, every ideal of C([—1,1]) that corre-
sponds to a symmetric closed subset of [—1, 1] different from [—1, 1] itself, contains a
non-zero odd function. It follows that I'(a) = {xo, x1} and we have I'(a) # I'(«) for

this action.
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The next example shows that, unlike the situation for G commutative, I'(«) need
not equal I'(&), while I'(@) need not equal I'(&).

EXAMPLE 5.2. Let G = S3 and let i, x and 7 denote the three elements of G, with
i being the trivial representation, x the non-trivial one-dimensional representation,
and d(r) = 2. As in [18, Example 3.9], if A = M, and « is the action ad 7 of
S3 on Mz, then G x, A is not simple, so I'(a) (which equals I'(a) by Proposition
4.2) is a proper subset of G. Always i € I'(a), and here x € I'(«). Indeed, ad™
is equivalent with # @ 7 = i ® x @ 7 so that A® is one-d_imensiona.l and thus the
one-dimensional representation ¥ € I'(e). Thus I'(a) = I'(e) = {i,x}. However,
for the action & = a @ adA on G x5 (G X, A) X A® K(Ez(G)), the fact that
A2idx®2r while @7 = i@ y @ 7 implies that 7 @ X contains ¢. Letting p be
the projection in B(Hx ® £2(G)) corresponding to 1, one has p(4 ® K(£2(G)))p is an
&-invariant hereditary subalgebra on which & acts trivially, hence x € I'(&) U I'(&),

and I'(&) = I'(&) = {i).
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