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A DESCRIPTION OF SPATIALLY PROJECTIVE
VON NEUMANN ALGEBRAS
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ABSTRACT. Let R be a von Neumann algebra on the Hilbert space H. Then
H, as a Banach left module over R with the multiplication a - z = a(z), is
projective if and only if the following conditions are satisfied: 1) R is of type
I; 2) the center of R is the weak-operator-closed linear span of its minimal
projections; and 3) in the standard decomposition R = ZR""”' where
R is @ von Nenmann algebra of type I, with the commutant of type In,
there is no non-zero summand for which both m and n are finite. The most
difficult part of the proof is to show that H is not projective in the case of
an infinite type I factor in the standard form.

As an application, it is shown that the indicated conditions on R char-
acterize the class of von Neumann algebras with the property of vanishing
their cohomology groups with coefficents in certain "operator” R-bimodules.

KevywoORDS: Projective Banach module, von Neumann algebra, spatial pro-
Jectivity,

AMS SUBJECT CLASSIFICATION: Primary 46; Secondary 18.

INTRODUCTION: THE FORMULATION OF THE MAIN RESULTS AND SOME DISCUS-
SION

Let A be a Banach algebra. Recall that a left Banach A-module P is called
projective, if every continuous morphism of left Banach A-modules with P as
codomain has a right-inverse continuous A-module morphism, provided that it
has a right-inverse continuous linear operator. For the equivalent definition in
terms of cohomology groups, and for other alternative definitions, see e.g. {7] or

[8].
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Now suppose that E is a Banach space and that A is some Banach algebra
of operators acting on E. Consider E as a left Banach A-module with the outer
multiplication az defined as a(z) foralla g A,z € E.

DEFINITION, The algebra A is called spatially projective if the module E is
projective.

Which operator algebras are spatially projective? Until recently, the available
information was rather scanty. Apart from the trivial case of finite-dimensional
semi-simple algebras, it was known that an operator algebra is spatially projec-
tive provided it contains a column of 1-dimensional operators {i.e. the set of all
operators of the form f(-)z, where z € E is fixed and f runs through £*.) On
the other hand, some counter-examples were known: these included certain nest
algebras [4], and also C[0, 1] naturally represented on £2[0, 1].

In the present paper, we concentrate on the ‘classical’ case of von Neumann
algebras, that is on those operator algebras on Hilbert spaces which are self-adjoint
and weak-operator closed. To formulate the result, let us recall the following known
fact of their structure theory. Every von Neumann algebra R of type I acting on
a Hilbert space H, has a unique decomposition into a direct sum of von Neumann
algebras R, n, where m and n are cardinalities not exceeding dim H, such that
Rumn is of type I, and its commutant is of type I, (see e.g. [10], Section 9.3).

MaIN THEOREM. A ven Neumann algebra R is spatially projeclive if and

only if it has the following properties:
(i) R is of type I;

(i1) the cenire of R is the weak-operator-closed linear span of its minimal
projections (in other words, the centre is isometrically *-isomorphic to the algebra
£°(M) for some set M };

(11) there is no non-zero summand Ry n (see above} for whick both m and
n are infinite.

Let us remark that the properties (i) and (i1) combined are equivalent to the
property that R itself is the weak-operator-closed span of its minimal projections
([10], Exercise 6.9.37). (In what follows, such an algebra will be called atomic).
Further, the property (ii) easily implies that R has a unique decomposition into a
direct sum of a family of factors. Therefore the theorem could also be formulated
in the following way:

A von Neumann algebra is spatially projective if and only if it is atomic, and
its decomposilion inlo a direct sum of faclors coniains no infinile factor having
infinile commutant.
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(In particular, if the algebra has, as a direct summand, an infinite factor in the
standard form, it is not spatially projective).

The solved question, apart form its independent interest (when do such im-
portant algebras have such an important homological property?), is connected
with the following known problem. As usual, we consider B(H), the algebra of all
bounded operators on a Hilbert space H, as a Banach bimodule over an arbitrary
Banach algebra of operators on H. Is it true that the 1-dimensional cohomology
group H!(R,B(H)) vanishes for every von Neumann algebra R on H? In other
words, is it true that every continuous derivation of such an R with values in B(H)
is inner? This problem was raised by Christensen, who established its connections
with various questions concerning operator algebras’(in particular, with the sim-
ilarity problem in representation theory). He also managed to obtain a positive
answer for several important classes of algebras (see [1] and references therein).

In its full generality, the problem of Christensen still remains open. What will
happen, however, if we consider a more burdensome cohomological condition on R,
namely, the vanishing of H*(R, B(H, X)) for all left Banach R-modules X7 (Recall
that the space B(Y, X) of all bounded operators between left Banach modules Y
and X has a structure of a Banach R-bimodule with the outer multiplications
defined by (a-)(z) = a- ¢(z) and (¢ a)(z) = plaz) for a € R, ¢ € B(Y, X) and
z €Y ([7), [8)). In the case Y = X = H, we have the already mentioned bimodule
B(H)).

As it turns out, the answer to such a ‘more rigid’ question is in the negative.
The above formulated theorem, combined with standard facts of Banach homology
([7], Chapter III; [8] Chapter VII), immediately implies the following:

COROLLARY. Let R be a von Neumann elgebra on H. Then:

(i) if R satisfies the conditions of the main theorem, we have H" (R, B(H,
X)) = 0 for all left Banach R-modules X and alln > 0;

(ii) if R fails to satisfy these conditions, then there ezists a left Banach R-
module X for which H*(R,B(H, X)) # 0 (or, equivalently, for which there exists
an outer derivation on R with values in B(H, X).)

Now we proceed to the proof of the main theorem. First, however, we need
to discuss some notations. Qur argument will use, sometimes simultaneously,
different types of tensor products of Banach spaces. The projective, injective (or
weak) and the Hilbert tensor products will be denoted respectively by the symbols
@,@ and ®. To avoid a possible ambiguity, we shall use the same symbols for

elementary tensors in the respective spaces (e.g. 2Qy € H'@H" or a®z € RQH)
and also for representative types of tensor products of operators (e.g. a®b acting
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on H'@H"&c). The inner product on a Hilbert space is always denoted by (-, ).
The identity operator on E is denoted by 1g (or simply 1 if it is clear which F is
intended).

In what follows, we essentially use the following standard method to check
the projectivity of a given left Banach module P over a unital Banach algebra A.
Consider the so-called canonical surjeclion np : ARP — P : a®z — a- z{a €
A,z € P). Then P is projective if and only if 7p has a right-inverse continuous
A-module morphism.

1. THE BEGINNING OF THE PROOF: THE IMPORTANCE OF BEING ATOMIC

Let R be a von Neumann algebra on H. Denote the (lattice-theoretic) union of all
its minimal projections by p,, and put p. = 1 — ps, H, = Imp, and H, = Imp..
It is easy to see that the property H, = H (i.e. that H, = (0)) means just that &
1s atomic.

Consider the free Banach left R-module with basic space E: in other words,
the module RE with the outer multiplication well-defined by a - (b&y) = ab®y
(a,b € R,y € E) (see e.g. [8], Chapter VI).

THEOREM 1. Supposc that ai least one of the Banach spaces E and R has
the approzimation properly. Then every conlinuous R-module morphtsm ¢ : H —
RIE is equal Lo zero on H,.

Proof. Assume, on the countrary, that we have p(z) # 0 for some fixed
z € H,. The following argument, which leads us to a contradiction, is divided into
several stages. The first stage uses an observation actually due to Selivanov (cf.
(7], Proposition 4.4).
(i) There ezisis a continuous R-module morphism 3 : H — R such that ¢(z) # 0.

Consider the ‘canonical’ operator RIE - RQE :a@y — a® yla€ER,y €
E). The condition concerning the approximation pr;perty implies t\flat the opera-
tor is injective (see e.g. {2], Theorem 3.4 a) = b) and 3.5 a) = b)). According to
the definition of the norm in 'R,@ E, it now follows that there exist functionals f €
R* and g € E” such that f®g(p(z)) # 0. Therefore, since f®g = (f@l)(l@g),
there exists ¢ € E* such that the generator 18g : R®E — R = R®C, which
is well-defined by (18¢)(a®y) = g(y)a, sends ¢(z) to a non-zero operator. It
remains to notice that 1®g is a continuous morphism of R-modules, and hence
that 1 := (18g¢)y has the desired properties.

Now put a = t(z) and denote the projection onto Ima (which certainly
belongs to R) by p.
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(ii) There ezists a sub-projection p' of p, belonging 1o R, and 0 > 0, such that we
have ||ga|| > 0, for every sub-projection q of p' that belongs to B(H).

Consider the polar decomposition a = Hy, where b = v/aa* is a positive
operator and v is a partial isometry. Then ||a[] = ||A]| and Ima = Imh, so that
Imf is the range of p; furthermore, v and A, and hence all the resolution of the
identity for A, belongs to R. The spectral theorem implies that there exist ¢ > 0
and a projection p’ € R such that fp’ < h and p’ € p (one can take, for example,
every § with 0 < 0 < ||A|| and p' = 1—py, where pr(X € R) is the resolution of the
identity for h.)

Now suppose that ¢ € B(H) is a sub-projection of p’. Then

llgall = Vl(ga)(ga)* [ = Vigaa*ql| = Viigh?dll = VII(ah)(gh)" ||
= llghll = lighllllall > llghgl]-

At the same time, it follows from 6p’ < h that ghq > ¢fp'q = 8q. Hence ||lghq|| >
04l = 8, and we have the desired inequality.
(iii) The end of the proof.

Since ¢ € H, we have ¢ = p.(2) = p. - x. Therefore, since 9 is a morphism of
R-modules, we have a = 9¥(z) = p. - ¥(z) = p.a. Hence Ima C H,, that is p < p,
and thus p’ < p.. But it follows from the definition of p, that it has no minimal
sub-projection]sV in R. This obviously implies that for each natural number N,p’

has the form ) ¢; where ¢; are non-zero, mutually orthogonal projections in R.
1

From this

N
llzll* > Ml @) = ) llgs(=)I*.
. i=1

It follows that there exists j € {1,..., N} such that ||g;(z)||* < ||z]|*/N. Using,
again, that 1 is a morphism, we have that ¥(g;(2)) = ¥(g; - =) = ¢; - ¥(z) = gja.
Hence, the previous inequality implies that

lasall = [$(a; DI < 1 g5 (@)l < (['}bl') =1l

At the same time, according to what was proved in (2), we have {|g;a|| > @ for all
i=1,...,N. Since N can be closed arbitrarily, we have come to a contradiction. §
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.2. CONTINUATION: THE SUFFICIENT CONDITION

THEOREM 2. Let R be a von Neumann algebra, on ¢ Hilbert space H, which
has a decomposition into a direct sum of type-1 faclors. Suppose further that each
of these summands has a least one of the following two preperiies: eilher the factor
itself or its commulant is finite. Then R is spatially projective.

Proof. Let us recall that the conditions of the theorem, in its detailed form,
mean the following. There exists a family po{a € A) of the central projections
of R such that H decomposes into a Hilbert direct sum of spaces H, = poH.
Furthermore, every H, can be represented as a Hilbert tensor product H 'QH!,
such that the algebra R, := p,R, being considered as an operator algebra on Hy,
has the form B(H.)®C1; in other words, it consists of operators a®1, where a
runs through B(H.). Finally, the last condition of the theorem means that the
cardinality n{e) := min {dim H},, dim H/'} is finite for every o € A.

According to what was said in the introduction, it is sufficient to show that
the canonical surjection 7y : R®H — H has a right inverse that is a continuous
morphism of R-modules, say p. Moreover, it will turn out that we can construct
p so that {jp]] = 1.

For every o € A, we choose an orthonormal set ef,.. .,eg(a) in H) and an
orthonormal basis e, (m € I,) in HY (the cardinality of the index set I, is, of
course, dim HY). In what follows, we write for brevity e?, = e?®ej, € Ho.
Further, for every a € A and vectors z;,z, € H, we introduce the operator on
H which acts as the zero operator on H & H, and is well-defined by z'Qy’ ~—
(2, 21)z20¥ (z' € H.,y € H!) on H, = H,®HY; (in other words, it acts on
H, as the tensor product of the one-dimensional operator z’ ~ {2',2;)z2 on
H! and the identity operator on H). We denote this operator by z;0z2; it
certainly belongs to R and is a partial isometry provided [|z4f|||lz2]] = 1. It is
obvious that for any a € R with the restriction @1 (b € B(H,)) on H, we have
a(z1$x2) = £:0b(z,); in particular, z;Oz2 depends linearly on z2. Observe also
that (z;0z2)* = 2202;.

Consider the set Hyg of vectors 2QeS, € H* C H, for all possible « € A,z €
H’ and m € I,,. Define the map pw : Hoo — R®H by

n{a)
(1) po(z®el) = @) > (ef 0x)Ref s -

i=1
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Let Hy be the dense subspace of H formed by arbitrary sums of vectors belonging
to Hgp. It is obvious that pg has a unique extension to a linear operator pg :
Ho — R®H. Observe that the definition of py easily implies the equations

(3) pola - ) = a - po(2)
and
(4) rypo(z) =z

for every a € R,z € Hp.

Let us fix, for a time, some z € Hy. Obviously there are different indices
alj) € A,j=1,...,M such that z = f: zj with z; € Ho N Hy(jy. These sum-
mands, in their turn, have the form =

N(j)

(5) Z = Z z.f,k®éin(k)
k=1

where z;; € H},(;y and m(k) (1 € k < N(j)) are different indices in Io(;). (Here,
and in what follows, we write the upper index j instead of a(j) in extensions like
e{n(k),e{, etc.).

We now want to rewrite po(z) € ROH in a form more convenient for the
estimation of its norm. For every j = 1,..., M we choose an orthonormal basis,
say é{, .. .,é’,'{(j) in the linear span of the vectors z;,...,%; n(j). Observe that
K(j), that is the dimension on this span, does not exceed both of dim Hg(j) (i.e.
the cardinality of 1,(;)) and dim Ha( )i hence K(j) € n(j) (where, for brevity, we
write n(j) instead of n(a(7)).)

Decompose every z;; with respect to the chosen basis. Taking into account
the linearity of the operation ‘¢’ on the second variable, we have

N(j) n(j)
po(z;) = Z n(j) & Z(c Ox;, € m(k)
1 N(J)"(J)K(J) L
- () ST N 0B
J) k=1 =1 1=
53 (o (2 )
= (C 031 ka’el :mk :
n(]) i=1 =1 k=1 ®

Observe that

(& Oel) - (2.6®€] iy) = (@i ks Vel i)y and (0el) -z =0 if j#r
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From this and (5), we have that

M n(f) K(j)
(6) Pﬁ(z) = ZPO(%) z (J) Z Z i1
, j=1 i=1 i=1 =1

where u‘f:,, is a brief notation for (e Oé; )®(E del) 2 e REH.

Regroup the summands in (6) as follows. At first, for every j and r = 1,...,n(j),
we denote by vl the sum of all uj with i — I = (r — 1) modn(j). The figure (7)
shows the elements u}; forming an n(j) x K(j) matrix:

(7)

/v U] n()=r42 \
] summands
—+— ofui
r—1,K(j)
summands uf.,l
. summands
of 1/3 . . :
; e of 1]
. UK (§),K ()
\ Uni)m()—r 41 /
Then we put v(ry,.. rM) = vl + -+ vM for every tuple (ry,...,7a)
where 1 < r; < n(j),5 =1,..., M. It is obvious that
1
(8) po(Z)— n(l)n(M) Z V(rly'-'xr.M)
("h"‘n'M)

where the sum contains just n(1)---n(M) summands which run over all possible
tuples of the indicated form.

Choose an arbitrary element, say v, among these summands, Qur problem
now is to show that ||v|] < [|z||. We see that v is a sum of the form

k)
v=> (e06)8(é:0e) 2,
=1
where for every s, the vectors e,, é, belongs to the same H), (where a € A and
depends on s) and where s’ # s” implies that e,» L e,» and &,» L é,, provided
that all four vectors belongs to the same H,. It follows that the partial isometries
e 0é,(s = 1,...,5) have mutually orthogonal initial, as well as final, subspaces.
This easily implies that every linear combination

5
Do Ale0d) (A €0),
s=1
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has max {|A,] : s =1,..., 5} as its operator norm.
Now we use a certain trick from ({6], Lemma 4.1). Obvious calculations lead
to the equality
3. - S
1/:§ > w,@w; - z, where w, =3 (*(e;{é;) and ¢ is a primitive S-th root of 1.
t=1

s=1
It follows from what said in the previous passage that |Jw,|| = ||w!|] = 1. But the

definition of the projective norm in R®H implies that

Wy

5
.
[lws || 1wzl 1|21,
s=1

)
1 .
Wil < 3 X Mwsllflw} - 2]| <
s a:l‘

and we have the desired estimate ||| < {|z}. From this, in virtue of (8), we see
that ||po{2)|] < ||2|| for all z € Hy. Combined with the obvious equation that
[lpa(2)|] = {|2|| for all z € Hpo, we have that ||po]| = 1.

Since Hy is dense in H, py has a unique extension to a linear operator p :
H — R®H of the same norm. Moreover, the equality (3), combined with the
continuity of p, immediately implies that p is a morphism of R-modules, and (4)
similarly that it is a right inverse to the canonical surjection 7,. Thus, the map p
with the desired properties is constructed and the theorem is proved. 1o

3. THE EXCEPTIONAL CASE: AN INFINITE TYPE-I FACTOR IN STANDARD FORM

We begin with several preparatory assertions; some of them, perhaps, have an
independent interest. In what follows, H is a Hilbert space and eQz(e,z € H) is
3 . -

the notation for the 1-dimensional operator y — (y, e)z(y € H).

LEMMA 1. Every continuous morphism of B(H)-modules ¢ : H — B(H)
arises from an elemenl e € H and acls as x — eOx,

Proof. Fix some non-zero # € H and consider the operator ¢(z). Take an
arbitrary z € H. Since ¢ is a morphism, we have

a-[p(z)(z)] = [a- p(2)](z) = [p(a - 2))(2),

for every @ € B(H), and thus a - z = 0 implies that a - [©(z)(z)] = 0. Hence, all
vectors in the image of p(x) are proportional to x. As is well known, that means
that p(x) = eOx for some e € H..

It remains to take an arbitrary 2’ € H and to choose b € B(H) with b-z = z'.
Then :
o) =pb-z)=b-p(z)=b-(eOz) = eO(b-z) ==eOz’. 1
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Now let us consider, apart from H, an arbitrary Banach space E and the
projective tensor product EQH. Let {e,, : m € I'}, where I is an index set, be an
orthonormal basis in H. For every m consider the functional e, : H — C, given
by « ~ {z,en)}, and the operator o, : E®H — E which is the composition of
1Re%, : EQH — EQC and the canonical identification E®C = E. In other words,

—~ [es] —~ o0
if u € EQH isrepresented as 3 yu®=zyg, 3. ||yl l|zk]| < oo (cf. [8], Section 0.3.3)
k=1 k=)
we have

o0

(9) Um(u) = Z(zkscﬂl)yk

k=1

LEMMA 2. For everyu € EQH, we haveu= 3 (1) Bem.

m={f
(In more detail, if A = (my,...,my) runs through the family of all finite subsets
of I, directed by the inclusion relation, then the net

U\ = Oy, (U)éem, + ot Oy (“)@emk

converges to u.)

Proof. With X as above, let g be the projection of H onto the linear span
of the vectors em,,...,em,. It easily follows from (9), that uy = (1 ® ¢a)u for
all v € E®H. Furthermore, if u is an elementary tensor, say u = y ® =, then
(1®¢)(u) = y®qaz, and the Fourier expansion of z with respect to {e,, : m € I}
implies that Ii’{nu,\ = Ii,{n(l ® ¢x)u = u. Since |1 @ gal] = Hgall = 1, for all A, and
thus the family 1 ® ¢y is uniformly bounded, we have the same convergence for
every u in the closure of the linear span of the elementary tensors, that is for all
u€ EQH. 1

LEMMA 3. For every u € EQH, we have ¥ {|om(w)||? < |Jul|%

m=T

Proof. Consider the representation of u as a convergent series, which was
used in (9); we can always assume that |lye|| = |z&|[(k = 1,2,...). Then (9)
implies that

S llem I < (3 Ko e’
™ m k=1
<y [(il(rk,em)lz) (i"w”z)}
m L k=1 k=1

< (Sott?) () = (3 o )

k=1
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It remains to recall that

[=]
llull = inf ) flyell [l2xl,
k=1

where the lower bound is taken over all possible representations of u in the indi-
cated form. @

THEOREM 3. Let R be an infinile type-I faclor on H with an tnfinite com-
mutant. Then the lefl Banach R-module H is not projeciive.

Proof. We assume the contrary. Then in accordance with what was said in
the introduction, there exists a continuous morphism of R-modules, p : H — R
such that 7y p is the identity morphism of H.

By the hypothesis, H can be represented in the form # = H'®@H", such that
R={a®1l:a¢€ B(H")}. Let {e/ : i € A’} and {e € A"} be orthonormal bases in
H' and H" respectively. Then {e;; := ¢/®¢] : (1,7) € A’ x A"} is an orthonormal
basis of H.

Consider, for every triple (i € A’, 7,k € A”) the chain of operators

'L g LR 5 R 2 B(HY),

where aj @z — a:®e;-’, p is our hypothetical morphism, o; ; is a special case of
Om : E®H — E (see above) with R as £ and e,  as e, and finally, the right arrow
denotes the isomorphism ¢ ® 1 — a. It is easy to check that the composition of
these operators is a continuous morphism of B(H')-modules. Thus, it follows {rom
Lemma 1 that it acts as £ — y{'kOx, for some y;’-"k € H'. This immediatcly implies
that oilk(p(z'@)c}'))_ = y{,kOa:, where the latter is the notation for the operator
(yf.kOm)®1 (cf. the proof of Theorem 2).

Thus, starting with p, we have arrived at a certain family of elements yf e €
H'. 1t follows from Lemina 2 that '

(10) p(z@e) = > (1 On)Bei

ik

for every z € H and j € A”.

The further argument will be divided into several stages. Tospeak informally,
in the first three stages we fix 7 € A’ and consider the ‘matrix’ yfk € H'(j,k € A").
We show that the entries of this matrix converge weakly to zero in the following
three directions: ‘along the diagonal’, ‘down’ and ‘to the right’. As usual, we
write li{n/\k = 0 for a family {}; € C : k € A"}, if for every € > 0, the set

{k € A" : || > €} is finite.
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() For any fized ip,mo € &' we have 5= Vet 1y )7 < Il
JE "

and hence hm( mo,yfw) =0.

To prove this it is sufﬁmem. to show that

o0
> et 855 0F < il

n=1
for any given sequence j, € A", n=1,2,....
Choose an arbitrary sequence i, € A, n=1,2 .., and put

0

fR@H—‘c(a®1|Z)""’E< ’7‘0’ €; )(Z €iv,in )

n=]
It follows, from the Cauchy and Bessel inequalities that

(o]

I}'(a®1’2)|2 Zi mo1 i Izzl Z elo.Jn

n=1 n=1

<l e 112zl < [la®1 |21

Hence, F is a bilinear functional with norm not exceeding 1, and hence it generates
a functional F on R®H with the same norm; put f := FOp. Since it is a
continuous functional on H and since ¢;, ;, {{ = 1,2) is an orthonormal set in H,
we have

x>
Y e P < NP < Ul < lloll®.
n=1

At the same time, it follows from (10} that, for any {, we have

f(eil,Jl) - F(p(e“®e ) - Z F[(y“ ()e")®c, k]
-2
=2

Lk n

= (emo» Vo 11)-

(y“ Oe},) - em,,,dﬁ}(ee,k,efo,j.‘))

M8 uMS

g YLl €4, Mtk i00 )

1]
T2 -

The rest is clear.

(ii) For any fired ig.mo € A’ and lg € A", we have |(e;,,o.y;-’.o,,o)|2 €
Jear
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o2, and hence liJm (el y-‘lo,,o) - 0.

mo?

Choose an arbitrary = € H', ||u|| = 1 and put
F:RxH—-C:(a®l,z)m {aem,y, z){z,€iq 10}

Obviously F is a bilinear functional of norm not exceeding 1; as such it generates a
functional F on R®H , with the same norm; put f := FOp. Since {#®¢} : j € A"}
1s an orthonormal set, we have

Y- 1@ < 111 < el
jeAll
At the same time, we have from (10) that
f(I®C;I) =F (Z(y:,k 02)@8;,1‘) =Z(emo: y{,k)(mv x)(ei.kl eio,fo) = (emﬂ ! yzo,.fu>’
ik ik

and again, the rest is clear.

(iii) For any fized mg,io € A’ and jo € A" we have IEA [{emme %12 2 < llll?,
G "
and hence lijm(eﬁno, o) =0.

Choose an arbitrary z € H, ||z|| = 1 and put R as E and p(m®e§’o) as u in

Lemma 3. Then we have

Yol 0zl = - low s (p(e@ef I < llp(z®ef, |1 < Hlall?,
1.k

ik

and it remains to observe that

|{emo, ioo,l)l < ||yf§,t||,

for all l € A”.
Notice that in the assertions of (i) - (iii), we could take an arbitrary contin-
uous morphism from H into RQ®H as p. Now the condition 7gOp = 1 comes into

action.

(iv) We have

(11) > (el =1

€A’
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for all j € A, and
(12) > (e u =0
TEA!

foralljle A, j#£1.
It follows from (10) that

2®ef = Th(p(z®e])) = Z 7 (5], O7)Bei ]

- Z(y’ koz) Eik = Z(el| x®ek)

for every z € H'. It remains to use the mutual orthogonality of the vectors z@e}
(k € A").
We now come to the crucial stage of the proof.

(v) (‘Lacunization’) There ezist sequences iy € A" and 1 € A" (1 =1,2,...)
and a sequence of inlegers 0 < ry < ro < --- such thal we have:

T

(13) I( 2 ( 1-.11 ll

n=rp_1+1

foralll=1,2,..., and

r
(19 (X tstzin)| < oo
n=ri_;+1
foralll,s=1,2,..;1#s.
We shall construct the desired indices and numbers by induction. As the
first step we take an arbitrary j;. It follows from (11) that we can choose r; and
a set 41,12,..., 4, such that

(Ssizid) -1 <

Now suppose that for some positive integer | we already have j;,...,5 €
A", integers r; < --- < r and ij,...,iy, € A’, which satisfy the corresponding
inequalities among (13) and (14). (We mean those | x [ ‘first’ inequalities, where
only these indices and numbers are involved.)

The assertions (i) - (iii) imply that we have

lim (e, ;) = lim (em, 4 5,) = lim (em, .4} = 0
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foralls=1,...,land m = iy, ...,1%,,. Since the number of these relations is finite,
there exists ji4; '€ A" such that all numbers
- + 3 .
[(el,, yli+e |, I(e:n,y’"‘:j"ﬂ and {{e},, ¥, ;,,,)| for all indicated s and m

mjt41
are less than 1/m4't1; this, in particular implics that

|( rZ (et x":T;}.))|<4,—L- for s=1,...,L

n=r,_1+1

Furthermore, if we consider the index set A’ \ {ii,... 4}, then it follows from
(11), and (12) that

(S tehdii) -1 < 21(6”#211)1 <
:E‘

and

PICHIMIEDHCHIMIE o

i€A]

for all s =1,...,1. Hence there exists a finite index set

ir,-{-ls ir;.“» vy ir|+1
such that
T4 . 1
' 41
|( Z (e,-"., i..,j:+x)) - ll < g1
n=ri+1
and
41 . 1
. ! s
‘ Z (ein’y:nyjl-’-l)‘ < 4I+l ?
n=r;4l1
for the same s. Thus, we have ji,...,jis1 € A”, integers ry < --- < 7141 and

i1, ..., ir,, Which satisfy the corresponding (now (I + 1) x (I + 1)) relations from
(13) and (14). The rest is clear.

(vi) The end of the proof. Let ji etc. be asin (v). Put by = ji(l = 1,2),
provided ! € {r_y1,m-1+1,...,m} (I = 1,2,...; here ro := 0). Furthermore,
choose an arbitrary z € H', ||z}l = 1 and put

o
F:RxH=C:(a®1,2) Y (a-e,,z){z,cink.)-

n=1



396 A.YA. HELEMSKII

Since

|Fa®1,2)f < Z et a® ) Z(z ein k)| < lla*zlP)l2)? < fla @ 1|1,

=1 ne=l

F is a bilinear functional of norm not exceeding 1, and thus it generates a functional
F on R ® H of the same norm. Hence, f = FOp is a functional on H with
171l < lipll, and therefore, taking into account that {z®e}} is an orthonormal set
in H, we have

o0 .
(15) D1 (=&ei) < llell.
i=1
However, it follows from (10) that for every { we have
. o0
fz®e;) = F(Z(yffko:c) ® ei,k) Z(Z (', 0z) I}(E.‘,k,ei.,k,.))

- E(Z ,:}(:c z){eik, €, kn )) Z(e’n ink

i,k n=1

Since the special choice of k,, we have from this that

f(z®ej,)=§(2), where Z Z €Y.

s=1 s n=re. 1+1

Hence, the inequalities (13) and (14) imply that

-1 ad
ase 1< T[S+ [55]+ 3 [5)

c-npiili Lol |l
= 4 g 8_1“48“3:14"3'

Thus f(z®e;,| < % for all I = 1,2,..., and we have come to a contradiction of
(15). The proof is complete. ¥
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4. THE CONCLUDING ARGUMENT AND REMARKS

It follows from what was said in the introduction, that the conditions of Theorem
2 are just the conditions of the main theorem, in their detailed form. So we already
have a proof of the sufficiency part of that theorem; we turn now to the necessity.

Assume that H is a projective R-module. Then there certainly exists a
continuous R-module morphism, p: H — R&®H, with ker p = 0 : we can take, for
example, a right inverse to 7gy. Since H has the approximation property, it follows
from Theorem 1 that H, = 0; in order words, that R is atomic. As was mentioned
in the introduction, this implies the conditions (i) and (ii) of the main theorem
or, otherwise, that R decomposes into a direct sum of type-I factors. It remains
to establish condition (iii) or, equivalently, to prove that there is no infinite factor
with infinite commutant among these summands.

We shall use a standard argument of homological algebra in its ‘Banach’
packing. In what follows, A-mod is the category of left Banach modules over a
Banach algebra A and their continuous morphisms.

So, let Ry = paR be a factor-summand of R (cf. the introduction). First,
we notice that every object in R-mod is automatically an object in Ro-mod (with
the same outer multiplication), and every object in R-mod is an object in R- mod
(with a - = defined as p,a - z). Moreover, every morphism in R-mod turns out to
be a morphism in R,-mod, and vice versa.

Now observe that the space H, = p,H is a direct summand of the assumedly
projective object H in R-mod, and it is itself a projective object in that category.
Therefore, if we take in R, -mod the canonical surjection 7o : Ro®@Ho — Ha,
and then consider it in R-mod, we have an admissible surjection onto a projective
module. It follows that m, has a right-inverse morphism p in R-mod (see, for
example ([8], Proposition VII.1.5). Then p is obviously a right-inverse morphism
for 74 in Ro-mod as well, and H, is thus a projective object in R4-mod.

Therefore, in virtue of Theorem 3 (with R, as R), either R, itself or its
commutant is finite. Since R, is an arbitrary factor-direct summand of R, the
main theorem is prove&.

REMARK 1. Recently, Yu. O. Golovin [5] had succeeded in giving a char-
acterization of spatially projective algebras within a substantial class of non-self-
adjoint operator algebras on Hilbert spaces. These are so-called indecomposable
CSL-algebras; such a class includes all nest algebras and many others (see, e.g.
[3]). The relevant criterion is formulated in terms of the invariant subspace lattice
of the given algebra.
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REMARK 2. As should be éxpected, the class of spatially flat von Neumann
algebra (that is R with a flat H) is much larger than that of spatially projective
algebras. In fact every Connes (‘injective’) algebra is spacially flat. The proof uses
techniques which are different from those presented here, and is the subject of the
separate paper [9].
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