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ABSTRACT. Bounds the rate of uniform convergence of Cesiro averages of
rotations of functions by a given angle, for certain functions and angles, give
norm bounds on the powers of an associated weighted rotation operator.
This implies that these operators are decomposable and hence have many
non-trivial invariant subspaces. This paper extends the set of rotations for
which the associated weighted rotation is decomposable. The case where the
function is a characteristic function of an interval is examined in detail, and
stronger results are obtained in this case.
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1. INTRODUCTION

By identifying T, the unit circle in the complex plane, with the interval [0,1),
rotation by an angle 2ra on T can be identified with translation, modulo one, by
a, where o € (0,1). When « is irrational, rotation by 27a, or translation by «, is
an ergodic transformation. If ¢ € L°°[0,1) then T = M, U, : L?[0,1) — LP[0,1)
(for 1 < p < co) defined by (T'f)(z) = p(z)f(z+a) for f € LP[0,1) and z € [0, 1),
is a special case of a weighted translation operator (called a Bishop-type operator in
[8].) There has been much interest in such operators since they are easily described,
with much structure inherited from the function theoretic properties of the weight
@ and from the number theoretic properties of the rotation «, and nontrivial
invariant subspaces have not been found for all weighted rotation operators. In
1973, A. Davie ([4]) showed that M,U, has a nontrivial invariant subspace for
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almost all @. Most of the results that followed had a similar flavor, with a common
approach to finding invariant subspaces for such operators being to obtain bounds
on the norms of the powers and then apply a theorem of Wermer ([10]) to obtain
invariant subspaces. For a survey of some of the results obtained see [1], [4], [5] and
[8]. This theorem of Wermer was generalized by Colojoars and Foiag as follows.

THEOREM 1.1. ([3]) For X & Banach space, and T a bounded invertible

operator on X, if
o0

1
Z 08;“7:“ < o0
it i+n

then T 1s decomposable, thal is, for cvery finite open covering {Gi}igign of the
spectrum of T there exists a system {Y;}igign of spectral mazimal spaces of T
such that

o(T|Y;) CGi foreveryl €ign

and n
X = EY,
i=1
(A spectral mazimal subspace Y of an operator T € B(X) is a closed invariant
subspace such that if Z is another closed invariant subspace of T' and o(T|Z) C
o(T|Y) then ZCY.)

Since all invertible weighted rotations have spectrum with circular symmetry,
the above theorem will give many invariant subspaces for any weighted rotation
with the aforementioned norm bounds.

In this paper we show that for log|y| of bounded variation, or sufficiently
smooth (in terms of its modulus of continuity), and for o having rational ap-
proximations {p;/g:}{2; (these are rational numbers in lowest form such that
lor = pi/g:] < 1/¢?) with the numbers {g;}52, well distributed in the set of natural
numbers (in a sense which will be made precise later) that M, U, is decompos-
able. These results extend results in [1] and [8], mainly by extending the class of
o’s for which M,U, is known to be decomposable. We also consider the special
case where ¢(z) = rXto.0)=). These weighted translation operators were studied by
K. Petersen ([9]) when 8 € Za  (mod 1). It is shown that in that case MXP? U,
has a spanning set of eigenvectors, and the commutant is described. It is also
shown that if ¢ Za (mod 1) then T has no eigenvectors. We shall show that
in this case, for many & and g8, MJ®# U, is decomposable.

There are still a for which the above approach cannot be applied, and hence
operators MyU, which may not be decomposable and for which no non-trivial
invariant subspaces are known, even when ¢ is well-behaved. To obtain invariant
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subspaces for these remaining exceptional cases, it appears that a new approach
will be needed, as is illustrated by an example in Section 4.

Since an invertible weighted translation M, U, has spectrum equal to a circle
of radius eJ 1081 ypen @ is continuous almost everywhere (see [8]), set S =
o J1ogle(w)l %M, U,. It is straightforward to compute the powers of S and obtain
that, for all integers n:

[n]-1

1
tog|IS™(| < || 3 loglp(z+ja)| - In] / log l¢o(y)] dy
Jj=0 0

oo

For a function f € L*>{0,1) and n a positive integer, let

Cu(f, @)=

>

n—1 1
S f(ahia) - n / f()dy
j=0 0

oo

then Theorem 1.1 says that M,U, is decomposable if

$- Callogoloa) _

2
n=1 n

(Note the unique ergodicity of translation by « is equivalent to the condition that

E_%f_“.‘l —0 forall f€C[0,1)
so this is just a slightly stronger condition.)

Thus we need to study the growth properties of the sequence {C,(f, a)}5%,
for different functions f and irrational numbers «. Although this sequence is
quite irregular, it has two properties which aid in its analysis. First, there are a
number of values {¢;}2, at which Cy,(f, o) is “small” and second, the sequence
{Cn(f, o)}, is subadditive.

In Section 2 we shall obtain a weighted summability result for subadditive
sequences. Then in Section 3, we relate properties of f and « to the existence of
values {¢;}{2, at which C,,(f, «) is small and obtain bounds on these quantities.
We then combine these results with Theorem 1.1 to show many weighted rotations
are decomposable. Finally, in Section 4, we develop improved bounds on C,(f, &)
in the case where f(z) = x[04)() and use these and the results of Section 2 to
prove that many operators of the form MX*" U, are decomposable.



208 GorpoN W. MAacDONALD

2. WEIGHTED SUMMABILITY OF SUBADDITIVE SEQUENCES

Suppose a positive sequence {a,}5%, is subadditive, that is anm < an + am for
all n,m € N, and we have bounds on {a,}32, for certain values of n, then we
obtain weighted summability conditions.

NoTaTION 2.1. Given z € R, let [z] denote the greatesi inleger which is less
than or equal to z. Let {2} = z — [z] denote the fractional part of z, and (z)
denote the distance from z to the nearest integer.

THEOREM 2.2. For {a,}%, a positive subaddilive sequence, {wn,}3, a se-
quence of positive weights, and {s;}52, an increasing sequence of natural numbers
with sy = 1,

ij ia( > b (n)wn)

i=1 n=sy

wo= [ s

and m, = sup{i : s; < n}.

where

Proof. The proof is mainly an interchange of the order of summation. Given
My .

any natural number n, we can write n = ) b;(n)s; where b;(n) < [’%l] and
i=1 !

{si}{2, and m, are as above. Thus, using the subadditivity of {a,}3%,, we have

that
My My
Qp = Gmn < Zabi(n),i < Zb;(n)a,‘»
Yobi(n)s o,y i=1
i=1

80

i GnWn € i Wy, ( 3 b.’(n)ﬂ“)
n=1

i=1

= ia( i b;(n)wn).

n=g;

We obtain the formula for b;(n) as follows. Choose by, (n) such that 0 €
n~bm, (n)sm, < Sm,, 50 b, (n) = #}, and set Ny, = n — bm, (n)sy,, . Then
choose by, -1(n) so that 0 < npm, — b, —1(n)sm,—1 < Sm, -1, so that

s =[] < [ 2 (2],
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Inductively, we define
n
bi(n) = [-%kﬂ] and  ng = ng41 — bx(n)sk,
for k= 1,2,...,mu. Thus, solving for b;(n) we obtain

wor= [ e b (e e

and the theorem is proven. #

Note that for any & > ¢, at each point of the form

{ Z c;s; ¢ EN, ¢ < [si+1] }
J

i<j<k

the function b;(n) drops to zero, remains zero on the interval of length s; following
the point and increases by a value of one on each interval of length s; thereafter,
until the next point of the above type is reached.

Using this description of b;(n), we can get a good bound on the quantity on
the right in the inequality in Theorem 2.2. In particular, to obtain our invariant
subspace results, when w, = 1/n? we obtain the following.

CoroLLARY 2.3. If{an}32, is subadditive and {s;}§2, is an increasing se-
guence of natural numbers with s; = 1 then,
= a 2. a 2 5;
efn (tom()
1;-1 n? = ; si \ s & 5
Proof. Using the bounds b;(n) = 0 for n € [1,5;) and n € [s;41, 8i41 + 5i),

bi(n) < n/s; for n € [s4,8i41), and b;(n) < sip1/8i for n € [s;41 + 54, 00), and
Theorem 2.2, we obtain that

ooa ooa‘ 8-‘+11 [>] 1
STl 3 %)

n=1 =1 n=s; n=gi+8ip1

a5, [ 1 Siti 1
< 2 f o
\Zsi (S‘+log(sé)+ )

by the integral comparison test. W
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3. ERGODIC AVERAGES AND INVARIANT SUBSPACES

As mentioned in the introduction, we shall apply the results of the previous
to {Cn(f, @)}3,. To do so, we need bounds on C,(f, @) for certain values of n.
These values will depend on o and can be given most conveniently in terms of
continued fractions.

Given a, there exists unique {e,}5%,, positive natural numbers, called the
partial quotients of a, such that

o =ap+

a; +
as +
az -+

1

aq + .

which we will denote o = [ap, ay, a2, a3,...]. (See [6] for an introduction to con-
tinued fractions. All the properties we shall need are devcloped there.) The
convergents of « are

Di
— ={ag,a1,02,...,4ai]

i
and have many well known properties. We shall use the following properties:

(3.1) The convergents satisfy the recurrence relations
¢it1 = aigi + gi-1 (¢-1=1,00=0), piy1=aipi+pi-1 (p-1=0,po=1).

(3.2) The convergents approximate o in the sense that

1 . i 1 1
— < le-Z[< < —.
qigi+1 + 9i) gi iqi+1 @

(3.3) The convergents are in lowest form, that is ged(p;,¢:) =1 .
(3.4) The convergent denominators grow at least exponentially fast. In fact,

. o0
gi 2 771, where 7 is the golden ratio, so in particular for all € > 0, 3 ¢;7¢ < co.
$=]

We shall see that bounds can be obtained for C,(f, @), when n is a convergent
denominator of «, for many functions f. There are two main classes of functions
for which we shall obtain bounds; functions of bounded variation and smooth
functions. To obtain the bounds on Cy,(f, &) we refer the reader to the monograph
of M.R.. Herman on diffeomorphisms of the circle ([7]). Although we only consider
the above two classes of functions in this paper, the results that follow can be
extended to any function f for which bounds can be obtained on C,,(f,«). For
example, results can be obtained for functions f whose Fourier coefficients satisfy
certain properties, but these would be no better than known results (see [1] and

[5])-
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DeFINITION 3.1. A function f on [0,1) is of bounded variation if
1£limy = sup {1£(20) = F(za)l + " 1f(z:e) = Flmicr)| -
t=1

0<x0<x1<-~<xn_1<x,,<1}<oo.

PrOPOSITION 3.2. (Denjoy-Koksma Inequality, ([7])) For o € {0,1) irra-
tional, p;/g; a convergent of o, and f of bounded variation:

Co. (f, @) €|l fllBv.
DEFINITION 3.3. The modulus of continutly of a function f on [0,1) is de-
fined as
wy(6) = sup {|f(z) — f(¥)| : |z —y| < &},
for all 6 > 0. Then, for s > 0, let A, be the Holder class of functions f on [0,1)
such that ws(é) < Ké° for some constant X > 0 and for all § > 0.

ProPoOsITION 3.4. ([7]) For o € [0,1) is irrational, and p;/q; a convergent
of &, and f with modulus of continuity w;(6)

Cy, (f, @) < giwy (51-) .

1
Combining the above propositions with Corollary 2.3 and Theorem 1.1, we
have the following theorems.

THEOREM 3.5. If ¢ € L™(0,1) is suck that logle| € BV[0,1] and « is
irrational with convergent denominators {q;}{2, satisfying
o0 1 )
Z —log (g—'i—> < oo
i=1 % 7i
then the weighied rotation operalor M,Uy is decomposable.

The condition
=1 7
which occurs in Theorem 3.5 is equivalent to

o log (gi41)

3o loslam)

i=1 %
which is known in dynamical systems as the Brjuno condition and is a natural
condition for several “small-divisors problems” (see page 210 of [2]). It arises in
that context as a sufficient condition for convergence of a certain series which
defines an analytic transformation which transforms the dynamical system z’ =
e?miog 4 g f(z) into i = €™y, However, there seems to be no direct connection
between the “small-divisor problems” and Theorem 3.5.



212 GorponN W. MACDONALD

THEOREM 3.6. Ifp € L*[0,1) is such that log || has modulus of continuily
Wioglei end o is irrational with convergent denominalors {¢:}82, such that

ZwlC’S"PI ( ) 10g (q:l) < 00

then the weighted rotation operator M,U, is decomposable.

Proof of Theorems 3.5 and 3.6. Use the bounds obtained in Propositions

3.2 and 3.4, in Corollary 2.3 to obtain that, under the conditions stated in Theo-
rems 3.5 and 3.6,

Z Chn(log leOI %)

n

n=1
(Here we use property 3.4 of convergents mentioned above). The results now follow
from Theorem 1.1. #

CoROLLARY 3.7. If o € L®[0,1) is such that log|yp| is in the Holder class
As and o is irrational with convergent denominators {9i}52, satisfying

then the weighted rotation operator M,U, is decomposable.

Theorems 3.5 generalizes results of (8], while Theorem 3.6 and Corollary 3.7
generalize results of [1], mainly by increasing the set of allowable o’s.

In most previously obtained results, a necessary condition was that a not
be a Liouville number. That is, there exists some constant C, and some number
n such that |o — p/g| 2 Co/q" for all p,¢ € N relatively prime. The set of all
such & has full measure, however it is meager. An equivalent formulation is that
there exists a number n € N and a constant &£ > 0 such that git+1 X kgl for all

convergent denominators {¢;}{2,. However, the condition that a have convergent
denomimators satisfying

is satisfied when ¢;4, < Ke? fof some p < 1. It is relatively straightforward to
construct non-Liouville numbers o satisfying the above inequality via continued
fractions. If {a,}3%, are the partial quotients of & and {g:}22, are the convergent
denominators then

= 1 Fig1 =
z —log ( ) Z log an

i=1 i
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so our condition on the convergent denominators will be satisfied if we have a
bound on the rate of growth of the partial quotients of «, however this bound
is very lax. For example, if & has partial fraction expansion o = [ag,ay,.. ]
where the partial quotients are defined recursively by ¢y = 0, a; = 1 and a, =
lexp (a1ag - - - an~1/n?)] then the convergent denominators of « satisfy

o 1 R
Z —log (gﬁ-‘-—-) < oo
i b i

but « is a Liouville number.

4. INVARIANT SUBSPACES FOR M, x0, 5y Un

By Theorem 3.5, M, xp0,5 Uy is decomposable for all 3 when « is irrational
with convergent denominators {g;}{2; satisfying

To obtain invariant subspaces for M xpo,s Uy for a larger set of o, we must get
bounds on Cyr(x(0,), @) for values of n other than convergent denominators. The
following lemmas are the first steps in obtaining those bounds.

NoTation 4.1. Recall that for z € R, [z] denotes the greatest integer which
is less than or equal to z, {z} = z — [z] denotes the fractional part of z, and (z}
denotes the distance from z to the nearest integer. Also, for ¢ a natural number,
let 7y, denote translation by 1/¢ modulo 1 on the interval [0,1).

LEMMA 4.2. For o € [0,1) irrational with p,q natural numbers such that
la—p/gl < ¢72, ¢ 22 and ged(p,q) = 1, and for B € [0,1), set

g~1

= |+* Leagy —

(41) 1= Ut oo, a8~ (g,
N | 1

() 7= U |16+ (o). (0.

(4.3) N =(IUJ)y.
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Then the following are irue:
W) Ifzel, [gf)+1 of {= +]a}q_0 are in [0, 8).
(ii) If z € J, [4B] of {z + ja}IZ; are in [0, B).
(iii) If z € N, at most [gB) + 2, and at least [gf] — 1 of {z +ja}§;é are in
0.9).

Proof. Suppose ¢ € I, then {z + j(p/q)}g;é are also in I, and are evenly
distributed at a distance of 1/¢ apart (identifying 0 with 1). Now

(w+j§)~(x+ja) <J'oz—§ <gq < lga — p| < {qa}

a-2
¢

so each {z + ja};’;; is at most at distance {ga) from I. So
g-1 ;
(e +iatizie Uit o.Has))
k=0 ° 1

and only one point is in each interval r“k[ l{qﬂ}). Now 8 € {[¢B]/q, ([g8]+1)/q),

0 we have {gf] of the points {z + Ja}"_o in [0, B) corresponding to the intervals
%[0, {g8}/q) with k < [¢B] and we have one more point when k = [¢f3] since

ol [0 L ﬁ}) [[qﬁ] [qﬁ1+{qﬂ})=[l1@1,ﬁ),

q q q

Thus, if z € I, [¢f] + 1 of {z +ch}9 _p are in [0, 8).

When z € J, this last point (correspondmg to the interval where k = [¢f])
misses [0, ), and hence only [gf] of {z + 30}9 —p are in [0, 3).

Finally, when z € N, the location of two of the points {z +yoz}q,0 cannot
be established, so we obtain the above bounds. &

Using this lemma, we obtain the following bounds.

LEMMA 4.3. For a,f3 as in Lemma 4.2, and {4;}?2, the convergent denom-
mators of «;

(i) Fork=1,2,..., [snlefl],

kgi-1
k(1 - {g:8}) -6 < s > xwpiz +ia} — kB < k(1 — {g:8)) +6.
z€[0,1) j-p
(ii) For k = [ii—}iﬂ] [%‘f—]

kgi=1

{9*{6}(4,.“_@‘-)—6 sup Y xppyiz+ia}—kep
qs z€[o, )J =0

{q;?} (gi+1 —kgi) +6.
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Proof. Define
n—1
en(z) = Z X[o.0){® + ja} —ng.

i=0
Then c,(z) has the following properties:

(44)Fork=1,..., [%ﬂ]

k-1
cac®) = 3 ¢, ({2 + Haia}}).
j=0

(4.5) By Lemma 4.2,

1—{qB}, ifzcl;
eq:(2) = § —{a:B}, ifz € J;
n—{gp}, ifzeN;

where n = —1,0,1 or 2.
Fix z € [0, 1) and consider the points {z + j{gic} j-“;g associated with points
on the unit circle. These are k points, each at a distance of exactly (g;a) from the

q‘ (q' C )

these points are all within 1/g; of each other.

Let I, J and N denote the sets in Lemma 4.2 corresponding to the convergent
pi/¢i. The width of an interval of N is 2{g;), and at most two such intervals of
N meet any interval of width 1/¢;. Similarly, the width of an interval of I (resp.
J) is (1/¢:){¢:8} — 2{giax) (xesp. (1/¢i)(1 — {¢:$}) — 2(g:x)) and only one interval
of I (resp. J) meets any interval of width 1/¢;. Therefore, given the k points
{z + j{qga}};;é, ckq;(z) will be the largest when the supremum of the largest
number of the ¢, ({z + j{gia}}) is attained. This will happen when 4 of these
points are in N, q—li-%%%} — 2 are in I {(or k — 4 if there isn’t that many points)

and the rest are in J. Thus sup cig,(z) increases at a rate of 1 — {¢;8} until
z€[0,1)
k(gia} > -{g-q"',ﬁ}- and then decreases at a rate of —{g;3}. We have an error of +4
corresponding to the four points in V.
Convergent denominators satisfy

: 1 9f+1] [ 1 ] [qiﬂ]
< {q;a) < 80 < < +1
% (gi+1 + i) (gic) git1 [ 15 g: (g:@) g

so replacing {ﬂ;._aY] by [%‘fi] above will only increase the bound by £2, to give
the estimate in the statement of the lemma to within £6. @
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COROLLARY 4.4. For a,f as in Lemma 4.2, and {¢;}$2, the convergent

denominators of o;
() Fork=1,2,..., [Lqi—]
(kL= (@B)+6, if1<k< [tulun],
Crg: (X10,00,00) €
‘ !gféqll_geil +6, if [giiquigiﬁ!] < k< [&ﬁ] X

g

(i) For k =1,2,. [—ﬂ]

2q

Cig: (X10.6), @) > k{0:8) - 6.
Proof. If we set

n—1
cﬁ(:c) = Z X[Q’ﬂ){x -+ Ja} - nﬁ,
j=0
then
Cn (X[o,ﬁ),a) = sup {Cﬁ(x)» —Cﬁ(z)} .
zg[0,1)

Lemma 4.3 supplies the upper bound on ¢8(z), and will also supply the lower
bound by using the identity ¢f(z) = —cP )‘(m). Using these bounds, and the fact
that 1 — (¢i) = max ({¢:8}, {g:(1 — B)}) the result follows. &

With the above bounds, we can bound the rate of growth of {Cu (x[0,5), @) } 0.,
using Corollary 2.3 with {s;}2, = {kai : k= 1,..., [qi+1/9:]}2,-

THEOREM 4.5. Given § € [0,1), and o € [0,1) irrational with convergent
denominators {g;}32,

if Z (——-~—-——q‘+1(q‘ﬁ)) < oo then f: Cn X0, ) < oo

2
izl ' n=1 n

Proof. Consider the sequence

{kq,-:lc: 1,2,...,[?111]} for i=1,2,....
qi

Since this sequence is well distributed in the set of natural numbers, by, (n) will
be zero for most values of n, and will never be greater than one. It will be nonzero
only on

[kgi, (k+ 1)a), [gi41 + kgi, gigs + (k+ 1)a), [2qi41 + kgi, 2gi41 + (K + 1)gi)  ete.
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So brg;(n) will be zero k times as often as it is one, and using the bound

a+{k+1)g; ) a+(k+1)qi
atkg: a
and the integral comparison test, we obtain that
o0 (k+1)g: 3
brgi(n) 1 1 1
LS L mti mt
n=kg; n=kq; Gid1
1 117
€ e
kzqi ko Jit1
1 1

N T + - .
kg kgiqa

Since ¢;4+1 2 kg; the above implies that

Applying Corollary 2.3, with the sequence above, and the bounds from Corol-
lary 4.4, we obtain that

=, Colf, @) o | e Crys (xpo,py, @
S Hha py | Y Begene)
n=1 i=1 k=1 *
[ [222] 1

- - k(1 — {q: iB)gipr 1
of (T Hp, F el

k=1 k=[§iix(¢iﬁ)]+1

a5

6 i+1(9:8) 1
+ kZ:l s +(q“qf -Hi) [g-*iﬂ]zq,-)-

i

Consider each summand separately. The last term is the “rollover term”,
that is the term associated with the gap between [%{i} ¢; and the next point in
the sequence, gi4.1. Since this gap is small we can bound the sum over 1 = 1,2, .. .

[e=]
of the last terms easily. It is clearly bounded by 73 5—1: which is finite since
i=1 "

convergent denominators grow at least exponentially fast.
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The sum over i = 1,2. .. of the third terms is

-
1
-
o
]
-
-
1]
—
Y
-
L
1)
-
-
il
o
=

which is also finite.
The sum over i = 1,2, ... of the second terms is

(=] %3]

[} 1 kaz f 3 7 1
Z E (q,cﬂz);?+1\z(‘Iﬁ>Q+l / L e

x
ig1{siB)
k [..L‘t;‘_.._] +1

i=1
[v.‘_-h;(«nﬁ)}

LH

< o~ {giB)git1 ( ' )

gie1{@:B)  qit1

=1 8
\g %) (45(91 t) ;Zla

which is also finite.
The sum over : = 1,2, ... of the first terms is clearly finite if

o] -

qi

while if this quantity is greater than 1 we have that

q (q
2ip1{eid) = 1 L

$0-00) ;;% (H ld,,.)

| ()

=1 k=1
i_'_il (Qs+1 ﬁ))

1 % l—l

Ms
R |-

1

-
Ml

Ms

-
1]

Ms

i

which is finite if and only if

i—l_-ln (qz'+1(€h'{3)) < oo

=1 & gi

so the theorem is proven. &
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COROLLARY 4.6. If a is an irrational number with convergent denominators
{9i}$2, and B € (0,1) is such that

iiln (M‘—ﬂ—)) < o0

i=1 % %
then the weighted translation operator M xp,s Uy is decomposable.
Proof. Follows from Theorem 1.1 and Theorem 4.5. 1

For all o, if 3 = {ma} for some integer m then clearly M x5 Uy has a
nontrivial invariant subspace. Of course, this follows from a result of Petersen
([91). However, Corollary 4.6 covers many new operators. Here we give just one
way of constructing examples.

CoRrOLLARY 4.7. If v has partial fraction expansion [ap, ay,...] withag =0
and all other partial quolients a; odd, with

Z :

IT o
; i
ieven o o5 g

Ina; < oo

then M x; 4,Us has a nontrivial invariant subspace.
r

Proof. As usunal, let p;/q; denote the convergents of o. All a; odd implies
that ¢; is odd if and only if  is even, and p; is odd if and only if ¢ is odd. Now,
B =1/2,s0 (qiB) = 0if ¢; is even, and (g;8) = 1/2 if ¢; is odd. Thus

Sin(=)< 2 n(s)

=1 9 i even ¥ &
1
g Z In a;.
; I1 o
ieven 24

(The last step follows from the fact that ¢;41 = aig; + gi—1.) The result follows
from Corollary 4.6. 8

Note that we can extend these results to 3 = r/s or § = (r/s)a. Also,
the condition that all the a; be odd is not necessary in general, but simplifies
the statement of the corollary. Note that Corollary 4.7 states that we can get
invariant subspaces for er(a. 5 U, while having only some of the partial quotients
constrained, while the results of Section 3 require growth bounds on all the partial
quotients.

The following result shows that the growth rate of {C‘n(X[g,ﬁ),a)}:;l does
indeed depend on o« and (3, and that the only growth bound that we know is
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universally true for all @ and £ is that El‘g—l:-:ﬂ-ﬁ — 0. (This follows from the
unique ergodicity of translation by «.) This example also shows that the method
of using bounds on the norms of the powers of an weighted translation operator to

obtain invariant subspaces is not generalizable to all cases, even when the weight
to pX10,3)
is ¥ .

COROLLARY 4.8. There ezist a € (0,1) érrational such that

= Cn(X[o,%):“) _
2 — g =
n=1

Proof. Let & = [ag, a1, ...] with ag = 0, all the partial quotients even, and
w(3)> I &
0<i<i

Since all the partial quotients are even, ¢; is odd for all 1 > 1, so {g; %) = 1/2 for
all > 1. Thus

Ca( @) o C i , )
Z X[op) o Z Z kg I:;i;ﬁ)

n=1 =1
[%'J‘-} [’%-3,—]

by Corollary 4.4 (ii). The second term is ﬁmte since

f=1 k=1 =1 1
o0 oo
6 ( g ) — 6
£ — _—— < - <0
Z_; 9? gi+1 ; Q?
We can bound the sum of the first terms by
241 KIES
o0 [‘5-3-1_-] k (e8] 1 29 1
Sy >KY, [ do
PP )
i=1l k=1 2k % i=1 % i z
gig1
2 K —=In ( )
! .2:{ Q| 2ql
fee)
ng H a.2 ( )
g1 j<i

for some constants Xy, K. This is infinite because of our conditions on the partial
quotients of . ®
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