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ABSTRACT. We study a type of reflexivity in the C*-algebra of bounded
sequences of operators on a separable Hilbert space H modulo the ideal of null
sequences. Our results lead to a non-commutative notion of equicontinuity
that relates certain reflexivity results to non-commutative analogues of the
Arzela-Ascoli theorem.
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Suppose H is a Hilbert space, B(H) is the C*-algebra of all operators on H, and
K(H) is the ideal of all compact operators. Let £*°(B(H)) denote the C*-direct
product of countably many copies of B(H), and let co{ B(H)) denote the C*-
direct sum of countably many copies of B(H). In other words, £°(B(H)) is the
C*-algebra of bounded sequences of operators in B(H) with the supremum norm,
and co(B(H)) is the ideal of all null sequences of operators in B(H). Let Q(H)
be the quotient £°(B(H))/co(B(H)). Note that £<°(B(H})) is the multiplier C*-
algebra of co(B(H)); thus Q(H) is a so-called corona C*-algebra ([21]). Another
example of a corona C*-algebra is the Calkin algebra B(H)/K(H).

We let 7 denote the natural quotient map from £%°(B(H)) to Q(H). There
is a natural isometric *-homomorphism = : B(H) — O(H) defined by #(T) =
T, T,T,...).

It is well known that every unitary element in Q(H) can be lifted to a unitary
in £2°(B(H)), every projection in Q(H) can be lifted to a projection in £°(B(H)),
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and every invertible element in Q(H) can be lifted to an invertible element in
£°(B(H)). These facts lead to the following relationship between concepts in
what is sometimes called “approximate” operator theory.

Suppose S, T € B(H). The operators S and T are approzimately equivalent
if there is a sequence {U,} of unitary operators such that ||{U, SU; - T|| — 0. We
say S and T are approzimately similar if there is a sequence {A,} of invertible
operators such that sup ||4a||||4; ] < oo and [|AnSA;! — T|] — 0. It is easily

n

seen that S and T are approximately equivalent (resp., approximately similar)
if and only if #(S) and #(T) are unitarily equivalent (resp., similar) in Q(H).
If § is a norm-separable subspace of B(}), then appr AlgLat(S) is the set of
all operators T such that ||(1 — Pn)TPy|| — 0 whenever {P,} is a sequence of
projections such that, for every S in 8, [|(1 — P,)TP,|| — 0. Similarly, appr (5)",
the approximate double commutant of &, is defined to be the set of all operators
T such that ||A.T — TAn|| — 0 whenever {A,} is a bounded sequence such
that, for every S in §, [|AnS — SAn|| — 0. It is a simple exercise to show that
appr Alg Lat (S) = #~1(Alg Lat #(8)) and appr (S§)" = 7~ }{=(S)").

For simplicity of notation, we define apprLat$ to be the class of all nets
{P»} of projections such that, for every S in 8, [|(1 — P»)SPy|| — 0. Note that
if § = 8", then apprLat$ is th class of all nets {Py} of projections such that
ISPy — P\Sj| — 0 for every S in S.

In [13] the author proved the “approximate” version of von Neumann’s double
commutant theorem: For any norm-separable subset S of B(H) such that § = §*,
appr Alg Lat (8) = appr (S8)” = C*(S).

In [15] the author extended the preceding result with a distance estimate.
Note that if G is a C*-subalgebra of B(H), T' € B(H), and {P,} is a net in
appr Lat G, then

limsup ||TPy — P\T'|| € inf{limsup ||(T - A)PA(T — A)|| : A € G} < dist(T, G).
A A

ProposiTioN 1. ([15]) If G is a unital C*-subalgebra of B(H) and T €
B(H), then there is a net { Py} of projections such thai:

(1) ISPx» — P\S|l = 0 for every S in G;

(i) li§n|]TPA — P\T|| = (35) dist(T, G).

In this paper we wish to consider reflexivity results in @(H). More precisely,
we wish to consider the problem of determining Alg Lat G when G is a separable
unital C*-algebra of Q(H). It is clear that G C G’ C AlgLat G always holds when
G is a C*-algebra. Unlike B(H), the algebra Q(H) has a non-trivial center, namely
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the image of the center of £°(B(H)), which is the set of bounded sequences of
scalars. Let Z denote the center of Q(H). We then have

C*(GU Z) C G" C AlgLatg.

It is natural to ask if equality holds when G is separable and unital. This would be
an analog for Q(H) of D. Voiculescu’s reflexivity theorem for norm closed unital
separable subalgebras of the Calkin algebra ([28]) (also see [1]).

QuesTION A. If G is a separable unital C*-subalgebra of Q(H), must
AlgLatG = C*(GU Z)?

We will not completely answer the above question, but in a few cases we
give an affirmative answer, which leads to questions whose positive answers may
be considered non-commutative generalizations of the Arzela-Ascoli theorem.

We first look at the problem lifted to the algebra £*°(B(H)). Suppose G is a
separable C*-subalgebra of Q(H). Then there is a separable unital C*-subalgebra
B of £*°(B(H)) such that n(B) = G. £ T € £°(B(H)), we write

T = (T(1), T(2), .. .)-

For each positive integer n, let B,, denote the C*-algebra {T'(n) : T € B}.

Then B C [] By, but the containment is always proper, since the product is never
n
separable.

At this time the following theorem is the most we can say in the general
situation.

THEOREM 2. Suppose B is a separable unital C*-subalgebra of £*°(B(H)).
Then Alg Lat n(B) C n( I B,,).

Proof. Suppose S € £°(B(H)) and n(S) € AlgLatn(B). Choose a dense
sequence {7,,} in B. Using the distance formula in Proposition 1, we can choose a
sequence {P,} of projections in B(H) such that, for each n,

|Te(n)Pn — PaTr(n)|] < % for 1< & < n,

and )

[|1S(n) Py — PuS(n)| 2 (%) dist(S(n), Br).
Let P = (P, Py,...). It follows that n(P) € Latn(B), which implies that 0 =
n(P)n(S) — n(S)n(P) = n(PS — SP). Hence P,S(n) — S(n)P, — 0. Therefore
dist(S(n), B,) — 0. Hence 9(S) € n(HBn). i
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CoROLLARY 3. If G is a finile-dimensional C*-subalgebra of Q(H), then
AlgLatG = C*(G U Z).

Proof. We can choose a finite-dimensional C*-algebra B of £*°(B(H)) such
that n(B) = G. Since B is finite-dimensional, [ B, = C*(BU£>(C)) = n~}{C*(GU

Z)). It follows from the theorem that AlgLatG C C*(GUZ). The reverse inclusion
always holds. ®

We now consider the case in which G = 7(D) for some separable unital C*-
subalgebra D of B(H). We can take B = {(T,7,...) : T € P}. We would like to
show that AlgLatG = C*(G U Z). Note that y~}(C*(G U Z)) = C*(BU £=(C)).
Hence we neeed to know more about C*(B U £ (C)) and its relationship to [ B.

LEMMA 4. Suppose D is a unital C*-subalgebra of B(H), and B = {(T,
T,...): T € D}. Then C*(BUL>(C)) = n~Y(C*(x(P) U 2)) = {(T1,T2,...) €
[1Bn : {T1,T3,...} is a totally bounded subset of D}.

n

Total boundedness in a commutative C*-algebra is characterized by the
Arzela-Ascoli theorem ([26]), which can be used to give the following affirmative
result.

THEOREM 5. Suppose D is a separable commulative unilal C*-subalgebra of
B(H). Then AlgLat (D) = C*(n(D) U Z).

Proof. The maximal ideal space of D is a compact metric space (X, d). Let
p : C(X) — D be the inverse of the Gelfand map. Then p extends to a *-
homomorphism, which we shall call p, from the set Bor(X) of bounded Borel
functions on X into B(H). Suppose s € AlgLat #(D). Then, by Theorem 2, there
is an S in £*°(B(H)) such that 7(S) = s and, for every n 2> 1, S(n) € D. For each
n 2 1, choose f, in C(X) such that p(f,) = S(n). To prove that s € C*(x(D)UZ),
it suffices, by Lemma 4, to show that {S(1),S(2),...} is totally bounded. Since
p is isometric on C(X), it suffices to show that {fi, fo,...} is totally bounded in
C(X).

Assume, via contradiction, that {fi, fz, ...} is not totally bounded. It follows
that there is an ¢ > 0, and an increasing sequence {n} of positive integers, and
sequences {z;}, {yx} in X such that d(zg,yx) — 0 and |fo,(zk) — fur(¥x)] = €
for ¥ > 1. By choosing an appropriate subsequence, if necessary, we can assume
that z — = and yx — z for some z in X. For each k, choose disjoint open
sets Uy and Vi with diameter less than 1/k such that z; € Uy, yx € Vi, and
the diameters of f,,(Ux) and f.,(Vi) are less than €. For each k£ > 1, choose
vectors ug € ran(p(xy,)) and vx € ran(p(xv,)) such that |Jug|] = |jve]| = V2/2,
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and define the rank-one projection Q¢ = (ur + vk ) ® (ug + vz ). Define a projection
P in £*°(B(H)) by P(ng) = Q for k 2 1, and P(n) = 0 otherwise.

Suppose f € C(X). It follows from continuity at z that {|(f — f(z))xv,.|| — 0
and [|(f — f(&))xw | — 0. 1t follows that [(p(f) — ()@l = 0 and [ Qe(p() —
F(&))|l — 0. In particular, we have |[p{f)Qx — Qrp(f)|| — 0. It follows that
7(p(f)) commutes with (P), so n(P) commutes with s. We must therefore have
[|p(fn )@k — Qrp(fnr)|] — 0. However, it follows that ||(fa, — fax(ze))xv.ll —
0 and “(fﬂk - fﬂk(yk))XVk” — 0. Hence ”[p(fﬂk)Qk - Qkp(fﬂk)] - (f"k(xk) -
Fr (e (U ® v — v @ ug)|| — 0. It follows that ||(fa, (®r) — Far (Y6 ) (ur ® v —
v ® ug)|| — 0. However,

1o 20 = o )k ® 95 = w1 )1 = () U 2) = o 00)1 >

B ™

for each k. This contradiction completes the proof. 1

We now turn to a non-commutative version of equicontinuity in B(H) that is
equivalent to Theorem 5 for non-commutative C*-algebras. We call a subset § of
B(H ), P-equicontinuous if S is bounded and, for every net { P)} of projections such
that || PxS—SPy|| — 0 for each Sin &, we have li/{nsup{HP,\S—SP,\” :SeS}=0
(i-e., ||P»S = SPy|| — 0 uniformly on &). It is clear that every totally bounded
subset of B(H) is P-equicontinuous; one of our main problems is determining
whether the converse is true.

More generally, suppose G is a unital C*-subalgebra of B(H) and S is a
norm-closed bounded subset of G. We say that S is relatively P-equicontinuous in
G, if, for every net {P,} in appr Lat G, we have liinsup{||PA.S'—SPA|[ :Ses}t=0.
We call the C*-subalgebra G of B(H) an Arzela-Ascoli algebra if every relatively
P-equicontinuous subset of § is totally bounded in norm.

We state our two main questions concerning P-equicontinuity.
QUESTION B. Is every P-equicontinuous subset of B(H) totally bounded?

QuUEsTION C. Is every unital C*-subalgebra of B(H) an Arzela-Ascoli alge-
bra?

It is clear that a norm separable subset § of B(H) is P-equicontinuous if
and only if § is relatively P-equicontinuous in C*(&). We shall see that every P-
equicontinuous subset of B{(H ) is norm separable. The following lemma is obvious

(consider the contrapositive).
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LEMMA 6. A bounded subsel S of B(H) is P-equicontinuous if and only 1,
for every £ > 0, there is a & > 0 and a finite subset F' of S such lhat, for every
projection P such that max{||PT — TP||: T € F} < § implies sup{||PS — SP|| :
SeSt<e.

COROLLARY 7. Every norm closed bounded P-equicontinuous subset of B(H)
ts norm separable.

Proof. Ifin the preceding lemma we choose £ = 1/n, we obtain a finite subset
F, of § and a §, > 0 such that

1
max{||PT —TP|:T € F.} < b, = sup{||]PS - SP||: Se 8} < -

It follows from Proposition 1 that, for every S € 8, dist(S,C*(F,)) < 29/n. It
follows that if F' is the union of the F,’s, then F is countable and § C C*(F).
Hence S is norm separable. N

COROLLARY 8. If every unital C*-subalgebra of B(H) is an Arzela-Ascold
algebra, then every P-eguicontinuous subsel of B(H) is totally bounded.

The relationship hetween P-equicontinuity and Theorem 5 is contained in
the following straightforward consequence of Theorem 2.

LEMMA 9. Suppese G is a separable unital C*-subalgebra of B(H). The
following are equivalent:

(1) AlgLat (#(G)) = C*(n(G)U Z).

(ii) G is an Arzela-Ascoli algebra.

Proof. (1) = (11). Suppose G is not an Arzela-Ascoli algebra. Then there
is a bounded subset & of G that is not totally bounded, but is relatively P-
equicontinuous in §. Since § is norm separable, so is S, and we can choose a
norm-dense sequence {S,} is S. Let s be the image of {Sn} in Q(H). Since S is
relatively P-equicontinuous in G, s € Alg Lat #(G). Since {S1, S, ...} is not totally
bounded, s is not in C*{#(G) U 2Z), which vialates (i).

(ii) = (i). Suppose G is an Arzela-Ascoli algebra and n(71,73,...) €
AlgLat n(G). It follows from Theorem 2 that we can assume 7, € G for each
n. The fact that 9{(T},T3,...) € AlgLat 7(G) implies that the set {T1,7%,...} is
P-equicontinuous relative to ¢. Since G is an Arzela-Ascoli algebra, {73,7%,...}
is totally bounded, which, by Lemma 4, implies 9(71,73,...) € C*(#(G)U Z). &

We see that the answers to Questions B and C are related not only to each
other, but to questions of reflexivity of sets of the form n(S) with § a separable
subset of B(H).
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THEOREM 10. The following are equivalent:
(i) If {An} ts a bounded sequence in B(H) such that inf{||An — An|| : m #

n} > 0, then there is a positive number r such that, for every € > 0 and every finite
subset F of B(H), there is a projection P such that max{||PT-TP||: T € F}<e
and sup{||PA, — A P||:n2 1} 2 r.

(ii) Every separable C*-subalgebra of B(H) is an Arzela-Ascoli algebra.

(iti) B(H) is an Arzela-Ascoli algebra.

(iv) For cvery separable unilal C*-subalgebra G of B(H), AlgLatm(G) =
C*(z(G)U 2).

(v) For every separable subset § of B(H), AlgLatx(S) ts the norm closed
algebra generated by m(appr AlgLat S)U Z.

Proof. The implications (ii) < (iv) follow from Lemma 9. The implication
(v) => (iv) follows from Proposition 1, and (iii) = (ii) is obvious.

(iv) = (v). Suppose (iv) is true and § is a separable subset of B(H), and
let G = C*(S). Let n(T1,T3,...) € AlgLatx(S) C AlgLat x(G) = C*(n(G) U 2).
From Lemma 4 and (T}, T, ...) € 7Y (C*(#(G) U £)) it follows that {T},T%, ...}
is totally bounded. To prove that (77,753, ..) belongs to the norm-closed algebra
generated by m(appr Alg Lat §)UZ, it suffices to show that dist(7;,, appr Alg Lat §)
— 0 asn — oo. Since {71, T%, ...} is totally bounded, we need only show that every
subsequential limit of {T,,} is in appr Alg Lat . However, if {T;,, } is a subsequence
of {Ty,}, it is clear that 9(Ty,, Ty,,...) € Alg Lat 7(8), and if ||T,,, = T|| — 0, then
7(T) = W(Tn,,Tn,,...) € AlgLat7(S). Thus T € appr AlgLat(S). This proves
(v).

(it) = (i). Suppose (i) is false. Then there is a bounded sequence {A,} in
B(H) such that inf{||S; — Sp|| : m # n} > 0 and, every # > 0, there is an &, > 0
and a finite subset F, of B(H) with the property that whenever P is a projection
with max{||PT — TP|| : T € F,} < ¢, then sup{||PA, — AnP|l :n = 1} < r.
Suppose G is the C*-algebra generated by the A, ’s and the Fiyn’s. Suppose { P}
is a sequence in appr LatG. Then for every positive integer m, there is an integer
N such that k 2 N = max{||PsT ~ TP|| : T € Fijym} < €1/m, which implies
sup{||PrAn — Ap Pl : n = 1} < 1/m. Therefore

klim sup{||PxAn — AnPe|]| :n 2 1} = 0.

Hence {41, Ao, ...} is relatively P-equicontinuous in G, but not totally bounded.
Thus (i) is false.

(i) = (iii). Suppose S is a bounded subset of B(H) that is not totally
bounded. Then there is a sequence {A,} in § such that inf{||S, — Sm|l : m #
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n} > 0. Let r be given as in (i), and let A be the set of pairs (¢, F) with ¢ > 0
and F a finite subset of B(H), partially ordered by > in the first coordinate and
C in the second coordinate. For each A = (g, F) € A, we can, by (i), choose a
projection P so that max{||P\—T—TP,||: T € F} < £ and sup{[|PrAn—An P|| :
n 2 1} 2 r. It follows that the net {Py} € appr Lat B(H) and, for every A in A,
sup{||PxAn — AnPy|| : n 2 1} 2 7. Thus § is not P-equicontinuous relative to
B(H). Hence B(H) is an Arzela-Ascoli algebra. &

The proof of (iv) = (v) is the preceding theorem actually yields the following
“hereditary” result.

COROLLARY 11. Suppose S is a separable subsei of B(H) and AlgLat n(S)
is the norm closed algebra generated by n(appr AlgLat S)U Z. Then, for every
subset W C apprAlgLatS, we have AlgLat m(W) is the norm closed algebra
generated by w(appr AlgLat W)U Z.

It is reasonable to ask, assuming statement (i) in Theorem 10 is true, whether
r only depends on inf{[|An — Am|| : m # n}, if we assume that ||A,]| < 1forn 2 L
This leads to a stronger notion of Arzela-Ascoli algebra.

A subset S of ballG (the closed unit ball of G) is called t-separated (1 > 0)
if |S—T{] > ¢ whenever ST € § and S # T. A C*-subalgebra G of B(H)
is uniformly Arzela-Ascoli if there is a function p : (0,2] — (0,1] such that if
0 <t < 2and S is an infinite t-separated subset of ballG, then there is a net {Py}
in appr Lat G such that, for every X, sup{||PxS — SPx||: S € 8} 2 p(t). We call a
function p described above a uniform-equicontinuily function for G. Note that if
p is a uniform-equicontinuity function for G, then any smaller positive function is
also a uniform-equicontinuity function for G. We define I'g (%) to be the supremum
of all the uniform-equicontinuity functions for G when G is a uniformly Arzela-
Ascoli algebra; otherwise, we define I'c = 0. It is clear that if 0 < p < Tg, then p
is a uniform-equicontinuity function for G. Note that when G is finite-dimensional,
G is vacuously uniformly Arzela-Ascoli and any positive function p is a uniform-
equicontinuity function for G.

Uniform-equicontinuity functions for separable C*-subalgebras of B(H) are
related to distance formulas in Q(H).

THEOREM 12. Suppose G is a separable untial C*-subalgebra of B(H). The
following are cquivalent:

(1) G 1s a uniformly Arzela-Ascoli algebra and t/Tg(t) 1s bounded on (0, 2],
(i.e., there is an M > 0 so that p(t) = t/M is a uniform-equicontinuily funciion
forG).
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(i) There is a number & > 1 such that, for every s in Q(H) there is a
projection p in Lat w(G) such that dist(s, C*(7(G) U 2)) < £l|ps — sp||.

Proof. (i) = (ii). Suppose p is a uniform-equicontinuity function for G,
M > 0, and p(t)/t > 1/M for t € (0,2]. Suppose s = 7(S1,52,...) € Q(H). We
can assume that ||s|| = 1. Let d = sup{||ps — sp|| : p € Lat(#(G))}. It follows from
the proof of Theorem 2 that there is an a = n(A;, A, ...) with each A, in G such
that |ja — s|| < 29d. Note that

dist(s, C* (n(G)UZ)) < [la—s|+dist(c, C*(x(G)UZ)) < 29d+dist(a, C*(1(G)UZ)).

Suppose r > dist(a, C*(7(G) U £)). Let § be a maximal r-separated subset of
{Ay, A2,...}. Then every A, is within a distance 7 to some point in §. Thus
there is a sequence {B,} in & such that ||(A1, A2,...} — (B, Ba,.. )|l <r. If S
were finite, then b = n(By, Ba,...) € C*(7(G)U Z), which would violate the choice
of r. Hence & is infinite. Since p is a uniform-equicontinuity function for G, there
is a sequence {P,} in appr Lat G such that

sup{||PaAr ~ AcPall : k2 1} 2 p(7) 2 —Zl% > (;‘17) dist(a, C*(7(G) U Z)).

Let ny = 1, and choose k1 > 1 such that ||Py, Ag, — Ag, Pn,l| 2 7/M — 1/2.
Next choose ny > n; so that ||Pn,Ax — ApPp,ll < 7/M —1/2for 1 < k < k.
Thus there is a ks > ki such that ||Pn, Ak, — Ak, Pn,|| 2 r/M — 1/4. Proceeding
inductively, we choose increasing sequences {n,} and {km} of positive integers
such that, for each m, || P, Ag,, — Ak, Pa,.|| 2 /M —1/2™. We define a sequence
{Q;} of projections by Qk,. = Py, for m 2 1, and @; = 1 otherwise. Since
{P,} € apprLat@, it is clear that {Q;} € apprLatG. Let p = 7(Q1,Q2,,...).
Then p € Lat #(G) and

llap — pal| = limsup || AnQn — QuAn|l 2 limsup || P, Ak, — Ak, Pall
A 00 m—co
>imowe [ - ) = 77
But
llap—pall = max{||(1—p)apll, llpa(1—p)lI} < lja—sl|+[lsp—psl| < 29d+d = 30d.
Thus 7/M < 30d, which implies Mdist(a, C*(x(G) U Z)) < 30d. Thus

dist(s, C*(7(G) U Z)) < ||s — a|} + dist(a, C*(x(G) U Z)) < 29d + 30dM. If we
choose k > 29 + 30M, we see that (ii) holds.
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(ii) = (i). Suppose (ii) holds and {A;, Az,...} is a subset of ballG such
that ||A; — A;{] 2 ¢t > 0 when 1 < i # j < 0. Let a = (A3, A2,...). Since
7~ (C*(7(G)U Z)) consists of the totally bounded sequences in G, which is the clo-
sure of the set of sequences in G with finite range, it follows that dist(a, C*(n(G)U
Z)) > t/2. However, by (ii), there is a p = 5{(@1,Q2,...) in Lat n(G) such
that dist(a, C*(7(G) U 2)) < «llep — pa]| = xlimsup {|AnPn — PrAnll. Thus

n—00

t/2c < limsup |[|AnPn — Py Anll. Suppose M > 2x. Hence there is a subse-

00
quence {P,,} of {P,} such that ||Ap, Pn, — PnoAn.l| > t/M for k£ > 1. Since
{P,.} € apprLatg, it follows that p(t) = t{/M defines a uniform-equicontinuity
function for G. 1

We now attack the problem of finding sufficient conditions for an algebra to
be an Arzela-Ascoli algebra. The next result lists elementary facts that simplify
the proofs of subsequent results.

LEMMA 13. The following are true.
(i) Every subalgebra of an Arzela-Ascoli algebra is an Arzela-Ascoli algebra.
Moreover, if BC G, then I's 2 Tg.
(i) A finite direct sum of algebras is an Arzela-Ascoli algebra if and only of
each summand is. Moreover, if G =G1 D Ga® -+ - D Gy, then g 2 1r<nlél Tg,.

H[rxn

(ii1) Suppose n is a posilive integer and G is a C*-subalgebra of B(H). Then
G is an Arzela-Ascoli algebra if and only if M,(G) is an Arzela-Ascoli algebra in
BH®- - -®H).

(iv) If ¢ : G — B(H) is a unital representation that is approzimalely equiv-
alent to the identily representation, then o(G) is an Arzela-Ascoli algebra if and
only if G is an Arzela-Ascoli algebra. Moreover, I'g = T'5(g).

(v) If M is a separating reducing subspace for G and G|M is an Arzela-Ascoli
algebra, then so is G. Moreover, I'g 2 Ig|ar.

(vi) Suppose B is a C*-subalgebra of B(H) and P 1is a projection in B. Let
M = P(H), end G = {PB|M : B€ B} C B(H). If B is an Arzela-Ascoli algebra,
then so ts G. Moreover, I'g 2 I'n.

THEOREM 14. Every AF C*-subalgebra G of B(H) is a uniformly Arzela-
Ascoli algebra with Tg(t) > t/8. If G is commutative, then Tg(t) > t/4.

Proof. Suppose {G» : A € A} is an increasing sequence of finite-dimensional
C*-algebras whose union is dense in §. Suppose t > 0 and S is an infinite ¢-
separated subset of ballG. Suppose A € A. Since ballG is compact, there is an
S» in & such that dist(Sx,Gy) > t/2. Since Gy is hyperreflexive with constant of
hyperreflexivity at most 4 (see [25]), there is a projection P, in the commutant of
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Gy such that [|P,Sy — SaPul| 2 (1/4)dist(Sy,Gx) = £/8. 1t is clear that the net
{P»} is in appr Lat G. Thus p(t) = {/8 is a uniform-equicontinuity function for G.
The result for commutative G follows from the fact [25] that a commutative von
Neumann algebra has a hyperreflexivity constant at most 2. 1

We can use the preceding theorem to recapture Theorem 5.

COROLLARY 15. Every commautative C*-alghebra G C B(H) is a uniform
Arzela-Ascoli algebra with Tg(t) 2> ¢/4.

Proof. The von Neumann algebra generated by ¢ is a commutative AF-
algebra, and I'g 2 Tgu. 11

THEOREM 16. Supposc {Gg} is an increasing net of uniformly Arzela-Ascoli
C*-subalgebras of B(H) whose union is dense in G. Suppose also, there is a posi-
live funclion p : (0,2] — (0, 1] such that p is a uniform-egquicontinuity function for
each Gg. Then G is a uniformly Arzela-Ascoli algebra and p'(t) = min(p(3t/4)/240,
t/480) is a uniform-cquicontinuity function for G. In other words, Tg(t) 2
i%f min(T'g,(3t/4)/240,¢/480).

Proof. Let p'(t) = min(p(3t/4)/240,1/480). Suppose ¢{ > 0 and § is an
infinite t-separated subset of ballG. Let A be the collection of all pairs (F,¢),
with € > 0 and F a finite subset of the union of the Gg’s, and order A by (C, ).
Suppose A = (F,e) € A. Choose a 8 so that F C Gg. Let s = min(p(3t/4)/4,t/8).

Case 1. sup{dist(5, ballGg) : S € §} < s. In this case we have, for each §
in &, an element Ag in ballGg such that ||9 — Agl|| < s. It follows that if 5,T € §
and § # T, then ||As — Ar]| 2t — 25 2 ¢ — 2({/8) = 3t/4. Since p is a uniform-
equicontinuity function for Gg, there is a prmection P) such that [|P\A—APy|| < ¢
for every A in F, and such that sup{||PxAs—AsPs|| : S € 8§} 2 p(3t/4). 1t follows
that

sup{||PAS — SPy|| : S € 8} 2 p(3t/4) — 25 2 p(31/4) — 21)(351& = p(t).

Case 2. sup{dist(5,ballGs); S € S} = s. Then sup{dist(5,G); 5 € §} 2
s/2. Thus, by Proposition 1, there is a projection Py such that [|[PyxA — AP\|| < ¢
for every A in F, and such that

sup{||PAS — SRl : 5 € 8§} = 2 0 (1).

S o".s

It is clear that the net {P,} is in apprLatG and that, for each A in A,

sup{[|PA5 — SPy[| : 5 € S} 2 0'(2). 8
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THEOREM 17. IfG is a separable commutative C*-subalgebra of B(H) and B
is an Arzela-Ascoli subalgebra of B(K), then the spatial tensor product G B is an
Arzela-Ascoli subalgebra of B(H ® K). Moreover, I'ggp(t) > min(¢/8,T5(t/4)).

Proof. Suppose ¢ > 0 and § is an infinite ¢-separated subset of ballG. Let
X be the maximal ideal space of G. Then G ® B is isomorphic to the C*-algebra
C(X, B) of all continuous functions from X to B. Write S = {1, 3, ...}, and let
(=]

W= anjl ran(p,).

Claim. Either W contains no finite subset F such that every point of W is
within ¢/4 of 7 or X has no finite Borel partition P such that, for every set £ in
P and every ¢ in 8, diam(E) < t/4. Assume, via contradiction that the claim
is false. Then, for each E in P, we can choose #(E) in E. Then, for every ¢ in S,
"(P_EZP e(z(E))xe ” < t/4. And for each F in P and each ¢ in S, we can choose

€

WE,, in F so that ||Wg , — o(z(E))|| < t/4. Hence

‘w— Y. Weoxe| < t/2
EeP

for each ¢ in §. However, since P and F are finite, the set of sums of the form

Y. Agxe with each Ag in F is a finite set. It follows that there is a finite subset
EeP
of § that is within a distance less than ¢ = 2(t/2) to each element of S. This is a

contradiction that proves the claim.

Suppose that there is no finite subset of W that is within ¢ /4 of every element
of W. Then W contains an infinite subset V such that S,7 € V and § # T
implies that ||§ — T|| > t/4. Since B is an Arzela-Ascoli algebra, there is a
net {Qx} of projections in appr Lat(B) and a positive £ such that, for every A,
sup{||@\B — BQ,|| : B € W} > ¢. Moreover , if p is a uniform-equicontinuity
function for B, we can take ¢ = p(t/4). For each A, define Py € C(X, B(K)) C
B(H ® K) by P\(z) = Q.. It follows that, for every A,

sup{||Px¢pn — @ Pall : n 2 1} = sup sup 1@rpn(2) — en(z)Q0l|
n zxE
= sup{||@xB — BQ.||: Be W} z¢.

Next suppose that X has no finite Borel partition P such that, for every set
Ein P and every ¢ € 8, diam¢(E) < t/4. We can imitate the proof of Theorem 5
to find a net {P,} in appr Lat(G ® B) so that, for each «, sup ||PaS — Spa|| 2
(t/4)/2 =t/8.

It follows that G ® B is indeed an Arzela-Ascoli algebra and that if p is a
uniform-equicontinuity function for B, then p'(t) = min(t/8, p(t/4)) is a uniform
equicontinuity function for G@ B. 1
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REMARK. We could have used the fact that G is contained in a commuta-
tive AF-algebra D, (e.g., G” is a direct limit of an increasing net {Dy} of finite-
dimensional commutative C*-algebras). Then D ® B is the direct limit of the
algebras D, ® B, and each D, ® B is isomorphic to a direct sum of copies of B. It
follows that each D, ® B has p as a uniform-equicontinuity function. Therefore,
by Theorem 16, D ® B is a uniformly Arzela-Ascoli algebra. Since G® B C P ® B,
G & B is a uniformly Arzela-Ascoli algebra. However, Theorem 16 does not give

as good an estimate on Uggp. B

COROLLARY 18. Suppose {Gn} is an increasing sequence of C*-subalgebras
whose union is dense in G and G and G C B(H). If each G, is x-isomorphic to lhe
tensor product of a commutative C*-algebra and a finite-dimensional C*-algebra,
then G is a uniformly Arzela-Ascoli algebra Ig(t) > t/15360.

It is not clear that being an Arzela-Ascoli algebra is preserved under *-
isomorphisms. For example, if a C*-subalgebra G of B(H) can be embedded in an
AF algebra, we do not necessarily know if G is a subset of an AF algebra contained
in B(H) (e.g., C*(S* ® S) and C*(S* ® S @ S) where S is the unilateral shift).
The following result shows how such difficulties can be overcome when G contains
no compact operators.

ProposiTIioN 19. IfG C B(H), GNK(H) = {0}, G and H are separable,
and G is *-isomorphic to an Arzela-Ascoli algebra B on a separable Hilbert space

K, then G is an Arzela-Ascoli algebra. Moreover I'g 2 I'z.

Proof. We can assume that G and H are infinite dimensional. Thus there is
a *-isomorphism ¢ : G — B such that ¢(G) = B is an Arzela-Ascoli algebra. Let
7 :G — B(H) be unitarily equivalent to ¢ ® o & - -; hence 7(G)NK(H) = 0. It
follows from Voiculescu’s theorem ([28]) that 7 is approximately equivalent to the
identity representation on G. It follows from parts (iv) and (v) of Lemma 13 that
G is an Arzela-Ascoli algebra and that T'g = 7y 2 Tog) =Ts. B

COROLLARY 20. If G C B(H) is %-isomorphic to an irrational rotation C”-
algebra, then G is an Arzela-Ascoli algebra and T'g(t) > t/8.

Proof. We know that G is simple, so G N K(H) = {0}. Also, by [23], G is

x-isomorphic to a subalgebra of an AF algebra. a

We can prove a version of Proposition 19 for cases in which G N K(H) # 0.
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ProrosITION 21. Suppose G C B(H), B C B(K) and 0 : G — B is a *-
tsomorphism such that, for every a in G, rank o(a) € rank(a). If B is an Arzela-
Ascoli algebra, then so is G. Moreover, I'g 2 Tp.

Proof. 1t follows from [14] that there is a representation 7 : G — B(H) such
that 7 is approximately equivalent to the identity representation on G and o is
unitarily equivalent to a direct summand of 7. The rest follows as in the proof of
Proposition 19. 1

REMARKS. (1) This remark is based on the very kind, and greatly appreci-
ated, help from Cornel Pasnicu, who provided me with many references and de-
scriptions of their contents. The result in Corollary 20 raises leads to the question
of which algebras are embeddable in AF algebras. The class of AF-embeddable
algebras is surprisingly large. For example, M. Pimsner and D. Voiculescu ([23])
proved that any irrational rotation algebra is embeddable in an AF-algebra with
the same ordered Ko-group, and G.A. Elliott and D. Evans ([11]) proved that the
irrational rotation algebra is an AH algebra (a direct limit of direct sums of com-
mutative algebras with matrix algebras cut down by projections in these algebras).
In fact Elliott and Evans ([11]) show that any irrational rotation algebra is an in-
ductive limit of finite direct sums of matrix algebras over C(T'), where T' is the unit
circle. Generalizations of this result to higher-dimensional noncommutative tori
have been obtained by Elliot and Lin ([12]), F. Boca ([4]), and Q. Lin ([18}). In
[22] M.V. Pimsner proved that a crossed product of a commutative algebra by an
action of Z is AF-embeddable if and only if it is quasidiagonal. Also D. Voiculescu
([29]) obtained results on crossed products of AF-algebras by Z; he proved that a
crossed product of any UHF algebra by 7 is AF-embeddable. J. Spielberg ([27])
proved that any residually finite type I C'*-algebra or any separable C*-algebra
with continuous trace is AF-embeddable. Moreover, Spielberg showed that the
cone of every type I C*-algebra is AF-embeddable, and that AF-embeddability is
a homotopy invariant among type I C*-algebras. Other interesting related results
are contained in (3}, [5], [6], [7], [8], [17] and [24].

(2) A C*-algebra G is embeddable in a finite direct sum of algebras M (C( X))
where X is a compact Hausdorff space and k£ < n < oo if and only if each irre-
ducible representation of G has dimension at most n. An unpublished result of
I. Kaplansky states that G is commutative if and only if ¢ contains no nonzero
nilpotents. We can extend Kaplansky’s result by showing that every irreducible
representation of G has dimension at most n < oo if and only if every nilpotent in
G has order of nilpotence at most n. The “only if” part is trivial. To prove the
“if” part, suppose that 7 is an irreducible representation of § having dimension
greater than n. It follows that there is a positive element A4 in 7(G) such that ¢{A)



NONCOMMUTATIVE ARZELA-ASCOLI THEOREMS 57

contains more than n points, and, using the continuous functional calculus, we can
choose n + 1 nonzero, positive, pairwise orthogonal elements Ay, As, ..., Apyq of
7(G). Using Kadison’s transitivity theorem, we can find elements C1,Co, ..., Cy In
m(G) so that T = A1C Az 4+ -+ AnCr An 4y satisfies T™ # 0. However, T+ = 0.
Using a result of C. Olsen and G. Pedersen ([19]), we can find a nilpotent { in G
such that #(t) = T. Clearly, the order of nilpotence of ¢ exceeds n.

(3) If G is a separable C*-subalgebra of B(H) and H is separable, and if
every irreducible representation of H is at most n-dimensional, then, because
the identity representation on G is approximately equivalent to a direct sum p
of irreducible representations ([28]), it follows that p(G) is contained in a C™-
subalgebra of B(H) that is a direct sum of algebras of the form M. (B) with B
commutative (diagonalizable) and k& € n. Hence p(G) is contained in an AF-
subalgebra of B(H), which implies that I'g(t) > t/8.

We can push the ideas in Proposition 19 a little further. This allows us, in
some cases, to restrict our attention exclusively to the compact operators in G.

THEOREM 22. Suppose G is a separable C*-algebra on a separable Hilbert
space H. Suppose G/[GNK(H)] is x-isomorphic to a nuclear Arzela-Ascoli algebra
B on a separable Hilbert space. Then:

(i) G is an Arzela-Ascoli algebra if and only if every subsel of GNK(H) that
ts relatively P-eqaicontinuous in G is tolally bounded.

Moreover, suppose B is a uniformly Arzela-Ascoli algebra, and there is a
function p : (0,2] — (0, 1] such that whenever t > 0 and S is en infinite t-separated
subset of ball(G N K(H)), there is a net {Pa} in apprLat(G) such that, for each
A, sup{||SPx — P\S|| : S € §} 2 p(t). Then

(11) G is a uniformly Arzele-Ascoli algebra and

T'g(t) > min [rs (% min (% p(t/?))) , %p(t /2)] .

Proof. Suppose ¢ : G — B is a unital surjective *-homomorphism and ker ¢ =
G NK(H). It follows from Voiculescu’s theorem ([28]) that idg is approximately
equivalent to idg @ o. Since B is nuclear, there is a unital completely positive map
¢ : B — G such that 0 o ¢ = ids. Suppose § is a P-equicontinuous subset of G.
Then {S @ o(S) : S € S} is a P-equicontinuous subset of {A ® c(A) : A € G}.
Hence o(S8) is a P-equicontinuous subset of B. Since B is an Arzela-Ascoli algebra,
o(8) is totally bounded, which implies ¢(a(S)) is totally bounded. Definey: G —
GNK(H) by y(A) = A — p(c(A)).. Since p(o(S)) is totally bounded, it follows
that v(S) is P-equicontinuous in G and that ¥(S) is totally bounded if and only if
§ is totally bounded. This proves (i).



58 Don HapwiN

Next suppose p' is a uniform-equicontinuity function for B, and that the
function p is defined as in (i) above. Suppose t > 0 and § is an infinite ¢-separated
subset of ballG. Let s = (1/2) min(¢/2, p(t/2)/2).

Case 1. o(S) contains an infinite s-separated subset. In this case we can
use the fact that idg is approximately equivalent to idg & ¢ to replace G with
(idg ® o)(G) and obtain a net {Q.} in apprLato(G) such that, for every A,
sup{||@xc(S) = (S)@x[|: S € 8} = p/(s). Let Py = 0©Q, for each A. Then {P\}
is in appr Lat(idg @ ¢)(G) and sup{|| PA[S® o(S)] - [S®(5)]Qall : S € 8§} 2 ¢ (5).

Case 2. o(S) contains no infinite s-separated subset. Hence (¢ o o)(5)
contains no infinite s-separated subset. Thus there is a finite subset of (¢ 0 o)(S)
that is within s of every point in (¢ o ¢)(S). Hence there is an So in § and an
infinite subset Sy of S such that every point of (¢ o ¢)(So) has distance less than
s from (@ 0 0)(Sp). Thus, for every S, T € Sy with S # T, we have

IS =TIl = li(p 0 7)(S) = (p o o)D)
15 = Tl = (¢ 0 6)(S) = (¢ o) (So)ll

— (@ o o)(T) = (¢ 0 )Tl
>t—25,>,t—%=%.

v (S) = v(D)l| 2
>

Hence, by the definition of p, there is a net { P»} in appr Lat G such that, for every
A, sup{[|Pav(S) — ¥(S)Psf] : S € So} 2 p(1/2). Suppose € > 0. Since, for each A,
{P,} is in appr Lat G, we can assume that ||PA(p 0 0(So) — (¢ 0 @)(So) Pal| < € for

every A. Hence, for every X and each S in 8o, we have

IPAS — SPAll 2 1PAY(S) = 7(S)Pall = [|1Palg 0 0)(S) — (p 0 0)(S) il
IPx7(S) — 1(S)Pall = |PAl(w 0 0)(S) — (¢ 0 )(S0)]
~ e o) (8) = (poa)(So)]Pall — €

2 [I1Pxy(S) = v(S)Pall = 25 ~ €.

AR

Thus sup{||PxS — SP:|| : S € 8} > p(t/2) — 25 — € 2 p(t/2) — 25 — ¢ > p(t/2) -
p(t/2)/2 — € = p(t/2)/2 — €. Since € > 0 was arbitrary and p’ was an arbitrary

uniform equicontinuity function for B, it follows from Cases 1 and 2 that

[g(t) > min [rB(S), é—p(t/?)] > minTs [% min (% p(t/Q)) , %p(t/Q)] o

We apply the preceding theorem to a special case.
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THEOREM 23. Suppese S € B(H) and S is an isometry. Then G = C*(S)
ts an Arzela-Ascoli algebra with Tg(t) > t/64.

Proof. If S is unitary, then I'g(f) 2 t/4 (Corollary 15). Otherwise, S is
approximately equivalent to a pure isometry ([16]). It follows from part (v) of
Lemma 13 that we can assume that 5 is a unilateral shift operator with multiplicity
1. Note that C*(S) D K(H), and suppose S is a subset of ballG, ¢t > 0, and, for
S, T € § with S # 7T, we have
basis for H and Se,, = e,4; for each n 2 1. For each n 2 1, let P, denote the
projection onto sp{ey,ezs,...,en}. Since P,SP, C P,ball B(H)PF,, which is norm
compact, there are elements 5,7 of § such that ||Po(S—T) Py || is arbitrarily small,
which implies ||(S — T) — Pn(S — T)Pr| must be arbitrarily close to exceeding
t. Hence either S — Py SPy|| or ||T — P,TP,|| must be close to exceeding t/2.
Note that, for any operator A, ||A — P,AP,|| € 2max{{|/(1 — P.)AP,||,||(1 —
Pn)A*P,||}. Hence there is an K in & such that max{|[(1 — P,)KP,||,||(1 —
Pn)K*P,||} is arbitrary close to exceeding ¢/4. The following claim will prove
that if p : (0,2] — (0, 1] is any function such that p(t) < ¢/8, then p satisfies the
conditions in Theorem 22.

S —T|| 2 t. Suppose {e1, €2, ...} is an orthonormal

CLAamM. If K is a compact operatior ¢ > 0, and n > 1, then there is a
projection P such that:

(a) [|1PS = SPI| < 1/v/n;
(b) IPK — KP|| > 2 max{[|(1 — Pa)K Pal|, |(1 = Pa)K* Pa|)) — 2e.

Proof of Claim. Since |[|PK — KP| = ||PK* — K*P||, there is no harm
is assuming that max{||(1 — P.)KP,||,||(1 — P)K*Pol|} = ||(1 = P)K*Pu|| =
[|PrEK(1 — Pp)jl. Suppose € > 0 and choose a unit vector f so that P,f = 0 and
[|PoK f|| > ||PnK(1 — Pn)|| — €. We can also assume that there is an m > 0 so
that Ppinf = f and ||K(1 — Pmyn)l| < €. We now use the Berg technique ([2],
[10]) to construct P. Let P be the orthogonal projection onto the linear span of
the union of the three sets:

[k / k

{ -2—7;6m+k+ 1- '2_7:62n+2m+k Z’fl+1 <k<2n},
[ k / k

{ %ek‘F 1_%62n+m+k:1<k<"}:
1

{\/;cn+k+33n+m+k 11€k€m}.
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Standard computations show that (a) above holds. To show that {b) holds,
write f = a1€p41 + - + GmEnim, and let ¢ = a1€sntm41 + 0 F Amesntom- A
simple computation shows that

+ .
Pg = f—é—g-, Kyl = HK(l — Pminlgll <e, “Pﬁyll <eg
and P}
e [ 5] -5 L0 m=e
Hence

\KP— PK|| > KPg - PKsl > (5 ) IPK (1= Po)| - 2=

This proves the claim.

Note that C*(S)/[C*(S) N K(H))] is commutative and is therefore nuclear
and is isomorphic to an algebra B with ['z(t) > t/4. The inequality I'g(t) > t/64
follows from Theorem 22. &

An operator T' is quasinormal if T' commutes with T*T. Every quasinormal
operator is unitary equivalent to the direct sum of a normal operator and the
spatial tensor product P® S where P is a positive operator and S is the unilateral
shift operator ([9]).

COROLLARY 24. Suppose T € B(H) is a quasinormal operator. Then C*(T)
is an Arzela-Ascoli algebra with Tg(t) 2 t/256.

Proof. Tt follows from [9] that T is contained in an algebra of the form D @
(G®C*(S)), where D and G are commutative algebras and 5 is the unilateral shift
operator. The inequality follows from Theorems 17 and 23. &

Proving that every separable C*-subalgebra of B(H) is an Arzela-Ascoli
algebra is equivalent to showing that B(H) is an Arzela-Ascoli algebra (Theorem
10); this makes an affirmative answer seem less likely. However, we can use a result
of Olsen and Zame to reduce the problem to the singly-generated case.

ProrosiTioN 25. Suppese H is an infinite-dimensional separable Hilbert
space. The following are true.

(i) B(H) is an Arzela-Ascoli algebra if and only if C*(T') is an Arzela-Ascolt
algebra for every T in B(H).

(i) Every separable C*-subalgebra of B(H) is a uniformly Arzela-Ascoli alge-
bra if and only if C*(T) is a uniformly Arzela-Ascoli algebra for every T' in B(H)
if and only if there is a function p : (0,2] — (0, 1] such that Tg = p for every
separable C*-subalgebra G of B(H).
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Proof. Suppose every singly generated C*-algebra of B(H) is an Arzela-
Ascoli algebra, and suppose G is a separable C*-subalgebra of B(H). Let B be the
spatial tensor product G ® K(H). It follows from [20] that B is singly generated,
and is therefore an Arzela-Ascoli algebra. Suppose ¢ is a rank-one projection in
K(H), and let P = 1 ®4q. It follows from Lemma 13 (vi) that G is an Arzela-Ascoli
algebra and that I'g > T'z. Hence if B is uniformly Arzela-Ascoli, then so is G. It
also follows from Lemma 13 (vi) that if G is the C*-direct sum of a sequence {G,}
of C*-algebras, then I'g < r{rﬁfl I'g, . This proves that if every separable C*-algebra

is uniformly Arzela-Ascoli, then
p(t) = inf{lg(t) : G is a separable C*-subalgebra of B(H)} > 0

for every t in (0,2]. ®

The Arzela-Ascoli theorem yielded an affirmative answer to Question A for
commutative algebras of the form 7(G). For a better result we need an improved
version of the Arzela-Ascoli theorem. The key ingredient is a more precise version
of the Tietze extension theorem in metric spaces. The idea is based on the proof
of the Tietze theorem in [26] combined with the well-known fact that Urysohn
functions can be written explicitly for a metric space. I wish to thank my colleague,
David Feldman, for suggesting that the algorithmic nature of the proof of Tietze’s
theorem in {26] might lead to a proof of the generalization below.

Suppose (X,d) is a metric space and F is a collection of complex-valued
functions such that, for each f in F, the domain of f is a closed subset of X. We
call I equiconlinuous if, for each positive number ¢, there is a § > 0 such that, for
every fin F and every z,y in dom(f), [d(z,y) < 6§ = |f(z) — f(v)] < €].

THEOREM 26. Suppose (X, d) is a metric space and F is a uniformly bounded
equicontinuous family of functions whose domains are closed subsets of X. Then
cach f in F has an extension f in C(X) such that the family {f :feF}is
uniformly bounded and cquicontinuous.

Proof. If f and g are functions whose domains are subsets of X, we define
f + g to be the sum of f and g restricted to dom(f) N dom(g). It is clear that if
F1 and F, are equicontinuous families, then so are F1UFy and F1+F, = {f+g:
f € F1 and ¢ € F3}. Since F is uniformly bounded by a positive constant M,
there is no harm in assuming that —1 < f < 1 for every f in F (otherwise, replace
F with the set of functions of the form Re(f/M) and Im(f/M) for f € F.

Since equicontinuity is unchanged if we replace the metric d with lﬁ (ie.,
1—_“1_7 <r< 1l d< &), we can assume that the diameter of X is at most 1.
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Let YV denote the set of all continuous functions whose domain is a closed
subset of X and whose range is contained in [—1,1]. Define A : Y — C(X) as

follows:
o d(z, F~1([-1,-11) _
) = 2 e - D) + e S (G D)

where d(z, A) = inf{d(z,y):y€ A} forz € X, 0 # AC X, and d(z,0) = L.

CLAM. If & is an equiconiinuous subsel of Y, then A& = {Ag : g € &} is
equiconlinuty.

Proof of the Claim. Choose p such that 0 < p < 1, and, for every f in & and
every z,y € dom(f), [d(z,y) < p = |f(z)— f(y)| < 1/3]. Choose f € & and define
u,v € C(X) by u(z) = d(z, f~'([~1,~1/3))), and v(z) = d(z, F~([-1,-1/3])))+
d(z, f~1([1/3,1])). Note that, for z,y € X, u(z) < I, ju(z) — u(y)| < d(=,v),
Iv(z)  v()] < 2d(z,7), p < o(x) < 2.

The claim now follows from

uz) _ uly)
v(z)  v(y)
u(z)(v(y) — v(z)) + v(z){u(z) - u(y)) '
v(z)v(y)
L, (1/2)d(z, y) +2d(z,y) _ 8d(z,y)
<2 P2 T
Next suppose f € F. We next define, inductively, a sequence {A, f} in C(X)

[(Af)(=) — (Af)(w)] =2

=32

such that, for each positive integer n, we have

i< (3) @)1 f-mar—-napi<(3)

Define A; f = (1/3)A;, and for each positive integer n we define

O (O ravE—

Note that [A1f] € 1/3,and —2/3 < f— A f < 2/3.

The required properties follows from induction. It also follows from induc-
tion, the equicontinuity of F, and the claim above, that, for each positive integer
n, Ay F 4 -- -+ A, F is equicontinuous.

For each f in F define f = Ay f + Azf + -~ It is clear, for each f in F,
fldom(f) = f. To show that {f : f € F} is equicontinuous, suppose £ > 0, and
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choose n so that (2/3)" < ¢/3. We then choose § > 0 so that, for every z,y in X
and every g in AMyF + -+ 4+ A, F,

[d(z,v) < 6] = lo(=) - 9(0)| < 5.

Suppose f € F, and let ¢ = Ayf + -+ A,f. Then |f — ¢} < ¢/3 and
g€ MF 4+ A F. Thus, for every z,y in X with d{z,y) < 8, we have

|f(z) = f()] < |f(z) = g(@)] + lg(z) — o) + |f(y) —g(p) <e.

The following generalization of the Arzela-Ascoli theorem ([26]) follows from
the preceding theorem and the Arzela-Ascoli theorem itself.

THEOREM 27. Suppose (X, d) is a compact melric space and F is a uni-
formly bounded equicontinuous family of functions whose domains are closed sub-
sels of X. Then, for every e > 0, there is a finite subset & of C(X) such that, for
every f in F, there is a g tn &, such that |f(z) —g(2)| < € for every x in dom(f).

We can use the generalized Arzela-Ascoli theorem to improve Theorem 5.

THEOREM 28. Suppose B is a separable commutative unital C*-subalgebra
of £2(B(H)). Then AlgLat{(n(B)) = C*(n(B) U Z).

Proof. Let X be the maximal ideal space of B. Since B is separable, X is a
compact metric space. Let p: C{X) — B be the inverse of the Gelfand map. We
define *-homomorphisms p, : C(X) — B(H), n 2 1, by p(f) = (p1(f), p2(f), .. .).
For each n > 1, there is a compact subset X,, of X such that ker(p,) = {f €
C(X) : fIlXa = 0}. Hence C(X)/ker(pn) is *-isomorphic to €/(X,,). Hence there
are *-homomorphisms 7, : C'(X,) — B(H) such that p,(f) = 7 (f|Xn) for each
n 2 | and each f in C(X). As in the proof of Theorern 5, each py has an extension
to the algebra Bor(X) of bounded complex Borel functions on X, and each 7, has
an extension to Bor(X,) so that p,(f)} = 7, (f|X,) for each n > 1 and each f in
Bor( X).

Suppose s € Alg Latn(B), and choose S € £(B(H))} so that 5(5) = 5. It
follows from Theorem 2 that we can assume that there is a sequence {f,} such
that, f, € C(Xy) for n 2 1, and S = (r(f1), 72(f2),...). Following the proof of
Theorem §, we can show that {fi, fz,...} is equicontinuous. Suppose ¢ > 0. It
follows from the generalized Arzela-Ascoli theorem that there are finitely many
functions g1, g2, ..., gm in C(X) and a partition {E1, B2, ..., Em}tor {1,2,3,...}
such that, for 1 < k < m and n € Ey, ||fu — 91| Xn|| < € For each &, 1 €
k < m, let P be the characteristic function of ;. Then P € #°(C) and ¢ =
Pip{g1) + Pap(g2) + - + Pup(gm) € C*(B U £°(C)) and ||¥ — a|| < £. Hence
seC (mBUZ). n
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We can use Theorem 23 to prove a more general result.
THEOREM 29. If s is an isomeiry in Q(H), then Alg Lat C*(s)=C*({s}UZ).

Proof. Choose a sequence A = {A,} in £°(B(H)) so that y(A) = s. For
each n 2 1, let A, = |A,|S, be the polar decomposition of A,. Since s*s = 1,
|1 — Ay An]l — 0. It follows that |4,] — 1. Thus ||4, ~ Su|| — 0, and, therefore,
[|1 — Sk Sall — 0. It follows that, for n sufficiently large, S, is an isometry. Since
every non-unitary isometry is approximately equivalent to a pure isometry, we can
assume that, for each n, S, is unitary or 5, is a pure isometry. If S, is a pure
isometry for only finitely many values of n, we can assume that all of the S,’s
are unitary and apply Theoremn 28. We next suppose that S, is unitary for only
finitely many values of n. In this case we can assume that S, is a pure isometry
for every n. Let S be the unilateral shift of multiplicity 1 acting on H. For each
n, there is an isometric unital *-homomorphism ¢, : B(H) — B(H) such that
on(S) = Sp. Suppose T = {T,,} € £ (B(H)) and (T") € AlgLat C*(s). It follows
from Theorem 2 that we can assume that T, € C*(S,) for each n. For each n, we
can choose C, € C*(5) such that o,(C}) = Ty,

Assume, via contradiction, that {1, C2,...} is not totally bounded. Since
C*(S) is an Arzela-Ascoli algebra, it follows from Theorem 10 that 7({C.}) ¢
AlgLat m(C*(S)). Hence there is a sequence {P,} in appr Lat{C*(5)) such that
limsup ||Cp Py — P,Ch|| > 0. It follows that 5({on(Pr)}) € Lat C*(s), but

In({en(P)Dn({Tn}) ~ 2({Tn Hn({en(Pa) DI
=limsup |[en{FPa)Tn — Tnon (Pl
= limsup |6, (Pn)on(Cn) — on(Ch)on(Pn)l]
= limsup || P.C,, — Ch Pul| > 0.

This contradicts the fact that n({7..}) € AlgLat C*(s). Hence {Ci,C5,...} is
totally bounded. It easily follows, as in the proof of Theorem 2, that {T,} €
C*({s} U Z). This proves the theorem in the case when all but finitely many S,’s
are pure isometries.

The remaining case is when infinitely many S,’s are unitary and infinitely
many are pure isometries. This follows from the above two cases by identifying

¢ (B(H)) with £°(B(H)) @ £°(B(H)).

REMARK. With a little more work, we can obtain distance estimates in The-
orems 28 and 29 above.
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