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ABSTHACT. A simple unital ("*-algebra A is called extremally rich if the set
of one-sided invertible elements is dense in A. We determine some conditions
on a separable, simple, infinite dimensional *-algebra of real rank zero under
which we can decide whether the multiplier algebras M(4), M(A ® A') and
the corona algebras Q(A), Q(A® I} arc extremally rich or not. Qur analysis
will depend on the existence of a finite trace for A and, when A is an AF
algebra, on the number of infinite extremal traces of A and A ® K.
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INTRODUCTION

Given a (™-algebra A, we consider the problem of determining whether the multi-
plier and the corona algebras of A or the stabilization A & K of A are extremally
rich. In the rest of the paper we will assume that I is the set of compact oper-
ators on a separable, infinite dimensional Hilbert space. We will also assume all
(C*-algebras to be infinite dimensional.

When the answer is aflirmative we antomatically get bounds on the real
rank of the respective algebras. We recall that the real rank of an extremally rich
C™-algebra can be at most one ([20]). So, considering certain (C*-algebras whose
multiplier and corona algebras do not have real rank zero, one could hope that
this rank would be one, due to extremal richness. The second author has obtained
positive results in this direction ([18]) for the multiplier algebra of a o-unital purely
infinite sunple C*-algebra. We will see another proof of this fact in Corollary 3.8.
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Let us recall that a unital C*-algebra A is extremally rich if its closed unit
ball A; equals the convex hull conv(@(A)) of the extreme points G(A) in A;. We
will see equivalent definitions and properties of extremally rich C'*-algebras in the
next section. For simplicity, we shall write in the rest of the paper extreme points
of an algebra, but we will mean the extreme points of the closed unit ball of the
respective algebra.

We will determine when the multiplier and the corona algebras of a given
C*-algebra are extremally rich by examining extensions. As it turns out (see also
the next section), one of the important problems here is to lift extreme points from
quotients. Since most of the algebras we will look at are prime or simple, these
extreme peints will be isometries or co-isometries.

In Section 3 we show that the multiplier algebra of a simple o-unital C™-
algebra A with a finite trace is not extremally rich (Theorem 3.2). If the algebra
A is moreover separable and unital, then M (A ® K) is as well not extremally rich.
In the rest of this section we consider extensions with a purely infinite simple ideal.

Still, the corona algebra can be extremally rich (Theorem 4.1). However,
for a separable simple AF algebra A such that 4t K has at least two extremal
traces, the corona algebra Q(A  K) is not extremally rich (Theorem 4.9). If A
has only finitely many extremal traces of which n > | are infinite, then Q(A) is
not extremally rich unless n = 1 (Proposition 4.13 and Proposition 4.18).

1. PRELIMINARIES

This section contains the basic definitions and results for the property of C™*-
algebras called ez{remal richness. This property, which was introduced by L.G.
Brown and (i.K. Pedersen in [5], is an analog of the topological stable rank one
property (asserting that the invertible elernents are dense in the algebra ({22])),
but with the invertible elements replaced by the so-called quasi-tnvertible elements.

In order to define the quasi-invertible elements, let us first recall that the set
€(A) of extreme points of the closed unit ball A; of a unital C*-algebra A consists
of those partial isometries v in A satisfying (1 — vv*)A(l — v*v) = 0. Projections
of the form 1 — wv*,1 — v*» with v € €(A) will be called defect projections.
The set A7' of quasi-invertible elements of a unital C*-algebra A is defined as
A=1€(A)A!, where A~ denotes the set of invertible elements.

Note that in a prime (*-algebra (or, in particular, a simple C*-algebra) the
set of quasi-invertible elements consists only of the elements of A which are left or

right invertible. If the algebra moreover is finite (in the sense that any isometry
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must be unitary), then the quasi-invertible elements will be just the invertible
elements of the algebra.

A unital C*-algebra A is called extremally rich if the set AJ! of quasi-
invertible elements is dense in the algebra. A non-unital C*-algebra will then
be called extremally rich if its unitization A4 is extremally rich. Any C*-algebra
with topological stable rank one is extremally rich, since in this case the quasi-
invertibles are the same as the invertible elements. But much more 1s true. Any
von Neumann algebra is extremally rich ([20]) and any simple, purely infinite C*-
algebra is extremally rich (see [20], [24] for a proof in the unital case, the non-unital
situation being treated in Lemma 3.3).

It turns out that the property of extremal richness is preserved under passing
to quotients, hereditary C*-subalgebras (in particular ideals), and under taking
direct sums.

As for the behavior of extremal richness under extensions
0—J —A— A/J—0,

it is not enough, as one might hope, to have that the ideal and the quotient
are extremally rich and that the extreme points lift from the quotient. More is
needed, namely that all spaces of the form pAgq are extremally rich for all defect
projections p in A and ¢ in J. By Proposition 1.4.8 in [19], the set &(pAgq) of
extreme points in the unit ball of the space pAgq consists of partial isometries v
in pAg satisfying (p — vv*)pAg(g — v*v) = 0. Thus, the space pAg will be called
extremally rich if (pAq) is non-empty and the set (pAp)~' &(pAq)(gAq)~" is
dense in pAq. Equivalently, pAq is extremally rich if (pAg), = conv(&(pAg)). By
convention, the space {0} will be extremally rich.

When J has real rank zero the condition for the extension to be extremally

rich is:

ProrosiTioN 1.1. ([6]) Let J be a closed ideal of real rank zero in a unilal
*-algebra A, such that pJgq is extremally rich for any pair of projections such
that p € A and g € J. Then A is extremally rich if AJ/J is extremally rich and

C(A/J) consists only of isometries and co-isometries.

REMARK 1.2. We will often use the fact that when we have an extension as
above and A is extremally rich, then extreme points from the quotient A/J lift to
those in the algebra A ([5], Theorem 6.1).
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2. LIFTING PROBLEM OF ISOMETRIES
As pointed out in the previous section, if we have a short exact sequence:
0—J—A— A/] —0,

we can not in general deduce that A is extremally rich even though this is the case
both for J and A/J. L.G. Brown and G.K. Pedersen ([6]) presented an example in
which the multiplier algebra of a finite matroid C*-algebra A is not extremally rich,
though it has real rank zero and the corona algebra M{A)/A = Q(A) is a purely
infinite simple C*-algebra, hence extremally rich with real rank zero. However,
if A is a o-unital purely infinite simple C*-algebra, then M(A) is extremally rich
(see [18] and Corollary 3.8 in the next section). The obstruction to having an
extremally rich extension can be expressed as a lifting problem of extreme points
in A/J to those in A (see Remark 1.2).

In this section we give answers to this problem in some classes of C*-algebras.

Recall that a simple C*-algebra is called purely infinite if any non-zero hered-
itary C*-subalgebra has an infinite projection. We will need the following fact:

REMARK 2.1. (cf. Proposition L.5 in [9]) If A is a purely infinite simple
('*-algebra, then any pair of non-zero projections p, ¢ in A will satisfy p < g, that
is, p is Murray-von Neumann equivalent to a subprojection of ¢.

The following is a simple modification of an argument of G.A. Elliott ([11])
(see also [30]).

THEOREM 2.2. Lel A be a C*-algebra and let J be an essential ideal of A.
Suppose that J is purely infinite and simple. Then any isometry in A/J can be
lifted to an isomelry tn A.

Proof. We may assume that A is unital.

Let v be an isometry in A/J and z be a preimage of v in A. Let 7 be the
canonical quotient map from A to A/J. Then z*z — 1 is contained in J, since
w(z*z—-1)=0.

Since J has real rank zero by [28), there exists a projection r € J such that

l(1 = r)(z"2 = (1 = r)ff < 1

because J admits an approximate unit consisting of projections by [4]. Thus we
get that z = (1 —r)z*2(1 —r) is an invertible element in (1 —r)A(1 —r). Let y be
the inverse of z in (1 — r)A(l —r).
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Put u = zy'/?. We have =(2) = n(z*z) = 1 and 7(y) = 7(y}w(z) = 7(yz) =
I, hence m(n) = v. Since w*u = y'/?(1 —r)z*z(L — r)y'/? = 1 —r, u is a partial
isometry. If 1 — uu* # 0, then, since J is a purely infinite simple (*-algebra and
an essential ideal in A, it follows from Remnark 2.1 that there exists a non-zero
projection t € (1 — wu*)J{l — uu*} such that » < ¢, that is, there is a partial
isometry w € J such that w*w = r and ww* <t < 1 —wu*. Then v + w is an
isometry in A and 7m(u + w) = v. If ww* = 1, that is v is a unitary, then with
w' = ((1 = )u)* instead of v the above argument works and gives rise to a partial

isometry w’ in J such that «' + ' is the required lift. &

As pointed out in the beginning of this section, the assumption on J in the
previous theorern can not be replaced just by real rank zero, even when J is an
AF algebra. Indeed, we get a negative answer as follows. This heavily depends on
an idea of N. Christopher Phillips ([21]).

THEOREM 2.3. Lel A be a separable, simple, unital (*-algebra of real rank
zero with a finite trace. In particular A could be an AF algebra. Then there is an
isomelry i Q(A oy X) which can net be lifted to an isomelry in M{A® K).

Proof. We write 1 for the semi-finite trace on 4 6o /X' obtained by tensoring
the given finite trace on A by the usual trace on K7, Let J; be the closure of the set
{ze M(AsK) | T(z*2) < oo} and let J be the smallest closed ideal of M(A® K)
strictly containing A % K as constructed by B. Lin and S. Zhang ([17]).

Note that J C J, cormes from the fact that J, is a proper ideal in M (A& K)
strictly containing Aw K. Indeed, J; is proper since 7 is semi-finite and Ao K # J;
by Remark 4.2 in [23].

Taking ¢ to be a projection in J \ A ® K, we get that 7(g) is an infinite
projection in w(.J) by {17], where = is the canonical quotient map from M (A& K)
to Q(A ¢« K). So, there is a partial isometry v € (A @ K) such that v'v =
7(¢g),vv* < w(¢q). Then w = v+ 1 — 7(g) is a proper isometry in Q(A & K).
Now, by the same argument as in Theorem 2.2, there exist a partial isometry « €
M(A K) and a projection » € A K such that 7(x) = w and «*« = 1 —r. Then
(1l —uw*) = 1 —ww* = 7{g) —ww* € n(J), so | —uu* € J, hence 7(1 —uu") < co.

Pick a projection »y € A K such that 7(rp) > 7(1—uu*). Since l—rg ~ 17
in M(Aw K), there is a partial isometry m € M (A & ) such that m*m =1-rg
and mm* = 1 —». Letting ¢ = wm, it follows that t is a partial isometry and w(t)
is an isometry. In fact, 1%t = | — rg and H#* = nwu™. Hence, (1 — t*t) = r(ro) >
(1 —uw*) = 7(1L — t*).

Since I —un* € J, ¢(t) is a unitary in M{A® K)/J, where ¢ is the canonical
quotient map from M(A® K)o M{Aw KN)/J.
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Now suppose that there is an isometry s € M(A ® K} which is a lifting of
7(t). Then ¢(s) = ¢(t). From K-theory, Remark 8.1.4 in [25], we know that

[l = s*s] = [l — s8] = {1 = t*t] — [1 — 127]

in Ko(J). Since 7 ([1 — *{] — [L — ¢2*]) > 0 we get that 1 ~ s*s # 0, which is a
contradiction to the fact that s is an isometry. 1

REMARK 2.4. From the proof of the previous theorem we see that there is
an isometry in I(JN) which can not be lifted to an isometry in J, where J is the
unitization of J with the unit of M(A & K).

3. EXTREMAL RICHNESS OF MULTIPLIER ALGEBRAS

Fram the previcus section we easily get the following result.

THEOREM 3.1. Lei A be a separable unital simple C*-algebra of real rank
zero with a finite trace. Then M(A ® K) is not extremally rich.

Proof. By noticing that M (A ® K) is prime we get the statement from Re-
mark 1.2 and Theorem 2.3. 1

THEOREM 3.2. Let A be a o-unital simple C*-algebra of real rank zcro. As-
sume that A has a finite trace. Then M(A) is not extremally rich.

Proof. We will follow an idea from [6]. Denote by 7 the finite trace on A.
Then 7 admits an extension 7 to a faithful finite trace on M(A). It follows from
[26] that M(A)/A is purely infinite. Therefore M(A)/A has topological stable
rank strictly greater than one since it contains a proper isometry. Thus, if M (A)
were extremally rich, then due to the existence of the finite trace, we would get
that every extreme point is a unitary, hence the topological stable rank of M(A)
must be one by Theorem 5.4 in [20]. This is a contradiction to the fact that the
corona algebra has higher topological stable rank ([22]). 1

Note that in case of a separable, non-elementary, non-unital simple AF al-
gebra, the rultiplier algebra M(A) is never extremally rich. Indeed, either A has
a finite trace, and then we are done by the previous theorem, or A has no finite
traces and therefore is stable by [1]. Hence Theorem 3.1 applies for some full
corner pAp of A which is stably isornorphic to A, and hence we get that M(A) is
not extremally rich.
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[n case of a o-unital purely infinite simple C*-algebra A, the second author
has proved the extremal richness of M(A) directly ([18]). This was done by using
an idea of M. Rgrdam who in [24] showed that the set

ZD(M(A)) = {x € M(A) | 2y = 0 = zz for some non-zero y, z € M(A)}

of two-sided zero divisors in M(A) is contained in the closure of the sct of two-
sided invertible elements in M (A). Since the norm closure of ZD(M(A)) consists
precisely of all elements in M (A) that are not one-sided invertible ([24]), we deduce
that M(A) is extremally rich because it is prime (sce Section 1).

Here, we shall give another proof using Proposition 1.1.

LEMMA 3.3. Let A be a (nol necessarily o-unital) purely infinite simple C* -

algebra. Then A is extremally rich.

Proof. See [20], [24] for the unital case. In the non-unital case, pick a non-
zero projection p in A. Then the hereditary (**-subalgebra pAp will be full, and
hence strongly Morita equivalent to A4 by [3]. As pAp is a unital purely infinite
simple C*-algebra, it is extremally rich by [20] and [24]. But extremal richness is
preserved under strong Morita equivalence ([5], Theorem 5.7) and therefore A is
extremally rich.

Another proof of the previous result follows from the following statement.

PROPOSITION 3.4. Let A be a (not necessarily o-unital) C*-algebra with real
rank zero. Then A is extremally rich if and only if any proper non-zero hereditary

C*-subalgebra of A is extremally rich.

Proof. The necessary condition was proved in Theorem 3.5 in [6]. We have
only to show the converse.

Let 1 be the identity of the unitization A of A. Note that it suffices to prove
that an element of the form z+1 (z € A} can be approximnated by a quasi-invertible
element in A.

Since A has real rank zero, for given € > 0 there is a projection p € A such
that
element y' € pAp such that ||p + pap — /|| < €/2. From Theorem 1.1 in [5], &/

|z — pzp|| < €/2. Since pAp is extremally rich, there is a quasi-invertible

can be assumed of the form uz, where u is an extreme point in the closed unit

ball of pAp, and z is an invertible element in pAp. Then y = (1 —p) ¢/ is a

quasi-invertible element in A. Indeed, y={l—-phull-pd:2)e G(A)/?“.
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Moreover,
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so we have the approximation. @

LEMMA 3.5. Let A be a (J*-algebra and J be an essential closed ideal of A.
Suppose that J is purely infinite and simple. Then pJyg is extremally rich for any
pair of projections such that p€ A and g € J.

Proof. We assume that p # (0 and ¢ # 0 (otherwise the condition is fulfilled
since {0} is extremally rich by convention). We may assume that A is unital.
Note that E(pJg) is not empty. Indeed, since J is essential, pJp is not zero. Frowm
Remark 2.1 there is a projection » € pJp such that ¢ < ». that is, there is a partial
isometry u € .J such that u*u = ¢ and uu® < p. Then v = pug, and u Is an
extreme point in pJq.

The proof of extremal richness of pJq follows from an argunent similar to
the one in Theorem 10.1 in [20]. Indeed, replacing 4 in [20] by pJq we get that
any clement can be approximated by an element in (pJp)~'&(pJq)(gJg)~" by
Remark 2.1. 1

THEOREM 3.6. Lel A be a ("™-algebra and J be an essential closed idcal of
A. Suppose that J is purely infinite and simple. Then A is extremally rich of
and only if AJJ is eziremally rich and €(A/J) consists only of tsomeiries and

co-isomelries.

Proof. One direction follows from Proposition 1.1 and Letuuna 3.5. The other
follows from the fact that extremal richness passes to quotients and that in this

case the quotient is a prime algebra. 1

COROLLARY 3.7. (Osaka, [18]) Let A be a C*-algebra and J be a closed two-
sided ideal of A. Supposc that J and AJ/J are purely infinite sumple C*-algebras.

Then A is cziremally rich.

Proof. If J is not essential, then A is isomorphic to the direct sum of J and
A/J, so A is extremally rich from Section 1 and Lemima 3.3. Therefore, we mnay

assurne that J is essential. Hence we get the assertion from Theorem 3.6. 1
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COROLLARY 3.8. Let A be a o-unital, non-unstal purely infinite simple C*-
algebra. Then M(A) is exiremally rich.

Proof. Since M(A)/A is purely infinite simple by [23], [26], [27], the state-
ment follows from the previous result. &

REMARK 3.9. Since there is no known example of a unital simple C*-algebra
which is neither finite with a trace nor purely infinite, we get a rcasonable answer
concerning the extremal richness of M (A & K), where A is simple with real rank
zero and separable and unital.

4. EXTREMAL RICHNESS OF CORONA C*-ALGEBRAS

Let A be a g-unital, non-unital purely infinite simple C*-algebra. Its corona C*-
algebra Q(A) is then purely infinite simple by [23], [26], [27], so it is extremally
rich. Generally, corona C*-algebras of simple, s-unital C*-algebras with real rank
zero are prime and purely infinite (not necessarily simple) ([26]). But in many
cases, these corona algebras will have real rank zero. For example, H. Lin proved
in [16] that if A has stable rank one, then Q(A & K) has real rank zero.

We get an affirmative answer for extremal richness in case of some simple
C*-algebras.

THEOREM 4.1. Lel A be a separable, simple C*-algebra with real rank zero
such that M(A & K) has ezactly one proper closed two-sided ideal J strictly con-
taining A& K. Then Q(A ® K) is extremally rich.

Proof. Let m be the canonical quotient map from M(4 ® K) to Q(A ® K).
Then 7(J) and M(A ® K)/J are purely infinite simple C*-algebras ([31]). Since
M(A® K)/J is isomorphic to Q(A ® K)/7(J), we obtain that Q(A @ K) is ex-
tremally rich from Corollary 3.7. 1

REMARK 4.2. Recall from Theorem 3.1 that M{A ® K) is not extremally
rich when A has a finite trace, even though from Theorem 4.1 we see that the
corona algebra can be extremally rich.

A semi-finite trace 7 on a C*-algebra A is said to be order-preserving if for
any pair of projections p,g € A, 7(p) < 7(g) implies {p] < [q] in Ko(A)+. Each
semi-finite trace 7 on A extends to a semi-finite trace on M (A ® K), still denoted
by 7. If A has real rank zero and an order-preserving trace r then the closure J,
of the set {z € M(A® K) | r(x*2z) < oo} is the only proper closed two-sided ideal
of M(A ® K) strictly containing A ® K by Proposition 2.9 in [31].
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REMARK 4.3. If A is a separable simple unital C*-algebra of real rank zero
with an order-preserving trace, then Q(A ® K) is extremally rich by the previous
theorem and the above comment. Many C*-algebras of real rank zero in the class
of separable, simple, unital AT-algebras ([13]) (i.e. direct limits of direct sums of
matrix algebras over C(T')} have such a trace. Examples are finite matroid C*-
algebras ([10]), the irrational rotation algebras Ay ([2]), and the Bunce-Deddens
algebras ([2]).

However, even if A is an AF algebra we can not be certain that its corona
algebra is always extremally rich. L.G. Brown has shown ([6]) that the corona
algebra of B® K, where B is a simple, unital AF algebra with exactly two extremal
traces, is not extremally rich. We will here extend this result.

We recall the ideal structure of the multiplier algebra of a simple AF algebra,
due to G.A. Elliott ([12]) (see also [14]). Let B be a non-unital, separable AF
algebra, and let D(B) be the set of all equivalence classes of projections in B. The
element in D(B) represented by the projection r is denoted by [r]. Define also
the set dD(B) = D(M(BY)\D(B) . When B is simple, any element in §D(B)
can be canonically described in terms of the convex cone of lower semicontinuous

semi-finite traces on B as follows:

THEOREM 4.4, (Elliott, [12]) Suppese that B is a simple separable AF alge-
bra. Denote by D(B)' the conver cone of non-zero additive maps 7 : D(B) — R,
with the topology of pointwise convergence. For each z € 3D(B), the function

Z: D(B) 37— r(z) = sup 7([0,z] N D(B)) e RU {0}

ts strictly positive, lower semicontinuous, and affine, and furthermore, either T =
I, orelsez+g=1 for some strictly positive lower semicontinuous affine function
g : D(B) — RU{oo}. Conversely, any such function on D(B) is equal to T for
a unique z tn §D(B).

If 7 is a semi-finite trace on a separable simple non-elementary AF algebra
B, consider its extension to M (B), still denoted by 7, which is obtained as: 7(z) =
supT(enzen) for each z in M(B);, where (e, ), is an increasing approximate unit
of projections for B. Then the closure J, of the set {z € M(B) | 7{z*z) < o0} is
an ideal of M(B). In particular, if 7 is infinite (that is 7(1) = oo, where 1 is the
unit of M(B)), then B C J, € M(B) ([14)).
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DEFINITION 4.5. Let ST(A) be the set of semi-finite traces on A. Then T in
ST(A) is called eztremal trace if for 0 < o < 7,0 € ST(A), there is a non-negative
number 0 € o < 1 such that o = ar. Let EST(A) denote the set of extremal
serni-finite traces on A.

From the definition we get the following well-known fact.

LEMMA 4.6. Let A be a simple unital C*-algebra and let 7 € ST(A ® K).
For each z in Ko(A ® K)4 set ¢

Se = {0 €EST(A®K) |o(z) =1(z) < oo}

Then T € EST(A ® K) if and only if 7 is an extreme point in S;.

Proof. Assume that 7 € EST(A ® K) and 7 = Aoy + (1 — A)oq for some
o; € Sz, i = 1,2. Since Aoy € 7, there is a non-negative o such that Aoy = ar,
thus @ = A and hence 7 = ;. Similarly we get 2 = 7. Therefore we obtain that
T 1§ extreme in Sz.

Suppose now that 7 is extreme in S, and assume that 0 € ¢ € 7 for some
o in ST(A® K). Then 0 € o(p) € 7(p), where p is a representative element for
z in M, (A ® K) for some n. We may assume that n = 1. If o(p) = 7(p), then

0,2(1 — 30) € Sz and
7-—l —i—l 2 T—ltf
2773 2°))

Since 7 is extreme in S; we get ¢ = 7. If 7(p) # ¢(p), then Ae € S,, where
A= % > 1. Note that by the simplicity assumption 7(p)} # 0, and in fact

T

7(p) > 0. Thus, 7(p)(7(p) — o(p))~*(r — ¢) € S, and

T = ;)\0 + (1 — %) 7(p)(r(p) — a(p))"l('r - 0).

Since T is extreme in S, we get ¢ = %‘r. Therefore, 7 € EST(A® K). 8

Note that the above lemma shows that we can identify an element 7 of
EST(A® K), which in fact is an extreme ray, with an extreme point in the convex
compact set S; = {0 € ST(A® K) | o(z) = 7(z) < co} where z is a fixed element
in Ko(A® K)4.

With this notation fixed, we will prove the non-extremal richness of a certain
type of corona algebras (see Theorem 4.9).

The next result is a converse to Proposition 4.1 (iv) in [23].
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LEMMA 4.7. Let A be a simple, separable and non-elemenlary AF algebra.
Let v be in EST(A® K). Then J; is a mazimal ideal in M(A @ K).

Proof. Fix an element u in D(A® K') such that r(u) = k£ > 0 and consider the
set {0 € D(A®K) | o(u) = k}. We may then regard 7 as an extreme point in this
set. Let f be the strictly positive function on D(A4 ® K)' defined by f(at) = ka
where o € (0,00) and f(¢) = 0 if ¢ # «ar for « € (0,00). Then f is a lower
semicontinuous affine function on the set {¢ € D(A® K)' | o(u) = k} because 1 is
an extreme point here. Hence, f can be extended to a lower semicontinuous affine
{unction, still denoted f, on D(A ® K)'.

Let J 2 J; be an ideal of M(A ® K). By [L2], there exists a projection,
say p, in J \ Jr. Then [p] € dD(A ® K). From the previous theorem it follows
that [p] is a strictly posmve lower semicontinuous affine function on D(A ® K)'.
Moreover, f + [p] = 1. Again from the previous theorem we know that there is a
projection ¢ € M(A ® K) corresponding to f, such that [e] + [p] = [1]. Choosing
now projections e’ ~ e, p' ~p, e’ L p wegete' +p' ~ 1. Sincee’ € J, C J and
p' € J we get that J = M(A @ K), thus J, is maximal. @

The result in the next lemma was obtained by M. Rgrdam ([23]) in a more
general case. Here we give another proof using the result from Theorem 4.4 due
to G.A. Elliott.

LEMMa 4.8. (Rerdam, [23]) Let A be a separable, simple AF algebra and let
71, T2 be distinct extreme points in EST(A® K). Then Jy, # Jr,.

Proof. Since 11, 1 are semi-finite, pick a projection p in A ® K such that
0 < 7i(p) <oo,i=12 Setu=[p]land Sy = {0 € D(AQ K)' | o(u) = 1}.
Let moreover 7{ = ﬁ‘p—, i = 1,2. Note that 1, 75 are extreme points in Sy. Let
now f;, ¢ = 1,2, be the strictly positive lower semicontinuous affine functions on
D(A ® K)' defined by fi(ar!) = a and fi(¢) = oo if ¢ # a7/, « € (0,00) as
in the previous lemma. Then f; # fo because 7, and 7, are not proportional.
Hence we get as in the previous lemma projections e; in Jr and ez in Jos. Since
e1 & Jré =J, and e5 & JT{ = J,,, we get the conclusion. 1

THEOREM 4.9. Let A be a separable, simple, unital AF algebra wilh at least
two exireme points in EST(A ® K). Then Q(A® K) is not exiremally rich.

Proof. Let 11,7, be the extensions to M{A4 ® K) of the two extremal traces
on A®K. Then, from the previous lemma, J;, (=: J;), and J;,(=: J2) are maximal
ideals which strictly contain A ® K. Note that J; + J, = M{A® K) and

M(A@I{)/JlnJ2§J1/J10JzeBJ2/J1ﬂJ2.
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Claim. Bach M(A® K)/J;, 1 = 1,2 is a purely infinite simple C*-algebra.
Towards this end we show that any non-zero projection in M{A® K)/J; is infinite.
Indeed, if i = | (and similarly for ¢ = 2) let p be a non-zero projection in M{(A ®
K)/Jy. Since RR(M(A® K)) = 0 by [15], there is a projection ¢ € M(AQ K)\ J;
which is the preimage of p. From the proof of Lemma 4.7 there are projections e in
Jiand ¢’ in M(A® K) such that eg’ = 0 = ¢’e,e+¢' ~ 1 and ¢’ ~ g. Hence, p~ 1.
Since M (A ® K) has real rank zero, we deduce that M(A® K)/J, = Jo/J1 N Ja
and M(A & K)/J; = J;/J1 N Jp also have real rank zero, hence they are both
purely infinite simple by Theorem 1.2 in [31].

Hence we have the following exact sequence:

0> IiNJ/ARK - QAQK) - L1/IhiNnda @ Jo/JiNJ, — 0.

Since (J1/J1NJ2) @ (J2/J1 N J2) has a non-isometry and non-co-isometry extreme
element in its closed unit ball, this can not be lifted to an extreme element in Q(A®
K) because Q(A ® K) is prime. Hence we get the assertion from Remark 1.2. &

Since by Theorem 1.3 in [26] the corona algebra @Q(A ® K) is purely infinite
under the above assumptions, we see that the requirement about simplicity cannot
be eliminated from Lemma 3.3.

Notice that from the proof of the previous theorem we can deduce the fol-
lowing:

REMARK 4.10. Assume we are given: Iy C I C B where I1,I5/]; and
B/I, are purely infinite simple C*-algebras (and hence extremally rich). Then we
cannot necessarily conclude that B is extremally rich.

Indeed, if A in the previous theorem has exactly two extremal traces we may
take 7(J1 NJ2) C 7(J1) C Q(A® K), where 7 is the canonical quotient map from
M(A® K) to Q(A® K). Then

w(J0)/m(J1 0 J2) = (w( 1) + 7 (J2))/7(J2) = QA & K)/7(]2).

Since M(A® K)/J: = Q(A® K)/m(J:), i = 1,2, we get that x(Jy)/7(J1 0 J2)
and Q(A ® K)/m(J1) are purely infinite simple. Also, w(J1 N Jz) is purely infinite
simple by [17] since J; N Jy is the smallest ideal strictly containing A ® K ({14],
Theorem 2), but the algebra Q(A ® K) is not extremally rich. Recall that we
obtained a positive answer in case of only one purely infinite simple ideal such
that the corresponding quotient is also purely infinite simple (Corollary 3.7).

From the above results we get as a corollary the following result, which may
be well-known. We include it only because it follows easily from what we have
just proved.
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CoOROLLARY 4.11. Let A be a separable, simple, unital AF algebra that ad-
mils an order-preserving trace. Then A has a unique trace up to multiplication by

posilive consiants.

Proof. Suppose that A has another trace which is not proportional with the
given order-preserving trace. Then EST(A & K) has at least two points. Hence,
from Theorem 4.9, Q(A ® K) is not extremally rich, which is a contradiction to
Remark 4.3. 1

QUESTION 4.12. From the previous result we present the following question
(which may be well-known): Is it true that if A is a separable, simple, unital
C*-algebra of real rank zero with an order-preserving trace, then A has a unique
trace?

We can also get a similar result to Theorem 4.9 in the case of non-stable,
non-unital simple AF algebras under some conditions. We use notation and results
of H. Lin ([14]).

Recall from [14] that for a separable, simple, non-elementary AF algebra with
dimension group G the set S = S,(G) represents the homomorphisms 7 : G — R
such that 7(G4+) 2 0 and 7(u) = 1 for some fixed element u in G4 \ {0}. The set
of extreme points of the convex compact set S is denoted by E(S). With Aff(S)
the set of affine, real continuous functions on .S one has a positive homomorphism
f#: G — Aff(S) which sends a to @ defined by a(7) = r(a). The image of G under
# is a dense additive subgroup in Aff(S). Let F = {7 € S| 7(1) = oo}, where 1 is
the unit of M(A) and every 7 in S is extended to a trace, still denoted by 7, on
M(A),.

ProPOSITION 4.13. Let A be a separable, simple, non-unital AF algebra.
Suppose that E(S) has only finitely many points and F N E(S) has at least two
points. Then Q(A) is not extremally rich.

We prove first some lemmas.

Note that if 7 € FF'N E(S), then J; is a maximal, proper, closed, two-sided
ideal of M(A) by the proof of Theorem 2 in [14].

Recall that a projection p in A is called full if it is not contained in any
proper closed two-sided ideal of A.

LEMMA 4.14. Let A be a separable simple non-unital AF algebra for which
E(S) has finitely many poinis. Let v be a full projection in M(A). Suppose that
the number of poinis in FNE(S) isn,n 2 1, and let J;, i =1,...,n be the proper,
mazimal ideals of M(A) induced by the n eziremal traces in E(S) O F.
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L2
Then there is a projection g in (| J; such that 1 —g < r.
i=1

Proof. We will follow the line of the proof of Theorem 2 in {14]. Since
RR(M(A)) = 0 by [15], there are orthogonal projections {r;} in A such that
r~ . ry and 7 2 gp — qz—1 = fr by Theorem 4.1 (ii) in [29], where {gi} is a
subsequence of a fixed increasing approximate unit of projections in A.

Since 7 is full, 7(3_ ry) = co for each 7 in F(S) N F. Hence there are finite

sets N1, Na, ... of consecutive integers such that for each m = 1,2,... we have
i(fm) < Z ri(re), i=1,2,...,n,
EENm

where 7, € E(S)N F.
For each m let f,, denote the set of 7 in E(S) such that

7(fm) > Z T(ry).
kEN,
Then B,, C E(S)\ F.
Since E(5) has only finitely many points, for each m we can define a function
hm on E(S) which satisfies:

(fm) > hm(r) > 7(fm) — Z 7(rx), when 1 € B,

kENVYl

0< (o) < min{(é—)m, a'(fm)}, when o € E(S)\ Bp.

Since S is a simplex we can extend hy, to an affine function on the whole S. Using
now the fact that #((7) is dense in Aff(.S) we find for ecach m a projection gm < fi
such that:

0 < 7(fim —gm) < Z 7(rg), when 7 € B,
kEN,

0< 7(gm) < (%)m, when 7 € E(S) \ Bm-

(e o]
Putg = 5 gm. Note that this is well defined because (gm )m are orthogonal,

m=1
7
since (f;m)m are so. Then g isin [ J;, which by Theorem 2 in [14] is equal to the

=1
closure of

{a € M(A) | 7(a"a) < o0, V7in E(S)}.

Since for any m in N and for any 7 in S we have

7'(fm —‘gm) < Z T(rk);

kENmM
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it follows from Proposition 4.1 in (1], that fi, — gm < 5. 7 for any m. Let
EENm
vm be a partial isometry in A such that v}, 9m = fm — gm and vav), € > 7.
kENm

(o]
Put v = 3~ vn,. Then v € M(A), v*v = | — g and vv* < r, hence we get the

. m=1
conclusion. 1

LEMMA 4.15. Let A be a separable simple non-unital AF-algebra. Suppose
that E(S) has only finitely many points and F' N E(S) has n elements, n > 1.
Let {J;}7_, be the distinct proper mazimal ideals in M(A) corresponding to the
elemenis of FNE(S). Let q be a non-zero projeclion in Ji, for someig=1,...,n.
Then

(1 =)(Jig N iy 0N T )1 = g) # (L= g)(Jiy N -0 Ji ) (1 = g),

for any distinct numbers {i1,---,ix} C {1,2,...,n}\{i0}.
Proof. Note that by the proof of Theorem 2 in [14], J;, N ---N J;, is not

contained in Ji,. Hence, M(A) = J;, N -- - N Jy, + Jip.
Suppose that the equality holds in the conclusion. Then

(1 —q)M(A)1 - q)/(1 - q)Ji,(1 —q)
=2 (1—-g)(Ji, N NI )L =)/ (L= )i, 0Ty NN T ) (1 —q)

= (..

Thus we would get

(1 -gM(A)(1-q) = (1 -g}Ji (L —q),
which contradicts the fact that 1 —¢ ¢ J;,. 1
Let ¢; be the canonical quotient map from M(A) to M(A)/J;.

LEMMA 4.16. Under the same assumplions as in the previous lemma, for
i=1,...,n,n>21, let p in M(A)/J; be a proper projection. Then there is a full
projection q in M(A) such that p;(q) = p.

Proof. Since M(A) has real rank zero, any non-zero projection in each of the
quotients by J; can be lifted to a non-zero projection in M(A). We may consider
the case i = 1, since the rest is similar. Let ¢ € M(A) be a projection such that
p1(¢) = p. Thus g ¢ J1.

In case that n = 1 it follows from Theorem 2 in [14] that ¢ is full.

In case that n 2 2,if g ¢ J; for any i = 2,...,n, then ¢ will be full from the
proof of Theorem 2 in [14]. If there is some ig € {2, ...,n} such that ¢ € J;;, then
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from the previous lemma and [12] there exists a projection e € (1 — q)J1(1 — q),
but eq ¢ Ji,. Then, g+eg ¢ J;,, and @1 (g+e0) = p. Repeating the same argument
finitely many steps we can find a projection ¢’ € M(A) such that ¢’ ¢ J; for any
i=2,...,nand pi(g') = p.

Hence ¢’ is full. @

PRoOPOSITION 4.17. Under the same assumplions as in the above lemma we
oblain that M(A)/J;, i =1,...,n, are purely infinile simple C*-algebras.

Proof. We already know that M(A)/J;, 1 € { € n have real rank zero. If we
show that any non-zero proper projection in each quotient is infinite, then we are
done by Theorem 1.2 in [31].

Indeed, pick a proper projection p in M(A)/J; (similarly for i > 2). By the
previous lemma there is a full projection ¢ in M(A) such that ¢;(g) = p. Hence,
from Lemma 4.14 there is a projection g € J; such that 1 — g < ¢q. Therefore,
¢1(g) = p is infinite. ¥

Proof of Proposition 4.13. It follows from Proposition 4.17 and an argument
similar to the one in Theorem 4.9, &

PROPOSITION 4.18. If A is a separable simple non-unital AF algebra with
findlely many extremal traces of which ezactly one is infinite, then Q(A) is ex-
tremally rich.

Proof. Note in this case that M(A) has a unique proper closed two-sided
ideal, say I, strictly containing A ([14]). For the proof of the proposition we want
therefore to use the same method as in Theorem 4.1.

With = the canonical quotient map from M(A) to Q(A) we have that 7(I) is
purely infinite simple by Theorem 1.3 in [26]. Therefore it suffices now to prove that
M(A)/I is as well purely infinite simple. But this follows from Proposition 4.17. 1

REMARK 4.19. In order to complete the discussion of extremal richness of
Q(A), for A a separable simple non-unital AF algebra with finitely many extremal
traces, note that if A has no infinite extremal traces, then Q(A) is a purely infinite
simple C*-algebra ([14], [26]), hence extremally rich, whereas if A has exactly one
infinite extremal trace, then Q(A) is extremally rich by the previous proposition.
However, if A has infinitely many extremal traces and is not stable, we do not know
that I, is a maximal ideal in M(A) for an extremal trace r on A with r(1) = co.
If we did, we would get the same conclusion as in Theorem 4.9.
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