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INVERSE PROBLEM FOR A SMOOTH STRING
WITH DAMPING AT ONE END
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ABSTRACT. Direct and inverse spectral problems for a smooth string with
massive end (with concentrated mass at the end) moving with damping is
considered. By means of Liouville transformation the problem has been re-
duced to the Sturm-Liouville equation with boundary conditions depending
on the spectral parameter. So the V.A. Marchenko formalism proves to be
a powerful tool of investigation. It is shown in this paper that the spectrum
of vibrations and the length of the string are sufficient for finding all the
parameters of the problem.
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1. INTRODUCTION

In many areas of physics it is of interest to determine the characteristics of a
sound source from frequencies of vibrations. In case when the source is a smooth
string of finite length, this inverse problem may be reduced by means of Liouville
transformation ([3]) to an inverse problem for the Sturm-Liouville equation with
boundary conditions depending on the spectral parameter. Thus we may use the
results of V.A. Marchenko ({17]). The input data necessary for this investigation
are all the values of frequencies of small transversal vibrations. These frequencies
are complex numbers due to absorption. We consider a nonhomogeneous string the

left end of which is fixed and the right one equipped with a massive ring moving
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with damping in the direction orthogonal to the length of the string. The problem
in linear approach has the following form

0% 8%y

(1.2) 2(0,£) =0,
v B 8%
(13) (& + V& + Mw) o 0.

Here B(s) > 0 is the density of the string, v(s,t) the transversal displacement,
v the coefficient of damping, M the mass of the ring, { the length of the string,
s the coordinate along the longitudinal axis of the string, ¢ the time. A similar
problem has been considered in [1] for a class of strings much wider than that
of ours (so called regular strings ([8]), i.e. strings of finite mass and length but
possibly having no density in usual meaning). The boundary condition at the left
end in (1] was of the form 4% _ = 0. It was proved in [1] that a sequence of
complex numbers located in the upper half-plane and symmetric with respect to
the imaginary axis coincides with the spectrum of a regular string if and only if
this sequence coincides with the set of zeroes of an integer function of exponential
type satisfying some integral conditions. In [11] and [12] by extension of the class
of strings (the class includes infinite strings and strings of infinite mass) an explicit
description of spectra was obtained. We consider a much narrower class of strings
(smooth strings) and obtain explicit description of the spectra. The method of
construction of the parameters B(s),v, M from the length ! of the string and the
spectrum A of the problem has been obtained. We have to remark that it is
impossible to find all the parameters B(s),v, M,! from the spectrum because the
problem (1.1)—(1.3) is invariant under the transformation s = rs,’ = I, B'(s') =
r72B(s),v’ = r~ly, M’ = r~1M, where r is an arbitrary positive number. But
knowing the spectrum and one of the parameters, for example I, it is possible to
find a unique set {B(s),», M}. Substituting v(s,t) = u(A, s)e"* into (1.1)-(1.3)
we obtain

(1.4) ul. + A B(s)u =0,
(1.5) u(A,0) =0,

(1.6) ul (A1) 4 (A = A2M)u(X, ) = 0.
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Let us assume that B(s) > 0 for all s € [0,1] and B(s) € WZ(0,!). Then the
Liouville transform

s

(1.7) 2(s) = / Bi(s)ds,
1}
(1.8) y(\,z) = B (s(z)) u(), 5(z))

makes it possible to reduce the problem (1.4)—(1.6) to the following one

(1.9) Yo, + Ny — g(z)y = 0,
(1.10) y(2,0) =0,
(1.11) ve(Xa) + (=Xm +iad + Bly(X a) =0,

where B(z) = B(s(z)),

1 dz .
(112) o(@) = B (2) 2B (@),
(1.13) m = B"%(a)M >0,
(1.14) o =B i(a)v >0,
(1.15) p=- 5@
/ 1
(1.16) a:O/Bf(s)ds>O.

The spectrum of (1.9)-(1.11) consists of normal ([6]} eigenvalues accumulating to
infinity. The main results of the present paper are stated in Section 2. Section 3
contains the proofs and the description of the inversion procedure. It is necessary
to remark that we prove here uniqueness of the solution of the inverse problem
in the class of smooth strings with positive density. Using the results of {1] and
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[2] it is possible to prove uniqueness of the solution also in the class of regular
strings. The problem (1.9)-(1.11) with M = 0 has been considered in, [4], [24],
[25] and [7]. In [4], for the case of B(s) = const # 1, it was shown that the
eigenvectors form a Riesz basis of the corresponding double space. For the case
where B(s) # const and B(l) # 1 the precise asymptotics of eigenvalues were
derived also. Under some additional conditions it was shown in [4] that i%f ImAg >
0. The asymptotics were obtained in {24] for a more general class of B{s). In
[25] the basic properties of eigen- and associated functions were considered for
B(s) s const. The inverse problem for this case (M = 0) was considered in [7].
Another approach to inverse problems with boundary conditions depending on the
spectral parameter was developed in [23], [22], [16], {10] and [26].

2. THE MAIN RESULTS

The results consist of two theorems.

THEOREM 2.1. If B(s) € Wi(0,1), B(s) > 0,M > 0,v > 0, then the spec-

trum A = {An} of the problem (1.4)—(1.6) satisfies the following conditions:
(i) Im A, > 0,

(ii) the number of pure imaginary A, is even,

(iil) the set A is symmetric with respect to the imaginary azis and the mul-
tiplicities of the symmetric points coincide,

(iv) being enumerated in the proper way (see below) the spectrum admits the
Jollowing asymptotics

™m - El_ iP, P3 b,

(2.1) A = +?+E§+$,

" ndoo @ n
where a > 0 is defined by (1.16), P € R, Py > 0, P; € R, {0, }° € L5.

An enumeration is called proper if: (1) the multiplicities are taken into ac-
count, (2) for complex eigenvalues A_,, = =Xy, (3) Re Any1 > Re A, and (4) there
are two points of zero index (Ao and A_p).

Denote by B the class of sets { B(s), M, v} satisfying the following conditions:
B(s) € W(0,1), B(s) > 0 for all s € [0,1], M > 0,v > 0.

THEOREM 2.2. If A = X, satisfies the conditions (1)-(4), then for arbitrary
I > 0 there exists a unique set {B(s),M,v} € B; such that the spectrum of the
problem (1.4)-(1.6) coincides with A.

For the proofs of the theorems see below (Section 3), where we describe also
the algorithm of inversion, i.e. of constructing the set {B(s), M, v}.
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3. THE PROOFS AND THE INVERSION FORMALISM

3.1. THE PROOF OF THEOREM 2.1. If A, is an eigenvalue of (1.4)-(1.6) and
u{An, 8) is the corresponding eigenfunction, then (1.4) implies
i ]
(3.1) /u;'s‘dds + 22 / B(s)|uj?ds = 0.
0 0

Taking to account (1.5) and (1.6) we obtain
1 L
(32 —arfu@)P - / il 2 ds + 22 / B(s)[ul? ds + MAZu(l)f? = 0.
0 0
The imaginary part of this equation is

!
—Re X Ju(D)|? +2Re A, Im A, (/ B(s)|ul*ds + M}u(l)lz) =0.
0
If u(l) = 0, then due to (1.6) u}(I) = 0 what is impossible ([8], p. 658). So either
Reldp, = 0 or ImA, > 0. Let ReA, = 0, then taking the real part of (3.2) we
obtain

i !
VIm A u(l)|? - / i ds — (Im Ay)2 ( / B(s)[u|2d3+Mlu(l)|2) =0

0
and thus Im A, > 0. So we have proved assertion (i) of the Theorem 2.1. The
assertion (iii) follows from symmetry of the problem (u(»-xn,s) = u(Ap, 8)

In what follows we use the equivalence of the spectra of problems (1.4)-(1.6)
and (1.9)~(1.11). Denote by S(},z) the solution of (1.9) satisfying the conditions
S(X0) =8.()\0)—-1=0.

This solution has the form ([17], p. 23)

sin AT
A

T
(3.3) s = S0+ [ k@B ar
1]

where K(2,t) = K(z,t) — K(z,—t) and K(z,t) is the solution of the integral
equation

. £ i
f{(zz,t):afq(s)dsﬁ-/ ds/q(s+p)[§'(s+p,s—p)dp,
0 0 0
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and K(z,t) = 0 for |t| > |z|. Hence K(x,0) = 0. The eigenvalues of (1.9)-(1.11)
coincide with the zeroes of the characteristic function

(3.4) %(A) = ' (A a) + (=2%m +ia) + B)S(), a).

As B(s) € W$(0,1) and B(s) > 0 we obtain from (1.12) that g{z) € W2(0,a).
So according to p. 23 in [17] there exist all partial derivatives of K(z,t) of the
third order and these derivatives (among them K7,(a,t) and K}};(a,t)) belong to
L(0,a). Substituting (3.3) into (3.4) and integrating by parts we obtain

X(A) = —Amsin Aa + iasin da + (1 + mK(a,a)) cos ha

+(8+ K(a,a) — mKi(a,a)) i‘f_’_}\ﬁ?_ _iaK(a,a) cos;)\a,

cos Aa
)2

sinAa . cos Aa
)—/\'3* +iak tlf‘.(a‘:a)—_)\.s_

a
COs Aa i B €08 At
+BK(a,a)—7— + (m -5 ﬁ) /KZQ(G, t) =z dt
0

- (BK(a,a) + K,(a,a) + mK}i(a,a))

ieK}(a,a)sin Aa ;
(35) + WAZ +ﬁKt(a,a

/K” a, t)cos A at.

Using (3.5) we obtain

= {3 — l TG T
(3.6) %(7) = stme™+0()

3.7) %(-ir) = —-%Tmem +0(e™).

Now we prove the assertion (ii). If we insert o = 0 into (1.11) then the total alge-
braic multiplicity of the pure imaginary spectrum of (1.9)-(1.11) is even because
the spectral parameter is present only in the second power. The eigenvalues, i.e.
.the zeroes of X{A), being piecewise analytic and continuous functions of « (see for
example [18]), cannot come from +ico because of asymptotics (3.6), (3.7). Thus,
due to the symmetry of A with respect to the imaginary axis, the eigenvalues
occur in pairs. The assertion (it) follows. Thus it is possible to enumerate the
eigenvalues as above. To prove assertion (iv) we need the following lemma.



INVERSE PROBLEM FOR A SMOOTH STRING 249

LEMMA 3.1.1. Let o()) be an entire function of the form

. ., sinla cos Aa sin Aa
p(A) =sinda + 14 3 +B S +D 32
.cosha . sin)a €08 Aa 4 P(N)

+1iF 2 +iF E +G 3 3

where A, B, D, E, F,G are real constants, %(}) is an entire function of exponential
type < a belonging to La(—00,00) such that %(—X) = ¥(}), ¥(0) = -G, P'(0) =
—i(E + Fa), 9"(0) = a®G — 2aD — 2B. Then the zeroes A of p()) satisfy the

following formula (for alln # 0)

_ ™ P P, P; by,
(3.8) - ¥
where
B a
(3.9) Pl'-"-—;, P2='“F(E—AB)a
a® B2\ B2
(3.10) &=—F(mmqw—G+BQﬂ+?)_?),

and {bp}>, € l2.

Proof. Due to p. 225 in [17], A, = Z2 + A, where A, = O(1). Then from
@(Xn) = 0 we obtain

%Ana = ln (w’(’\“) + (_wz(’\") + (1 ,i(4-B) D+E  iF- G))

Y] e * X2 X8
2
(A+B) D-E i(F+G)\\*
(1+ VLS PR ¢
~ (A+B) D-E i(F+G)
2in (1—1— )\n 2 5 .

We obtain the assertion of the Lemma 3.1.1 by expressing the right part into power
series.

The assertion (iv) of Theorem 2.1 is a consequence of Lemma 3.2.1. 1

3.2. THE PROOF OF THEOREM 2.2 AND THE ALGORITHM OF INVERSION, Let A =
{A\n} satisfy the conditions of Theorem 2.2. Let us construct the set {¢(z),a,c,
B3,m}. There exists the limit

(3.11) a= lim =,

n—oo Ay
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Let us construct

n -0

. A A

(3.12) X(\) = lim_ (1 — /\_A) IT (1 ~ A_k) .

0 —-n

LemMA 3.2.1. The function x(\), where the set A = {A,} satisfies the con-
ditions of Theorem 2.2 may be expressed in the following form
x{A) = —AKysin Aa + iK, sin Aa + K3 cos Aa
(3.13) sinda ., cosda ,_ sinla cosha | ¥1(}A)
+ Ky 3 +iK5s 3 +iKg 32 + K7 32 + 32

where ¥1(N\) is an entire function of exponential type < a belonging to Ls(—oo, o),
Ki#0, K;eR@E=17).

Proof. Consider the auxiliary entire function

) .. sin)a cos Aa sinda .. cosAa .._sinia
(3.14) ¢1(A) = —sin da+id, 5 +B; 3 +D4 32 +iE, 32 +iF e
where P P2 s
Py 3P wab;
A= —2 4+ — B, =ah
1 P, + 7, + 3P, 1 =T,
2 P, 2
Dy =21 El=7rP2+A131, F1=§-l"-
a a a

According to Lemma 3.1.1 the zeroes A of the function 1) satisfy the following
asymptotics

: 1
oo PP P b

T TRt tE T BE0
-1

where {bg)} € ly. The function x(A) (1 - T;\TS) is an entire function of sinus-type
([13]) and
A= AP + 5. ()72,

where {b,} € l;. Using Lemma 5 of [13] we obtain
AN T Ty T3\ @A)
(3.15) x(A) (1 )\+0) = Cop1(A) (1 et T )\3) +=5
where @(}) is entire function of exponential type < a and
> . 4 -1
Co=TI (1+5.08)7") .

Substituting (3.14) into (3.15) we obtain (3.13), where K; = ~CgA75 # 0. All the
constants K; are real due to the symmetry of the problem. The Lemma 3.2.1 is
proved. ®
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LEMMA 3.2.2. The inequality

Ky

K1>O

holds.

Proof. Consider the function

o omeestun (- 2)1(-2)

k7 "y

as a perturbation of the function

0 2.2
O “xsinda = —ax? [ (1 _Xa ) .

oot w202
Then
XK = —x“’)(/\)a‘lk‘znlo_j[1 (1 - ﬁ;‘;)_l
& A\ o A
I (-3 I (-5)
= —a O 0) (A2 + A70AT5 — IATIATSAZG(Im Ay + Im M)

IO 2+ 202k - iATIATA T (Im Ay + Im Ay))
k=1
ORI k) e B

Substituting A = 1 (2rn + %), n € N, n = oo we obtain

o}

Im Ayo + ImA_g T ImAyg +ImA_g
)‘+0/\—0 AtrA—k

Imx(\) Ky =~ (

k=1

.<L+; 1.1\
A2 Aod_o/ \ A2 Aoy

/1 1 1 e\
: ﬁ—i-m -5\5'{'71_2—1)2 +0(1)

e

p=

o oo 2,2
= AT S (Im Ak +Ima) [T ( ﬂ-—) +o(1).

T2
k=0 p=1 a )‘+p>‘—p

As ImA, > 0 and MA_g < 0 for all £ € N we compare the last equation with
(3.13) and obtain K»/K; > 0. 1
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LEmMMA 3.2.3. The inequality

Ky Ks
Ei S
% K,

holds.
Proof. Taking to account that P, > 0 and using (3.9) we obtain
Ky (Kzs K
K (Kl %, K, >0

The result now follows from Lemma 3.2.2. 1

LEMMA 3.2.4. The following formulae hold: Re x'(0) = 0, Im x'(0) > 0.

Proof. The first formula is a consequence of symmetry. From (3.12) we

obtain

Im x'(0) = Im Z )\ +)\ Z iln;)\k 1
kA—k

Due to Lemma 3.2.1 the following limits exist

(3.17) K, = —21 lim n~ly (2.7..1-2 + _Zr_) ,
T n-—00 a 2a
. 2mm @ 1\ 7
(3.18) Ky =-i nll_)néo (X (T + %) +(2n+ 5) EKI) )

(
(3.19) K; = lim x (2”—”) ,
)

(3.20) K;= lim (2n+ l) z (x (27r_n + = + (2n+ l) EKl - iKz) ,
2/ a 2a 2/ a

ot
(3.21) Ks= -2 lim n (x (2-7;—”> - K3> ,

(3.22)
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Define

K, (K3 | Ks\7!

(3.23) o= X, (Kl + Kz) ,

K; Ks\7!

(3.24) m:(E+E) ,
K, K; K
2 — (24,26 25
(3.25) g (Kl Kz)m+K2

According to Lemmas 3.2.2 and 3.2.3 the inequalities m > 0 and o > 0 follow
from (3.24) and (3.23).
Now we construct the Jost function

e(A) = (2ieAK) e (mA% +i(1 + e — B) x(N)

3.26
(3.26) + (—mA? +ila — A + B) x(=A)) -

LEMMA 3.2.5. The entire function e()) has the following asymptotics

(3.27) e() =_1+0(A™).

Proof. Substituting (3.15) into (3.26) we obtain

B iKs (\)e i
(3.28) e(A)_'1+'BaA'+ 3 ,

where 1/( ) is an entire function of exponential type < a belonging to La(—c0, c0). 8
LemMMA 3.2.6. The function e{A) has no real zeroes excepting maybe \ = 0.
Proof. If A # 0 is a real zero of e(}A), then taking to account the equality

x(—A) = x(\) we obtain from (3.26)

(mA? +i(1+ @)d = B) x(A) = (mA? — i(a = YA = £) x(N).

The last equality contradicts the {evident) inequality

mA2+i(l+a)r -3
mA+il-a)r-4

>1, (AeRAF#0).

LEMMA 3.2.7. The function e()\) has no more than one simple zero in the
closed lower half-plane. This zero, if exists, is pure imaginary.
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Proof. Let’s consider the function e(X, o, 3,m) defined by (3.26). Its zeroes
are piecewise analytic functions of each of the parameters o, 8, m. Evidently,

(329) 6()\, 1,0, 0) = e_il\aX()‘)‘

This function has no zeroes in the closed lower half-plane. The zeroes cannot cross
the real axis anywhere except the origin when we change o > 0, 3 € Rand m > 0
(see Lemma 3.2.6). Due to Lemma 3.2.5, the zeroes do not appear at infinity in the
lower half-plane. Let for some a > 0, 8 € R and m > 0 be valid (0, o, 3, m) = 0.
Then using the definition (3.26) we obtain

9
X

and consequently

(x(A) (mA® +ila+ 1A= B) +x(=2) (-m>® +i(a— A+ B))[,_, =0

B =iaCy (X' (0) .
So for any « > 0 there exists a unique § such that e(0, «, 3, m) = 0. Let us prove
that the zero at the origin is simple. Suppose that

0.

0
e(0,a,B,m) = ae()\,a,ﬁ,m)h:[) =

Then using the definition (3.26) we obtain
92
a2
and, consequently, x'(0) = 0, what contradicts Lemma 3.2.4. Thus, there may be

only one simple zero in the closed lower half plane. Due to the symmetry of the
problem this zero is pure imaginary. 1

(x(X) (A +i(a + 1A = B) +x(=X) (-mI? +i(a — 1A + 6)) 0

l,\=0 =

LEMMA 3.2.8. Let A = —~iu (p > 0) be the zero of e(\). Then

(3.30) mu? + o —1)+8>0.
Proof. Using the definition (3.26) we obtain

(3.31) xX(ip)(mp? + pla = 1) + B) — x(—ip)(mp® — p(a +1) + ) = 0.

AV
|(1+>\k) (1+)\—k)}>|(1 /\k> <1 A-k)‘
we have

(3.32) Ix(=ip)| > |x(ix)] -

Now using (3.32) we obtain (3.30) from (3.31).
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LEMMA 3.2.9. Ife(—ig) =0, p >0, then e(ix) < 0.

Proof. Expressing x(ix) from (3.31) and substituting it into {3.26) at A =
~—ip we obtain

2pux(—ip)e
my? + pla — 1) + By K1

It is easy to see that x(—igx) > 0 and taking to account (3.30) we obtain e(in) < 0.

6(1[_&) = —(

LEMMA 3.2.10. Ife(—ig) =0, u >0, then Ree'(—ip) =0, Ime'(—iu) > 0.

Proof. The first assertion is a conseguence of the symmetry of the problem.
The second one is a consequence of the analyticity of the zero in the lower half-
plane with respect to «, 3, m and of the fact that e(0) = 0 implies Im ¢’(0) > 0.
Now introduce the S-matriz:

_ M)

(3.33) S(A) = pTEYE
the function
(3.34) Fo(e) = 5= / (1 - S(3))e dx
and

_ [ Fo(=), if e(A) # 0 when Im A < 0,
(3:35) Fle) = {Fo(:c) + De~#=, if e(—ip) =0 (x> 0).
Here
(3.36) p= o)

T Ime(—ip)’
Lemmas 3.2.9 and 3.2.10 imply D > 0. &
LEMMA 3.2.11. The S-matriz satisfies the following conditions:
I (i) S(A) is continuous for A € R and

S50 =5(=X) = (5(-A)7",

(if) 1 — S(A) tend to 0 as |A\| — oo and 1 — S(A) is the Fourier-transform
of Fo(z). The function Fy{z) is bounded and belongs to Ly(—o0,00). There ezists

Fy(z) forz > 0 and [ |Fj(z)|dz < 0.
0
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II. The variation of the argument of S{)) satisfies the following equation
(3.37) In S(+0) — In §{+00) = 27ik
where & = 1 if e(X) has a zero in the lower half-plane, x = 1 ife(0) =0 and s =0
if e(A) has no zeroes in the closed lower half-plane.

Proof. Assertion (i) is a consequence of Definition (3.33). Using (3.28) we
obtain

(3.38) 1- S()\) % + —Re (,‘p(/\) 1)\0,) +0 ( )

and consequently 1—S5()) N 0 and Fp()) is bounded and belongs to Ly (—o0, 00).
—4o00
The equation (3.38) implies

21Ks  &;()\)
MKz 1+ A

where ®,()) € Ly(—00,00). Thus for z > 0

1 [/ 2K @2(,\)) e
Fo(z) = /(K2(A+i)+1+|,\| e dA
oo

1-80) =

(3.39)

L / P2(N)e*rdA (82(N)) € La(—00,00))

1+ °

and consequently Fy(x) is absolutely continuous on z € (0,00) and Fj(z) €
Lz(—00,00) and F'(z) € Ly(—o00,00). The function 1 — S()) is meromorphic
and has no more than one pole in the closed upper half-plane. The pole, if ex-
ists, is simple due to Lemma 3.2.7 and Definition (3.33). In this case there exist
constants C > 0 and P > 0 such that

(1~ 8(3)| < C|AI"e®™> (Im X 2 P).

So, using Jordan lemma, we obtain

(3.40) Fofe) = iRe (1 - S() 2], = “"fé‘fz = Ienfll’:)f_—; . (@>2a),

where —iy is the zero of e()) in the open lower half-plane. If e()\) has no zeroes in

[o.2}

the open lower half-plane, then Fy(z) = 0 for > 2a. Thus [ z|Fj(z)|dz < oo.
0

Assertion I is proved. Taking into account (3.35) we obtain

(3.41) F(z)=0, (z> 2a).



INVERSE PROBLEM FOR A SMOOTH STRING 257

Using the principle of argument we have
(3.42) arg e(oo) — arg e(—oo) = 27k.

As
1, ife(0)#0,

50) = { ~1, ife(0) =0,
and In S(\) = ~2iarge()) we obtain (3.37) using (3.42). &
We call the scattering data the set {S(A)(A € R), —iu, D} if &« = 1 and {S(})
(A € R)} otherwise. According to Lemma 3.2.11 the scattering data satisfy all the
conditions of V.A. Marchenko Theorem ([17], p. 218). So the integral equation

(3.43) K(z,t)+ F(z+1t) + /K(x, §)F(s+t)ds=0
possesses a unique solution K{z,%) and the potential
. dK(z,z)
4 S, Puinkalh ik
(3.44) ile) = —2=F
of the Sturm-Liouville problem on half-axis
(3.45) ¥+ Ny~ G(z)y =0,
(3.46) y(X,0) =0
satisfies the condition
o0
(3.47) /ﬂﬂﬂﬁm<m.
0

The scatering data of the problem (3.45), (3.46) coincide with that used for
the construction of §(z). Due to (3.41) and using (3.43) and (3.44) we obtain

{3.48) glz)=0 forz > a. ‘
LEMMA 3.2.12. The projection ¢(z) = ¢(z) (x € [0, a]) belongs to L(0,a).
Proof. We use the inequality ([17], p. 209)
4(2)] < 4iF'(22)] + C(2) (1 + Cla)m(22)) 7°(22),

where
o0

o0
ﬂ@:/mww,n@=/mwu
€T T
C(z)€ C[0,q]. Taking into account that F'(z) € L2(0,a) we obtain the assertion
of Lemma 3.2.12. 1
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So we have shown how to find the set {g(z), a, @, B, m} from the spectrum A.
The obtained set {¢(z), a, @, 8, m} possesses the following properties: @ > 0, a >
0, BeR, m>0, g(r) € Ly(0,a) is real and the operator A; defined by (A.1),
(A.2) (see Appendix) is strictly positive {Corollary A.1). Denote by @ the class of
sets possessing those properties. Now we prove that the problem (1.9}—(1.11) with
corresponding {g(z), a, &, 3, m} possesses the spectrum A which coincides with the
initial one. The V.A .Marchenko Theorem mentioned above guarantees an one-to-
one correspondence between scattering data and potential. It is necessary to prove
the one-to-one correspondence between ¢(z) and e(A).

LEmMma 3.2.13. Let S()) satisfy the conditions I of Lemma 3.2.11 and
In §(+0) — 1In §(-0) = 27«.
(i) If s = 0 or k = % then there exists a unique function e()) holomorphic in
the lower half-plane and continuous in the closed lower half-plane, admitting the
asympotics

(3.49) e(A) = _1+o(l)
m 20

and such that

ed) _
(3.50) rasyie S(A), (AeR).
(ii) If k = 1 then for any positive number i > O there erists a unique function
e(A) holomorphic in the lower half-plane, continuous in the closed lower half-plane,
having unique simple zero at A = iy and satisfying the conditions (3.49) and (3.50).

Proof. To prove this lemma we have to repeat all the arguments of p. 80 in

(5]. So we have proved the one-to-one correspondence between g(z} and e(A). The
inversed formula (3.26), i.e.

x(A) = (2A) 71K (e(V)ere (=mA? +i(1 + e)A + 8))
+e(=Ne T (mA? ~i(a — 1)A - f)

proves the one-to-one correspondence between the class of spectra satisfying con-
ditions (i)-(iv) of Theorem 2.1 and the corresponding subclass of @. We de-
note this subclass by Q’. The last step is to find {B(s), M, v} from ! {> 0) and
{g(z), ¢, &, B,m}. Let us rewrite (1.12), (1.15) in the form

(3.51) (B%(x)) ~ g(z)B(z) =0

14
T
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(3.52) BY (a) + 48B(a) = 0.
Consider the initial value problem

p,’z(a) = _61

pla) = 1.

This problem admits a unique solution p(z) in W2(0,a) as g(z) € L2(0,a). As
A; >» 0, Sturm Theorem ([9), p. 151) implies p(z) > 0 for all z € [0,a]. The
solution of (3.51), (3.52) may be expressed as follows

(3.53) B(z) = Cp*(=),

where C is constant. The value of C may be found from the equation

(3.54) f e _ g

] Bi() N

which is a consequence of (1.7). Substituting (3.53) into (3.54) we obtain

(1]}
C‘(zafp%x))

and
(3.55) B(z) =172 (fp_2(m) dm) *(z).
0
From (1.13) and (1.14) we obtain
M = mB#(a),
v = QB%(G).

To find B(s), we rewrite (1.7) in the form
/B_%(z’)dx’ =s.
0

Finding z(s) and substituting it into (3.55) we obtain B(s) = B (z(s)). It is clear
that B (z(s)) € W(0,!) and thus {B{(s), M,v} € B;, so we have proved the one-
to-one correspondence between the class of spectra satisfying conditions (i)-(iv)
of Theorem 2.1 and corresponding subclass B, C B;. #
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4. COMMENTS

The implicit definition of the class Bj is the following.

DEFINITION 4.1. Bj is a class of sets {B(s),s € [0,I], M, v} such that the
spectrum of the corresponding problem (1.4)-(1.6) satisfies the conditions (1)-(4)
of Theorem 2.1.

It is difficult to describe the class B; explicitly. Let us describe the reasons for
this. After finding e, m, 8 via formulae (3.23)-(3.25), we may find the functions

def ™ (x(=X) — x(}))
5(\a) = 2K A
def

S' (A a) = =K 'mx(N) + (Wm —iad - B)S(A, a).

It is possible to prove (in the same way as in [21]) that the zeroes {vi}ewo Of
k= ~—co

S(A, a) possess the following asymptotics

k Ci Cp b
(4.1) v = ottt (= —vk),

k—o0

where the real constants Cy and C» may be expressed via K;. The zeroes {uk}:;o
k=—00

of the function S$'(),a) have the following asymptotics

_ k-3 o e

4.2 = brz N
(4.2) e, = —— PR (r = —p—i)s

where {bri}rue € lg, (¢ = 1,2). The sequences alternate, ie. 0 < g1 < vy <
k

=—o00

pp < vz < ... (see [21]). The sequence {jix}wxo 15 the set of eigenvalues of the
k=—o0

problem
¥ + Ay — g(z)y = 0,

y(0) = ¢'(a) =0,

with g(z) obtained by formula (3.44). The sequence {v}.xo is the set of eigen-
k=—o00

values of the problem
"+ Ay — g(z)y =0,

y(0) =y(a) = 0.

The potential g(z) may be constructed by the two spectra {Vx }owo  and {px Frxo
k=~co k=—oca

(see [14], [17], [15]). Now we are able to give another definition of B; (also implicit
and equivalent to Definition 4.1).
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DEFINITION 4.2. B} is a class of sets {B(s),s € [0,1], M,v} such that the
corresponding string with both ends fixed has the spectrum with the asymptotics
(4.1) and the same string with the left end fixed and the right end free and massless
has the spectrum with the asymptotics (4.2).

It is clear that B, C B;. Unfortunately, we can make the asymptotics (4.2)
more precise only at the cost of making more precise the asymptotics (2.1).

APPENDIX

Introduce the following operator pencil
L) =XF-iK-A

where F, K, A are operators acting in H = Ly(0,a) ® C according to the formulae
I 0 0 0
F = = = =
(O mI)’ (0 al)’ D(F)=D(K) = H,

A(Mﬂ):( —y"(z) + ()Mm>,(ﬂmeLﬁQ@L

v(0) (@) + Bula)
D(A {( z; y(0) =0, y(m)ewf(o,a)},

D(L(N) = D(F) N D(K) N D(A) = D(A)

for all A € C by definition. It is easy to check that A = A* is bounded below,
K >»0,F»0 ie. F>el (g>0). The spectrum of L(A) coincides with the
spectrum of the problem (1.9)-(1.11).

LeMMA A.1. The spectrum of L{)\) is located in the open upper half-plane
if and only if A > 0.

This lemma. is a consequence of the more general result of [19] (see also [20]).
Consider the operator A4; acting in L2(0, a) according to the formulae

(A1) Ayy = —y" + q(z)y,

(4.2) D(A;) = {y € W(0,0), y(0) =0, y'(a) + By(a) = 0} .

LeEMMA A.2. The operator A is strictly positive if and only if A, is strictly
positive.

The assertion of this lemma follows from the fact that 0 € p(A) &= 0 €
p(A1), where p(A) is the resolvent set of A.
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CoRrOLLARY A.l. The spectrum of L(}) is located in the open upper half-

plane if and only if A; > 0.
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