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Abstract. We study the support and essential support functions of a norm-
closed bimodule of a nest algebra. An allowable support function pair deter-
mines a maximal bimodule. There is also a natural candidate for the minimal
bimodule for a given support function pair. We determine precisely when this
candidate is the minimal element. In the other cases, this module is still the
intersection of all bimodules with a given support function pair, but it is not
in this class itself.
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The purpose of this paper is to study norm-closed bimodules of nest algebras.
A nest N is a complete totally ordered sublattice of subspaces of a (separable)
Hilbert space H. The nest algebra T (N ) consists of all operators in B(H) leaving
each element of N invariant. The reader is referred to [2] for the basics of these
algebras. For our purposes, a bimodule will be a closed subspace of B(H) which
is closed under left and right multiplication by elements of T (N ).

In [6], Erdos and Power studied weakly closed bimodules of nest algebras.
They associated to each bimodule, weakly closed or not, a certain support function;
and they showed that this function determined the weak operator topology closure
of the bimodule. It is also intrinsic in their work that the intersection of this
weakly closed bimodule with K, the compact operators, is the minimal bimodule
with given support. (See Proposition 1.2 in Section 1.)
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The new ingredient we add to this picture is the notion of an essential support
function reflecting where non-compact operators are supported in a bimodule. We
characterize the possible support function pairs which can occur as the support and
essential support of a closed bimodule. It will be shown that there is a natural
maximal element with this given support function pair. Under certain necessary
conditions on the support function pair, there is also a minimal bimodule in this
class. In the remaining cases, the intersection of all bimodules with given support
function pair is determined.

The results simplify considerably for nests of infinite multiplicity. These are
nests which are similar to infinite ampliations of themselves. By the Similarity
Theorem ([1]), these are precisely the nests with no finite rank atoms. In this
case, the only conditions on a support function pair (Φ,Ψ) are the fact that they
are monotone increasing, Φ(0) = 0, Ψ 6 Φ and the support function Φ is left-
continuous. There is a minimal bimodule for this pair precisely when the essential
support function Ψ is also left-continuous.

The first paper on ideals of nest algebras was Ringrose ([10]) in which he
characterizes the radical. A similar radical type condition plays a role in this
paper in characterizing the elements of the minimal bimodules associated to an
essential support function. There are many other papers on ideals of nest algebras,
especially dealing with the question of generators (which will not be much of an
issue here). For example, the deep paper of Orr ([8]) characterizes generators of a
continuous nest algebra as a two sided ideal. This characterization has been crucial
in making the continuous nests the most tractable subclass for many algebraic
questions.

If N ∈ N , let N− denote the supremum of all strictly smaller elements of the
nest. And let N+ denote the infimum of all strictly greater elements. It is evident
that NB(H)N⊥

− and N+B(H)N⊥ are contained in T (N ). It will be convenient
to have the notation Nf for those elements N of the nest such that N −N− is a
finite dimensional atom. Let N∞ = N \Nf . We will also adopt the notation N` to
consist of those elements N ∈ N which are the supremum of a strictly increasing
sequence Nk for which Nk −N0 is finite rank for all k > 0. Dually, let Nr denote
the set of elements of N which are the infimum of a decreasing sequence Nk such
that N0 − Nk is finite rank for all k > 0. These notions will be needed to define
the minimal bimodules associated to a support function pair (Φ,Ψ).
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1. SUPPORT FUNCTIONS

Let N be a nest on a separable Hilbert space, and let T (N ) denote the nest algebra
of all operators leaving the elements of N invariant. If J is a T (N )-bimodule, its
support function is defined by

Supp(J) : N 7→ JN for N ∈ N .

It is readily apparent that JN is invariant for T (N ) and it is a routine exercise to
show that it is a subspace; hence it is an element of N . It is easily verified that
Supp(J) is monotone increasing, left-continuous and Supp(J)(0) = 0.

Hence we define a support function onN to be a monotone increasing function
Φ:N → N such that Φ(0) = 0. If Φ is a support function on N , then define its
T (N )-bimodule by

Bim(Φ) = {T ∈ B(H) : TN ⊆ Φ(N) for all N ∈ N}.

Our choice of notation is designed to mimic the operations of Lat and Alg. The
main result about weak operator topology closed bimodules is:

Theorem 1.1. ([6]) If J is a T (N )-bimodule and Φ is a support function
on N , then Bim(Supp(J)) = J

wot
and Supp(Bim(Φ)) = Φ−, the greatest left-

continuous support function on N such that Φ− 6 Φ.

In view of this theorem, call a support function admissable if it is left-
continuous, i.e. Φ such that Φ = Φ−. Left-continuity will also be an important
issue for essential support functions.

Clearly Bim(Φ) is the maximal T (N )-bimodule with support Φ. It is implicit
in [6] that there is a minimal bimodule with support Φ. For the sake of complete-
ness, we give a proof of this, using the fact that every nest algebra contains a
norm one approximate identity for the compact operators consisting of finite rank
operators in T (N ) ([5]).

Proposition 1.2. Let Φ be an (admissable) support function on N and J

a norm-closed T (N )-bimodule with Supp(J) = Φ. Then J contains Bim(Φ) ∩ K.
Since Supp

(
Bim(Φ) ∩ K

)
= Φ, this is the minimal closed bimodule contained in J

with support function Φ.

Proof. Let J′ = J∩K; and let Fn be a norm one approximate identity for the
compact operators consisting of finite rank operators in T (N ). For each J ∈ J,
FnJ ∈ J′ for n > 1 and J = sot–lim

n→∞
FnJ . Thus J′N contains JN for every J ∈ J

and N ∈ N . Hence Supp(J′) = Supp(J).
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Let Φ = Supp(J). To see that J′ = Bim(Φ) ∩ K, recall that each finite rank
element of a nest algebra can be written as the sum of rank one elements of the
nest algebra ([5]). Applying this to Fn, it follows that each element J ∈ J′ is
contained in the closed span of its rank one elements because it is the norm limit
of FnJ . So let R = xy∗ denote a rank one element of Bim(Φ). Let N denote the
greatest element of N which is orthogonal to y. Then for every M > N in N ,
xy∗M = Cx. Hence Φ(M) contains x; whence x belongs to L =

∧
M>N

Φ(M).

For any ε > 0, there are vectors z and v in N⊥ such that ‖y − z‖ < ε and
‖v‖ = 1 so that vz∗ belongs to T (N ). Indeed, if N+ > N , then z = y and any
unit vector v ∈ N+ 	 N will suffice. While if N+ = N , one may choose M > N

such that ‖My‖ < ε. So z = M⊥y and any unit vector v in M 	N works.
Now as v is orthogonal to N , it follows that T (N )v is an element of N

strictly larger that N ; whence Jv contains L. Choose an element J ∈ J such that
‖Jv − x‖ < ε. A routine estimate shows that J(vz∗) = (Jv)z∗ is close to xy∗ for
small ε.

Now let us define the essential support function of a bimodule J as

Suppe(J) : N 7→
∧
{L ∈ N : L⊥JN ⊂ K} for N ∈ N

and the support function pair of J to be the pair (Supp(J),Suppe(J)).
Conversely, define an essential support function as a support function Ψ :

N → N with the following two properties:

(A) rank(N2 −N1) <∞ implies Ψ(N2) = Ψ(N1).
(B) Ψ(N) ∈ Nf implies Ψ(N) = Ψ(N)+.

If in addition Φ is a left-continuous support function on N with Ψ 6 Φ and
(B′) Ψ(N) ∈ Nf implies Ψ(N) = Ψ(N)+ < Φ(N),

then we call (Φ,Ψ) an admissible pair of support functions. The next two propo-
sitions justify this terminology.

Proposition 1.3. For a T (N )-bimodule J, (Supp(J),Suppe(J)) is an ad-
missible pair of support functions. In other words, Suppe(J) and Supp(J) satisfy
properties (A), (B) and (B′).

Proof. Property (A) follows from the equality

L⊥JN2 = L⊥JN1 + L⊥J(N2 −N1),

as the second summand consists of finite rank operators.
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Similarly for (B), if L0 := Suppe(J)(N) belongs to Nf , then

L⊥0−JN = L⊥0 JN + (L0 − L0−)JN.

So this would consist of compact operators if L⊥0 JN ⊂ K. Hence it must be the
case that L⊥JN is contained in K for all L > L0, but not for L0 itself. Therefore

L0 = Suppe(J)(N) =
∨

L>L0

L = L0+.

Since L⊥0 JN is non-zero, it follows that Supp(J)(N) > Suppe(J)(N), verifying
property (B′).

If Ψ is a support function on N , then define

Bime(Ψ) := {X ∈ B(H) : L⊥XN ∈ K for all L,N ∈ N such that L+ > Ψ(N)}.

This is a T (N )-bimodule since it is clearly a closed subspace and if A,B ∈ T (N ),
then for all N,L ∈ N such that L+ > Ψ(N), one has that

L⊥AXBN = L⊥A(L⊥XN)BN

is compact. Since Bime(Ψ) contains all compact operators,

Supp(Bime(Ψ))(N) =
{

0 if N = 0,
H otherwise.

Moreover, it is evident from the definition that Bime(Ψ) contains all bimodules I

with Suppe(I) 6 Ψ.

Proposition 1.4. If Ψ is an essential support function, then

Suppe(Bime(Ψ)) = Ψ.

Proof. Fix N0 ∈ N and set L0 = Ψ(N0); and let Φe be the essential support
function of Bime(Ψ). From the definition, Φe 6 Ψ.

First suppose that N0 ∈ N∞. When N0 = N0−, choose a sequence Nk ∈ N
strictly increasing to N0, and choose unit vectors ek in Nk+1 − Nk. When E =
N0 −N0− is an infinite rank atom, choose an orthonormal basis ek for EH.

When L0 ∈ N∞, choose a basis fk for L0H. Then we define a partial isometry
by X =

∑
k>1

fke
∗
k. By construction, X = L0XN0. Also, XN is finite rank for every

N < N0, and L⊥XN0 is not compact for any L < L0. Hence X ∈ Bime(Ψ) and
Φe(N0) > L0.
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When L0 ∈ Nf , property (B) implies that L0 = L0+. Choose a sequence
Lk ∈ N strictly decreasing to L0; and choose unit vectors fk ∈ Lk − Lk+1. Then
define X =

∑
k>1

fke
∗
k. It is evident that X = L⊥0 XN0 is not compact but L⊥X is

compact for all L > L0 and XN is compact for all N < N0. Hence X ∈ Bime(Ψ)
and this again demonstrates that Φe(N0) > L0.

Finally, suppose that N0 ∈ Nf . Let N1 be the infimum of all N ′ < N such
that N −N ′ is finite rank. If N0 −N1 is finite rank, then we have Ψ(N) = Ψ(N0)
and Φe(N0) = Φe(N1) by property (A). Thus the result follows from the previous
paragraphs applied to N1. If N0 − N1 is infinite rank, then Ψ(N) = Ψ(N0) and
Φe(N) = Φe(N0) for all N1 < N 6 N0. Choose a basis ek for N0−N1 and proceed
as above.

We are now able to determine the maximal bimodules associated to any
admissible pair of support functions.

Theorem 1.5. Let N be a nest, and let (Φ,Ψ) be an admissible pair of
support functions on N . Then Bim(Φ,Ψ) = Bim(Φ) ∩ Bime(Ψ) is the largest
T (N )-bimodule J with Supp(J) = Φ and Suppe(J) = Ψ.

Proof. Since Bim(Φ,Ψ) is the intersection of two closed T (N )-bimodules, it
is itself a closed bimodule. As Bim(Φ) is the largest bimodule with support Φ
by Theorem 1.1 and Bime(Ψ) is the largest bimodule with essential support Ψ by
Proposition 1.4, it follows that Bim(Φ,Ψ) contains all bimodules with the support
function pair (Φ,Ψ).

As Bime(Ψ) contains the compact operators, it follows that

Bim(Φ) ∩ K ⊆ Bim(Φ,Ψ) ⊆ Bim(Φ).

Hence by Theorem 1.1 and Proposition 1.2, the support function of this bimodule
is Φ. Proposition 1.4 shows that Φe := Suppe(Bim(Φ,Ψ)) satisfies Φe 6 Ψ. It
remains to show that Φe > Ψ. This requires a bit more care than the previous
proposition.

Let N0 ∈ N , L0 = Ψ(N0). First suppose that L0 ∈ N∞. When E =
N0 − N0− is an infinite rank atom, the operator X constructed above from EH
onto L0 is the desired operator in Bim(Φ,Ψ). This is also the case when there is
a decreasing sequence Nk such that N0 −Nk is finite rank for all k > 1. However,
if N0 = N0−, the operator X constructed above need not belong to Bim(Φ).
But because Φ is left-continuous and Φ(N0) > Ψ(N0) = L0, given any L < L0,
there is an M < N0 such that Φ(M) > L. So if L0 − L0− is an infinite atom,
choose M < N0 so that Φ(M) > L0−; whence Φ(M) > L0. Then if we use
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N1 = M in Proposition 1.4, the operator X lies in Bim(Φ,Ψ). While if L0 =
L0−, choose a sequence Lk strictly increasing to L0. Then choose a sequence Mk

strictly increasing to N0 such that Φ(Mk) > Lk. Then by choosing unit vectors
ei ∈ Mi+1 	Mi and fi ∈ Li 	 Li−1, we obtain X =

∑
i>1

fie
∗
i in Bim(Φ,Ψ) which

establishes Φe(N0) > L0 as in Proposition 1.4. Finally, when N0 − N1 is finite
rank and N1 fits the previous case, property (A) implies that Ψ(N0) = Ψ(N1) and
the operator X already constructed again shows that Φe(N0) = Φe(N1) > L0.

When L0 ∈ Nf , property (B) implies that L0 = L0+ and property (B′)
implies that Φ(N0) = L1 > L0. Let Lk for k > 1 be a strictly decreasing sequence
inN with limit L0. WhenN0−N0− is an infinite atom, the operatorX constructed
in Proposition 1.4 lies in Bim(Φ,Ψ). When there is a decreasing sequence Nk such
that N0 −Nk is finite rank for all k > 1, properties (A) and (B′) show that

Ψ(N0) = Ψ(Nk) < Φ(Nk) for k > 1.

It may then be assumed (by dropping the L’s to a subsequence) that Lk−1 6

Φ(Nk). Let ek be a unit vector in Nk −Nk+1 for k > 1. Recall that fk is a unit
vector in Lk − Lk+1. Set X =

∑
k>1

fke
∗
k as before. Then it has been arranged

that X lies in Bim(Φ). The previous proof shows that it also lies in Bime(Ψ)
and determines that Φe(N0) > L0. Similarly, if N0 = N0−, the left-continuity
of Φ shows that there is an M ∈ N such that M < N and Φ(M) = L2 > L0.
Proceeding as before produces the desired result. Finally, the case in whichN0−N1

is finite rank and N1 fits one of the previous cases, then property (i) implies
that Ψ(N0) = Ψ(N1) and the operator X already constructed again shows that
Φe(N0) = Φe(N1) > L0.

2. INFINITE MULTIPLICITY

We wish to determine when there is a minimal bimodule for a support function
pair (Φ,Ψ); and otherwise determine the intersection of all such bimodules. In
this section, we consider an important special case in which the technicalities are
reduced. A nest has infinite multiplicity if it is similar to the infinite inflation of
itself. By the Similarity Theorem ([1]), this happens precisely when every atom is
infinite dimensional. For such nests, the properties (A), (B), and (B′) are vacuous,
so any support function is a valid essential support function.

First we need a simple factorization result.
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Lemma 2.1. Let J = L⊥JN be a non-compact element in a T (N )-bimodule
J. Then J contains L+B(H)N⊥

− .

Proof. Since T (N ) contains L+B(H)L⊥ and NB(H)N⊥
− , it follows that

J ⊃ (L+B(H)L⊥)J(NB(H)N⊥
− ) = L+B(H)N⊥

− .

Corollary 2.2. If J is a T (N )-bimodule with essential support function
Ψ, then it contains LB(H)N⊥

− for every L,N ∈ N such that L− < Ψ(N).

Proof. From the definition of essential support, there is a non-compact ele-
ment J = L⊥−JN in J. Thus J contains (L−)+B(H)N⊥

− , which contains
LB(H)N⊥

− .

In the general situation, there is a more sophisticated factorization, Lem-
ma 3.1, that leads to somewhat larger rectangles that live above the support of Ψ.
In the infinite multiplicity case, this result is sufficient. In this case, we define a
bimodule

Bim0(Ψ) =
∑
N∈N

L−<Ψ(N)

LB(H)N⊥
− .

By Corollary 2.2, every bimodule with essential support Ψ contains this one.
However, it is easy to verify that Suppe(Bim0(Ψ))(N) < Ψ(N) whenever Ψ is
left-discontinuous at N .

To make the support function of a bimodule equal Φ without changing the
essential support, Proposition 1.2 suggests that Bim(Φ)∩K be added in. So define

Bim0(Φ,Ψ) = Bim0(Ψ) + (Bim(Φ) ∩ K).

This is a closed bimodule, as is shown in the following lemma.

Lemma 2.3. Let Φ be a support function on N and J be a T (N )-bimodule
with Supp(J) 6 Φ. Then

T := (Bim(Φ) ∩ K) + J = Bim(Φ) ∩ (J + K)

is a closed bimodule with support Φ and essential support Suppe(J).

Proof. The equality (Bim(Φ) ∩ K) + J = Bim(Φ) ∩ (J + K) is easy because
J is contained in Bim(Φ). As T (N ) contains a bounded approximate identity
for the compact operators, J ∩ K is weak-∗ dense in J. Thus by [3] (see also [2],
Theorem 11.6) J∩K is an M-ideal in J and thus J + K is norm closed. Hence T is
the intersection of two closed bimodules, and therefore is itself a closed bimodule.
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Because of the inclusions

Bim(Φ) ∩ K ⊂ T ⊂ Bim(Φ),

it follows from Proposition 1.2 and Theorem 1.1 that the support function of T is
Φ. Since the addition of compact operators cannot affect the definition of essential
support, we obtain that Suppe(T) = Suppe(J).

Recall that if Ψ is a support function, then Ψ− denotes the greatest left-
continuous support function with Ψ− 6 Ψ. Clearly it is defined by

Ψ−(N) =

{
Ψ(N) if N > N−,∨
M<N

Ψ(M) if N = N−.

The comments above suggest the following result.

Theorem 2.4. Let N be a nest of infinite multiplicity, and let (Φ,Ψ) be an
admissible pair of support functions on N . Then Bim0(Φ,Ψ) is a closed T (N )-
bimodule with support function pair (Φ,Ψ−). Moreover, every bimodule with sup-
port function pair (Φ,Ψ) contains Bim0(Φ,Ψ).

Proof. By Lemma 2.3, Bim0(Φ,Ψ) is a closed bimodule. It has support
function Φ and essential support function

Φe := Suppe(Bim0(Φ,Ψ)) = Suppe(Bim0(Ψ)) 6 Supp(Bim0(Ψ)) 6 Ψ−.

This last inequality follows because

Bim0(Ψ)N0 =
∑

N−<N0
L−<Ψ(N)

LB(H)(N0 −N−) ⊂ Ψ−(N0)B(H)N0.

On the other hand, when N0 > N0−, Bim0(Ψ) contains LB(H)(N0 − N0−)
for every L with L− < Ψ(N0). Therefore if M < L, then M⊥Bim0(Ψ)N0 contains
(L−M)B(H)(N0−N0−), which contains non-compact operators. Thus Φe(N0) >

M+. Now ∨
M<L

L−<Ψ(N0)

M+ = Ψ(N0);

whence Φe(N0) = Ψ(N0).
The other possibility is that N0 = N0−. In this case, the definition of Ψ−

implies that for each L < Ψ−(N0), there is an N ∈ N withN < N0 and Ψ(N) > L.
Thus Bim0(Ψ) contains LB(H)(N0 − N) and it follows that Φe(N0) > L. As
L < Ψ−(N0) was arbitrary, we obtain Φe(N0) > Ψ−(N0). Therefore Φe = Ψ−.

Suppose that J is a T (N )-bimodule with support function pair (Φ,Ψ). By
Proposition 1.2, J contains Bim(Φ) ∩ K. By Corollary 2.2, J contains LB(H)N⊥

−
for all L,N ∈ N with L− < Ψ(N). Consequently, J contains Bim0(Ψ); whence it
contains Bim0(Φ,Ψ).



68 K.R. Davidson, A.P. Donsig and T.D. Hudson

So we obtain as an immediate consequence that there is a minimal bimodule
with support function pair (Φ,Ψ) when Ψ is left-continuous:

Corollary 2.5. Suppose that (Φ,Ψ) is an admissible pair of left-continuous
support functions on an infinite multiplicity nest N . Then Bim0(Φ,Ψ) is the
smallest closed T (N )-bimodule with support function pair (Φ,Ψ).

Further, we will show in Theorem 2.8 that Bim0(Φ,Ψ) is the intersection of
all closed T (N )-bimodules with support function pair (Φ,Ψ), regardless of whether
or not Ψ is left-continuous. We need a characterization of Bim0(Φ,Ψ) which is
akin to the Ringrose condition for elements of the radical.

Theorem 2.6. Let N be a nest of infinite multiplicity, and let (Φ,Ψ) be an
admissible pair of support functions on N . Then the following are equivalent for
X ∈ B(H):

(i) X belongs to Bim0(Φ,Ψ);
(ii) X ∈ Bim(Φ) and for each P ∈ N and ε > 0, there are elements

M0,M1, L, L0 in N such that M0− < P < M1, L0− < Ψ(M0), L− < Ψ(P )
and

‖L⊥0 XP‖e < ε and ‖L⊥XM1−‖e < ε.

When Ψ is left-continuous, condition (ii) may be replaced with the weaker
condition:

(ii′) X ∈ Bim(Φ) and for each P ∈ N and ε > 0, there are elements M > P

and L− < Ψ(P ) such that ‖L⊥XM−‖e < ε.

Proof. If X ∈ Bim0(Φ,Ψ), then it can be approximated within ε by a finite
sum of the form

J = K +
k∑

i=1

LiTiN
⊥
i−

where K ∈ Bim(Φ) ∩ K, Ti ∈ B(H), Ni are distinct elements of N and Li ∈ N
such that Li− < Ψ(Ni). For each P ∈ N ,

(1) let M0 be the greatest of the Ni’s such that Ni− < P ;
(2) let L0 be the greatest of the Li’s corresponding to these Ni’s;
(3) let M1 be the least of the Ni’s strictly greater than P ; and
(4) let L be the greatest of the Li’s corresponding to the Ni 6 P .

Then L0− < Ψ(M0), L− < Ψ(P ), L⊥0 JP = L⊥0 KP and L⊥JM1− =
L⊥KM1−. So

‖L⊥0 XP‖e 6 ‖X − J‖+ ‖K‖e < ε
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and
‖L⊥XM1−‖e 6 ‖X − J‖+ ‖K‖e < ε.

Notice that two terms are needed only when P is one of the Ni’s and L > Ψ(P )−;
for otherwise there is an M ′ ∈ N such that M0 6 M ′ < P and Ψ(M ′) > L−.

If (ii′) holds and Ψ is left-continuous, then given P ∈ N and ε > 0, let
M > P and L− < Ψ(P ) be provided so that ‖L⊥XM−‖e < ε. By left-continuity,
there is an M0− < P such that L− < Ψ(M0). Setting L0 = L yields (ii).

Now suppose that the technical condition (ii) holds. Given ε > 0, each
P ∈ N is contained in an open interval (M0−,M1) with the hypotheses of (ii)
satisfied. When P > P−, always choose M0 = P and L0 = L, so that for these
terms we have the single norm estimate ‖L0XM1−‖e < ε. By compactness, one
obtains a finite open subcover. From this, it is easy to extract two sequences of
elements of N ,

0 = M0 < M1 < · · · < Mk = I and 0 = L0 < L1 < · · · < Lk

such that Li− < Ψ(Mi) and ‖L⊥i XMi+1−‖e < ε for 0 6 i < k and ‖L⊥k X‖e < ε.
These terms are the lower triangular blocks complementary to the upper

triangular space T =
k∑

i=1

LiB(H)M⊥
i−. There is a formula for the distance to the

compact perturbations of a nest algebra ([3]) which is elementary for a finite block
form such as this. The formula implies that

dist(X,T + K) = max{‖L⊥k X‖e, ‖L⊥i XMi+1−‖e, 0 6 i < k} < ε.

Thus there exists K ∈ K and J ∈ T ⊂ Bim0(Ψ) such that ‖X − (J +K)‖ < ε. As
X belongs to Bim(Φ),

dist(K,Bim(Φ)) = dist(J +K,Bim(Φ)) < ε.

Since K is compact and T (N ) contains an approximate identity for K, it follows
that there is a compact operator C ∈ Bim(Φ)∩K such that ‖K−C‖ < ε. Therefore
J + C is an element of Bim0(Φ,Ψ) within 2ε of X. Since ε > 0 is arbitrary and
Bim0(Φ,Ψ) is closed, it follows that X ∈ Bim0(Φ,Ψ).

To complete the picture in the infinite multiplicity case, we determine the
intersection of all bimodules with a given support function pair. This then shows
that Corollary 2.5 determines all cases in which there is a minimal element. We
need a method for constructing bimodules with left-discontinuous essential sup-
ports. For notational convenience, define

R(L,P ) =
∑

M<L

MB(H)P⊥ and ΨL,P (N) =
{

0 N < P ,
L N > P .

Let B(Φ,Ψ) denote the collection of all bimodules with support function pair
(Φ,Ψ).
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Lemma 2.7. Suppose that L and P belong to a nest N of infinite multiplicity,
and P = P−. Let Φ be a left-continuous support function on N such that Φ(P ) >

L. Then there is a T (N )-bimodule X with support function pair (Φ,ΨL,P ). When
L = L−, it can also be arranged that

(2.1) lim
M↑L

‖M⊥X‖e = 0 for all X ∈ X.

Furthermore,
⋂
{X : X ∈ B(Φ,ΨL,P )} = R(L,P ) + (Bim(Φ) ∩ K). Indeed,

for T ∈ Bim(Φ),

sup
X∈B(Φ,ΨL,P )

dist(T,X) = dist
(
T,R(L,P ) + (Bim(Φ) ∩ K)

)
= max

{
‖TP‖e, ‖L⊥T‖e, lim

M↑L
‖M⊥T‖e

}
.

Proof. Choose a sequence Pk ∈ N strictly increasing to P ; and choose unit
vectors ek ∈ Pk+1	Pk. If L−L− is an infinite rank atom, choose an orthonormal
basis fk for it. Otherwise, choose a sequence Lk ∈ N strictly increasing to L and
unit vectors fk ∈ Lk+1 	 Lk. Since Φ is left-continuous and Φ(P ) > L, we may
assume that Φ(Pk) > Lk for each k > 1. Define X =

∑
k>1

fke
∗
k; and let

X = span{T (N )XT (N )}+ (Bim(Φ) ∩ K)

be the bimodule it generates plus the minimal bimodule for Φ. By arrangement, X
belongs to Bim(Φ); X = LXP ; and XN is finite rank for each N < P . Thus XN is
contained in K for N < P , as is L⊥X. But M⊥XP is not compact if M < L. Thus
Suppe(X)(N) is 0 for N < P and L for N > P . As Bim(Φ) ∩ K ⊂ X ⊂ Bim(Φ), it
follows that Supp(X) = Φ.

When L = L−, let Xk be the bimodule constructed as above for the pair Lk

and P ; and set X =
∑
k>1

Xk. Since for any X ∈ Xk, L⊥k X is compact, it follows

that (2.1) holds for X; and hence for any finite linear combination of such terms.
Taking limits verifies this condition for every element of X.

If X is any bimodule with Supp(X) = Φ, then it contains Bim(Φ) ∩ K by
Proposition 1.2. If in addition, Suppe(X) = ΨL,P , then Corollary 2.2 shows that
it also contains R(L,P ).

Suppose that T ∈ Bim(Φ). If L⊥T is not compact, then T does not lie in
the bimodule X constructed above and dist(T,X) > ‖L⊥T‖e. Moreover, when
L = L−, (2.1) holds for X and thus

dist(T,X) > lim
M↑L

‖M⊥T‖e.
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Similarly, if TN is not compact for some N < P , then T fails to belong to X and

dist(T,X) > sup
N<P

‖TN‖e.

Finally, suppose that TP is not compact. It is a routine exercise to find
orthonormal vectors xn so that the Txn are pairwise orthogonal and ‖Txn‖ >

‖TP‖e−1/n, and to find projections Pk strictly increasing to P so that xn = Pkxn

for n 6 k2. The bimodule X constructed using this sequence Pk contains a dense
set of elements of the form

Y =
m∑

i=1

AiXBi +K

where Ai and Bi belong to T (N ) andK is compact. Given ε > 0, let p be a positive
integer such that the (p+ 1)-st singular value of K is less than ε. Consider

Y Pk =
m∑

i=1

Ai(XPk)BiPk +KPk.

As X is constructed using the sequence Pk, we have rank(XPk) = k − 1. Hence
the right hand side is the sum of an operator of rank at most km and KPk, which
is a rank p operator plus one of norm less than ε. So (T − Y )|span{xn : k 6 n 6

k2} is bounded below by ‖TP‖e − 1/k − ε on a subspace of dimension at least
k(k −m− 1)− p. Therefore dist(T,X) > ‖TP‖e.

Evidently, T ∈ Bim(Φ) belongs to R(L,P ) + (Bim(Φ)∩K) if and only if TP
and L⊥T are compact and (2.1) holds. Therefore the intersection of all bimodules
in B(Φ,Ψ) is indeed R(L,P ) + (Bim(Φ)∩K). It remains to evaluate the distance
to this bimodule. Since the given estimate is clearly a lower bound, suppose that
T ∈ Bim(Φ) and

max{‖TP‖e, ‖L⊥T‖e, lim
M↑L

‖M⊥T‖e} = r.

As in the case of nest algebras themselves ([2], Theorem 12.1), given T ∈ Bim(Φ),
there is a compact operator in Bim(Φ)∩K such that ‖T−K‖ = ‖T‖e. In particular,
applying this to T − LTP⊥, we perturb T by such an element K so that

max
{
‖(T −K)P‖, ‖L⊥(T −K)‖

}
6 r.

Now the Parrott–Davis–Kahan–Weinberger Lemma ([9], [4]) (see also [2], Lem-
ma 9.1) shows that there is an element X ∈ LB(H)P⊥ such that ‖T −K−X‖ 6 r.
When L = L−, choose M < L sufficiently large that ‖M⊥T‖e < r + ε. Apply the
same procedure toM in the place of L to obtain a compact elementK ∈ Bim(Φ)∩K

and an element X ∈MB(H)P⊥ ⊂ R(L,P ) such that

‖T −K −X‖ 6 max
{
‖TP‖e, ‖M⊥T‖e

}
< r + ε.

Then it follows that dist(T,R(L,P ) + (Bim(Φ) ∩ K)) 6 r.
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Now we can prove the main result of this section concerning minimal bimod-
ules in the infinite multiplicity setting.

Theorem 2.8. Let N be a nest of infinite multiplicity, and let (Φ,Ψ) be
an admissible pair of support functions on N . Then the intersection of all closed
T (N )-bimodules with support function pair (Φ,Ψ) is Bim0(Φ,Ψ). In particular,
this set of modules has a minimal element only when Ψ is left-continuous.

Proof. Theorem 2.4 shows that Bim0(Φ,Ψ) is contained in every T (N )-
bimodule with support function pair (Φ,Ψ). However, by the same result, the
essential support function of this bimodule will be Ψ−. Theorem 1.5 shows that
the intersection is contained in Bim(Φ,Ψ) = Bim(Φ) ∩ Bime(Ψ).

Natural candidates for bimodules with support function pair (Φ,Ψ) are read-
ily obtained as follows. Enumerate the points of left-discontinuity of Ψ as {Pk}.
For each k, let Xk be the bimodule constructed in Lemma 2.7 for the pair of
projections (Ψ(Pk), Pk). Then let

T = Bim0(Φ,Ψ) +
∑

k

Xk.

Each T ∈ T can be approximated by a finite sum A +
m∑

k=1

Xk consisting of an

element A ∈ Bim0(Φ,Ψ) and terms Xk ∈ Xk.
Suppose that T ∈ B(H) lies in the intersection of all bimodules with support

function pair (Φ,Ψ). If T does not belong to Bim0(Φ,Ψ), then Theorem 2.6 implies
that there is an element P ∈ N and an ε > 0 so that either

(a) for every M− < P and L− < Ψ(M) in N , one has ‖L⊥TP‖e > ε, or
(b) for every M > P and L− < Ψ(P ), one has ‖L⊥TM−‖e > ε.
In particular, T belongs to the bimodule T constructed above. So after

subtracting off a term A ∈ Bim0(Φ,Ψ), T can be approximated within ε > 0 by a

finite sum
m∑

k=1

Xk, where Xk ∈ Xk.

Consider case (a) first. Notice that if Pk > P , XkP is contained in K; and
if Pk < P , Ψ(Pk)⊥X is contained in K and by (1) of Lemma 2.7, when Ψ(Pk) =
Ψ(Pk)−, there is an L < Ψ(Pk) 6 Ψ(P ) such that ‖L⊥Xk‖e is arbitrarily small.
Thus the only term that can have any effect on (a) is the term Xk0 when P = Pk0 .
Then by Lemma 2.7, condition (a) implies that there is another bimodule X′k0

corresponding to the pair of projections (Ψ(P ), P ) such that dist(Xk0 ,X
′
k0

) > ε.
Let T′ be the bimodule in B(Φ,Ψ) obtained by using X′k0

instead of Xk0 . The
same analysis then shows that

dist(T,T′) > dist(Xk0 ,X
′
k0

) > ε
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which is a contradiction.
Case (b) is similar. If Pk 6 P , there is an L with L− < Ψ(Pk) 6 Ψ(P ) such

that ‖L⊥Xk‖e is arbitrarily small. And if Pk > P+, taking P < M < Pk yields
that XkM is compact. Finally, when P < P+ = Pk0 , proceed as in case (a) to
reach a contradiction.

Thus T lies in Bim0(Φ,Ψ) as claimed.

3. MINIMAL BIMODULES

In this section, we determine the minimal bimodule with a given support function
pair (Φ,Ψ) for an arbitrary nest, when it exists. We need several more sophisti-
cated factorization results along the lines of Lemma 2.1.

Lemma 3.1. Let J be a T (N )-bimodule. Suppose that J = L⊥0 JN is a non-
compact element of J and L∞ is the supremum of a strictly increasing sequence
Lk such that Lk − L0 are finite rank for all k > 0. Then J contains L∞B(H)N⊥

− .
Dually, if J = L⊥JN0 is a non-compact element in J and N∞ is the infimum

of a strictly decreasing sequence Nk such that N0−Nk are finite rank for all k > 0,
then J contains L+B(H)N⊥

∞.
Finally, suppose that J = L⊥0 JN0 is a non-compact element in J, L∞ is the

supremum of a strictly increasing sequence Lk and N∞ is the infimum of a strictly
decreasing sequence Nk such that Lk−L0 and N0−Nk are finite rank for all k > 0.
Then J contains L∞B(H)N⊥

∞.

Proof. Suppose that we are in the setting of the first paragraph. We may
assume that ‖J‖e > 1. It follows that L⊥k J 6= 0 for all k > 1. Hence Supp(J)(N) >∨
k>0

Lk = L∞. By Proposition 1.2, J contains L∞KN⊥
− .

For any finite k, there is a unit vector x ∈ N such that ‖Jx‖ > 1 and Jx

is orthogonal to the finite dimensional space Lk − L0 (and thus is orthogonal to
Lk). Moreover, this vector x may be chosen to be orthogonal to any given finite
dimensional subspace of N . Recursively, construct an orthonormal sequence xn in
N and an increasing sequence of positive integers kn so that

(i) Jxn = yn is orthogonal to Lkn
,

(ii) ‖L⊥kn+1
yn‖ < 2−n, and

(iii) zn = Lkn+1yn has ‖zn‖ > 1.
Note that the zn’s are pairwise orthogonal and bounded by ‖J‖.
Let A ∈ L∞B(H)N⊥

− . Choose an orthonormal basis fn for N⊥
− . Let un =

Afn; choose integers jn so that ‖L⊥jn
un‖ < 2−n; and set vn = Ljn

un. Then by
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dropping to a subsequence of the sequence kn, it may be supposed that kn > jn

for every n > 1. Then

T =
∑
n>1

xnf
∗
n and S =

∑
n>1

vnz
∗
n‖zn‖−2

are bounded elements of T (N ). Moreover,

JT =
∑
n>1

ynf
∗
n =

∑
n>1

znf
∗
n +K

where K =
∑

n>1

(L⊥kn+1
yn)f∗n is compact. Thus

A− SJT =
∑
n>1

unf
∗
n −

∑
n>1

vnf
∗
n − SK =

∑
n>1

(L⊥jn
un)f∗n − SK

which is compact in L∞KN⊥
− . Consequently, A belongs to J.

The second case of the lemma is analogous to the first. So consider the
combined case in which J = L⊥0 JN0 is a non-compact element in J, L∞ is the
supremum of a strictly increasing sequence Lk and N∞ is the infimum of a strictly
decreasing sequence Nk such that Lk−L0 and N0−Nk are finite rank for all k > 0.
Proceeding as above, we can find unit vectors xn in N0, vectors zn in L⊥0 and two
increasing sequences jn and kn with xn ∈ Njn −Njn+1 and zn ∈ Lkn+1 −Lkn such
that

∑
k>1

‖Jxn − zn‖ < ∞. Then as before, any operator A in L∞B(H)N⊥
∞ will

factor through the operator J modulo a compact operator; and thus lies in J.

Recall that N` (Nr) denotes the set of elements of N which are the limit of a
strictly increasing (decreasing) sequence Lk such that Lk − L0 are all finite rank.
In this case, property (A) implies that Ψ(Lk) = Ψ(L0) for all k > 1. Define

Ψ+(N) = inf
M+>N

Ψ(M).

Corollary 3.2. Let J be a T (N )-bimodule with essential support Ψ. Then
for every L,N ∈ N , J contains

(i) LB(H)N⊥
− when L− < Ψ(N);

(ii) Ψ(N)B(H)N⊥
− when Ψ(N) ∈ N`;

(iii) LB(H)N⊥ when L− < Ψ+(N) and N ∈ Nr;
(iv) Ψ+(N)B(H)N⊥ when Ψ+(N) ∈ N` and N ∈ Nr.

Proof. Item (i) is just Corollary 2.2.
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(ii) If Ψ(N) ∈ N`, then there is a strictly increasing sequence Lk such that
Lk−L0 is finite rank for all k > 1 and

∨
k>0

Lk = Ψ(N). As L0 < Ψ(N), there is an

element J = L⊥0 JN in J which is non-compact. Thus by Lemma 3.1, J contains
Ψ(N)B(H)N⊥

− .
(iii) Suppose that N ∈ Nr; say N is the infimum of a strictly decreasing

sequence Nk such that N0 −Nk is finite rank for all k > 1. When L < Ψ+(N) =
Ψ(N0), there is a non-compact element J = L⊥JN0 in J. Hence by Lemma 3.1, J

contains LB(H)N⊥.
(iv) Likewise, if N ∈ Nr and Ψ+(N) ∈ N`, then the arguments of case

(ii) and (iii) combine to yield a non-compact element J = L⊥0 JN0 in J. Hence
Ψ+(N)B(H)N⊥ belongs to J by Lemma 3.1.

This corollary allows us to define a candidate for a lower bound for the
bimodules with essential support Ψ. Define the bimodule Bim0(Ψ) to be the norm
closure of the sum∑

N∈N
L−<Ψ(N)

LB(H)N⊥
− +

∑
Ψ(N)∈N`

Ψ(N)B(H)N⊥
−

+
∑

N∈Nr
L−<Ψ+(N)

LB(H)N⊥ +
∑

N∈Nr
Ψ+(N)∈N`

Ψ+(N)B(H)N⊥.

However, it is easy to verify that Suppe(Bim0(Ψ))(N) < Ψ(N) when Ψ is left-
discontinuous at N . This inequality also occurs when Ψ(N) ∈ Nf .

Combining the observations so far, we have:

Lemma 3.3. Let N be a nest and let (Φ,Ψ) be an admissible pair of support
functions. Then the bimodule

Bim0(Φ,Ψ) := (Bim(Φ) ∩ K) + Bim0(Ψ) = Bim(Φ) ∩ (Bim0(Ψ) + K)

is a closed bimodule with support Φ and essential support at most Ψ. Moreover,
every bimodule with support function pair (Φ,Ψ) contains Bim0(Φ,Ψ).

Proof. By Lemma 2.3, Bim0(Φ,Ψ) is a closed bimodule. It has support
function Φ and essential support function

Φe := Suppe(Bim0(Φ,Ψ)) = Suppe(Bim0(Ψ)) 6 Supp(Bim0(Ψ)) 6 Ψ.

If J is a T (N )-bimodule with support function pair (Φ,Ψ), then J contains
Bim0(Ψ) by Corollary 3.2.
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Now consider the question of recovering the essential support function Ψ from
Bim0(Ψ). We begin with the support of a simple rectangular bimodule. Define

R(L0, N0) =


∑

L−<L0

LB(H)N⊥
0 if L0 6∈ N`,

L0B(H)N⊥
0 if L0 ∈ N`.

Lemma 3.4. Let L0, N0 ∈ N and let L1 denote the infimum of all elements
L ∈ N such that L0 − L is finite rank. Then the essential support function of
R(L0, N0) is

Φe(N) =
{

0 if N 6 N0 or N −N0 is finite rank,
L1 otherwise.

.

Proof. If N 6 N0 or N − N0 is finite rank, then R(L0, N0)N is zero or
consists of finite rank operators, and thus Φe(N) = 0. If N > N0 and N −N0 is
infinite rank, then for M 6 L0, we have

M⊥R(L0, N0)N = (L0 −M)B(H)(N −N0) if L ∈ N`

and

M⊥R(L0, N0)N =
∑

L<L0

(L−M)B(H)(N −N0) if L ∈ N \ N`.

This is contained in the compact operators precisely when L −M is finite rank
for L = L0 or all L < L0 in the two cases. When L0 = L0−, the only M which
qualifies is L0 (= L1). When L0 > L0−, the infimum of such M ’s is L1. Thus
Φe(N) = L1.

This lemma points out a difficulty in achieving a given essential support
function using the rectangles R(L,N) that live below the function Ψ. If Ψ(N0) =
L0 = L0+ belongs to Nf , then the essential support of Bim0(Ψ) at N0 will be
strictly less than L0.

Example 3.5. Let {Nt : 0 6 t 6 1} be the Volterra nest on L2(0, 1).
Consider the nest on H = L2(0, 1) ⊕ C ⊕ L2(0, 1) given by Lt = Nt ⊕ 0 ⊕ 0 and
Mt = L2(0, 1)⊕ C⊕Nt for 0 6 t 6 1. Define a function

Ψ(N) =


0 N = 0,
M0 0 < N 6 M0,
M1 N > M0.
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Then Ψ is a left-continuous function satisfying the properties (A) and (B) and

Bim0(Ψ) =
∑
t>0

M0B(H)L⊥t +
∑
t<1

MtB(H)M⊥
0 .

A simple computation shows that the essential support function is given by

Φe(N) =


0 N = 0,
L1 0 < N 6 M0,
M1 N > M0.

Example 3.6. Another difficulty is that the essential support of Bim0(Ψ)
also need not be left-continuous. Consider a nest N = {0, Lk,Mk, Nk,H : k > 0}
where L0 is infinite dimensional, Lk−L0, Mk−M0 and Nk−N0 are k-dimensional
for k > 0, M0 =

∨
k>0

Lk, N0 =
∨

k>0

Mk and H =
∨

k>0

Nk. Define Ψj for 1 6 j 6 4

by

N Ψ1(N) Ψ2(N) Ψ3(N) Ψ4(N)

N = 0 0 0 0 0

L0 6 N < M0 L0 L0 L0 L0

M0 6 N < N0 M0 L0 L0 L0

N0 6 N < H N0 M0 L0 L0

N = H H N0 M0 L0

Then a calculation shows that Suppe(Bim0(Ψj)) = Ψmin{j+1,4}. The function Ψ4

is the largest left-continuous function less than Ψ1 satisfying the conclusions of
the following lemma.

Lemma 3.7. Let Ψ be a function on a nest N such that Suppe(Bim0(Ψ)) =
Ψ. Then Ψ is a left-continuous function such that property (A) holds and Ψ(N) ∈
N∞ for each N ∈ N .

Proof. By Proposition 1.3, Ψ must satisfy properties (A) and (B).
If Ψ were left-discontinuous at N0 = N0−, then let L0 =

∨
N<N0

Ψ(N). It is

evident from the definition of Bim0(Ψ) that Bim0(Ψ)N0 = L0Bim0(Ψ)N0. Hence

Suppe(Bim0(Ψ))(N0) 6 Supp(Bim0(Ψ))(N0) 6 L0 < Ψ(N0).

So Ψ must be left-continuous.
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Also, if A = Ψ(N0)−Ψ(N0)− is a non-zero finite rank atom, then

Ψ(N0)⊥−Bim0(Ψ)N0 ⊂ AB(H)N0 ⊂ K.

Hence Suppe(Bim0(Ψ))(N0) 6 Ψ(N0)− < Ψ(N0). Thus Ψ(N) ∈ N∞. In particu-
lar, property (B) is vacuous for these functions.

The main result of this section characterizes the minimal bimodule with
support function pair (Φ,Ψ) when it exists.

Theorem 3.8. Suppose that Ψ is a left-continuous support function on N
satisfying property (A) and Ψ(N) ∈ N∞ for each N ∈ N . Then Suppe(Bim0(Ψ)) =
Ψ. Thus for functions of this type, the bimodule Bim0(Φ,Ψ) is the minimal bi-
module with support function pair (Φ,Ψ).

Proof. Let Φe denote the essential support function of Bim0(Ψ). Fix N0 ∈ N
and set L0 = Ψ(N0).

Suppose that N0 = N0− is not in N`. Then N0 −N is infinite rank for each
N < N0. Now Bim0(Ψ) contains R(Ψ(N), N). So by Lemma 3.4, Φe(N0) > M

where M is the infimum of elements in N differing from Ψ(N) by a finite rank.
By hypothesis however, M = Ψ(N). Therefore, by left-continuity,

Φe(N0) >
∨

N<N0

Ψ(N) = Ψ(N0).

Next suppose that N0 ∈ N` and let Nk be a sequence increasing to N0 such
that Nk −N1 is finite rank for all k > 1. By property (A), Ψ(Nk) = Ψ(N1) for all
k > 1. Whence by left-continuity, L0 = Ψ(N0) = Ψ(Nk) for all k > 1. Therefore
Bim0(Ψ) contains R(L0, N1). So by Lemma 3.4, Φe(N0) > L1 where L1 is the
infimum of elements differing from L0 by a finite rank. By hypothesis, L1 = L0;
so Φe(N0) = L0.

If N0 −N0− is infinite rank, Bim0(Ψ) contains R(L0, N0−). Again by Lem-
ma 3.4 and the hypothesis on L0, it follows that Φe(N0) = Ψ(N0).

Finally, when N0−N0− is finite rank, let Nk denote the maximal decreasing
sequence of elements in N with N0 − Nk finite rank. Either this list contains a
least element Nk0 or it has an infimum N∞. In the first case, Nk0 is one of the
earlier cases. So by property (A),

Φe(N0) = Φe(Nk0) = Ψ(Nk0) = Ψ(N0).

In the latter case, N∞ belongs to Nr. Therefore Bim0(Ψ) contains R(L0, N∞).
So again, Φe(N0) = Ψ(N0).
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Lemma 3.3 shows that every bimodule with support function pair (Φ,Ψ)
contains Bim0(Φ,Ψ). Since

Bim0(Ψ) ⊂ Bim0(Φ,Ψ) ⊂ Bim0(Φ,Ψ) + K,

it follows that

Suppe(Bim0(Φ,Ψ)) = Suppe(Bim0(Ψ)) = Ψ.

So this is the minimal bimodule in the class B(Φ,Ψ).

A simple recursive argument shows what happens to an arbitrary function
Ψ through repeated use of the operations Bim0 and Suppe.

Corollary 3.9. Given a function Ψ from N into itself, define a decreasing
net indexed on the ordinals by Ψ1 = Ψ, Ψα+1 = Suppe(Bim0(Ψα)) and Ψα =∧
β<α

Ψβ for limit ordinals. This net converges to the function Ψ−, the greatest

left-continuous function less than Ψ satisfying the hypotheses of Theorem 3.8.

Proof. Lemma 3.7 shows that this net will continue to strictly decrease if
it does not satisfy the hypotheses of Theorem 3.8. On the other hand, at every
stage, Ψα > Ψ− and hence

Suppe(Bim0(Ψα)) > Suppe(Bim0(Ψ−)) = Ψ−.

Thus, by a cardinality argument, it follows that the net is eventually constant;
and therefore must equal Ψ−.

This suggests a need to understand the auxillary function Ψ− associated to
Ψ which is the greatest left-continuous function smaller than Ψ which satisfies
property (A) and such that Ψ(N) ∈ N∞ for each N ∈ N . Say that an interval
(M,N) of N is of ordinal type if it has the order structure of an ordinal and all its
atoms are finite dimensional. The elements of this interval may be parametrized
as Nα for all ordinals α < α0. By property (A), Ψ−(Nα+1) = Ψ−(Nα) for each α.
And by left-continuity, each limit ordinal β must have

Ψ−(Nβ) =
∨

α<β

Ψ−(Nα).

Hence by transfinite induction, it follows that Ψ− is constant on each ordinal
interval. Look at Example 3.6 again to see this phenomenon exhibited.

The union of an increasing union of intervals of ordinal type need not be
ordinal because there may be a left limit point. Nevertheless, each ordinal interval
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is contained in a maximal interval which is the increasing union of ordinal intervals.

Call this a super-ordinal interval. Distinguish the two cases as being of ordinal

type or not. The ordinal case has an initial element N ∈ N∞ such that no interval

[M,N ] has ordinal type for M < N . An element N ∈ N such that N = N− and

such that no interval [M,N ] has ordinal type for M < N will be called a left limit

of non-ordinal type. We define a map Γ which takes each element in a maximal

super-ordinal interval to its left endpoint; and takes other points to themselves.

Because Ψ− cannot take values L such that L ∈ Nf , we also need to consider

super-ordinal* intervals to be the complements of the super-ordinal intervals of the

complementary nest. Let Ω denote the map which sends each element of a super-

ordinal* interval to the infimum of that interval; and other elements to themselves.

It must be the case that Ω(N) ∈ N∞; and this is the greatest element less than

or equal to N with this property. Notice that the range of Ω is closed under left

limits. The following lemma is easy, and is left to the interested reader.

Lemma 3.10. Given an increasing function Ψ of N into itself, the greatest

left-continuous function less than Ψ satisfying the hypotheses of Theorem 3.8 is

given by

Ψ−(N) =



0 if N = 0,
ΩΨ(N) if N −N− is infinite rank,∨
M<N

ΩΨΓ(M) if N = N− is a left limit of non-ordinal type,∧
L>Γ(N)

ΩΨ(L) if N belongs to a non-ordinal type super-ordinal

interval,

Ψ−Γ(N) if N belongs to an ordinal type super-ordinal
interval.

=
∧

L+>Γ(N)

∨
M−<L

ΩΨ(M).



Norm-closed bimodules of nest algebras 81

4. THE GENERAL CASE

In this section, we determine the intersection of all bimodules associated to a
support function pair (Φ,Ψ) in the general case.

Example 4.1. Let H be the Hilbert space with orthonormal basis {en : n ∈
Z} and N be the nest whose non-trivial elements are Nk = span{en : n 6 k} for
k ∈ Z.

There are only three possible essential support functions, i.e., increasing
functions from N to itself satisfying properties (A) and (B); namely the function
0 that sends all N ∈ N to 0, the function Ψ that sends H to itself and all other
N ∈ N to 0, and the function 1 that sends all N ∈ N \ {0} to H.

The first and third functions are left-continuous, and give bimodules whose
supports are easy to understand. Bim(Φ,0) consists of all operators T in Bim(Φ)
such that N⊥

k T is compact for all k, or equivalently for k = 0. Therefore

Bim(Φ,0) = Bim(Φ) ∩ (N0B(H) + K).

The ideal Bim(Φ)∩K is the minimal ideal with this support pair by Proposition 1.2.
If the essential support is 1, then so is the support. Clearly, Bim(1,1) =

B(H). In fact, this is the only bimodule with essential support 1. Indeed, 0 ∈ Nr

and 1+(0) = H belongs to N`. Hence by Corollary 3.2 (iv), any bimodule with
essential support 1 contains all of B(H).

We turn to the second function, Ψ. It is easy to verify that Bim0(Ψ) = 0;
and thus Bim0(Φ,Ψ) = Bim(Φ) ∩ K. For convenience, let Φ = Id be the identity
function on N . We will show that the intersection of all bimodules with support
function pair (Id,Ψ) is K ∩ T (N ). Hence the essential support function of this
intersection is 0, the greatest left-continuous function less than Ψ.

Let P be the diagonal projection onto the span of {e2n : n > 0}. Let J be
the norm-closed ideal generated by P and T (N ) ∩ K. Then Supp(J) = Φ. By
property (A), Suppe(J)(Nk) = 0 for all k. As N⊥

k P is non-compact for each k,
Suppe(J)(H) = H. Thus the essential support function is Ψ.

Let U =
∑

n>1

e−ne
∗
n be the partial isometry that sends en to e−n for n > 0.

We claim that U /∈ J. If it were, we could find elements An, Bn ∈ T (N ) and
K ∈ T (N ) ∩ K so that ∥∥∥∥∥U −

(
K +

m∑
n=1

AnPBn

)∥∥∥∥∥ < 1
3
.
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Choose k so large that the k-th singular value of K is less than 1/3. Choose an
integer p and let E be the projection onto the the span of {en : |n| 6 2p}. Then
EPE has rank p. Since E is semi-invariant for T (N ), we have

X := E
(
K +

m∑
n=1

AnPBn

)
E = EKE +

m∑
n=1

EAnEPEBnE.

Each term in the sum has rank at most p and hence this sum has rank at most
mp. And EKE has at most k singular values greater than 1/3. Hence at most
mp + k singular values of X are greater than 1/3. Since ‖EUE −X‖ < 1/3, the
(mp+ k+ 1)-st singular value of EUE is less than 2/3. On the other hand, EUE
is a partial isometry of rank 2p, so the first 2p singular values of EUE are all 1, a
contradiction for large p.

Clearly this argument can be extended. Indeed, given any non-compact
operator in T (N ), the ideal generated by this operator contains a partial isometry
U of the form

∑
n>1

e−kn
e∗kn

for some increasing sequence kn. Adapting the above

argument, we can find a diagonal projection P so that the ideal generated by P

and T (N ) ∩ K does not contain U . As before, this ideal has support Φ = Id and
essential support Ψ. Thus, the intersection of all ideals with support function pair
(Id,Ψ) is K ∩ T (N ).

The following Ringrose style characterization of Bim0(Φ,Ψ) can be proved
by the same method as Theorem 2.6. To avoid many cases, define a set-valued
function ψ by defining ψ(N) according to the following table:

Ψ(N) = Ψ(N)− 6∈ N` Ψ(N) ∈ N` or Ψ(N) > Ψ(N)−

N 6∈ Nr [0,Ψ(N)) [0,Ψ(N)]

N ∈ Nr [0,Ψ+(N)) [0,Ψ+(N)]

Theorem 4.2. Let (Φ,Ψ) be an admissible pair of support functions on a
nest N . Then the following are equivalent for X ∈ B(H) :

(i) X belongs to Bim0(Φ,Ψ);
(ii) X ∈ Bim(Φ) and for each P ∈ N and ε > 0, there are elements

M0,M1, L, L0 in N with M0− < P < M1, L0 ∈ ψ(M0) and L ∈ ψ(P ) such
that

‖L⊥0 XP‖e < ε and ‖L⊥XM1−‖e < ε.
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A few more constructions of bimodules are needed. The first is a variant on
Lemma 2.7 to deal with left-discontinuities of Ψ. The second is the analogue for
right-discontinuities of Ψ. Recall that

ΨL,P =
{

0 if N < P ,
L if N > P .

and R(L,P ) =


∑

N−<L

NB(H)P⊥ if L 6∈ N`,

LB(H)P⊥ if L ∈ N`.

Lemma 4.3. Suppose that L and P belong to a nest N and Φ is a left-
continuous support function on N . Assume that either

(i) P = P−, L ∈ N∞, and Φ(P ) > L, or
(ii) P ∈ N∞, L = L+ ∈ Nf and Φ(P ) > L.
Then there is a T (N )-bimodule X with Supp(X) = Φ and Suppe(X) = ΨL,P .

When L = L− 6∈ N`, it can also be arranged that

lim
M↑L

‖M⊥X‖e = 0 for all X ∈ X.

Furthermore,
⋂{

X : X ∈ B(Φ,ΨL,P )
}

= R(L,P−) + (Bim(Φ) ∩ K). Indeed, for
T ∈ Bim(Φ),

sup
X∈B(Φ,ΨL,P )

dist(T,X) = dist
(
T,R(L,P−) + (Bim(Φ) ∩ K)

)
= max

{
‖TP‖e, ‖L⊥T‖e, lim

M↑L
‖M⊥T‖e

}
where the limit term occurs only when L = L− 6∈ N`.

Proof. When conditions (i) hold for L, P , and Φ, the proof is almost word
for word the same as that of Lemma 2.7, with a minor observation about points
in N`. So we omit the details.

Suppose that the conditions (ii) hold. If P = P−, choose a sequence Pk ∈ N
strictly increasing to P ; and choose unit vectors ek ∈ Pk+1 	 Pk. If instead,
A = P 	 P− is infinite dimensional, choose an orthonormal basis ek for the atom
A. If P = P−, then we may suppose that Φ(P1) = L1 > L since Φ is left-continuous
and Φ(P ) > L. If P > P−, then set P1 = P− and L1 = Φ(P ).

Choose a strictly decreasing sequence Lk with infimum L and choose unit
vectors fk ∈ Lk 	 Lk+1. Set X =

∑
k>1

fke
∗
k and

X = span(T (N )XT (N )) + (Bim(Φ) ∩ K).

Notice that X = (L1−L)X(P −P1) is not compact, and that XN and M⊥X are
finite rank ifN < P andM > L. It follows that XN andM⊥X are contained in the
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compact operators when N < P and M > L. Thus Suppe(X)(N) equals 0 when
N < P and is always at most L. Since X ∈ X, it follows that Suppe(X)(P ) > L.
Hence Suppe(X) = ΨL,P . Since L1B(H)P⊥1 is contained in Bim(Φ), the bimodule
X is contained in Bim(Φ). Hence X is wedged between Bim(Φ) ∩ K and Bim(Φ)
and therefore Supp(X) = Φ.

Note that under the conditions (ii), R(L,P−) = LB(H)P⊥− . Any bimodule X

with Suppe(X)(P ) = L contains LB(H)P⊥− by Corollary 2.2. Since Supp(X) = Φ,
it also contains Bim(Φ) ∩ K by Proposition 1.2.

On the other hand, suppose that T ∈ Bim(Φ) is not in LB(H)P⊥− +(Bim(Φ)∩
K). This means that either TP− or L⊥T is non-compact.

If TP− is not compact, then using the bimodule X constructed above, we have
XN contained in K for every N− < P . So P = P−, and as in Lemma 2.7, there
will be a sequence Pk strictly increasing to P such that the first k2 singular values
of T (Pk+1 − Pk) are all close to ‖TP⊥− ‖e. Following the argument of Lemma 2.7,
we deduce that dist(T,X) > ‖TP⊥− ‖e.

If L⊥T is not compact, then again using the bimodule X constructed above,
we have M⊥X contained in K for every M > L. Thus there is a sequence Lk

strictly decreasing to L such that the first k2 singular values of (Lk − Lk+1)T are
all close to ‖L⊥T‖e. If P > P−, then we can use the bimodule X constructed
above. If P = P−, then choose the sequence Pk and, if necessary, discard the first
few terms of the sequence Lk so that Φ(P1) > L1. Then again the rank argument
shows that dist(T,X) > ‖L⊥T‖e.

That the distance to LB(H)P⊥− +(Bim(Φ)∩K) equals the maximum of these
two terms follows from an application of the Parrott–Davis–Kahan–Weinberger
Lemma as in Lemma 2.7.

For the next lemma, we need to define:

Ψ′
L,P =

{
0 N 6 P ,
L N > P .

and R′(L,P ) =

{ ∑
N>P

LB(H)N⊥ if P 6∈ Nr,

LB(H)P⊥ if P ∈ Nr.

Lemma 4.4. Suppose that L and P belong to N such that P = P+, L ∈ Nf

and L = L+. Let Φ be a left-continuous support function on N such that Φ(N) > L

for every N > P .
Then there is a T (N )-bimodule X with Supp(X) = Φ and Suppe(X) = Ψ′

L,P .
The intersection of all bimodules in B(Φ,Ψ′

L,P ) is R′(L,P )+(Bim(Φ)∩K). Indeed,
for T ∈ Bim(Φ),

sup
X∈B(Φ,Ψ′

L,P
)

dist(T,X) = dist
(
T,R′(L,P ) + (Bim(Φ) ∩ K)

)
= max

{
‖TP‖e, ‖L⊥T‖e, lim

N↓P
‖TN⊥‖e

}
.
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where the limit term is used only if P 6∈ Nr.

Proof. While this lemma can be proved directly using the methods of the
previous proof, we instead reduce it to the previous lemma using duality. If A is
a T (N )-bimodule, then A∗ is a T (N⊥)-bimodule. Also, if Φ = Supp(A), then
Φ∗ = Supp(A∗) where

Φ∗(L⊥) =
∧
{N⊥ : N ∈ N and Φ(N) 6 L}.

To see this, observe that Supp(A∗)(L⊥) =
∧
{N⊥ : N ∈ N and N⊥A∗L⊥ =

A∗L⊥} and that N⊥A∗L⊥ = A∗L⊥ holds if and only if L > Φ(N). It follows
that (Φ∗)∗ = Φ for any support function Φ. Similarly, if Ψ = Suppe(A), then
Ψ∗ = Suppe(A∗). For P and L as above, then

Ψ′
L,P = (ΨP⊥,L⊥)∗ and R′(L,P ) = R(P⊥, L⊥)∗.

We can apply case (i) of Lemma 4.3 with P replaced by L⊥, L by P⊥ and
Φ by Φ∗. This gives a T (N⊥)-bimodule, Y, with Supp(Y) = Φ∗ and Suppe(Y) =
ΨP⊥,L⊥ . Letting X = Y∗, it is easy to check that X has the required properties.

Theorem 4.5. Let (Φ,Ψ) be an admissible pair of support functions on a
nest N . Then the intersection of all bimodules with support function pair (Φ,Ψ)
is Bim0(Φ,Ψ). Therefore, there is a minimal element for this class of bimodules
precisely when the hypotheses of Theorem 3.8 are satisfied.

Proof. Lemma 3.3 shows that Bim0(Φ,Ψ) is contained in every T (N )-bimo-
dule with support function pair (Φ,Ψ). However, by Lemma 3.7, the essential
support function of this bimodule will be strictly less than Ψ if Ψ does not satisfy
the hypotheses of Theorem 3.8. While if these hypotheses are satisfied, Theo-
rem 3.8 implies that Bim0(Φ,Ψ) is the minimal bimodule with support function
pair (Φ,Ψ).

Natural candidates for bimodules with support function pair (Φ,Ψ) are read-
ily obtained as follows. Enumerate the points {Qk} which are in Nf and also in the
range of Ψ. Let Mk denote the infimum of N ∈ N such that Ψ(N) = Qk. Distin-
guish the two cases depending on whether Ψ(Mk) = Qk or not. For each k, let Yk

be the bimodule constructed for the pair L = Qk and P = Mk using either case (ii)
of Lemma 4.3 or Lemma 4.4 depending on whether Ψ(Mk) = Qk or not. Also let
{Nj} enumerate the points of left-discontinuity of Ψ such that Ψ(Nj) ∈ N∞. For
each j, let Xj be the bimodule constructed in case (i) of Lemma 4.3 for the pair
P = Nj and L = Ψ(Nj). Then let

T = Bim0(Φ,Ψ) +
∑

j

Xj +
∑

k

Yk.
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Each T ∈ T can be approximated by a finite sum

(4.1) T = A+
m∑

j=1

Xj +
n∑

k=1

Yk

where A ∈ Bim0(Φ,Ψ), Xj ∈ Xj and Yk ∈ Yk.
Suppose that T is an operator of the form of equation (4.1) that is not in

Bim0(Φ,Ψ). By Theorem 4.2, there is an element P ∈ N and an ε > 0 so that
either

(a) for every M− < P and L ∈ ψ(M) in N , one has ‖L⊥TP‖e > ε, or
(b) for every M > P and L ∈ ψ(P ), one has ‖L⊥TM−‖e > ε.
We can now proceed as in the infinite multiplicity case. Using the pair

(P,Ψ(P )) and the appropriate case of Lemma 4.3 or 4.4, construct a closed bi-
module with support function pair (Φ,Ψ) which does not contain T .

Since an operator in T can be approximated by one of the form of equa-
tion (4.1), the intersection of T with the family of bimodules constructed for
(P,Φ(P )) with P ∈ N is Bim0(Φ,Ψ). Thus the intersection of all bimodules
in B(Φ,Ψ) is Bim0(Φ,Ψ).
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