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1. INTRODUCTION

Hilbert modules over a C∗-algebra A were first introduced by I. Kaplansky in 1953

in [2] (only in the particular case when A is abelian). These objects generalize, in

a certain sense, the notion of Hilbert space, replacing the scalar product with an

A-valued inner product.

In 1973, W.L. Paschke presented in his thesis [6], in the form used today,

the main properties of Hilbert C∗-modules and of the operators on such objects.

The manner of presentation incited the interest of mathematicians all over the

world for this extremely fertile domain. A year later, in the paper [9] in Advances

in Mathematics (which circulated since 1972 as a preprint), M.A. Rieffel proved,

in a manner of presentation different from the one of Paschke, the utility of such

generalizations.
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The following important step in the development of this theory was made by
G.G. Kasparov in [3] by proving the famous stabilization theorem. This theorem
shows that the standard Hilbert A-module

`2(A) :=
{

(xn)n ∈
∞∏
1

A
∣∣∣ ∞∑

n=1

x∗nxn converges in norm in A
}

absorbs every countably generated Hilbert A-module E, that is

E ⊕ `2(A) ∼= `2(A).

In the paper [4], G.G. Kasparov introduced a general K-theory, today called
KK-theory, in which Hilbert C∗-modules represent an important instrument of
study. The appearence of this theory determinated a considerable increase of the
number of papers studying or using Hilbert modules.

It is a well known fact that an isometry on a Hilbert space decomposes as the
direct sum of a unitary operator and a unilateral translation, a result obtained by
H. Wold in [11]. This decomposition has many applications in the description of the
structure of isometric and unitary dilation spaces for a Hilbert space contraction.
Also, it permits the reduction of the study of a general-type isometry to the two
particular classes enumerated above. It is our aim, in this paper, to find necessary
and sufficient conditions on an isometry on a Hilbert C∗-module in order to obtain
a decomposition of such type.

The results obtained in [7] are completed and presented in a different manner
in this paper.

2. NOTATIONS AND PRELIMINARIES

2.1. Hilbert Modules. Let A be a C∗-algebra. We shall suppose that each
module E studied below has a complex linear space structure. Also we shall
suppose that the right A-module structure is compatible with that of the linear
space, that is

λ(xa) = (λx)a = x(λa), λ ∈ C, a ∈ A, x ∈ E.

Definition 2.1. A pre-Hilbert A-module is a right A-module E equipped
with an A-valued inner product, that is a map 〈·, ·〉E : E × E → A satisfying:

(i) 〈x, y + z〉E = 〈x, y〉E + 〈x, z〉E , and

〈x, λy〉E = λ〈x, y〉E , x, y, z ∈ E, λ ∈ C;
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(ii) 〈x, ya〉E = 〈x, y〉Ea, x, y ∈ E, a ∈ A;
(iii) 〈x, y〉∗E = 〈y, x〉E , x, y ∈ E;
(iv) 〈x, x〉E > 0, x ∈ E, and

〈x, x〉E = 0 ⇔ x = 0.

For a pre-Hilbert A-module E we define a norm on E by

‖x‖E := ‖〈x, x〉E‖
1
2 , x ∈ E.

A Hilbert A-module is a pre-Hilbert A-module E which is complete with
respect to the norm ‖ · ‖E .

Example 2.2. There exist numerous examples of Hilbert A-modules among
which we mention:

(i) if A = C then E is exactly the usual Hilbert space, the scalar product
being defined by

(x|y) := 〈y, x〉E , x, y ∈ E;

(ii) E = A is a Hilbert A-module, the A-valued inner product being

〈x, y〉E := x∗y, x, y ∈ A;

(iii) If {En}n is a sequence of Hilbert A-modules, we shall define their direct
sum

E =
∞⊕

n=1

En :=
{

(xn)n ∈
∞∏

n=1

En

∣∣∣ ∑
n

〈xn, yn〉En
converges in norm in A

}
which, with the inner product

〈(xn), (yn)〉E :=
∞∑

n=1

〈xn, yn〉En
, (xn)n, (yn)n ∈ E,

forms a Hilbert A-module. A particular case is the Hilbert A-module `2(A) defined
in the first paragraph of this paper.

2.2. Orthogonality in Hilbert modules. Elements x, y in a Hilbert module
E are said to be orthogonal, denoted x ⊥ y, if 〈x, y〉E = 0.

If F is a submodule of E its orthogonal complement is F⊥ = {x ∈ E : x ⊥
y,∀ y ∈ F}.

The sum F1+F2 of two submodules F1, F2 of E is said to be direct if F1∩F2 =
{0} and orthogonal if F1 ⊥ F2. If the sum is orthogonal we shall use the notation
F1 ⊕ F2.

A submodule F of E is said to be complementable if there exists a submodule
G ⊂ E with E = F ⊕G.
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Example 2.3. In a Hilbert space every closed subspace is complementable
in the sense of the definition above. So the definition “complement” is justified.
This property is false in general in arbitrary Hilbert modules. For example, we
can consider E = A = C([0, 1]) the C∗-algebra of all continuous functions on [0, 1]
and F = C0((0, 1]) ⊂ E. It is simple to observe that F is a closed ideal of A, so a
closed submodule in E, and F⊥ = {0}. Consequently F is not complementable.

Remark 2.4. Finally, we mention two properties:
(i) if E = F1 ⊕ F2 then F1, F2 are closed and F⊥1 = F2, F

⊥
2 = F1;

(ii) if {Fn}n is a parwise orthogonal sequence of closed submodules of E then

∞⊕
n=1

Fn :=
{

x =
∞∑

n=1

xn(convergence in E)
∣∣∣

xn ∈ Fn,
∑

n

〈xn, xn〉Econverges in norm in A
}

is a closed submodule of E.

2.3. Adjointable operators on Hilbert modules. Let E,F be Hilbert A-
modules. A map T : E → F is said to be adjointable if there exists T ∗ : F → E

(called the adjoint of T ) with the property

〈x, Ty〉F = 〈T ∗x, y〉E , x ∈ F, y ∈ E.

We shall denote by LA(E,F ) the set of all adjointable maps T : E → F. For
an adjointable map T : E → F we shall use the notation [E,F, T ], and if E = F,

[E, T ].
T : E → F is a bounded A-module map if and only if there exists k > 0 such

that 〈Tx, Tx〉F 6 k〈x, x〉E , for each x ∈ E ([6]). In particular, if T is adjointable
then

(2.1) 〈Tx, Tx〉F 6 ‖T‖2〈x, x〉E , x ∈ E.

Furthermore, if [E, T ] is adjointable then KerT ∗ = T (E)⊥,KerT ∗ being the
kernel of T ∗.

Definition 2.5. A submodule E0 ⊂ E is said to be
(i) invariant for [E, T ] if TE0 ⊂ E0;
(ii) reducing for [E, T ] if it is invariant for T and T ∗.

Proposition 2.6. Let [E, T ] be an adjointable operator and E0 ⊂ E a closed
submodule, reducing for T. Then
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(i) T |E0 is adjointable and (T |E0)∗ = T ∗|E0;

(ii) E⊥0 is reducing for T.

Proof. Observe that (i) is obtained from

〈T |E0x, y〉E0 = 〈Tx, y〉E = 〈x, T ∗y〉E = 〈x, T ∗|E0y〉E0 , x, y ∈ E0.

For (ii), it is sufficient to prove that if E0 is invariant for T then E⊥0 is invariant

for T ∗. Indeed

〈T ∗x, y〉E = 〈x, Ty〉E = 0, for all x ∈ E⊥0 , y ∈ E0.

2.4. Isometries on Hilbert spaces. Let H be a Hilbert space and [H, V ] an

isometry.

A closed subspace L ⊂ H is said to be wandering for V if V nL ⊥ V mL, n,m ∈
N, n 6= m. [H, V ] is called a shift if there exists a wandering subspace L such that

H =
∞⊕

n=0

V nL.

Theorem 2.7. (Wold, see [11], [10]) Let [H, V ] be an isometry. Then we

have a uniquely determinated orthogonal decomposition

H = H0 ⊕H1

where H0,H1 are reducing for V, V |H0 is unitary and V |H1 is a shift. Furthermore

H0 =
∞⋂

n=0

V nH, H1 =
∞⊕

n=0

V nL, L = H	 VH.
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3. ISOMETRIES ON HILBERT MODULES

The results contained in Propositions 3.1 and 3.3 are a consequence of those ob-
tained by E.C. Lance in [5]. We prefer here other direct proofs.

Proposition 3.1. Let [E,F, V ] be an adjointable operator. The following
assertions are equivalent:

(i) V is an isometry between the Banach spaces E and F (that is ‖V x‖F =
‖x‖E , x ∈ E);

(ii) 〈V x, V x〉F = 〈x, x〉E, x ∈ E;
(iii) 〈V x, V y〉F = 〈x, y〉E, x, y ∈ E;
(iv) V ∗V = IE.

Proof. For (ii) ⇔ (iii) the polarization identity is used, and for (iii) ⇔ (iv)
the definition of the adjoint. By passing to norm, one obtains (ii) ⇒ (i). For the
converse, observe firstly that V E ⊂ E is a closed submodule. The operator

V0 : E → V E, V0x := V x, x ∈ E

is bijective and, furthermore, V −1
0 is a bounded A-module map.

Using (2.1) for V and a similar argument for V −1
0 we obtain for x ∈ E,

〈x, x〉E = 〈V −1
0 V x, V −1

0 V x〉E 6 ‖V −1
0 ‖2〈V x, V x〉V E = 〈V x, V x〉F ,

and respectively
〈V x, V x〉F 6 ‖V ‖2〈x, x〉E = 〈x, x〉E ,

that is 〈V x, V x〉F = 〈x, x〉E .

Definition 3.2. [E,F, U ] is said to be a unitary operator if

U∗U = IE and UU∗ = IF .

Proposition 3.3. Let [E,F, U ] be an adjointable operator. The following
assertions are equivalent:

(i) U is a unitary operator;
(ii) U is an isometry and UE = F ;
(iii) U,U∗ are isometries.

Proof. Using Proposition 3.1 it is sufficient to prove (ii) ⇒ (i). Being iso-
metric and surjective, U is bijective. Furthermore

U−1 = (U∗U)U−1 = U∗(UU−1) = U∗,

whence
UU∗ = UU−1 = IF ,

that is U is unitary.
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Definition 3.4. Let [E, V ] be an isometry. A closed submodule L ⊂ E is
said to be wandering for V if

V nL ⊥ V mL, for all m,n ∈ N, m 6= n.

V is said to be a shift if there exists a wandering submodule L ⊂ E such that

E =
∞⊕

n=0

V nL.

Remark 3.5. (i) L ⊂ E is a submodule wandering for the isometry [E, V ]
if and only if

L ⊥ V nL, for all n ∈ N∗.

(ii) L = Ker (V ∗) is wandering for V because, for l, l′ ∈ L, n ∈ N∗

〈l, V nl′〉E = 〈V ∗l, V n−1l′〉E = 0.

Remark 3.6. If [E, V ] is a shift then V ∗nx → 0, for all x ∈ E.

Indeed, let x =
∞∑

n=0
V nln ∈ E, where ln ∈ L, n ∈ N have the property that

∞∑
n=0

〈ln, ln〉E =
∞∑

n=0
〈V nln, V nln〉E is norm convergent in A. Since V E =

∞⊕
n=1

V nL

we obtain E = L ⊕ V E. Using Subsections 2.2 and 2.3 L = V E⊥ = KerV ∗.
Acting by induction,

V ∗kx =
∞∑

n=0

V nln+k, k ∈ N∗.

A simple calculation shows that

‖V ∗kx‖E =
∥∥∥ ∞∑

n=k

〈ln, ln〉E
∥∥∥ k−→ 0.

Remark 3.7. If [E, V ] is an isometry then E = KerV ∗⊕V E and V E = {x ∈
E | 〈V ∗x, V ∗x〉E = 〈x, x〉E}. It is sufficient to observe that IE = (IE−V V ∗)+V V ∗

and consequently E = (IE − V V ∗)E + V V ∗E.

If x ∈ (IE − V V ∗)E then V ∗x ∈ (V ∗ − V ∗V V ∗)E = {0}. Conversely if
V ∗x = 0 then x = (IE − V V ∗)x and consequently (IE − V V ∗)E = Ker V ∗.

Furthermore V V ∗E = V E because for x ∈ E, V x = V V ∗(V x) ∈ V V ∗E. The
conclusion is obtained.

Also

V E = (IE − V V ∗)E⊥ = Ker (IE − V V ∗) = {x ∈ E | x = V V ∗x}
= {x ∈ E | 〈(IE − V V ∗)x, x〉E = 0} = {x ∈ E | 〈V ∗x, V ∗x〉E = 〈x, x〉E}.
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4. THE WOLD-TYPE DECOMPOSITION

Definition 4.1. We say that an isometry [E, V ] admits a Wold-type de-
composition if there exist two submodules E0, E1 ⊂ E with the properties:

(i) E = E0 ⊕ E1;
(ii) E0 reduces V and V |E0 is unitary;
(iii) V |E1 is a shift.

Theorem 4.2. Let [E, V ] be an isometry. V admits a Wold-type decompo-
sition if and only if for all x ∈ E,

(〈V ∗nx, V ∗nx〉E)n is norm convergent in A.

Proof. Suppose first that for every x ∈ E, (〈V ∗nx, V ∗nx〉E)n is norm con-
vergent in A. Since, for n, m ∈ N, n > m,

‖V nV ∗nx− V mV ∗mx‖2
E =

∥∥∥〈V ∗nx, V ∗nx〉E − 〈V nV ∗nx, V mV ∗mx〉E

− 〈V mV ∗mx, V nV ∗nx〉E + 〈V ∗mx, V ∗m〉E
∥∥∥

= ‖〈V ∗mx, V ∗mx〉E − 〈V ∗nx, V ∗nx〉E‖
m,n−→ 0,

(V nV ∗nx)n is Cauchy in E, so it is convergent with the limit x0 ∈ E. Furthermore,

x0 ∈
⋂

n>0

V nE because V nV ∗nx ∈
n⋂

k=0

V kE, for each n ∈ N.

Let L = KerV ∗. Using Remark 3.5 (ii) we could write the following sequence
of equalities

E = L⊕ V E = L⊕ V L⊕ V 2E = · · · = L⊕ V L⊕ · · · ⊕ V nL⊕ V n+1E, n ∈ N.

Consequently x =
n∑

k=0

V klk + V n+1zn+1, with {lk}n
k=0 ⊂ L and zn+1 ∈ E. Fur-

thermore, a simple calculus shows that

l0 = (IE − V V ∗)x, l1 = (IE − V V ∗)V ∗x, l2 = (IE − V V ∗)V ∗2x, . . .

and so

〈l0, l0〉E + 〈l1, l1〉E + · · ·+ 〈ln, ln〉E =
n∑

k=0

〈(IE − V V ∗)V ∗kx, V ∗kx〉E

=
n∑

k=0

(〈V ∗kx, V ∗kx〉E−〈V
∗(k+1)x, V ∗(k+1)x〉E)

=〈x, x〉E − 〈V ∗(n+1)x, V ∗(n+1)x〉E .
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We have shown that there exists
∞∑

n=0
V nln ∈

∞⊕
n=0

V nL.

Because zn+1 = V ∗(n+1)x and V (n+1)V ∗(n+1)x
n−→x0, x−x0 ∈

∞⊕
n=0

V nL. We

have proved that

E = E0 ⊕ E1, where E0 =
⋂
n>0

V nE,E1 =
∞⊕

n=0

V nL

(the orthogonality E0 ⊥ E1 is immediate).
∞⊕

n=0
V nL reduces V and, using the Proposition 2.6, E0 is also reducing for V.

Let V1 := V |E1. V1 is a shift because E1 =
∞⊕

n=0
V n

1 L. Also V0 := V |E0 is

unitary operator because, for x ∈ E0,

V0V
∗
0 x = V0V

∗
0 V x1 = V (V ∗V )x1 = V x1 = x,

and so, V ∗0 is an isometry, like V0.

According to Definition 4.1, V admits a Wold-type decomposition.

Conversely, let E = E0 ⊕ E1 be a Wold-type decomposition for V. Since

V1 := V |E1 is a shift, E1 is of the form
∞⊕

n=0
V nL, L ⊂ E1 being a submodule

wandering for V1. Furthermore, V0 := V |E0 being unitary, for each x ∈ E0 and

n ∈ N, we have x = V nV ∗nx.

Using the continuity of the inner product and the fact that L is wandering

for V1 we obtain

(4.1)

〈V ∗1 l, x〉E1
= 〈V ∗1 l,

∞∑
n=0

V n
1 ln〉E1

=
∞∑

n=0

〈V ∗1 l, V n
1 ln〉E1

=
∞∑

n=0

〈l, V n+1
1 ln〉E1

= 0,

for all l ∈ L and x ∈ E1, that is V ∗l = V ∗1 l = 0 (l ∈ L).

Let x ∈ E. Then x = x0 +
∞∑

n=0
V nln, where x0 ∈ E0, and

∑
n>0

〈ln, ln〉E
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converges in norm in A. Because

(IE − V V ∗)x = x0 − V V ∗x0 +
∞∑

n=0

(IE − V V ∗)V nln = l0,

(IE − V V ∗)V ∗x = V ∗x0 − V V ∗2x0 +
∞∑

n=0

(IE − V V ∗)V nln+1 = l1,

. . . . . . . . . . . . . . . . . . . . . . . . .

(IE − V V ∗)V ∗nx = ln,

n ∈ N, a simple calculation shows that

n∑
n=0

〈lk, lk〉E = 〈x, x〉E − 〈V ∗(n+1)x, V ∗(n+1)x〉E , n ∈ N.

Consequently (〈V ∗nx, V ∗nx〉E)n converges for all x ∈ E.

Remark 4.3. Because every decreasing sequence of positive numbers is con-
vergent, as a particular case of Theorem 4.2 we obtain the classical theorem of Wold
mentioned in Subsection 2.4.

Remark 4.4. If an isometry [E, V ] admits a Wold-type decomposition then
this decomposition is unique. Indeed, let E = E0 ⊕ E1 be a Wold-type decom-

position for V. Since E1 =
∞⊕

n=0
V nL, L being a submodule of E1 wandering for

V1 = V |E1 and E0 ⊂
⋂

n>0

V nE then, using (4.1), E0⊕E1 ⊂ L+V E ⊂ KerV ∗⊕V E.

So E = L ⊕ V E and, with Subsections 2.2 and 2.3, L = V E⊥ = KerV ∗. Fur-

thermore E0 = E⊥1 =
( ∞⊕

n=0
V nL

)⊥
=

⋂
n>0

V nE. In conclusion, the Wold-type

decomposition for V is

E =
⋂
n>0

V nE ⊕
∞⊕

n=0

V nL,

where L = KerV ∗.

Remark 4.5. If E = E0⊕E1 is a Wold-type decomposition for the isometry
[E, V ] then

E0 = {x ∈ E | 〈V ∗nx, V ∗nx〉E = 〈x, x〉E , for all n ∈ N}

and
E1 = {x ∈ E | V ∗nx

n−→ 0}.
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The structure of E0 is obtained using Remark 3.5 (ii) and the observation above.
Since V1 is a shift, using again Remark 3.5 (ii), for x ∈ E1, V

∗nx
n−→ 0. Conversely

let x ∈ E with V ∗nx
n−→ 0. Writing x = x0 + x1, x0 ∈ E0, x1 ∈ E1 we obtain

immediately

〈V ∗nx, V ∗nx〉E = 〈V ∗nx0, V
∗nx0〉E + 〈V ∗nx1, V

∗nx1〉E , n ∈ N,

that is

(4.2) 〈V ∗nx, V ∗nx〉E = 〈x0, x0〉E + 〈V ∗nx1, V
∗nx1〉E , n ∈ N.

By passing to the limit in (4.2) x0 = 0, so x = x1 ∈ E1.

Remark 4.6. Consider the case where A is abelian and so, using the theorem
of Gelfand, A is identified with C0(Ω),Ω being a locally compact Hausdorff space.
If, in addition, the map defined pointwise by the limit

lim
n→∞

〈V ∗nx, V ∗nx〉E(ξ), x ∈ E, ξ ∈ Ω,

is continuous, with the theorem of Dini, we obtain a Wold-type decomposition for
the isometry [E, V ].

Example 4.7. In [8] is presented in detail the following example in which
we can apply the Theorem 4.2. Using the usual notation for a contraction [E, T ]
with its minimal unitary dilation [F,U ], that is

L = (U − T )E, L∗ = (U∗ − T ∗)E,

M(L) =
∞⊕

n=−∞
UnL, M(L∗) =

∞⊕
n=−∞

UnL∗,

R = M(L∗)⊥, R∗ = M(L)⊥,

we shall consider the unitary operators R := U |R called the residual part of U and
respectively R∗ := U |R∗ called the dual (∗-residual) part of U.

The main result which we should mention here is the following:
The minimal isometric dilation [F+, U+] of [E, T ] admits a Wold-type decom-

position if and only if M(L∗) is complementable in F if and only if (〈T ∗nx,T ∗nx〉E)n

is norm convergent in A for all x ∈ E.

One of the equivalent conditions above is verified, for example, by the oper-
ator [`2(A), T ] defined by

T ((xn)n) := ((1− a∗a)
1
2 x1 − a∗x2, ax1 + (1− aa∗)

1
2 x2, 0, 0, . . .)

where a ∈ A (a unital C∗-algebra) with ‖a‖ 6 1.
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Example 4.8. In contrast with the Hilbert space particular case, not every
adjointable isometry on a Hilbert module admits a Wold-type decomposition. To
build an example let A be a unital C∗-algebra and the Hilbert A-module E = A

presented in Subsection 2.1. An operator V : A → A with V (b)∗V (b) 6 kb∗b

(b ∈ A) for some constant k has the form V = Va with a ∈ A uniquely determinated
by V where

Va : A → A, Va(b) = ab, b ∈ A,

a result obtained by B.E. Johnson in [1]. Furthermore V ∗a (b) = a∗b, b ∈ A and so
Va is an isometry if and only if a∗a = 1.

Adding the condition aa∗ 6= 1 (Va non-unitary isometry) we shall show
that Va does not admits a Wold-type decomposition. Since 〈V ∗na (b), V ∗na (b)〉E =
b∗ana∗nb, b ∈ A, Va admits a Wold-type decomposition if and only if (ana∗n)n

converges in norm in A.
But, for every n ∈ N, ana∗n is a projection in the C∗-algebra A, an+1a∗(n+1) 6

ana∗n and so ama∗m − ana∗n is a projection for every m,n ∈ N.

If there exists n ∈ N such that ana∗n = an+1a∗(n+1), then aa∗ = 1, which is
a contradiction with the choice of a.

Consequently, for m,n ∈ N, m 6= n,

‖ama∗m − ana∗n‖ = 1.

(ana∗n)n is not Cauchy and so does not converges in norm in A.

Corollary 4.9. Let [E, V ] be an isometry. Then V is a shift if and only if

V ∗nx
n−→ 0, for every x ∈ E.

Proof. Taking into account, Remark 3.5 (ii) it is sufficient to prove that if
V ∗n converges pointwise to 0 then V is a shift. According to Theorem 4.2, V

admits a Wold-type decomposition E = E0 ⊕ E1. Furthermore, E0 = {x ∈ E |
〈V ∗nx, V ∗nx〉E = 〈x, x〉E , for all n ∈ N}. By passing to the limit, E0 = {0} and

so E = E1 =
∞⊕

n=0
V nL, where L = KerV ∗, that is V is a shift.

Definition 4.10. An operator [E, T ] on a Hilbert module is said to be
completely non-unitary (c.n.u.) if the restriction to every submodule F reducing
for T is not unitary (excepting the case F = {0}).

Remark 4.11. (i) If [E, V ] is an isometry on the Hilbert module E then⋂
n>0

V nE = {0} if and only if V is c.n.u.
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If F ⊂ E is a submodule of E which reduces V to an unitary operator, then for all
x ∈ F and n ∈ N, x = V nV ∗nx ∈

⋂
n>0

V nE. Furthermore, since
⋂

n>0

V nE reduces

V to unitary operator one obtains the conclusion.
(ii) If [E, V ] is a shift, then

⋂
n>0

V nE = {0}.

A converse of this result is the following

Corollary 4.12. Let [E, V ] be an isometry. If
(i)

⋂
n>0

V nE = {0};

(ii) (〈V ∗nx, V ∗nx〉E)n converges in norm in A for all x ∈ E

then V is a shift.

Example 4.13. If the condition (ii) from Corollary 4.12 is not verified the
conclusion is not necessarily true.

Let H be a Hilbert space, A = L(H) and the Hilbert module E = L(H). Let
S be a shift in L(H) and the isometry V = VS ∈ LL(H)(L(H)). We shall prove
that

⋂
n>0

V nL(H) = {0} although V is not a shift.

Let X ∈
⋂

n>0

V nL(H), X = SnTn, Tn ∈ L(H), n ∈ N. So Tn = S∗nX, that is

(I − SnS∗n)X = 0, for all n ∈ N. Since I − SnS∗n is the orthogonal projection on
Ker (S∗n), Xξ ∈ SnH for all ξ ∈ H and n ∈ N. Consequently Xξ ∈

⋂
n>0

SnH =

{0}, ξ ∈ H, that is X = 0.

We have obtained that
⋂

n>0

V nL(H) = {0}, but V is not a shift according to

Example 4.5. In conclusion the condition (i) from Corollary 4.12 is necessary, but
not sufficient for [E, V ] to be a shift.
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