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Abstract. Let A be a C∗-algebra with an identity and let θZ be the canon-
ical map from A⊗Z A, the central Haagerup tensor product of A, to CB(A),
the algebra of completely bounded operators on A. It is shown that if ev-
ery Glimm ideal of A is primal then θZ is an isometry. This covers unital
quasi-standard C∗-algebras and quotients of AW∗-algebras.
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1. INTRODUCTION

If A is a C∗-algebra the Haagerup norm ‖ · ‖h is defined on an element x in the
algebraic tensor product A⊗A by

‖x‖h = inf
∥∥∥ n∑

i=1

aia
∗
i

∥∥∥1/2∥∥∥ n∑
i=1

b∗i bi

∥∥∥1/2

,

where the infimum is taken over all possible representations of x as a finite sum

x =
n∑

i=1

ai ⊗ bi, ai, bi ∈ A. The completion of A ⊗ A in this norm is called

the Haagerup tensor product of A with itself. There is a natural contraction θ :
A⊗hA → CB(A) (where CB(A) is the algebra of completely bounded operators on

A with the completely bounded norm ‖·‖cb) given by θ
( n∑

i=1

ai⊗bi

)
(c) =

n∑
i=1

aicbi,

c ∈ A. It is clear that θ is not injective if A is not a prime C∗-algebra, but if A is
prime then θ is an isometry ([3], 3.9).
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Suppose that A is unital and that z ∈ Z(A), the centre of A. Then it is
easy to see that the element az ⊗ b − a ⊗ zb, a, b ∈ A, belongs to ker θ. Thus
if JA is the closed ideal of A ⊗h A generated by such elements, one can consider
the induced map θZ : A ⊗h A/JA → CB(A), and ask whether it is injective or
isometric. The Banach algebra A⊗h A/JA, with the quotient norm ‖ ·‖Z , is called
the central Haagerup tensor product of A, and denoted A⊗Z A. It is known that
θZ is isometric if A is a von Neumann algebra or if A has Hausdorff primitive
ideal space ([10]), or if A is boundedly centrally closed ([3]). On the other hand, if
Z(A) ∼= C then θZ is θ, so θZ is not injective in this case, unless A is prime. One
could try factoring by ker θ, but an example in [10] shows that even this can fail
to produce an isometry.

Von Neumann algebras and C∗-algebras with Hausdorff primitive ideal space
and boundedly centrally closed C∗-algebras are all prominent examples of quasi-
standard C∗-algebras, that is, C∗-algebras A for which Glimm(A) and
MinPrimal(A) (defined below) coincide as topological spaces. This makes it natu-
ral to wonder if θZ is isometric whenever A is a unital quasi-standard C∗-algebra.
The main result of this paper is that this is indeed so, and in fact we only require
that Glimm(A) and MinPrimal(A) should coincide as sets. This weaker condi-
tion is always satisfied by quotients of von Neumann algebras, which need not
necessarily be quasi-standard.

We also characterize the injectivity of θZ (every Glimm ideal of A must be
2-primal), and show that a necessary condition for θZ to be an isometry is that
every Glimm ideal of A should be 3-primal. Thus the exact characterization of θZ

being an isometry lies somewhere between the conditions that every Glimm ideal
be 3-primal, and that every Glimm ideal be primal.

2. PRELIMINARIES

Let A be a C∗-algebra and let Id(A) denote the set of all ideals of A (ideal means
closed, two-sided ideal in this paper). Then Id(A) has a natural topology τw

obtained by taking as a sub-base all sets of the form {I ∈ Id(A) : I 6⊇ J}, where J

is allowed to vary through Id(A). When restricted to Prim(A), the set of primitive
ideals of A, τw is simply the hull-kernel topology. A second topology τs is defined
on Id(A) as the weakest topology making the functions I → ‖a + I‖, I ∈ Id(A),
continuous for all a ∈ A. This topology is stronger than τw, and (Id(A), τs) is a
compact, Hausdorff space (see [4] for a discussion of the history and properties of
τw and τs).
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Recall from [8], p. 351 that if A is a unital C∗-algebra then the Glimm ideals

are the closed ideals of A generated by the maximal ideals of the centre of A.

The set of Glimm ideals of A is denoted Glimm(A), and is equipped with the

topology from the maximal ideal space of the centre of A, so that Glimm(A) is a

compact, Hausdorff space, homeomorphic to the maximal ideal space of the centre

of A. Thus we can identify the centre of A with the algebra of continuous complex-

valued functions on Glimm(A). Furthermore, for each a ∈ A the map G → ‖a+G‖
(G ∈ Glimm(A)) is upper semi-continuous on Glimm(A) ([15], Theorem 1; [12],

Lemma 9).

Let us say that an ideal I of A is n-primal (n > 2) if whenever J1, . . . , Jn

are n ideals of A with J1 · · ·Jn = 0 then Ji ⊆ I for at least one value of i. If I is

n-primal for all n then I is primal. Note that prime (and hence primitive) ideals

are primal. Let n-Primal(A), respectively Primal(A), denote the set of n-primal,

respectively primal ideals of A. It is not difficult to see, using [5], 3.2, that a

2-primal ideal must contain a unique Glimm ideal. An ideal is n-primal if and

only if the intersection of any n primitive ideals containing it is primal ([7], 1.3).

It is shown in [5], p. 59 that for any n there is a C∗-algebra with an n-primal

ideal which is not primal. An argument involving Zorn’s Lemma shows that every

primal ideal contains a minimal primal ideal. Let MinPrimal(A) denote the set of

minimal closed primal ideals. Primal(A) is a τw-closed subset of Id(A), hence a

compact Hausdorff space in the τs-topology, and the topologies τs and τw coincide

on MinPrimal(A) ([4]).

A C∗-algebra A is said to be quasi-standard if MinPrimal(A) and Glimm(A)

coincide, both as sets and as topological spaces. This is equivalent, for separable

C∗-algebras, to A being isomorphic to a continuous field of C∗-algebras in which

the set of primitive fibres is dense ([8], 3.5). Examples include AW∗-algebras

and C∗-algebras with Hausdorff primitive ideal space ([8]), boundedly centrally

closed C∗-algebras ([19]), and the C∗-algebras of various groups, such as discrete

amenable groups, see [13]. If A is a quotient of an AW∗-algebra then MinPrimal(A)

and Glimm(A) coincide as sets, but not necessarily as topological spaces ([18], 2.8).
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3. RESULTS

We begin with a description of the central Haagerup norm, along the lines of [18],
2.3. For an ideal I in a C∗-algebra A, and for u ∈ A ⊗h A, we shall use uI to
denote the image of u in the quotient algebra A ⊗h A/(I ⊗h A + A ⊗h I) (which
is isometrically isomorphic to A/I ⊗h A/I by [2], 2.6).

Theorem 1. Let A be a C∗-algebra with an identity and let u ∈ A ⊗h A.
Then

‖u‖Z = sup{‖uG‖h : G ∈ Glimm(A)}.

Hence JA =
⋂
{G⊗h A + A⊗h G : G ∈ Glimm(A)}.

Proof. It is enough to prove equality when u has the form u =
n∑

i=1

ai⊗bi, with

ai, bi ∈ A. Set α = sup{‖uG‖h : G ∈ Glimm(A)}. Since JA ⊆ G ⊗h A + A ⊗h G

for all G ∈ Glimm(A) it is clear that ‖u‖Z > α. Suppose that ε > 0 is given. For
each G ∈ Glimm(A) there exists, by [10], Lemma 2.3, an invertible n × n matrix
S such that if (a′i) = (ai)S−1 and (b′i) = S(bi) then

∥∥∥ n∑
i=1

(a′ia
′
i
∗ + G)

∥∥∥,
∥∥∥ n∑

i=1

(b′i
∗
b′i + G)

∥∥∥ < α + ε.

By the upper semi-continuity of the norm functions on Glimm(A) there is a neigh-
bourhood N of G such that∥∥∥ n∑

i=1

(a′ia
′
i
∗ + G′)

∥∥∥,
∥∥∥ n∑

i=1

(b′i
∗
b′i + G′)

∥∥∥ < α + ε

for all G′ ∈ N . Thus by the compactness of Glimm(A) there exist open subsets
{Nj}m

j=1 of Glimm(A) and invertible n × n matrices {Sj}m
j=1 such that the Nj ’s

cover Glimm(A) and such that if G ∈ Nj then

∥∥∥ n∑
i=1

(aj
ia

j∗
i + G)

∥∥∥,
∥∥∥ n∑

i=1

(bj∗
i bj

i + G)
∥∥∥ < α + ε,

where (aj
i ) = (ai)S−1

j and (bj
i ) = Sj(bi). Let {zj}m

j=1 be a partition of the identity
on Glimm(A) subordinate to the cover {Nj}m

j=1, and set

v =
m∑

j=1

n∑
i=1

aj
iz

1/2
j ⊗ z

1/2
j bj

i .
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Then

v =
m∑

j=1

( n∑
i=1

aj
i ⊗ bj

i

)
(z1/2

j ⊗ z
1/2
j ) =

m∑
j=1

u(z1/2
j ⊗ z

1/2
j ),

so

u− v = u
(
1−

m∑
j=1

(z1/2
j ⊗ z

1/2
j )

)
= u

( m∑
j=1

zj ⊗ 1− z
1/2
j ⊗ z

1/2
j

)

= u
( m∑

j=1

(z1/2
j ⊗ 1)(z1/2

j ⊗ 1− 1⊗ z
1/2
j )

)
.

Hence u− v ∈ JA. But for G ∈ Glimm(A)

∥∥∥ m∑
j=1

n∑
i=1

zja
j
ia

j∗
i + G

∥∥∥ =
∥∥∥ m∑

j=1

(zj + G)
( n∑

i=1

aj
ia

j∗
i + G

)∥∥∥ < α + ε,

and similarly for G′ ∈ Glimm(A)

∥∥∥ m∑
j=1

n∑
i=1

zjb
j∗
i bj

i + G′
∥∥∥ < α + ε.

Since
⋂
{G : G ∈ Glimm(A)} = {0} it follows that

‖u‖Z 6 ‖v‖h 6
∥∥∥ m∑

j=1

n∑
i=1

zja
j
ia

j∗
i

∥∥∥1/2∥∥∥ m∑
j=1

n∑
i=1

zjb
j∗
i bj

i

∥∥∥1/2

< α + ε,

as required.

Remarks. (i) A subspace X of a Banach space Y is said to be proximinal if
every element of Y attains its distance to X. Ideals in C∗-algebras are proximinal
([1], 4.3), and so too is the centre of a unital C∗-algebra ([20]). This makes it
natural to wonder if JA is proximinal in A⊗h A.

(ii) An ideal in A ⊗h A is said to be upper, see [2], 6.7 (ii), if it is the
intersection of the primitive ideals containing it. If J is a proper ideal of A then
J ⊗h A+A⊗h J is upper; in fact J ⊗h A+A⊗h J =

⋂
{P ⊗h A+A⊗h Q : P,Q ∈

Prim(A/J)} ([6], 1.3). Thus Theorem 1 shows that JA is an upper ideal, or in
other words, that A⊗Z A is a semisimple Banach algebra.

An ideal in A⊗h A is lower ([2], Section 6) if it is generated by the elemen-
tary tensors that it contains, and JA looks a good candidate, being generated by
differences of elementary tensors. Since JA is generated by elements of the form
z ⊗ 1 − 1 ⊗ z, z ∈ Z(A), it is enough to consider the case when A is an abelian
C∗-algebra, but even here the answer seems to be unknown.
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(iii) Let I(A,A) denote the ideal in A ⊗ A (the algebraic tensor product)
generated by elements of the form az ⊗ b − a ⊗ zb, a, b ∈ A, z ∈ Z(A), and let
J(A,A) be the ideal

⋂
{G ⊗ A + A ⊗ G : G ∈ Glimm(A)} ⊆ A ⊗ A. Clearly

I(A,A) ⊆ J(A,A). It is known that I(A,A) = J(A,A) if A is a continuous field
of C∗-algebras over Glimm(A), see [9]. Theorem 1 implies that for any unital
C∗-algebra I(A,A) and J(A,A) have the same closure, namely JA, in A ⊗h A

(and hence the same closure, namely the closure of JA, in A⊗min A, the minimal
C∗-tensor product).

The next result is a combination of Lemma 3.1 and Theorem 3.4 of [6].

Proposition 2. Let A be a C∗-algebra. For each u ∈ A⊗h A the map

(I, J) → ‖u + (I ⊗h A + A⊗h J)‖h, (I, J) ∈ Id(A)× Id(A),

is continuous for the product τs-topology on Id(A)× Id(A).

The next result generalizes [18], 2.6, using the same method of proof.

Proposition 3. Let A be a C∗-algebra and let u ∈ A⊗h A. Then

‖θ(u)‖cb = sup{‖uP ‖h : P ∈ MinPrimal(A)}.

Proof. Let D denote the diagonal of Primal(A)×Primal(A), in the product
τs-topology. Then D is a compact set, and the norm function (P, P ) → ‖uP ‖h

((P, P ) ∈ D) is continuous on D, by Proposition 2, so it attains its supremum,
clearly at some (R,R) with R ∈ MinPrimal(A). But R is in the τs-closure of
Prim(A) ([4] , 4.3), so ‖uR‖h = sup{‖uP ‖h : P ∈ Prim(A)}. But ‖θ(u)‖cb =
sup{‖uP ‖h : P ∈ Prim(A)}, by [3], 3.6, and the result follows.

For a ∈ A, let Da denote the inner derivation induced by a. Then Da =
θ(a⊗ 1− 1⊗ a), and ‖Da‖ = ‖Da‖cb, see [11], 4.1. Now ‖a⊗ 1− 1⊗ a‖h is equal
to twice the distance from a to the scalars [14], 3.3, so it follows from Theorem 1
and [18], 2.3 that ‖a⊗1−1⊗a‖Z = 2 d(a, Z(A)), where d(a, Z(A)) is the distance
from a to the centre of A. But it was shown in [18], 3.2, 3.3 that a necessary
and sufficient condition for ‖Da‖ to equal 2 d(a, Z(A)) for all a ∈ A is that every
Glimm ideal of A should be 3-primal. Thus a necessary condition for θZ to be
an isometry is that every Glimm ideal of A should be 3-primal. Whether this is
also a sufficient condition, we do not know. Our main result, however, is a partial
converse. It follows from Theorem 1 and Proposition 3.
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Theorem 4. Let A be a C∗-algebra with an identity. If every Glimm ideal
of A is primal then the map θZ : A⊗Z A → CB(A) is an isometry.

Thus θZ is an isometry if A is a unital quasi-standard C∗-algebra, or a
quotient of an AW∗-algebra. It seems worth remarking that is very easy to show
that every Glimm ideal of a von Neumann algebra is primal ([5], 4.1).

Since A ⊗Z A and CB(A) are both not only Banach spaces but operator
spaces, it would be interesting to know whether θZ is, in fact, a complete isometry.

Finally we show that the injectivity of θZ has a simple characterization in
terms of Glimm and 2-primal ideals.

Lemma 5. Let A be a unital C∗-algebra, and let R ∈ Id(A). Then R is
2-primal if and only if R⊗h A + A⊗h R ⊇ ker θ.

Proof. Suppose that R is not 2-primal. Then there exist orthogonal ideals I

and J with I, J 6⊆ R. If a ∈ I \ R and b ∈ J \ R then a ⊗ b /∈ R ⊗h A + A ⊗h R

but θ(a⊗ b) = 0. Hence R⊗h A + A⊗h R 6⊇ ker θ.
Conversely, suppose that R is 2-primal, and that c ∈ A ⊗h A with c /∈

R ⊗h A + A ⊗h R. Then by [6], 1.3 there exist P,Q ∈ Prim(A/R) such that
c /∈ P ⊗h A + A ⊗h Q. But S = P ∩ Q is primal, since R is 2-primal, and
c /∈ S ⊗h A + A⊗h S. This means, by Proposition 3, that θ(c) is non-zero. Hence
R⊗h A + A⊗h R ⊇ ker θ.

Corollary 6. Let A be a unital C∗-algebra. Then
(i) ker θ =

⋂
{R⊗h A + A⊗h R : R ∈ 2-Primal(A)};

(ii) θZ is injective if and only if every Glimm ideal of A is 2-primal.

Proof. Set I =
⋂
{R⊗h A + A⊗h R : R ∈ 2-Primal(A)}.

(i) It is clear from Lemma 5 that ker θ ⊆ I. On the other hand, if c ∈ I then
θ(c) = 0, by Proposition 3. Thus I = ker θ.

(ii) If every Glimm ideal of A is 2-primal then I = JA, by Theorem 1, so
θZ is injective. Conversely, if G is a Glimm ideal of A which is not 2-primal then
G⊗h A + A⊗h G 6⊇ ker θ by Lemma 5, so θZ is not injective.

The condition of every Glimm ideal being 2-primal has a number of equivalent
formulations. For P,Q ∈ Prim(A), let P ∼ Q if P and Q cannot be separated
by disjoint open sets, and P ≈ Q if P and Q cannot be separated by continuous,
complex functions on Prim(A). Define a graph structure on Prim(A) by saying
that P and Q are adjacent if P ∼ Q, and let Orc(A) be the supremum of the
diameters of the connected components of Prim(A) in this graph structure (with
the convention that a singleton has diameter 1). The work in [17] shows that for
a unital C∗-algebra A the following are equivalent:
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(i) Orc(A) = 1;
(ii) ∼ is an equivalence relation on Prim(A);
(iii) the relations ∼ and ≈ coincide on Prim(A);
(iv) every Glimm ideal of A is 2-primal.

One of the main results of [17] is that Orc(A) = 1 if and only if ‖Da‖ =
2d(a, Z(A)) for all self-adjoint a ∈ A.
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