THE CENTRAL HAAGERUP TENSOR PRODUCT OF A C^* -ALGEBRA

D.W.B. SOMERSET

Communicated by Şerban Strătilă

ABSTRACT. Let A be a C^* -algebra with an identity and let θ_Z be the canonical map from $A \otimes_Z A$, the central Haagerup tensor product of A, to CB(A), the algebra of completely bounded operators on A. It is shown that if every Glimm ideal of A is primal then θ_Z is an isometry. This covers unital quasi-standard C^* -algebras and quotients of AW^{*}-algebras.

KEYWORDS: C^* -algebra, Haagerup tensor product, primal ideal.

AMS SUBJECT CLASSIFICATION: Primary 46L05; Secondary 46H10, 46M05.

1. INTRODUCTION

If A is a C*-algebra the Haagerup norm $\|\cdot\|_h$ is defined on an element x in the algebraic tensor product $A \otimes A$ by

$$\|x\|_{h} = \inf \left\| \sum_{i=1}^{n} a_{i} a_{i}^{*} \right\|^{1/2} \left\| \sum_{i=1}^{n} b_{i}^{*} b_{i} \right\|^{1/2},$$

where the infimum is taken over all possible representations of x as a finite sum $x = \sum_{i=1}^{n} a_i \otimes b_i, a_i, b_i \in A$. The completion of $A \otimes A$ in this norm is called the Haagerup tensor product of A with itself. There is a natural contraction θ : $A \otimes_h A \to CB(A)$ (where CB(A) is the algebra of completely bounded operators on A with the completely bounded norm $\|\cdot\|_{cb}$) given by $\theta\left(\sum_{i=1}^{n} a_i \otimes b_i\right)(c) = \sum_{i=1}^{n} a_i cb_i, c \in A$. It is clear that θ is not injective if A is not a prime C^* -algebra, but if A is prime then θ is an isometry ([3], 3.9).

Suppose that A is unital and that $z \in Z(A)$, the centre of A. Then it is easy to see that the element $az \otimes b - a \otimes zb$, $a, b \in A$, belongs to ker θ . Thus if J_A is the closed ideal of $A \otimes_h A$ generated by such elements, one can consider the induced map $\theta_Z : A \otimes_h A/J_A \to CB(A)$, and ask whether it is injective or isometric. The Banach algebra $A \otimes_h A/J_A$, with the quotient norm $\|\cdot\|_Z$, is called the *central Haagerup tensor product* of A, and denoted $A \otimes_Z A$. It is known that θ_Z is isometric if A is a von Neumann algebra or if A has Hausdorff primitive ideal space ([10]), or if A is boundedly centrally closed ([3]). On the other hand, if $Z(A) \cong \mathbf{C}$ then θ_Z is θ , so θ_Z is not injective in this case, unless A is prime. One could try factoring by ker θ , but an example in [10] shows that even this can fail to produce an isometry.

Von Neumann algebras and C^* -algebras with Hausdorff primitive ideal space and boundedly centrally closed C^* -algebras are all prominent examples of *quasi*standard C^* -algebras, that is, C^* -algebras A for which $\operatorname{Glimm}(A)$ and $\operatorname{MinPrimal}(A)$ (defined below) coincide as topological spaces. This makes it natural to wonder if θ_Z is isometric whenever A is a unital quasi-standard C^* -algebra. The main result of this paper is that this is indeed so, and in fact we only require that $\operatorname{Glimm}(A)$ and $\operatorname{MinPrimal}(A)$ should coincide as sets. This weaker condition is always satisfied by quotients of von Neumann algebras, which need not necessarily be quasi-standard.

We also characterize the injectivity of θ_Z (every Glimm ideal of A must be 2-primal), and show that a necessary condition for θ_Z to be an isometry is that every Glimm ideal of A should be 3-primal. Thus the exact characterization of θ_Z being an isometry lies somewhere between the conditions that every Glimm ideal be 3-primal, and that every Glimm ideal be primal.

2. PRELIMINARIES

Let A be a C^* -algebra and let $\mathrm{Id}(A)$ denote the set of all ideals of A (ideal means closed, two-sided ideal in this paper). Then $\mathrm{Id}(A)$ has a natural topology τ_w obtained by taking as a sub-base all sets of the form $\{I \in \mathrm{Id}(A) : I \not\supseteq J\}$, where J is allowed to vary through $\mathrm{Id}(A)$. When restricted to $\mathrm{Prim}(A)$, the set of primitive ideals of A, τ_w is simply the hull-kernel topology. A second topology τ_s is defined on $\mathrm{Id}(A)$ as the weakest topology making the functions $I \to ||a + I||$, $I \in \mathrm{Id}(A)$, continuous for all $a \in A$. This topology is stronger than τ_w , and $(\mathrm{Id}(A), \tau_s)$ is a compact, Hausdorff space (see [4] for a discussion of the history and properties of τ_w and τ_s). Recall from [8], p. 351 that if A is a unital C^* -algebra then the *Glimm* ideals are the closed ideals of A generated by the maximal ideals of the centre of A. The set of Glimm ideals of A is denoted $\operatorname{Glimm}(A)$, and is equipped with the topology from the maximal ideal space of the centre of A, so that $\operatorname{Glimm}(A)$ is a compact, Hausdorff space, homeomorphic to the maximal ideal space of the centre of A. Thus we can identify the centre of A with the algebra of continuous complexvalued functions on $\operatorname{Glimm}(A)$. Furthermore, for each $a \in A$ the map $G \to ||a+G||$ $(G \in \operatorname{Glimm}(A))$ is upper semi-continuous on $\operatorname{Glimm}(A)$ ([15], Theorem 1; [12], Lemma 9).

Let us say that an ideal I of A is n-primal $(n \ge 2)$ if whenever J_1, \ldots, J_n are n ideals of A with $J_1 \cdots J_n = 0$ then $J_i \subseteq I$ for at least one value of i. If I is n-primal for all n then I is primal. Note that prime (and hence primitive) ideals are primal. Let n-Primal(A), respectively Primal(A), denote the set of n-primal, respectively primal ideals of A. It is not difficult to see, using [5], 3.2, that a 2-primal ideal must contain a unique Glimm ideal. An ideal is n-primal if and only if the intersection of any n primitive ideals containing it is primal ([7], 1.3). It is shown in [5], p. 59 that for any n there is a C^* -algebra with an n-primal ideal which is not primal. An argument involving Zorn's Lemma shows that every primal ideal contains a minimal primal ideal. Let MinPrimal(A) denote the set of minimal closed primal ideals. Primal(A) is a τ_w -closed subset of Id(A), hence a compact Hausdorff space in the τ_s -topology, and the topologies τ_s and τ_w coincide on MinPrimal(A) ([4]).

A C^* -algebra A is said to be quasi-standard if MinPrimal(A) and Glimm(A) coincide, both as sets and as topological spaces. This is equivalent, for separable C^* -algebras, to A being isomorphic to a continuous field of C^* -algebras in which the set of primitive fibres is dense ([8], 3.5). Examples include AW*-algebras and C^* -algebras with Hausdorff primitive ideal space ([8]), boundedly centrally closed C^* -algebras ([19]), and the C^* -algebras of various groups, such as discrete amenable groups, see [13]. If A is a quotient of an AW*-algebra then MinPrimal(A) and Glimm(A) coincide as sets, but not necessarily as topological spaces ([18], 2.8).

3. RESULTS

We begin with a description of the central Haagerup norm, along the lines of [18], 2.3. For an ideal I in a C^* -algebra A, and for $u \in A \otimes_h A$, we shall use u^I to denote the image of u in the quotient algebra $A \otimes_h A/(I \otimes_h A + A \otimes_h I)$ (which is isometrically isomorphic to $A/I \otimes_h A/I$ by [2], 2.6).

THEOREM 1. Let A be a C^{*}-algebra with an identity and let $u \in A \otimes_h A$. Then

$$||u||_Z = \sup\{||u^G||_h : G \in \operatorname{Glimm}(A)\}.$$

Hence $J_A = \bigcap \{ G \otimes_h A + A \otimes_h G : G \in \text{Glimm}(A) \}.$

Proof. It is enough to prove equality when u has the form $u = \sum_{i=1}^{n} a_i \otimes b_i$, with $a_i, b_i \in A$. Set $\alpha = \sup\{\|u^G\|_h : G \in \operatorname{Glimm}(A)\}$. Since $J_A \subseteq G \otimes_h A + A \otimes_h G$ for all $G \in \operatorname{Glimm}(A)$ it is clear that $\|u\|_Z \ge \alpha$. Suppose that $\varepsilon > 0$ is given. For each $G \in \operatorname{Glimm}(A)$ there exists, by [10], Lemma 2.3, an invertible $n \times n$ matrix S such that if $(a'_i) = (a_i)S^{-1}$ and $(b'_i) = S(b_i)$ then

$$\Big\|\sum_{i=1}^{n} (a'_{i}a'_{i}^{*} + G)\Big\|, \ \Big\|\sum_{i=1}^{n} (b'_{i}^{*}b'_{i} + G)\Big\| < \alpha + \varepsilon.$$

By the upper semi-continuity of the norm functions on $\operatorname{Glimm}(A)$ there is a neighbourhood N of G such that

$$\Big\| \sum_{i=1}^{n} (a'_{i}a'^{*}_{i} + G') \Big\|, \ \Big\| \sum_{i=1}^{n} ({b'_{i}}^{*}b'_{i} + G') \Big\| < \alpha + \varepsilon$$

for all $G' \in N$. Thus by the compactness of $\operatorname{Glimm}(A)$ there exist open subsets $\{N_j\}_{j=1}^m$ of $\operatorname{Glimm}(A)$ and invertible $n \times n$ matrices $\{S_j\}_{j=1}^m$ such that the N_j 's cover $\operatorname{Glimm}(A)$ and such that if $G \in N_j$ then

$$\Big\|\sum_{i=1}^n (a_i^j a_i^{j*} + G)\Big\|, \ \Big\|\sum_{i=1}^n (b_i^{j*} b_i^j + G)\Big\| < \alpha + \varepsilon,$$

where $(a_i^j) = (a_i)S_j^{-1}$ and $(b_i^j) = S_j(b_i)$. Let $\{z_j\}_{j=1}^m$ be a partition of the identity on Glimm(A) subordinate to the cover $\{N_j\}_{j=1}^m$, and set

$$v = \sum_{j=1}^{m} \sum_{i=1}^{n} a_{i}^{j} z_{j}^{1/2} \otimes z_{j}^{1/2} b_{i}^{j}.$$

116

The central Haagerup tensor product of a C^* -algebra

Then

$$v = \sum_{j=1}^{m} \Big(\sum_{i=1}^{n} a_i^j \otimes b_i^j\Big) (z_j^{1/2} \otimes z_j^{1/2}) = \sum_{j=1}^{m} u(z_j^{1/2} \otimes z_j^{1/2}),$$

 \mathbf{SO}

$$u - v = u \left(1 - \sum_{j=1}^{m} (z_j^{1/2} \otimes z_j^{1/2}) \right) = u \left(\sum_{j=1}^{m} z_j \otimes 1 - z_j^{1/2} \otimes z_j^{1/2} \right)$$
$$= u \left(\sum_{j=1}^{m} (z_j^{1/2} \otimes 1) (z_j^{1/2} \otimes 1 - 1 \otimes z_j^{1/2}) \right).$$

Hence $u - v \in J_A$. But for $G \in \text{Glimm}(A)$

$$\left\|\sum_{j=1}^{m}\sum_{i=1}^{n} z_{j}a_{i}^{j}a_{i}^{j*} + G\right\| = \left\|\sum_{j=1}^{m}(z_{j}+G)\left(\sum_{i=1}^{n}a_{i}^{j}a_{i}^{j*} + G\right)\right\| < \alpha + \varepsilon,$$

and similarly for $G' \in \operatorname{Glimm}(A)$

I

$$\left\|\sum_{j=1}^{m}\sum_{i=1}^{n} z_j b_i^{j*} b_i^j + G'\right\| < \alpha + \varepsilon.$$

Since $\bigcap \{G : G \in \operatorname{Glimm}(A)\} = \{0\}$ it follows that

$$\|u\|_{Z} \leq \|v\|_{h} \leq \left\|\sum_{j=1}^{m}\sum_{i=1}^{n} z_{j}a_{i}^{j}a_{i}^{j*}\right\|^{1/2} \left\|\sum_{j=1}^{m}\sum_{i=1}^{n} z_{j}b_{i}^{j*}b_{i}^{j}\right\|^{1/2} < \alpha + \varepsilon,$$

as required.

REMARKS. (i) A subspace X of a Banach space Y is said to be *proximinal* if every element of Y attains its distance to X. Ideals in C^{*}-algebras are proximinal ([1], 4.3), and so too is the centre of a unital C^{*}-algebra ([20]). This makes it natural to wonder if J_A is proximinal in $A \otimes_h A$.

(ii) An ideal in $A \otimes_h A$ is said to be *upper*, see [2], 6.7 (ii), if it is the intersection of the primitive ideals containing it. If J is a proper ideal of A then $J \otimes_h A + A \otimes_h J$ is upper; in fact $J \otimes_h A + A \otimes_h J = \bigcap \{P \otimes_h A + A \otimes_h Q : P, Q \in Prim(A/J)\}$ ([6], 1.3). Thus Theorem 1 shows that J_A is an upper ideal, or in other words, that $A \otimes_Z A$ is a semisimple Banach algebra.

An ideal in $A \otimes_h A$ is *lower* ([2], Section 6) if it is generated by the elementary tensors that it contains, and J_A looks a good candidate, being generated by differences of elementary tensors. Since J_A is generated by elements of the form $z \otimes 1 - 1 \otimes z$, $z \in Z(A)$, it is enough to consider the case when A is an abelian C^* -algebra, but even here the answer seems to be unknown. (iii) Let I(A, A) denote the ideal in $A \otimes A$ (the algebraic tensor product) generated by elements of the form $az \otimes b - a \otimes zb$, $a, b \in A$, $z \in Z(A)$, and let J(A, A) be the ideal $\bigcap \{G \otimes A + A \otimes G : G \in \text{Glimm}(A)\} \subseteq A \otimes A$. Clearly $I(A, A) \subseteq J(A, A)$. It is known that I(A, A) = J(A, A) if A is a continuous field of C^{*}-algebras over Glimm(A), see [9]. Theorem 1 implies that for any unital C^{*}-algebra I(A, A) and J(A, A) have the same closure, namely J_A , in $A \otimes_h A$ (and hence the same closure, namely the closure of J_A , in $A \otimes_{\min} A$, the minimal C^{*}-tensor product).

The next result is a combination of Lemma 3.1 and Theorem 3.4 of [6].

PROPOSITION 2. Let A be a C^{*}-algebra. For each $u \in A \otimes_h A$ the map

 $(I,J) \rightarrow ||u + (I \otimes_h A + A \otimes_h J)||_h, \ (I,J) \in \mathrm{Id}(A) \times \mathrm{Id}(A),$

is continuous for the product τ_s -topology on $\mathrm{Id}(A) \times \mathrm{Id}(A)$.

The next result generalizes [18], 2.6, using the same method of proof.

PROPOSITION 3. Let A be a C^* -algebra and let $u \in A \otimes_h A$. Then

 $\|\theta(u)\|_{\rm cb} = \sup\{\|u^P\|_h : P \in \operatorname{MinPrimal}(A)\}.$

Proof. Let D denote the diagonal of $Primal(A) \times Primal(A)$, in the product τ_s -topology. Then D is a compact set, and the norm function $(P, P) \to ||u^P||_h$ $((P, P) \in D)$ is continuous on D, by Proposition 2, so it attains its supremum, clearly at some (R, R) with $R \in MinPrimal(A)$. But R is in the τ_s -closure of Prim(A) ([4], 4.3), so $||u^R||_h = \sup\{||u^P||_h : P \in Prim(A)\}$. But $||\theta(u)||_{cb} = \sup\{||u^P||_h : P \in Prim(A)\}$, by [3], 3.6, and the result follows.

For $a \in A$, let D_a denote the inner derivation induced by a. Then $D_a = \theta(a \otimes 1 - 1 \otimes a)$, and $||D_a|| = ||D_a||_{cb}$, see [11], 4.1. Now $||a \otimes 1 - 1 \otimes a||_h$ is equal to twice the distance from a to the scalars [14], 3.3, so it follows from Theorem 1 and [18], 2.3 that $||a \otimes 1 - 1 \otimes a||_Z = 2 d(a, Z(A))$, where d(a, Z(A)) is the distance from a to the centre of A. But it was shown in [18], 3.2, 3.3 that a necessary and sufficient condition for $||D_a||$ to equal 2 d(a, Z(A)) for all $a \in A$ is that every Glimm ideal of A should be 3-primal. Thus a necessary condition for θ_Z to be an isometry is that every Glimm ideal of A should be 3-primal. Whether this is also a sufficient condition, we do not know. Our main result, however, is a partial converse. It follows from Theorem 1 and Proposition 3.

THEOREM 4. Let A be a C^{*}-algebra with an identity. If every Glimm ideal of A is primal then the map $\theta_Z : A \otimes_Z A \to CB(A)$ is an isometry.

Thus θ_Z is an isometry if A is a unital quasi-standard C^{*}-algebra, or a quotient of an AW^{*}-algebra. It seems worth remarking that is very easy to show that every Glimm ideal of a von Neumann algebra is primal ([5], 4.1).

Since $A \otimes_Z A$ and CB(A) are both not only Banach spaces but operator spaces, it would be interesting to know whether θ_Z is, in fact, a complete isometry.

Finally we show that the injectivity of θ_Z has a simple characterization in terms of Glimm and 2-primal ideals.

LEMMA 5. Let A be a unital C^{*}-algebra, and let $R \in Id(A)$. Then R is 2-primal if and only if $R \otimes_h A + A \otimes_h R \supseteq \ker \theta$.

Proof. Suppose that R is not 2-primal. Then there exist orthogonal ideals I and J with $I, J \not\subseteq R$. If $a \in I \setminus R$ and $b \in J \setminus R$ then $a \otimes b \notin R \otimes_h A + A \otimes_h R$ but $\theta(a \otimes b) = 0$. Hence $R \otimes_h A + A \otimes_h R \not\supseteq \ker \theta$.

Conversely, suppose that R is 2-primal, and that $c \in A \otimes_h A$ with $c \notin R \otimes_h A + A \otimes_h R$. Then by [6], 1.3 there exist $P, Q \in \text{Prim}(A/R)$ such that $c \notin P \otimes_h A + A \otimes_h Q$. But $S = P \cap Q$ is primal, since R is 2-primal, and $c \notin S \otimes_h A + A \otimes_h S$. This means, by Proposition 3, that $\theta(c)$ is non-zero. Hence $R \otimes_h A + A \otimes_h R \supseteq \ker \theta$.

COROLLARY 6. Let A be a unital C^* -algebra. Then

(i) $\ker \theta = \bigcap \{ R \otimes_h A + A \otimes_h R : R \in 2\text{-Primal}(A) \};$

(ii) θ_Z is injective if and only if every Glimm ideal of A is 2-primal.

Proof. Set $I = \bigcap \{ R \otimes_h A + A \otimes_h R : R \in 2\text{-Primal}(A) \}.$

(i) It is clear from Lemma 5 that $\ker \theta \subseteq I$. On the other hand, if $c \in I$ then $\theta(c) = 0$, by Proposition 3. Thus $I = \ker \theta$.

(ii) If every Glimm ideal of A is 2-primal then $I = J_A$, by Theorem 1, so θ_Z is injective. Conversely, if G is a Glimm ideal of A which is not 2-primal then $G \otimes_h A + A \otimes_h G \not\supseteq \ker \theta$ by Lemma 5, so θ_Z is not injective.

The condition of every Glimm ideal being 2-primal has a number of equivalent formulations. For $P, Q \in Prim(A)$, let $P \sim Q$ if P and Q cannot be separated by disjoint open sets, and $P \approx Q$ if P and Q cannot be separated by continuous, complex functions on Prim(A). Define a graph structure on Prim(A) by saying that P and Q are adjacent if $P \sim Q$, and let Orc(A) be the supremum of the diameters of the connected components of Prim(A) in this graph structure (with the convention that a singleton has diameter 1). The work in [17] shows that for a unital C^* -algebra A the following are equivalent:

- (i) Orc(A) = 1;
- (ii) \sim is an equivalence relation on $\operatorname{Prim}(A)$;
- (iii) the relations \sim and \approx coincide on Prim(A);
- (iv) every Glimm ideal of A is 2-primal.

One of the main results of [17] is that $\operatorname{Orc}(A) = 1$ if and only if $||D_a|| = 2d(a, Z(A))$ for all self-adjoint $a \in A$.

Acknowledgements. The author is grateful to Rob Archbold, Eberhard Kaniuth, Günter Schlichting, and Roger Smith for their help with this paper.

REFERENCES

- C.A. AKEMANN, G.K. PEDERSEN, TOMIYAMA, Multipliers of C*-algebras, J. Funct. Anal. 13(1973), 277–301.
- S.D. ALLEN, A.M. SINCLAIR, R.R. SMITH, The ideal structure of the Haagerup tensor product of C^{*}-algebras, J. Reine Angew. Math. 442(1993), 111–148.
- P. ARA, M. MATHIEU, On the central Haagerup tensor product, Proc. Edinburgh Math. Soc. (2) 37(1994), 161–174.
- R.J. ARCHBOLD, Topologies for primal ideals, J. London Math. Soc. (2) 36(1987), 524–542.
- R.J. ARCHBOLD, C.J.K. BATTY, On factorial states of operator algebras. III, J. Operator Theory 15(1986), 53–81.
- R.J. ARCHBOLD, E. KANIUTH, G. SCHLICHTING, D.W.B. SOMERSET, Ideal spaces of the Haagerup tensor product of C^{*}-algebras, Internat. J. Math. 8(1997), 1–29.
- 7. R.J. ARCHBOLD, E. KANIUTH, G. SCHLICHTING, D.W.B. SOMERSET, On the topology of the dual of a nilpotent Lie group, *Math. Proc. Cambridge Philos. Soc.*, to appear.
- R.J. ARCHBOLD, D.W.B. SOMERSET, Quasi-standard C^{*}-algebras, Math. Proc. Cambridge Philos. Soc. 107(1990), 349–360.
- E. BLANCHARD, Tensor products of C(X)-algebras over C(X), in *Recent Advances in Operator Theory*, Astérique, vol. 232, 1995, pp. 81–92.
- A. CHATTERJEE, R.R. SMITH, The central Haagerup tensor product and maps between von Neumann algebras, J. Funct. Anal. 112(1993), 97–120.
- G.A. ELLIOTT, On lifting and extending derivations of approximately finite- dimensional C^{*}-algebras, J. Funct. Anal. 17(1974), 395–408.
- J.G. GLIMM, A Stone-Weierstrass theorem for C*-algebras, Ann. of Math. (2) 72 (1960), 216–244.
- E. KANIUTH, G. SCHLICHTING, K.F. TAYLOR, Minimal primal and Glimm ideal spaces of group C*-algebras, J. Funct. Anal. 130(1995), 43–76.
- M. MATHIEU, The *cb*-norm of a derivation, in *Algebraic Methods in Operator Theory*, Birkhäuser, Basel – Boston 1994, pp. 144–152.
- Y. MISONOU, On a weakly central operator algebra, *Tôhoku Math. J. (2)* 4(1952), 194–202.

120

The central Haagerup tensor product of a C^* -algebra

- 16. G.K. PEDERSEN, C^* -Algebras and their Automorphism Groups, Academic Press, London 1979.
- D.W.B. SOMERSET, The inner derivations and the primitive ideal space of a C^{*}algebra, J. Operator Theory 29(1993), 307–321.
- D.W.B. SOMERSET, Inner derivations and primal ideals of C^{*}-algebras, J. London Math. Soc. (2) 50(1994), 568–580.
- D.W.B. SOMERSET, The local multiplier algebra of a C*-algebra, Quart. J. Math. Oxford Ser. (2) 47(1996), 123–132.
- 20. D.W.B. SOMERSET, The proximinality of the centre of a $C^*\mbox{-algebra},~J.~Approx. Theory 89(1997), 114–117.$

D.W.B. SOMERSET Department of Mathematical Sciences University of Aberdeen AB24 3UE U.K. E-mail: ds@maths.abdr.ac.uk

Received July 10, 1996.