$\alpha\text{-LIPSCHITZ}$ ALGEBRAS ON THE NONCOMMUTATIVE TORUS

NIK WEAVER

Communicated by Norberto Salinas

ABSTRACT. We define deformed, noncommutative versions of the Lipschitz algebras $\operatorname{Lip}^{\alpha}(\mathbb{T}^2)$ and $\operatorname{lip}^{\alpha}(\mathbb{T}^2)$. Deformation preserves the property that the former is isometrically isomorphic to the second dual of the latter.

Keywords: Noncommutative torus, Lipschitz algebras, von Neumann algebras.

AMS SUBJECT CLASSIFICATION: Primary 46L89; Secondary 46L57, 46E25.

The algebra $\operatorname{Lip}(X)$ of Lipschitz functions on a complete metric space X plays a role in noncommutative metric theory similar to that played by the algebra C(K)in noncommutative topology. For instance, there is a robust duality between metric properties of X and algebraic properties of $\operatorname{Lip}(X)$ ([24]) which matches closed subsets with weak*-closed ideals etc. Furthermore, one has an abstract characterization of Lipschitz algebras in terms of derivations of abelian von Neumann algebras into abelian operator bimodules ([26]) which admits a natural extension to the noncommutative setting. For more on noncommutative metrics see [4], [5], [6], [7], [15], [17] and for more on the particular approach described above see [26], [27], [28]. The abstract commutative theory of Lipschitz algebras is considered in [1], [2], [10], [12], [19], [20], [21], [22], [23], [24], [25], [29], among other places.

For $0 < \alpha \leq 1$ one calls a function $f : X \to \mathbb{C} \alpha$ -Lipschitz (or Hölder) if it is Lipschitz with respect to the original metric on X raised to the power α . The space of α -Lipschitz functions on X is denoted Lip^{α}(X). This concept is of interest in connection with little Lipschitz functions. A Lipschitz function on X is *little* if its slopes are locally null, i.e. every point has neighborhoods the restrictions of f to which have arbitrarily small Lipschitz number. The space of little Lipschitz functions (respectively, little α -Lipschitz functions) is denoted lip(X) (resp. lip^{α}(X)). In general, there may be no nonconstant little Lipschitz functions, but for $\alpha < 1$ little α -Lipschitz functions always exist in abundance. These notions have long been important in harmonic analysis, and have also played a special role in the abstract theory of Lipschitz algebras, going back to the seminal paper [8] which initiated this theory.

At the moment we have no general noncommutative versions of α -Lipschitz or little Lipschitz functions. However, we wish to show here that there are reasonable versions of both concepts in relation to the noncommutative torus ([16]). Our definitions are based on an approach to α -Lipschitz functions on the unit circle developed in [13]. Thus, we define and study deformed, noncommutative versions $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ and $\operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ of the classical algebras $\operatorname{Lip}^{\alpha}(\mathbb{T}^2)$ and $\operatorname{lip}^{\alpha}(\mathbb{T}^2)$. Among our results is the fact that for $\alpha < 1$ the space $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ is isometrically isomorphic to the second dual of $\operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$. This holds in the commutative case by [2].

Our main interest in this material is that it provides a class of examples of noncommutative metrics which are not differential geometric in nature. For instance, the operator bimodule in Theorem 2.3 (ii) is not a Hilbert module; also, the derivation discussed there is not an actual differentiation. Much of what is done here generalizes immediately to the setting of an arbitrary Lie group acting on a von Neumann algebra. Another class of noncommutative metrics which are not Riemannian was given in [28].

Lipschitz functions on the noncommutative torus were discussed in [26] and some of our results here generalize work done there in the $\alpha = 1$ case.

1. THE NONCOMMUTATIVE TORUS

We begin with a review of the noncommutative torus, as described in [16] (we use different notation here). Fix a real number $\theta \in [0, 1)$ and define unitary operators $U, V \in B(l^2(\mathbb{Z}^2))$ by setting

$$Uv_{mn} = v_{(m+1)n}$$
 and $Vv_{mn} = e^{2\pi i\theta m} v_{m(n+1)}$

where v_{mn} is the canonical basis of $l^2(\mathbb{Z}^2)$. Let $C_{\theta}(\mathbb{T}^2)$ and $L^{\infty}_{\theta}(\mathbb{T}^2)$ respectively be the C^* -algebra and von Neumann algebra generated by U and V. In the $\theta = 0$ case the Fourier transform identifies $C_{\theta}(\mathbb{T}^2)$ and $L^{\infty}_{\theta}(\mathbb{T}^2)$ with $C(\mathbb{T}^2)$ and $L^{\infty}(\mathbb{T}^2)$, respectively. However, for $\theta \neq 0$ these algebras are noncommutative and our "function space" notation is merely symbolic.

For $x \in L^{\infty}_{\theta}(\mathbb{T}^2)$ and $N \ge 0$ define

$$s_N(x) = \sum_{|m|, |n| \leq N} a_{mn} U^m V^n$$

where $a_{mn} = \langle xv_{00}, v_{mn} \rangle$, and set

$$\sigma_N(x) = \frac{s_0 + \dots + s_N}{N+1}$$

These are respectively the partial sums and Cesaro means of the Fourier series of x. (For basic material on harmonic analysis see [9], [11], or [30].)

Define unbounded self-adjoint operators D_1, D_2 on $l^2(\mathbb{Z}^2)$ by

$$D_1 v_{mn} = m v_{mn}$$
 and $D_2 v_{mn} = n v_{mn}$.

For $\theta = 0$ these correspond via the Fourier transform to $i\partial/\partial x$ and $i\partial/\partial y$. Then we have two actions γ^1, γ^2 of \mathbb{R} by automorphisms of $L^{\infty}_{\theta}(\mathbb{T}^2)$, given by

$$\gamma_t^k(x) = \mathrm{e}^{-\mathrm{i}tD_k} x \mathrm{e}^{\mathrm{i}tD}$$

for k = 1, 2. For $\theta = 0$ these correspond to translations of $L^{\infty}(\mathbb{T}^2)$ in the two variables.

The following was noted in [26], and is probably well-known.

PROPOSITION 1.1. (i) γ^1 and γ^2 are ultraweakly continuous actions of \mathbb{R} on $L^{\infty}_{\theta}(\mathbb{T}^2)$.

(ii) $C_{\theta}(\mathbb{T}^2)$ is stable for the actions of γ^1 and γ^2 , and consists of precisely those elements of $L^{\infty}_{\theta}(\mathbb{T}^2)$ for which both actions are continuous in operator norm.

(iii) For any $x \in L^{\infty}_{\theta}(\mathbb{T}^2)$, $s_N(x) \to x$ ultraweakly.

(iv) For any $x \in C_{\theta}(\mathbb{T}^2)$, $\sigma_N(x) \to x$ in operator norm.

In [26] we defined a θ -deformed version of the algebra of Lipschitz functions on \mathbb{T}^2 by $\operatorname{Lip}_{\theta}(\mathbb{T}^2) = \operatorname{dom}(\delta_1) \cap \operatorname{dom}(\delta_2)$, where δ_k (k = 1, 2) is the generator of the flow γ^k , i.e. $\delta_k(x) = \operatorname{i}[D_k, x]$. This is a variation on a definition in [4]. In the $\theta = 0$ case it corresponds to precisely the algebra of Lipschitz functions on \mathbb{T}^2 .

The following is also from [26].

THEOREM 1.2. (i) $\operatorname{Lip}_{\theta}(\mathbb{T}^2)$ is a dual Banach space.

- (ii) $\operatorname{Lip}_{\theta}(\mathbb{T}^2) \subset C_{\theta}(\mathbb{T}^2)$, densely in operator norm.
- (iii) For any $x \in \operatorname{Lip}_{\theta}(\mathbb{T}^2)$, $s_N(x) \to x$ in operator norm.

 $\operatorname{Lip}_{\theta}(\mathbb{T}^2)$ can also be viewed in the following way. Consider $E = L^{\infty}_{\theta}(\mathbb{T}^2) \oplus L^{\infty}_{\theta}(\mathbb{T}^2)$ as a Hilbert $L^{\infty}_{\theta}(\mathbb{T}^2)$ -bimodule in the natural way. Then one has an unbounded derivation $\delta : L^{\infty}_{\theta}(\mathbb{T}^2) \to E$ defined by $\delta(x) = \delta_1(x) \oplus \delta_2(x)$. This exhibits $\operatorname{Lip}_{\theta}(\mathbb{T}^2)$ as the domain of a natural "exterior derivative" on the noncommutative torus.

2. NONCOMMUTATIVE α -LIPSCHITZ ALGEBRAS

We retain the notation of the previous section.

DEFINITION 2.1. Let $0 < \alpha \leq 1$. Then we define $\operatorname{Lip}^{\alpha}_{\theta}(\mathbb{T}^2)$ to be the set of $x \in L^{\infty}_{\theta}(\mathbb{T}^2)$ for which there exists a constant $C \geq 0$ such that

$$||x - \gamma_t^k(x)|| \leqslant Ct^{\alpha}$$

for k = 1, 2 and all t > 0. We let $L^{\alpha}(x)$ be the least such value of C and norm $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ by

$$\|x\|_{\alpha} = \max(\|x\|, L^{\alpha}(x)),$$

which we call the *Lipschitz norm*. We define $\lim_{\theta}^{\alpha}(\mathbb{T}^2)$ to be the set of $x \in \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ such that

$$\frac{\|x - \gamma_t^k(x)\|}{t^{\alpha}} \to 0$$

for k = 1, 2 as $t \to 0$.

PROPOSITION 2.2. (i) $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ and $\operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ are involutive Banach algebras for the Lipschitz norm $\|\cdot\|_{\alpha}$.

(ii) For $\theta = 0$, $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ and $\operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ are identified by means of the Fourier transform with the classical α -Lipschitz and little α -Lipschitz algebras on \mathbb{T}^2 , respectively.

Proof. (i) Checking that $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ and $\operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ are involutive algebras is a straightforward calculation. For instance, if x and y belong to $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ then

$$\begin{aligned} \|xy - \gamma_t^k(xy)\| &\leq \|xy - x\gamma_t^k(y)\| + \|x\gamma_t^k(y) - \gamma_t^k(x)\gamma_t^k(y)\| \\ &\leq \|x\| \|y - \gamma_t^k(y)\| + \|x - \gamma_t^k(x)\| \|\gamma_t^k(y)\| \\ &\leq (\|x\|L^{\alpha}(y) + \|y\|L^{\alpha}(x))t^{\alpha} \\ &\leq 2\|x\|_{\alpha}\|y\|_{\alpha}t^{\alpha} \end{aligned}$$

shows that $xy \in \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$. This also shows that $\|xy\|_{\alpha} \leq 2\|x\|_{\alpha}\|y\|_{\alpha}$, hence multiplication is continuous for the Lipschitz norm, although note that $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ is not a Banach algebra in the stricter sense of satisfying $\|xy\| \leq \|x\| \|y\|$.

To see that $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ is complete for the Lipschitz norm, let $(x_n) \subset \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ be Cauchy. It follows that (x_n) is Cauchy in operator norm, hence converges in this sense to some $x \in L_{\theta}^{\infty}(\mathbb{T}^2)$. For any t > 0 choose n such that $||x - x_n|| \leq t^{\alpha}$; then

$$||x - \gamma_t^k(x)|| \le ||x - x_n|| + ||x_n - \gamma_t^k(x_n)|| + ||\gamma_t^k(x_n - x)||$$

$$\le t^{\alpha} + Ct^{\alpha} + t^{\alpha} = (C+2)t^{\alpha}$$

126

where $C = \sup ||x_n||_{\alpha}$. This shows that $x \in \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$. Furthermore, given $\varepsilon > 0$ choose *n* large enough that $||x_m - x_n||_{\alpha} \leq \varepsilon$ for all m > n. Then for any t > 0 we can find m > n so that $||x - x_m|| \leq \varepsilon t^{\alpha}$, and then

$$\|(x-x_n) - \gamma_t^k(x-x_n)\| \leq \|(x-x_m) - \gamma_t^k(x-x_m)\| + \|(x_m-x_n) - \gamma_t^k(x_m-x_n)\|$$
$$\leq 2\varepsilon t^{\alpha} + \varepsilon t^{\alpha} = 3\varepsilon t^{\alpha}.$$

This shows that $L^{\alpha}(x_n - x) \to 0$, and as we already know $||x_n - x|| \to 0$, it follows that $||x_n - x||_{\alpha} \to 0$. Thus, $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ is complete for the Lipschitz norm.

For completeness of $\lim_{\theta} (\mathbb{T}^2)$ let $(x_n) \subset \lim_{\theta} (\mathbb{T}^2)$ be Cauchy, so that by the above x_n converges in Lipschitz norm to some $x \in \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$. We must show $x \in \operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$. Given $\varepsilon > 0$ choose n such that $||x_m - x_n||_{\alpha} \leq \varepsilon$ for m > n. Then since $x_n \in \operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ there exists $\delta > 0$ such that $t \leq \delta$ implies $||x_n - \gamma_t^k(x_n)|| \leq \varepsilon t^{\alpha}$. For any $t \leq \delta$ we can find m > n so that $||x - x_m||_{\alpha} \leq \varepsilon t^{\alpha}$, and then

$$\begin{aligned} \|x - \gamma_t^k(x)\| &\leq \|x - x_m\| + \|x_n - \gamma_t^k(x_n)\| \\ &+ \|(x_m - x_n) - \gamma_t^k(x_m - x_n)\| + \|\gamma_t^k(x_m - x)\| \\ &\leq \varepsilon t^\alpha + \varepsilon t^\alpha + \varepsilon t^\alpha + \varepsilon t^\alpha = 4\varepsilon t^\alpha. \end{aligned}$$

This shows that $||x - \gamma_t^k(x)||/t^{\alpha} \to 0$ as $t \to 0$, so $x \in lip_{\theta}^{\alpha}(\mathbb{T}^2)$.

(ii) In the $\theta = 0$ case, $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ is identified with the set of functions $f \in L^{\infty}(\mathbb{T}^2)$ which satisfy

$$||f - \gamma_t^k(f)||_{\infty} \leqslant Ct^{\alpha}$$

for k = 1, 2 and all t. That is, these are the functions which satisfy

$$\sup\{|f(x,y) - f(x+t,y)|, |f(x,y) - f(x,y+t)| : (x,y) \in \mathbb{T}^2\} \leq Ct^{\alpha}$$

for all t > 0. This condition is automatically satisfied by any α -Lipschitz function on \mathbb{T}^2 ; conversely, for any function f which satisfies this condition we have

$$|f(x_1, y_2) - f(x_2, y_2)| \leq |f(x_1, y_1) - f(x_2, y_1)| + |f(x_2, y_1) + f(x_2, y_2)|$$
$$\leq C(d^{\alpha}(x_1, x_2) + d^{\alpha}(y_1, y_2))$$
$$\leq 2Cd^{\alpha}((x_1, y_1), (x_2, y_2))$$

where d denotes the ordinary Euclidean distance on \mathbb{T} and \mathbb{T}^2 , hence f is α -Lipschitz. Thus, for $\theta = 0$ we may identify $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ with the α -Lipschitz functions on \mathbb{T}^2 .

To see that $lip^{\alpha}_{\theta}(\mathbb{T}^2)$ is identified with the little α -Lipschitz functions, suppose that $t \leq \delta$ implies

$$|f(x,y) - f(x+t,y)|, |f(x,y) - f(x,y+t)| \leq \varepsilon t^{\alpha}$$

for all $(x, y) \in \mathbb{T}^2$; then $d((x_1, y_1), (x_2, y_2)) \leq \delta$ implies

$$\begin{aligned} |f(x_1, y_1) - f(x_2, y_2)| &\leq |f(x_1, y_1) - f(x_2, y_1)| + |f(x_2, y_1) - f(x_2, y_2)| \\ &\leq \varepsilon d^{\alpha}(x_1, x_2) + \varepsilon d^{\alpha}(y_1, y_2) \\ &\leq 2\varepsilon d^{\alpha}((x_1, y_1), (x_2, y_2)). \end{aligned}$$

Conversely, if f is a little α -Lipschitz function then for every $\varepsilon > 0$ we can find $\delta > 0$ such that for all $(x_1, y_1), (x_2, y_2) \in \mathbb{T}^2, d((x_1, y_1), (x_2, y_2)) \leq \delta$ implies

$$|f(x_1, y_1) - f(x_2, y_2)| \leq \varepsilon d^{\alpha}((x_1, y_1), (x_2, y_2))$$

(Each point has a neighborhood in which this is true, and then by compactness we can take δ to be the Lebesgue number of the resulting covering of \mathbb{T}^2 .) In particular,

$$|f(x,y) - f(x+t,y)|, |f(x,y) - f(x,y+t)| \leq \varepsilon t^{\alpha}$$

for $t \leq \delta$, i.e. $\|f - \gamma_t^k(f)\|_{\infty} \leq \varepsilon t^{\alpha}$ for $t \leq \delta$.

We now wish to demonstrate that the definitions given in this paper match up with our previous work, specifically, that $\operatorname{Lip}^1_{\theta}(\mathbb{T}^2)$ equals the Lipschitz algebra $\operatorname{Lip}_{\theta}(\mathbb{T}^2)$ defined in [26] (and above in Section 1), and that each $\operatorname{Lip}^{\alpha}_{\theta}(\mathbb{T}^2)$ is a Lipschitz algebra in the sense of [26], i.e. is the domain of a von Neumann algebra derivation. For the latter, let

$$E = \bigoplus_{t>0}^{\infty} (L^{\infty}_{\theta}(\mathbb{T}^2) \oplus L^{\infty}_{\theta}(\mathbb{T}^2))$$

be the l^{∞} direct sum of von Neumann algebras. It is a von Neumann algebra, and it is also a dual operator $L^{\infty}_{\theta}(\mathbb{T}^2)$ -bimodule with left action given by the diagonal embedding of $L^{\infty}_{\theta}(\mathbb{T}^2)$ in E and right action given by the embedding

$$x \mapsto \bigoplus_{t>0} (\gamma_t^1(x) \oplus \gamma_t^2(x))$$

Define an unbounded map $\delta : L^{\infty}_{\theta}(\mathbb{T}^2) \to E$ with domain $\operatorname{Lip}^{\alpha}_{\theta}(\mathbb{T}^2)$ by $\delta = \bigoplus (\delta^1_t \oplus \delta^2_t)$ with

$$\delta_t^k(x) = \frac{x - \gamma_t^k(x)}{t^{\alpha}}.$$

Notice that indeed $\delta(x) \in E$ if $x \in \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ since $\sup_{t,k} \|\delta_t^k(x)\| = L^{\alpha}(x) < \infty$.

128

 α -Lipschitz algebras on the noncommutative torus

THEOREM 2.3. (i) $\operatorname{Lip}_{\theta}^{1}(\mathbb{T}^{2}) = \operatorname{Lip}_{\theta}(\mathbb{T}^{2})$ as sets.

(ii) $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ is the domain of an unbounded von Neumann algebra derivation with weak*-closed graph.

Proof. (i) Let $x \in L^{\infty}_{\theta}(\mathbb{T}^2)$. Then $x \in \operatorname{Lip}^1_{\theta}(\mathbb{T}^2)$ if and only if

$$\sup_{t>0}\left\{\frac{\|x-\gamma_t^1(x)\|}{t}, \ \frac{\|x-\gamma_t^2(x)\|}{t}\right\}<\infty,$$

while $x \in \operatorname{Lip}_{\theta}(\mathbb{T}^2)$ if and only if it belongs to the domains of the generators of γ^1 and γ^2 . According to [3], Proposition 3.1.23, these two conditions are equivalent. (Note however that the norm $||x||_1$ defined here on $\operatorname{Lip}^1_{\theta}(\mathbb{T}^2)$ does not agree with the norm $||x||_L$ given in [26] on $\operatorname{Lip}_{\theta}(\mathbb{T}^2)$, although the two are equivalent.)

(ii) An easy calculation shows that the map δ defined before the theorem is linear and self-adjoint and satisfies the derivation identity (with respect to the bimodule structure described above), and its domain is $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ by definition. To check ultraweak closure of the graph of δ , suppose $x_{\lambda} \oplus \delta(x_{\lambda})$ is a bounded net in the graph which converges ultraweakly to some element $x \oplus y \in L_{\theta}^{\infty}(\mathbb{T}^2) \oplus E$. (By the Krein-Smulian theorem, it is sufficient to consider bounded nets.) Write $y = \bigoplus (y_t^1 \oplus y_t^2)$. Then for each t > 0 we have

$$y_t^k = \lim_{\lambda} \delta_t^k(x_{\lambda}) = \lim_{\lambda} \frac{(x_{\lambda} - \gamma_t^k(x_{\lambda}))}{t^{\alpha}} = \frac{(x - \gamma_t^k(x))}{t^{\alpha}}$$

(k = 1, 2). As this holds for all t and

$$\sup_{t>0} \{ \|y_t^1\|, \|y_t^2\| \} = \|y\| < \infty,$$

it follows that $x \in \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ and $\delta(x) = y$. Thus, the graph of δ is weak*-closed.

COROLLARY 2.4. $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ is a dual Banach space.

Proof. For any $x \in \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ we have

$$\|x\|_{\alpha} = \max(\|x\|, L^{\alpha}(x)) = \max\left(\|x\|, \sup_{t,k} \frac{\|x - \gamma_t^k(x)\|}{t^{\alpha}}\right)$$
$$= \max(\|x\|, \|\delta(x)\|) = \|x \oplus \delta(x)\|.$$

Thus, $\operatorname{Lip}^{\alpha}_{\theta}(\mathbb{T}^2)$ is linearly isometric to the graph of δ . But the latter is an ultraweakly closed subspace of $L^{\infty}_{\theta}(\mathbb{T}^2) \oplus E$, hence a dual Banach space.

In consequence of this corollary $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ has a weak*-topology. In general it is distinct from the restriction of the ultraweak topology on $L_{\theta}^{\infty}(\mathbb{T}^2)$, which of course is itself a weak*-topology. To avoid confusion we shall always refer to the latter topology with the term "ultraweak" rather than "weak*".

3. RELATIONS BETWEEN α -LIPSCHITZ SPACES

In this section we investigate the various containments that obtain among the big and little α -Lipschitz spaces, the algebra of polynomials in U and V, $C_{\theta}(\mathbb{T}^2)$, and $L^{\infty}_{\theta}(\mathbb{T}^2)$. Corresponding statements for classical Lipschitz algebras were proved in [13] and [14] (for the unit circle) and [2] and [25] (for any compact metric space).

Our first lemma provides basic tools that we will use repeatedly. It is a noncommutative version of basic facts from harmonic analysis and was proved in [26]. Let K_N be the Fejér kernel,

$$K_N(t) = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N+1} \right) e^{int} = \frac{1}{N+1} \left(\frac{\sin((N+1)t/2)}{\sin(t/2)} \right)^2.$$

It has the properties that:

- (1) $K_N(t) \ge 0$ for all $t \in [-\pi, \pi]$;
- (2) $\int_{-\pi}^{\pi} K_N(t) dt = 1$; and (3) for any $\varepsilon > 0$, $\int_{|t| \ge \varepsilon} K_N(t) dt \to 0$ as $N \to \infty$.

LEMMA 3.1. Let $x \in L^{\infty}_{\theta}(\mathbb{T}^2)$. Then

$$\sigma_N(x) = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \gamma_s^1(\gamma_t^2(x)) K_N(s) K_N(t) \, \mathrm{d}s \mathrm{d}t$$

and

$$x - \sigma_N(x) = \int_{-\pi}^{\pi} (x - \gamma_s^1(x)) K_N(s) \,\mathrm{d}s$$
$$+ \int_{-\pi}^{\pi} \gamma_s^1 \Big(\int_{-\pi}^{\pi} (x - \gamma_t^2(x)) K_N(t) \,\mathrm{d}t \Big) K_N(s) \,\mathrm{d}s,$$

where all operator integrals are taken in the ultraweak sense.

LEMMA 3.2. For any $\varepsilon > 0$ there exists N large enough that $||x - \sigma_n(x)|| \leq \varepsilon$ for all $x \in \text{ball}(\text{Lip}^{\alpha}_{\theta}(\mathbb{T}^2))$ and $n \ge N$.

Proof. Consider the second formula in Lemma 3.1. For any $x \in \text{ball}(\text{Lip}^{\alpha}_{\theta}(\mathbb{T}^2))$ we have

$$\left\| \int_{-\pi}^{\pi} (x - \gamma_s^1(x)) K_N(s) \, \mathrm{d}s \right\| \leq \int_{-\pi}^{\pi} \|x - \gamma_s^1(x)\| K_N(s) \, \mathrm{d}s \leq \int_{-\pi}^{\pi} |s|^{\alpha} K_N(s) \, \mathrm{d}s$$

130

and

$$\begin{split} \left\| \int_{-\pi}^{\pi} \gamma_{s}^{1} \Big(\int_{-\pi}^{\pi} (x - \gamma_{t}^{2}(x)) K_{N}(t) dt \Big) K_{N}(s) ds \right\| \\ & \leq \int_{-\pi}^{\pi} \left\| \int_{-\pi}^{\pi} (x - \gamma_{t}^{2}(x)) K_{N}(t) dt \right\| K_{N}(s) ds = \left\| \int_{-\pi}^{\pi} (x - \gamma_{t}^{2}(x)) K_{N}(t) dt \right\| \\ & \leq \int_{-\pi}^{\pi} |t|^{\alpha} K_{N}(t) dt. \end{split}$$

Since the function $t \mapsto |t|^{\alpha}$ is continuous on $[-\pi, \pi]$ and vanishes at t = 0, it follows that

$$\int_{-\pi}^{\pi} |t|^{\alpha} K_N(t) \,\mathrm{d}t \to 0$$

as $N \to \infty$. The second formula given in Lemma 3.1 then implies that for any $\varepsilon > 0$ we can choose N large enough that $||x - \sigma_n(x)|| \leq \varepsilon$ for all $x \in \text{ball}(\text{Lip}^{\alpha}_{\theta}(\mathbb{T}^2))$ and $n \geq N$.

The next lemma was proved for $\operatorname{Lip}_{\theta}(\mathbb{T}^2)$ in [26]. The proof for $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ given here is essentially the same. The result in [26] can also be generalized in a different direction, in the broad setting of compact groups acting on C^* -algebras ([18]).

LEMMA 3.3. On the unit ball of $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ the weak*-topology agrees with the operator norm topology.

Proof. Both topologies are Hausdorff on ball($\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$), and the weak*topology is compact. Furthermore, the weak*-topology is weaker than the operator norm topology; for if $x, x_{\lambda} \in \operatorname{ball}(\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2))$ and $x_{\lambda} \to x$ in operator norm, then in the notation of Section 2 we have $\delta_t^k(x_{\lambda}) \to \delta_t^k(x)$ in operator norm for each k = 1, 2 and t > 0, hence (by boundedness) $x_{\lambda} \oplus \delta(x_{\lambda}) \to x \oplus \delta(x)$ ultraweakly, i.e. $x_{\lambda} \to x$ weak*. Thus, it will suffice to show that the unit ball of $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ is compact in operator norm.

To see this let $(x_k) \subset \text{ball}(\text{Lip}^{\alpha}_{\theta}(\mathbb{T}^2))$; we will find a subsequence which converges in operator norm. (Since the topology is metric, we may use sequences rather than nets.) Recalling the representation on $l^2(\mathbb{Z}^2)$ described in Section 1, let $a_{mn}^k = \langle x_k v_{00}, v_{mn} \rangle$ be the Fourier coefficients of x_k . Since $||x_k|| \leq ||x_k||_{\alpha} \leq 1$ it follows that $|a_{mn}^k| \leq 1$ for all k, m, n and so we may choose a subsequence x_{j_k} such that the coefficients $(a_{mn}^{j_k})$ converge for each index m, n. Let x be an ultraweak cluster point of (x_{j_k}) and let a_{mn} be its Fourier coefficients; then a_{mn} is a cluster point of $(a_{mn}^{j_k})$ for each m, n. But the latter sequences have been chosen to converge, so we must have $a_{mn}^{j_k} \to a_{mn}$ for each m, n. We will show that $x_{j_k} \to x$ in operator norm.

Given $\varepsilon > 0$, by Lemma 3.2 we can choose N so that

$$\|x - \sigma_N(x)\|, \|x_{j_k} - \sigma_N(x_{j_k})\| \leqslant \varepsilon$$

for all k. By the last paragraph we can then choose M so that $k \ge M$ implies

$$|a_{mn} - a_{mn}^{j_k}| \leqslant \frac{\varepsilon}{(2N+1)^2}$$

for all $|m|, |n| \leq N$. This implies that $||s_n(x) - s_n(x_{j_k})|| \leq \varepsilon$ for $n \leq N$ hence $||\sigma_N(x) - \sigma_N(x_{j_k})|| \leq \varepsilon$. We conclude that

$$||x - x_{j_k}|| \leq ||x - \sigma_N(x)|| + ||\sigma_N(x) - \sigma_N(x_{j_k})|| + ||\sigma_N(x_{j_k}) - x_{j_k}|| \leq 3\varepsilon$$

for $k \ge M$. So $x_{j_k} \to x$ in operator norm, as desired.

LEMMA 3.4. (i) Any polynomial formed from U and V and their adjoints belongs to $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ for all $\alpha \leq 1$ and to $\operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ for all $\alpha < 1$.

(ii) Let $x \in \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ $(\alpha \leq 1)$. Then $\|\sigma_N(x)\|_{\alpha} \leq \|x\|_{\alpha}$ for all N and $\sigma_N(x) \to x$ weak^{*}.

(iii) Let $x \in \lim_{\theta} (\mathbb{T}^2)$ ($\alpha < 1$). Then $\sigma_N(x) \to x$ in Lipschitz norm.

Proof. (i) The operators U and V were defined in Section 1. Now U belongs to $\lim_{\theta} (\mathbb{T}^2)$ for $\alpha < 1$ since $\gamma_t^2(U) = U$ and

$$\frac{\|U-\gamma^1_t(U)\|}{t^\alpha} = \frac{\|U-\mathrm{e}^{-\mathrm{i} t}U\|}{t^\alpha} = \frac{|1-\mathrm{e}^{-\mathrm{i} t}|}{t^\alpha} \to 0$$

as $t \to 0$. For $\alpha = 1$ we still have $U \in \operatorname{Lip}^{1}_{\theta}(\mathbb{T}^{2})$ since $|1 - e^{-it}|/t$ is bounded for t > 0. Similar statements hold for V, and so the polynomials formed from U and V and their adjoints belong to $\operatorname{lip}^{\alpha}_{\theta}(\mathbb{T}^{2})$ for $\alpha < 1$ and to $\operatorname{Lip}^{\alpha}_{\theta}(\mathbb{T}^{2})$ for $\alpha \leq 1$ by Proposition 2.2 (i).

(ii) First of all, $\sigma_N(x) \in \operatorname{Lip}^{\alpha}_{\theta}(\mathbb{T}^2)$ by part (i). The sequence is bounded because, using the first formula in Lemma 3.1,

$$\|\sigma_N(x)\|_{\alpha} = \left\| \int \int \gamma_s^1(\gamma_t^2(x)) K_N(s) K_N(t) \, \mathrm{d}s \mathrm{d}t \right\|_{\alpha}$$
$$\leqslant \int \int \|x\|_{\alpha} K_N(s) K_N(t) \, \mathrm{d}s \mathrm{d}t = \|x\|_{\alpha}.$$

 α -Lipschitz algebras on the noncommutative torus

Weak*-convergence then follows from Lemmas 3.2 and 3.3.

(iii) We have $\sigma_N(x) \in \lim_{\theta} (\mathbb{T}^2)$ by part (i). Given $\varepsilon > 0$, find $\delta > 0$ such that $t \leq \delta$ implies $||x - \gamma_t^k(x)|| \leq \varepsilon t^{\alpha}$. Then choose N large enough that $n \geq N$ implies

$$\int_{|s| \ge \delta} K_n(s) \, \mathrm{d}s \leqslant \frac{\varepsilon \delta^\alpha}{\|x\|}.$$

We are going to estimate $||(x - \sigma_n(x)) - \gamma_t^k(x - \sigma_n(x))||$ (hence $L^{\alpha}(x - \sigma_n(x))$) for $n \ge N$ by using the second formula in Lemma 3.1.

For $t \leq \delta$ and $n \geq N$, we have

$$\begin{split} \left\| \int ((x - \gamma_s^1(x)) - \gamma_t^k(x - \gamma_s^1(x))) K_n(s) \, \mathrm{d}s \right\| \\ &= \left\| \int ((x - \gamma_t^k(x)) - \gamma_s^1(x - \gamma_t^k(x))) K_n(s) \, \mathrm{d}s \right\| \\ &\leqslant \int (\|x - \gamma_t^k(x)\| + \|\gamma_s^1(x - \gamma_t^k(x))\|) K_n(s) \, \mathrm{d}s \leqslant 2\varepsilon t^{\alpha}. \end{split}$$

For $t \ge \delta$, our choice of N implies that

$$\left\| \int_{|s| \ge \delta} \left((x - \gamma_s^1(x)) - \gamma_t^k(x - \gamma_s^1(x)) \right) K_n(s) \, \mathrm{d}s \right\| \le \int_{|s| \ge \delta} 4\|x\| K_n(s) \, \mathrm{d}s \le 4\varepsilon \delta^\alpha \le 4\varepsilon t^\alpha$$

for $n \ge N$, while

$$\begin{split} \left\| \int\limits_{|s|\leqslant\delta} \left((x - \gamma_s^1(x)) - \gamma_t^k(x - \gamma_s^1(x)) \right) K_n(s) \, \mathrm{d}s \right\| \\ &\leqslant \int\limits_{|s|\leqslant\delta} \left(\|x - \gamma_s^1(x)\| + \|\gamma_t^k(x - \gamma_s^1(x))\| \right) K_n(s) \, \mathrm{d}s \\ &\leqslant \int\limits_{|s|\leqslant\delta} 2\varepsilon |s|^\alpha K_n(s) \, \mathrm{d}s \leqslant 2\varepsilon \delta^\alpha \leqslant 2\varepsilon t^\alpha \end{split}$$

for $n \ge N$. Thus, for any t > 0 we have a bound of $6\varepsilon t^{\alpha}$ on the first integral in the second formula in Lemma 3.1 as applied to

$$\|(x - \sigma_n(x)) - \gamma_t^k (x - \sigma_n(x))\|;$$

the second integral is bounded similarly. We conclude that $L^{\alpha}(x - \sigma_N(x)) \to 0$, and as we already know that $||x - \sigma_N(x)|| \to 0$ by Lemma 3.2, it follows that $||x - \sigma_N(x)||_{\alpha} \to 0$. THEOREM 3.5. (i) $\operatorname{lip}_{\theta}^{1}(\mathbb{T}^{2}) = \mathbb{C}$.

(ii) The space of polynomials formed from U and V and their adjoints is Lipschitz norm dense in $\lim_{\theta} (\mathbb{T}^2)$ for $\alpha < 1$ and weak*-dense in $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ for $\alpha \leq 1$.

(iii) $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2) \subset C_{\theta}(\mathbb{T}^2)$ for all $\alpha \leq 1$. If $\alpha < 1$ then $\operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ is operator norm (ultraweakly) dense in $C_{\theta}(\mathbb{T}^2)$ ($L_{\theta}^{\infty}(\mathbb{T}^2)$), and if $\alpha \leq 1$ then $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ is operator norm (ultraweakly) dense in $C_{\theta}(\mathbb{T}^2)$ ($L_{\theta}^{\infty}(\mathbb{T}^2)$).

(iv) For $\alpha < \beta \leq 1$ we have $\operatorname{Lip}_{\theta}^{\beta}(\mathbb{T}^2) \subset \operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$, densely in Lipschitz norm.

Proof. (i) It is clear that $\operatorname{lip}^1_{\theta}(\mathbb{T}^2)$ contains the constants. Conversely, for any $x \in \operatorname{Lip}^1_{\theta}(\mathbb{T}^2)$ we have

$$\frac{(x - \gamma_t^k(x))}{t} \to \mathbf{i}[D_k, x]$$

ultraweakly. It follows that $x \in \text{lip}_{\theta}^{1}(\mathbb{T}^{2})$, i.e. $||x - \gamma_{t}^{k}(x)||/t \to 0$, only if $[D_{1}, x] = [D_{2}, x] = 0$. But then

$$0 = \langle [D_1, x] v_{00}, v_{mn} \rangle = m \langle x v_{00}, v_{mn} \rangle$$

implies that the Fourier coefficient a_{mn} vanishes for $m \neq 0$, and similarly a_{mn} vanishes for $n \neq 0$. Thus the Fourier series of x consists of simply a constant term, and convergence of Fourier series (Lemma 3.4 (ii)) implies that x is a constant.

(ii) Containment was proved in Lemma 3.4 (i), and density follows from Lemma 3.4 (ii) and (iii).

(iii) For any $x \in \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ we have $||x - \gamma_t^k(x)|| \leq L^{\alpha}(x)t^{\alpha} \to 0$ as $t \to 0$, so $x \in C_{\theta}(\mathbb{T}^2)$ by Proposition 1.1 (ii). This shows that $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2) \subset C_{\theta}(\mathbb{T}^2)$. The density assertions follow from Lemma 3.4 (i).

(iv) Suppose $x \in \operatorname{Lip}_{\theta}^{\beta}(\mathbb{T}^2)$. Then

$$||x - \gamma_t^k(x)|| \leq L^\beta(x)t^\beta = (L^\beta(x)t^{\beta-\alpha})t^\alpha.$$

As $t^{\beta-\alpha} \to 0$ as $t \to 0$, this shows that $x \in lip^{\alpha}_{\theta}(\mathbb{T}^2)$. Density follows from Lemma 3.4 (i) and (iii).

4. DOUBLE DUALITY

We now aim to prove for any $\alpha < 1$ that $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ is naturally isometrically isomorphic to the double dual of $\lim_{\theta} (\mathbb{T}^2)$. This was established for α -Lipschitz functions on the unit circle in [8] and later generalized to a large class of spaces by many people, most notably in [2] and [10] (see also [29]).

For $n \in \mathbb{N}$ define

$$\mathcal{A}_n = C\left(\left[\frac{\pi}{n+1}, \frac{\pi}{n}\right], C_{\theta}(\mathbb{T}^2)\right),$$

the C*-algebra of continuous functions from the interval $[\pi/(n+1), \pi/n]$ into $C_{\theta}(\mathbb{T}^2)$. By Proposition 1.1 (ii), for any $x \in C_{\theta}(\mathbb{T}^2)$ the function

$$\delta_n^k : t \mapsto \frac{(x - \gamma_t^k(x))}{t^{\alpha}}$$

(with domain $[\pi/(n+1), \pi/n]$) belongs to \mathcal{A}_n , and if $x \in \operatorname{Lip}^{\alpha}_{\theta}(\mathbb{T}^2)$ then these functions have uniformly bounded norms. Thus, we have a map

$$\delta: \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2) \to \bigoplus_n^{\infty} (\mathcal{A}_n \oplus \mathcal{A}_n)$$

into the l^{∞} direct sum, defined by $\delta = \bigoplus (\delta_n^1 \oplus \delta_n^2)$. Note that $x \in \lim_{\theta \to 0} \alpha(\mathbb{T}^2)$ precisely if $\|\delta_n^k(x)\| \to 0$ for k = 1, 2 as $n \to \infty$, so that δ takes $\lim_{\theta \to 0} \alpha(\mathbb{T}^2)$ into the c_0 direct sum $\bigoplus_n^0 (\mathcal{A}_n \oplus \mathcal{A}_n)$. Now define

$$\mathcal{A} = C_{\theta}(\mathbb{T}^2) \oplus \bigoplus_n^{\infty} (\mathcal{A}_n \oplus \mathcal{A}_n)$$

and

$$\mathcal{B} = C_{\theta}(\mathbb{T}^2) \oplus \bigoplus_{n=0}^{n} (\mathcal{A}_n \oplus \mathcal{A}_n)$$

(the l^{∞} and c_0 direct sums, respectively). The map $\Gamma: x \mapsto x \oplus \delta(x)$ defines an isometric embedding of $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ in \mathcal{A} and of $\operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ in $\mathcal{B} \subset \mathcal{A}$.

THEOREM 4.1. Let $0 < \alpha < 1$. Then $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2) \cong \operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)^{**}$.

Proof. We already know from Corollary 2.4 that $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ is a dual space. We begin by defining a map from the dual of $\operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ into the predual of $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$.

Given a bounded linear functional $f \in \text{lip}_{\theta}^{\alpha}(\mathbb{T}^2)^*$, we can extend it to a bounded linear functional $F \in \mathcal{B}^*$ via the embedding Γ of $\lim_{\theta \to 0}^{\alpha}(\mathbb{T}^2)$ in \mathcal{B} . Since \mathcal{B} is a c_0 direct sum its dual space is an l^1 direct sum of the dual summands, i.e.

$$\mathcal{B}^* = C_{\theta}(\mathbb{T}^2)^* \oplus \bigoplus_n {}^1(\mathcal{A}_n^* \oplus \mathcal{A}_n^*).$$

Therefore F has a natural action on \mathcal{A} , i.e. we may consider $F \in \mathcal{A}^*$, hence $F \circ \Gamma \in \operatorname{Lip}^{\alpha}_{\theta}(\mathbb{T}^2)^*$. We now must show that $F \circ \Gamma$ is weak*-continuous on $\operatorname{Lip}^{\alpha}_{\theta}(\mathbb{T}^2)$.

It will suffice to show that $F \circ \Gamma$ is weak*-continuous on the unit ball of $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$. We will apply Lemma 3.3. Thus, let $x, x_m \in \operatorname{ball}(\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2))$ and suppose $x_m \to x$ in operator norm. Let $\varepsilon > 0$. Writing

$$F = F_0 \oplus \bigoplus_n (F_n^1 \oplus F_n^2),$$

we may choose N large enough that $\sum_{n>N} ||F_n^k|| \leq \varepsilon$ for k = 1, 2. Also, from the definition of δ_n^k we have $\delta_n^k(x_m) \to \delta_n^k(x)$ in \mathcal{A}_n for each k and n, so we may then choose M large enough that $m \geq M$ implies

$$\|\delta_n^k(x_m) - \delta_n^k(x)\| \leq \frac{\varepsilon}{N \|F_n^k\|}$$

for k = 1, 2 and all $n \leq N$. We may also take M large enough that $||x_m - x|| \leq \varepsilon/||F_0||$ for $m \geq M$. It follows that $m \geq M$ implies

$$\begin{aligned} |F(\Gamma(x_m)) - F(\Gamma(x))| &\leq |F_0(x_m) - F_0(x)| + \sum_{n,k} |F_n^k(\delta_n^k(x_m)) - F_n^k(\delta_n^k(x))| \\ &\leq ||F_0|| \, ||x_m - x|| + \sum_{n \leq N,k} ||F_n^k|| \, ||\delta_n^k(x_m) - \delta_n^k(x)|| \\ &+ \sum_{n > N,k} ||F_n^k|| \, ||\delta_n^k(x_m) - \delta_n^k(x)|| \\ &\leq \varepsilon + 2N\left(\frac{\varepsilon}{N}\right) + 4\varepsilon = 7\varepsilon. \end{aligned}$$

We conclude that $F(\Gamma(x_m)) \to F(\Gamma(x))$, and this completes the proof that $F \circ \Gamma$ is weak*-continuous on $\operatorname{Lip}^{\alpha}_{\theta}(\mathbb{T}^2)$.

We have seen that every bounded linear functional on $\operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ extends to a weak*-continuous linear functional on $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$. The extension is unique by weak*-density of $\operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ in $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ (Theorem 3.5 (ii)). Thus we may define a map $T : \operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)^* \to \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)_*$ by setting $Tf = F \circ \Gamma$. This map is obviously 1-1, and it is onto since every weak*-continuous linear functional on $\operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ restricts to a bounded linear functional on $\operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$, of which it is then an extension. Also it is clear that $||Tf|| \ge ||f||$, since Tf is an extension of f.

To complete the proof that $\lim_{\theta} (\mathbb{T}^2)^* \cong \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)_*$ we must show that $||Tf|| \leq ||f||$ for any $f \in \operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)^*$. To see this let $x \in \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$. Then for each N, $\sigma_N(x) \in \operatorname{lip}_{\theta}^{\alpha}(\mathbb{T}^2)$ by Lemma 3.4 (i) and $||\sigma_N(x)||_{\alpha} \leq ||x||_{\alpha}$ by Lemma 3.4 (ii), so $|f(\sigma_N(x))| \leq ||f|| \, ||x||_{\alpha}$. But $f(\sigma_N(x)) \to (Tf)(x)$ by weak*-continuity of Tf and Lemma 3.4 (ii), so we conclude that $|(Tf)(x)| \leq ||f|| \, ||x||_{\alpha}$ for all $x \in \operatorname{Lip}_{\theta}^{\alpha}(\mathbb{T}^2)$. Thus $||Tf|| \leq ||f||$.

This research was supported by NSF grant DMS-9424370.

REFERENCES

- R.F. ARENS, J. EELLS JR., On embedding uniform and topological spaces, *Pacific J. Math.* 6(1956), 397-403.
- W.G. BADE, P.C. CURTIS, H.G. DALES, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55(1987), 359– 377.
- 3. O. BRATTELI, D.W. ROBINSON, Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlag, 1979.
- 4. A. CONNES, Compact metric spaces, Fredholm modules, and hyperfiniteness, *Ergodic Theory Dynamics System* **9**(1989), 207–220.
- A. CONNES, Essay on physics and non-commutative geometry, in *The Interface of Mathematics and Particle Physics*, Clarendon Press, 1990, pp. 9–48.
- 6. A. CONNES, Noncommutative Geometry, Academic Press, 1994.
- A. CONNES, J. LOTT, The metric aspect of noncommutative geometry, in New Symmetry Principles in Quantum Field Theory, Plenum Press, 1992, pp. 53–93.
- 8. K. DE LEEUW, Banach spaces of Lipschitz functions, Studia Math. 21(1961), 55–66.
- 9. G.H. HARDY, W.W. ROGOZINSKI, *Fourier Series*, Cambridge Tracts in Math., vol. 38, 1950.
- J.A. JOHNSON, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc. 148(1970), 147–169.
- 11. Y. KATZNELSON, An Introduction to Harmonic Analysis, 2nd edition, Dover, 1976.
- E. MAYER-WOLF, Isometries between Banach spaces of Lipschitz functions, Israel J. Math. 38(1981), 58–74.
- H. MIRKIL, Continuous translation of Hölder and Lipschitz functions, Canad. J. Math. 12(1960), 674–685.
- J. MUSIELAK, Z. SEMADENI, Some classes of Banach spaces depending on a parameter, *Studia Math.* 20(1961), 271–284.
- 15. E. PARK, Isometries of noncommutative metric spaces, manuscript.
- M.A. RIEFFEL, Non-commutative tori a case study of non-commutative differentiable manifolds, *Contemp. Math.* 105(1990), 191–211.
- 17. M.A. RIEFFEL, Comments concerning non-commutative metrics, talk given at October 1993 Amer. Math. Soc. meeting at Texas A & M.
- 18. M.A. RIEFFEL, personal communication.
- D.R. SHERBERT, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111(1964), 240–272.
- L. WAELBROECK, Closed ideals of Lipschitz functions, in *Function Algebras*, Scott, Foresman and Co., 1966, pp. 322–325.
- 21. N. WEAVER, Lattices of Lipschitz functions, Pacific J. Math. 164(1994), 179-193.
- N. WEAVER, Isometries of noncompact Lipschitz spaces, Canad. Math. Bull. 38(1995), 242–249.
- 23. N. WEAVER, Nonatomic Lipschitz spaces, Studia Math. 115(1995), 277–289.
- N. WEAVER, Order completeness in Lipschitz algebras, J. Funct. Anal. 130(1995), 118–130.
- N. WEAVER, Subalgebras of little Lipschitz algebras, *Pacific J. Math.* 173(1996), 283–293.

- N. WEAVER, Lipschitz algebras and derivations of von Neumann algebras, J. Funct. Anal. 139(1996), 261–300.
- 27. N. WEAVER, Deformations of von Neumann algebras, J. Operator Theory **35**(1996), 223–239.
- 28. N. WEAVER, Operator spaces and noncommutative metrics, manuscript.
- 29. N. WEAVER, Quotients of little Lipschitz algebras, *Proc. Amer. Math. Soc.*, to appear.
- 30. A. ZYGMUND, Trigonometric Series, 2nd edition, Cambridge University Press, 1959.

NIK WEAVER Department of Mathematics UCLA Los Angeles, CA 90024 U.S.A. E-mail: nweaver@math.ucla.edu

Received July 14, 1996; revised January 11, 1997.