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The algebra Lip(X) of Lipschitz functions on a complete metric space X plays a
role in noncommutative metric theory similar to that played by the algebra C(K)
in noncommutative topology. For instance, there is a robust duality between met-
ric properties of X and algebraic properties of Lip(X) ([24]) which matches closed
subsets with weak*-closed ideals etc. Furthermore, one has an abstract charac-
terization of Lipschitz algebras in terms of derivations of abelian von Neumann
algebras into abelian operator bimodules ([26]) which admits a natural extension
to the noncommutative setting. For more on noncommutative metrics see [4], [5],
[6], [7], [15], [17] and for more on the particular approach described above see [26],
[27], [28]. The abstract commutative theory of Lipschitz algebras is considered in
[1], [2], [10], [12], [19], [20], [21], [22], [23], [24], [25], [29], among other places.

For 0 < α 6 1 one calls a function f : X → C α-Lipschitz (or Hölder)
if it is Lipschitz with respect to the original metric on X raised to the power
α. The space of α-Lipschitz functions on X is denoted Lipα(X). This concept



124 Nik Weaver

is of interest in connection with little Lipschitz functions. A Lipschitz function
on X is little if its slopes are locally null, i.e. every point has neighborhoods the
restrictions of f to which have arbitrarily small Lipschitz number. The space
of little Lipschitz functions (respectively, little α-Lipschitz functions) is denoted
lip(X) (resp. lipα(X)). In general, there may be no nonconstant little Lipschitz
functions, but for α < 1 little α-Lipschitz functions always exist in abundance.
These notions have long been important in harmonic analysis, and have also played
a special role in the abstract theory of Lipschitz algebras, going back to the seminal
paper [8] which initiated this theory.

At the moment we have no general noncommutative versions of α-Lipschitz or
little Lipschitz functions. However, we wish to show here that there are reasonable
versions of both concepts in relation to the noncommutative torus ([16]). Our
definitions are based on an approach to α-Lipschitz functions on the unit circle
developed in [13]. Thus, we define and study deformed, noncommutative versions
Lipα

θ (T2) and lipα
θ (T2) of the classical algebras Lipα(T2) and lipα(T2). Among our

results is the fact that for α < 1 the space Lipα
θ (T2) is isometrically isomorphic to

the second dual of lipα
θ (T2). This holds in the commutative case by [2].

Our main interest in this material is that it provides a class of examples
of noncommutative metrics which are not differential geometric in nature. For
instance, the operator bimodule in Theorem 2.3 (ii) is not a Hilbert module; also,
the derivation discussed there is not an actual differentiation. Much of what is
done here generalizes immediately to the setting of an arbitrary Lie group acting
on a von Neumann algebra. Another class of noncommutative metrics which are
not Riemannian was given in [28].

Lipschitz functions on the noncommutative torus were discussed in [26] and
some of our results here generalize work done there in the α = 1 case.

1. THE NONCOMMUTATIVE TORUS

We begin with a review of the noncommutative torus, as described in [16]
(we use different notation here). Fix a real number θ ∈ [0, 1) and define unitary
operators U, V ∈ B(l2(Z2)) by setting

Uvmn = v(m+1)n and V vmn = e2πiθmvm(n+1),

where vmn is the canonical basis of l2(Z2). Let Cθ(T2) and L∞θ (T2) respectively
be the C∗-algebra and von Neumann algebra generated by U and V . In the θ = 0
case the Fourier transform identifies Cθ(T2) and L∞θ (T2) with C(T2) and L∞(T2),
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respectively. However, for θ 6= 0 these algebras are noncommutative and our
“function space” notation is merely symbolic.

For x ∈ L∞θ (T2) and N > 0 define

sN (x) =
∑

|m|, |n|6N

amnUmV n

where amn = 〈xv00, vmn〉, and set

σN (x) =
s0 + · · ·+ sN

N + 1
.

These are respectively the partial sums and Cesaro means of the Fourier series of
x. (For basic material on harmonic analysis see [9], [11], or [30].)

Define unbounded self-adjoint operators D1, D2 on l2(Z2) by

D1vmn = mvmn and D2vmn = nvmn.

For θ = 0 these correspond via the Fourier transform to i∂/∂x and i∂/∂y. Then
we have two actions γ1, γ2 of R by automorphisms of L∞θ (T2), given by

γk
t (x) = e−itDkxeitDk

for k = 1, 2. For θ = 0 these correspond to translations of L∞(T2) in the two
variables.

The following was noted in [26], and is probably well-known.

Proposition 1.1. (i) γ1 and γ2 are ultraweakly continuous actions of R on
L∞θ (T2).

(ii) Cθ(T2) is stable for the actions of γ1 and γ2, and consists of precisely
those elements of L∞θ (T2) for which both actions are continuous in operator norm.

(iii) For any x ∈ L∞θ (T2), sN (x) → x ultraweakly.
(iv) For any x ∈ Cθ(T2), σN (x) → x in operator norm.

In [26] we defined a θ-deformed version of the algebra of Lipschitz functions
on T2 by Lipθ(T2) = dom(δ1) ∩ dom(δ2), where δk (k = 1, 2) is the generator of
the flow γk, i.e. δk(x) = i[Dk, x]. This is a variation on a definition in [4]. In the
θ = 0 case it corresponds to precisely the algebra of Lipschitz functions on T2.

The following is also from [26].

Theorem 1.2. (i) Lipθ(T2) is a dual Banach space.
(ii) Lipθ(T2) ⊂ Cθ(T2), densely in operator norm.
(iii) For any x ∈ Lipθ(T2), sN (x) → x in operator norm.

Lipθ(T2) can also be viewed in the following way. Consider E = L∞θ (T2) ⊕
L∞θ (T2) as a Hilbert L∞θ (T2)-bimodule in the natural way. Then one has an un-
bounded derivation δ : L∞θ (T2) → E defined by δ(x) = δ1(x)⊕δ2(x). This exhibits
Lipθ(T2) as the domain of a natural “exterior derivative” on the noncommutative
torus.
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2. NONCOMMUTATIVE α-LIPSCHITZ ALGEBRAS

We retain the notation of the previous section.

Definition 2.1. Let 0 < α 6 1. Then we define Lipα
θ (T2) to be the set of

x ∈ L∞θ (T2) for which there exists a constant C > 0 such that

‖x− γk
t (x)‖ 6 Ctα

for k = 1, 2 and all t > 0. We let Lα(x) be the least such value of C and norm
Lipα

θ (T2) by
‖x‖α = max(‖x‖, Lα(x)),

which we call the Lipschitz norm. We define lipα
θ (T2) to be the set of x ∈ Lipα

θ (T2)
such that

‖x− γk
t (x)‖

tα
→ 0

for k = 1, 2 as t → 0.

Proposition 2.2. (i) Lipα
θ (T2) and lipα

θ (T2) are involutive Banach algebras
for the Lipschitz norm ‖ · ‖α.

(ii) For θ = 0, Lipα
θ (T2) and lipα

θ (T2) are identified by means of the Fourier
transform with the classical α-Lipschitz and little α-Lipschitz algebras on T2, re-
spectively.

Proof. (i) Checking that Lipα
θ (T2) and lipα

θ (T2) are involutive algebras is a
straightforward calculation. For instance, if x and y belong to Lipα

θ (T2) then

‖xy − γk
t (xy)‖ 6 ‖xy − xγk

t (y)‖+ ‖xγk
t (y)− γk

t (x)γk
t (y)‖

6 ‖x‖ ‖y − γk
t (y)‖+ ‖x− γk

t (x)‖ ‖γk
t (y)‖

6 (‖x‖Lα(y) + ‖y‖Lα(x))tα

6 2‖x‖α‖y‖αtα

shows that xy ∈ Lipα
θ (T2). This also shows that ‖xy‖α 6 2‖x‖α‖y‖α, hence

multiplication is continuous for the Lipschitz norm, although note that Lipα
θ (T2)

is not a Banach algebra in the stricter sense of satisfying ‖xy‖ 6 ‖x‖ ‖y‖.
To see that Lipα

θ (T2) is complete for the Lipschitz norm, let (xn) ⊂ Lipα
θ (T2)

be Cauchy. It follows that (xn) is Cauchy in operator norm, hence converges in
this sense to some x ∈ L∞θ (T2). For any t > 0 choose n such that ‖x− xn‖ 6 tα;
then

‖x− γk
t (x)‖ 6 ‖x− xn‖+ ‖xn − γk

t (xn)‖+ ‖γk
t (xn − x)‖

6 tα + Ctα + tα = (C + 2)tα



α-Lipschitz algebras on the noncommutative torus 127

where C = sup ‖xn‖α. This shows that x ∈ Lipα
θ (T2). Furthermore, given ε > 0

choose n large enough that ‖xm − xn‖α 6 ε for all m > n. Then for any t > 0 we
can find m > n so that ‖x− xm‖ 6 εtα, and then

‖(x− xn)− γk
t (x− xn)‖ 6 ‖(x− xm)− γk

t (x− xm)‖+‖(xm−xn)−γk
t (xm − xn)‖

6 2εtα + εtα = 3εtα.

This shows that Lα(xn−x) → 0, and as we already know ‖xn−x‖ → 0, it follows
that ‖xn − x‖α → 0. Thus, Lipα

θ (T2) is complete for the Lipschitz norm.
For completeness of lipα

θ (T2) let (xn) ⊂ lipα
θ (T2) be Cauchy, so that by the

above xn converges in Lipschitz norm to some x ∈ Lipα
θ (T2). We must show

x ∈ lipα
θ (T2). Given ε > 0 choose n such that ‖xm − xn‖α 6 ε for m > n. Then

since xn ∈ lipα
θ (T2) there exists δ > 0 such that t 6 δ implies ‖xn−γk

t (xn)‖ 6 εtα.
For any t 6 δ we can find m > n so that ‖x− xm‖α 6 εtα, and then

‖x− γk
t (x)‖ 6 ‖x− xm‖+ ‖xn − γk

t (xn)‖
+ ‖(xm − xn)− γk

t (xm − xn)‖+ ‖γk
t (xm − x)‖

6 εtα + εtα + εtα + εtα = 4εtα.

This shows that ‖x− γk
t (x)‖/tα → 0 as t → 0, so x ∈ lipα

θ (T2).
(ii) In the θ = 0 case, Lipα

θ (T2) is identified with the set of functions f ∈
L∞(T2) which satisfy

‖f − γk
t (f)‖∞ 6 Ctα

for k = 1, 2 and all t. That is, these are the functions which satisfy

sup{|f(x, y)− f(x + t, y)|, |f(x, y)− f(x, y + t)| : (x, y) ∈ T2} 6 Ctα

for all t > 0. This condition is automatically satisfied by any α-Lipschitz function
on T2; conversely, for any function f which satisfies this condition we have

|f(x1, y2)− f(x2, y2)| 6 |f(x1, y1)− f(x2, y1)|+ |f(x2, y1) + f(x2, y2)|
6 C(dα(x1, x2) + dα(y1, y2))

6 2Cdα((x1, y1), (x2, y2))

where d denotes the ordinary Euclidean distance on T and T2, hence f is α-
Lipschitz. Thus, for θ = 0 we may identify Lipα

θ (T2) with the α-Lipschitz functions
on T2.

To see that lipα
θ (T2) is identified with the little α-Lipschitz functions, suppose

that t 6 δ implies

|f(x, y)− f(x + t, y)|, |f(x, y)− f(x, y + t)| 6 εtα
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for all (x, y) ∈ T2; then d((x1, y1), (x2, y2)) 6 δ implies

|f(x1, y1)− f(x2, y2)| 6 |f(x1, y1)− f(x2, y1)|+ |f(x2, y1)− f(x2, y2)|
6 εdα(x1, x2) + εdα(y1, y2)

6 2εdα((x1, y1), (x2, y2)).

Conversely, if f is a little α-Lipschitz function then for every ε > 0 we can find
δ > 0 such that for all (x1, y1), (x2, y2) ∈ T2, d((x1, y1), (x2, y2)) 6 δ implies

|f(x1, y1)− f(x2, y2)| 6 εdα((x1, y1), (x2, y2)).

(Each point has a neighborhood in which this is true, and then by compactness
we can take δ to be the Lebesgue number of the resulting covering of T2.) In
particular,

|f(x, y)− f(x + t, y)|, |f(x, y)− f(x, y + t)| 6 εtα

for t 6 δ, i.e. ‖f − γk
t (f)‖∞ 6 εtα for t 6 δ.

We now wish to demonstrate that the definitions given in this paper match
up with our previous work, specifically, that Lip1

θ(T2) equals the Lipschitz algebra
Lipθ(T2) defined in [26] (and above in Section 1), and that each Lipα

θ (T2) is a
Lipschitz algebra in the sense of [26], i.e. is the domain of a von Neumann algebra
derivation. For the latter, let

E =
⊕
t>0

∞(L∞θ (T2)⊕ L∞θ (T2))

be the l∞ direct sum of von Neumann algebras. It is a von Neumann algebra, and
it is also a dual operator L∞θ (T2)-bimodule with left action given by the diagonal
embedding of L∞θ (T2) in E and right action given by the embedding

x 7→
⊕
t>0

(γ1
t (x)⊕ γ2

t (x)).

Define an unbounded map δ : L∞θ (T2) → E with domain Lipα
θ (T2) by δ =

⊕
(δ1

t ⊕
δ2
t ) with

δk
t (x) =

x− γk
t (x)

tα
.

Notice that indeed δ(x) ∈ E if x ∈ Lipα
θ (T2) since sup

t,k
‖δk

t (x)‖ = Lα(x) < ∞.
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Theorem 2.3. (i) Lip1
θ(T2) = Lipθ(T2) as sets.

(ii) Lipα
θ (T2) is the domain of an unbounded von Neumann algebra deriva-

tion with weak*-closed graph.

Proof. (i) Let x ∈ L∞θ (T2). Then x ∈ Lip1
θ(T2) if and only if

sup
t>0

{
‖x− γ1

t (x)‖
t

,
‖x− γ2

t (x)‖
t

}
< ∞,

while x ∈ Lipθ(T2) if and only if it belongs to the domains of the generators of γ1

and γ2. According to [3], Proposition 3.1.23, these two conditions are equivalent.
(Note however that the norm ‖x‖1 defined here on Lip1

θ(T2) does not agree with
the norm ‖x‖L given in [26] on Lipθ(T2), although the two are equivalent.)

(ii) An easy calculation shows that the map δ defined before the theorem
is linear and self-adjoint and satisfies the derivation identity (with respect to the
bimodule structure described above), and its domain is Lipα

θ (T2) by definition. To
check ultraweak closure of the graph of δ, suppose xλ ⊕ δ(xλ) is a bounded net
in the graph which converges ultraweakly to some element x ⊕ y ∈ L∞θ (T2) ⊕ E.
(By the Krein-Smulian theorem, it is sufficient to consider bounded nets.) Write
y =

⊕
(y1

t ⊕ y2
t ). Then for each t > 0 we have

yk
t = lim

λ
δk
t (xλ) = lim

λ

(xλ − γk
t (xλ))

tα
=

(x− γk
t (x))

tα

(k = 1, 2). As this holds for all t and

sup
t>0

{‖y1
t ‖, ‖y2

t ‖} = ‖y‖ < ∞,

it follows that x ∈ Lipα
θ (T2) and δ(x) = y. Thus, the graph of δ is weak*-closed.

Corollary 2.4. Lipα
θ (T2) is a dual Banach space.

Proof. For any x ∈ Lipα
θ (T2) we have

‖x‖α = max(‖x‖, Lα(x)) = max
(
‖x‖, sup

t,k

‖x− γk
t (x)‖

tα

)
= max(‖x‖, ‖δ(x)‖) = ‖x⊕ δ(x)‖.

Thus, Lipα
θ (T2) is linearly isometric to the graph of δ. But the latter is an ultra-

weakly closed subspace of L∞θ (T2)⊕ E, hence a dual Banach space.

In consequence of this corollary Lipα
θ (T2) has a weak*-topology. In general

it is distinct from the restriction of the ultraweak topology on L∞θ (T2), which of
course is itself a weak*-topology. To avoid confusion we shall always refer to the
latter topology with the term “ultraweak” rather than “weak*”.
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3. RELATIONS BETWEEN α-LIPSCHITZ SPACES

In this section we investigate the various containments that obtain among
the big and little α-Lipschitz spaces, the algebra of polynomials in U and V ,
Cθ(T2), and L∞θ (T2). Corresponding statements for classical Lipschitz algebras
were proved in [13] and [14] (for the unit circle) and [2] and [25] (for any compact
metric space).

Our first lemma provides basic tools that we will use repeatedly. It is a
noncommutative version of basic facts from harmonic analysis and was proved in
[26]. Let KN be the Fejér kernel,

KN (t) =
N∑

n=−N

(
1− |n|

N + 1

)
eint =

1
N + 1

(
sin((N + 1)t/2)

sin(t/2)

)2

.

It has the properties that:
(1) KN (t) > 0 for all t ∈ [−π, π];

(2)
π∫
−π

KN (t) dt = 1; and

(3) for any ε > 0,
∫

|t|>ε

KN (t) dt → 0 as N →∞.

Lemma 3.1. Let x ∈ L∞θ (T2). Then

σN (x) =

π∫
−π

π∫
−π

γ1
s (γ2

t (x))KN (s)KN (t) dsdt

and

x− σN (x) =

π∫
−π

(x− γ1
s (x))KN (s) ds

+

π∫
−π

γ1
s

( π∫
−π

(x− γ2
t (x))KN (t) dt

)
KN (s) ds,

where all operator integrals are taken in the ultraweak sense.

Lemma 3.2. For any ε > 0 there exists N large enough that ‖x−σn(x)‖ 6 ε

for all x ∈ ball(Lipα
θ (T2)) and n > N .

Proof. Consider the second formula in Lemma 3.1. For any x∈ball(Lipα
θ (T2))

we have∥∥∥ π∫
−π

(x− γ1
s (x))KN (s) ds

∥∥∥ 6

π∫
−π

‖x− γ1
s (x)‖KN (s) ds 6

π∫
−π

|s|αKN (s) ds



α-Lipschitz algebras on the noncommutative torus 131

and

∥∥∥ π∫
−π

γ1
s

( π∫
−π

(x− γ2
t (x))KN (t)dt

)
KN (s) ds

∥∥∥
6

π∫
−π

∥∥∥ π∫
−π

(x− γ2
t (x))KN (t) dt

∥∥∥KN (s) ds =
∥∥∥ π∫
−π

(x− γ2
t (x))KN (t) dt‖

6

π∫
−π

|t|αKN (t) dt.

Since the function t 7→ |t|α is continuous on [−π, π] and vanishes at t = 0, it follows
that

π∫
−π

|t|αKN (t) dt → 0

as N → ∞. The second formula given in Lemma 3.1 then implies that for any
ε > 0 we can choose N large enough that ‖x−σn(x)‖ 6 ε for all x ∈ ball(Lipα

θ (T2))
and n > N .

The next lemma was proved for Lipθ(T2) in [26]. The proof for Lipα
θ (T2)

given here is essentially the same. The result in [26] can also be generalized in a
different direction, in the broad setting of compact groups acting on C∗-algebras
([18]).

Lemma 3.3. On the unit ball of Lipα
θ (T2) the weak*-topology agrees with the

operator norm topology.

Proof. Both topologies are Hausdorff on ball(Lipα
θ (T2)), and the weak*-

topology is compact. Furthermore, the weak*-topology is weaker than the op-
erator norm topology; for if x, xλ ∈ ball(Lipα

θ (T2)) and xλ → x in operator norm,
then in the notation of Section 2 we have δk

t (xλ) → δk
t (x) in operator norm for each

k = 1, 2 and t > 0, hence (by boundedness) xλ ⊕ δ(xλ) → x ⊕ δ(x) ultraweakly,
i.e. xλ → x weak*. Thus, it will suffice to show that the unit ball of Lipα

θ (T2) is
compact in operator norm.

To see this let (xk) ⊂ ball(Lipα
θ (T2)); we will find a subsequence which

converges in operator norm. (Since the topology is metric, we may use sequences
rather than nets.) Recalling the representation on l2(Z2) described in Section 1,
let ak

mn = 〈xkv00, vmn〉 be the Fourier coefficients of xk. Since ‖xk‖ 6 ‖xk‖α 6 1
it follows that |ak

mn| 6 1 for all k, m, n and so we may choose a subsequence xjk

such that the coefficients (ajk
mn) converge for each index m,n.
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Let x be an ultraweak cluster point of (xjk
) and let amn be its Fourier

coefficients; then amn is a cluster point of (ajk
mn) for each m,n. But the latter

sequences have been chosen to converge, so we must have ajk
mn → amn for each

m,n. We will show that xjk
→ x in operator norm.

Given ε > 0, by Lemma 3.2 we can choose N so that

‖x− σN (x)‖, ‖xjk
− σN (xjk

)‖ 6 ε

for all k. By the last paragraph we can then choose M so that k > M implies

|amn − ajk
mn| 6

ε

(2N + 1)2

for all |m|, |n| 6 N . This implies that ‖sn(x) − sn(xjk
)‖ 6 ε for n 6 N hence

‖σN (x)− σN (xjk
)‖ 6 ε. We conclude that

‖x− xjk
‖ 6 ‖x− σN (x)‖+ ‖σN (x)− σN (xjk

)‖+ ‖σN (xjk
)− xjk

‖ 6 3ε

for k > M . So xjk
→ x in operator norm, as desired.

Lemma 3.4. (i) Any polynomial formed from U and V and their adjoints
belongs to Lipα

θ (T2) for all α 6 1 and to lipα
θ (T2) for all α < 1.

(ii) Let x ∈ Lipα
θ (T2) (α 6 1). Then ‖σN (x)‖α 6 ‖x‖α for all N and

σN (x) → x weak∗.
(iii) Let x ∈ lipα

θ (T2) (α < 1). Then σN (x) → x in Lipschitz norm.

Proof. (i) The operators U and V were defined in Section 1. Now U belongs
to lipα

θ (T2) for α < 1 since γ2
t (U) = U and

‖U − γ1
t (U)‖

tα
=
‖U − e−itU‖

tα
=
|1− e−it|

tα
→ 0

as t → 0. For α = 1 we still have U ∈ Lip1
θ(T2) since |1 − e−it|/t is bounded for

t > 0. Similar statements hold for V , and so the polynomials formed from U and
V and their adjoints belong to lipα

θ (T2) for α < 1 and to Lipα
θ (T2) for α 6 1 by

Proposition 2.2 (i).
(ii) First of all, σN (x) ∈ Lipα

θ (T2) by part (i). The sequence is bounded
because, using the first formula in Lemma 3.1,

‖σN (x)‖α =
∥∥∥∫ ∫

γ1
s (γ2

t (x))KN (s)KN (t) dsdt
∥∥∥

α

6
∫ ∫

‖x‖αKN (s)KN (t) dsdt = ‖x‖α.
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Weak*-convergence then follows from Lemmas 3.2 and 3.3.
(iii) We have σN (x) ∈ lipα

θ (T2) by part (i). Given ε > 0, find δ > 0 such that
t 6 δ implies ‖x− γk

t (x)‖ 6 εtα. Then choose N large enough that n > N implies∫
|s|>δ

Kn(s) ds 6
εδα

‖x‖
.

We are going to estimate ‖(x−σn(x))− γk
t (x−σn(x))‖ (hence Lα(x−σn(x))) for

n > N by using the second formula in Lemma 3.1.
For t 6 δ and n > N , we have∥∥∥∫
((x− γ1

s (x))− γk
t (x− γ1

s (x)))Kn(s) ds
∥∥∥

=
∥∥∥∫

((x− γk
t (x))− γ1

s (x− γk
t (x)))Kn(s) ds

∥∥∥
6

∫
(‖x− γk

t (x)‖+ ‖γ1
s (x− γk

t (x))‖)Kn(s) ds 6 2εtα.

For t > δ, our choice of N implies that∥∥∥ ∫
|s|>δ

((x− γ1
s (x))− γk

t (x− γ1
s (x)))Kn(s) ds

∥∥∥ 6
∫

|s|>δ

4‖x‖Kn(s) ds 6 4εδα 6 4εtα

for n > N , while∥∥∥ ∫
|s|6δ

((x− γ1
s (x))− γk

t (x− γ1
s (x)))Kn(s) ds

∥∥∥
6

∫
|s|6δ

(‖x− γ1
s (x)‖+ ‖γk

t (x− γ1
s (x))‖)Kn(s) ds

6
∫

|s|6δ

2ε|s|αKn(s) ds 6 2εδα 6 2εtα

for n > N . Thus, for any t > 0 we have a bound of 6εtα on the first integral in
the second formula in Lemma 3.1 as applied to

‖(x− σn(x))− γk
t (x− σn(x))‖;

the second integral is bounded similarly. We conclude that Lα(x − σN (x)) → 0,
and as we already know that ‖x − σN (x)‖ → 0 by Lemma 3.2, it follows that
‖x− σN (x)‖α → 0.
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Theorem 3.5. (i) lip1
θ(T2) = C.

(ii) The space of polynomials formed from U and V and their adjoints is

Lipschitz norm dense in lipα
θ (T2) for α < 1 and weak∗-dense in Lipα

θ (T2) for

α 6 1.

(iii) Lipα
θ (T2) ⊂ Cθ(T2) for all α 6 1. If α < 1 then lipα

θ (T2) is operator

norm (ultraweakly) dense in Cθ(T2) (L∞θ (T2)), and if α 6 1 then Lipα
θ (T2) is

operator norm (ultraweakly) dense in Cθ(T2) (L∞θ (T2)).

(iv) For α < β 6 1 we have Lipβ
θ (T2) ⊂ lipα

θ (T2), densely in Lipschitz norm.

Proof. (i) It is clear that lip1
θ(T2) contains the constants. Conversely, for any

x ∈ Lip1
θ(T2) we have

(x− γk
t (x))

t
→ i[Dk, x]

ultraweakly. It follows that x ∈ lip1
θ(T2), i.e. ‖x− γk

t (x)‖/t → 0, only if [D1, x] =

[D2, x] = 0. But then

0 = 〈[D1, x]v00, vmn〉 = m〈xv00, vmn〉

implies that the Fourier coefficient amn vanishes for m 6= 0, and similarly amn

vanishes for n 6= 0. Thus the Fourier series of x consists of simply a constant term,

and convergence of Fourier series (Lemma 3.4 (ii)) implies that x is a constant.

(ii) Containment was proved in Lemma 3.4 (i), and density follows from

Lemma 3.4 (ii) and (iii).

(iii) For any x ∈ Lipα
θ (T2) we have ‖x − γk

t (x)‖ 6 Lα(x)tα → 0 as t → 0,

so x ∈ Cθ(T2) by Proposition 1.1 (ii). This shows that Lipα
θ (T2) ⊂ Cθ(T2). The

density assertions follow from Lemma 3.4 (i).

(iv) Suppose x ∈ Lipβ
θ (T2). Then

‖x− γk
t (x)‖ 6 Lβ(x)tβ = (Lβ(x)tβ−α)tα.

As tβ−α → 0 as t → 0, this shows that x ∈ lipα
θ (T2). Density follows from Lemma

3.4 (i) and (iii).
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4. DOUBLE DUALITY

We now aim to prove for any α < 1 that Lipα
θ (T2) is naturally isometrically

isomorphic to the double dual of lipα
θ (T2). This was established for α-Lipschitz

functions on the unit circle in [8] and later generalized to a large class of spaces
by many people, most notably in [2] and [10] (see also [29]).

For n ∈ N define

An = C

([ π

n + 1
,
π

n

]
, Cθ(T2)

)
,

the C∗-algebra of continuous functions from the interval [π/(n + 1), π/n] into
Cθ(T2). By Proposition 1.1 (ii), for any x ∈ Cθ(T2) the function

δk
n : t 7→ (x− γk

t (x))
tα

(with domain [π/(n + 1), π/n]) belongs to An, and if x ∈ Lipα
θ (T2) then these

functions have uniformly bounded norms. Thus, we have a map

δ : Lipα
θ (T2) →

⊕
n

∞(An ⊕An)

into the l∞ direct sum, defined by δ =
⊕

(δ1
n ⊕ δ2

n). Note that x ∈ lipα
θ (T2)

precisely if ‖δk
n(x)‖ → 0 for k = 1, 2 as n → ∞, so that δ takes lipα

θ (T2) into the
c0 direct sum

⊕
n

0(An ⊕An).

Now define
A = Cθ(T2)⊕

⊕
n

∞(An ⊕An)

and
B = Cθ(T2)⊕

⊕
n

0(An ⊕An)

(the l∞ and c0 direct sums, respectively). The map Γ : x 7→ x ⊕ δ(x) defines an
isometric embedding of Lipα

θ (T2) in A and of lipα
θ (T2) in B ⊂ A.

Theorem 4.1. Let 0 < α < 1. Then Lipα
θ (T2) ∼= lipα

θ (T2)∗∗.

Proof. We already know from Corollary 2.4 that Lipα
θ (T2) is a dual space.

We begin by defining a map from the dual of lipα
θ (T2) into the predual of Lipα

θ (T2).
Given a bounded linear functional f ∈ lipα

θ (T2)∗, we can extend it to a
bounded linear functional F ∈ B∗ via the embedding Γ of lipα

θ (T2) in B. Since B
is a c0 direct sum its dual space is an l1 direct sum of the dual summands, i.e.

B∗ = Cθ(T2)∗ ⊕
⊕

n

1(A∗n ⊕A∗n).
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Therefore F has a natural action on A, i.e. we may consider F ∈ A∗, hence
F ◦Γ ∈ Lipα

θ (T2)∗. We now must show that F ◦Γ is weak*-continuous on Lipα
θ (T2).

It will suffice to show that F ◦ Γ is weak*-continuous on the unit ball of
Lipα

θ (T2). We will apply Lemma 3.3. Thus, let x, xm ∈ ball(Lipα
θ (T2)) and suppose

xm → x in operator norm. Let ε > 0. Writing

F = F0 ⊕
⊕

n

(F 1
n ⊕ F 2

n),

we may choose N large enough that
∑

n>N

‖F k
n‖ 6 ε for k = 1, 2. Also, from the

definition of δk
n we have δk

n(xm) → δk
n(x) in An for each k and n, so we may then

choose M large enough that m > M implies

‖δk
n(xm)− δk

n(x)‖ 6
ε

N‖F k
n‖

for k = 1, 2 and all n 6 N . We may also take M large enough that ‖xm − x‖ 6

ε/‖F0‖ for m > M . It follows that m > M implies

|F (Γ(xm))− F (Γ(x))| 6 |F0(xm)− F0(x)|+
∑
n,k

|F k
n (δk

n(xm))− F k
n (δk

n(x))|

6 ‖F0‖ ‖xm − x‖+
∑

n6N,k

‖F k
n‖ ‖δk

n(xm)− δk
n(x)‖

+
∑

n>N,k

‖F k
n‖ ‖δk

n(xm)− δk
n(x)‖

6 ε + 2N
( ε

N

)
+ 4ε = 7ε.

We conclude that F (Γ(xm)) → F (Γ(x)), and this completes the proof that F ◦ Γ
is weak*-continuous on Lipα

θ (T2).
We have seen that every bounded linear functional on lipα

θ (T2) extends to
a weak*-continuous linear functional on Lipα

θ (T2). The extension is unique by
weak*-density of lipα

θ (T2) in Lipα
θ (T2) (Theorem 3.5 (ii)). Thus we may define a

map T : lipα
θ (T2)∗ → Lipα

θ (T2)∗ by setting Tf = F ◦Γ. This map is obviously 1-1,
and it is onto since every weak*-continuous linear functional on Lipα

θ (T2) restricts
to a bounded linear functional on lipα

θ (T2), of which it is then an extension. Also
it is clear that ‖Tf‖ > ‖f‖, since Tf is an extension of f .

To complete the proof that lipα
θ (T2)∗ ∼= Lipα

θ (T2)∗ we must show that ‖Tf‖ 6

‖f‖ for any f ∈ lipα
θ (T2)∗. To see this let x ∈ Lipα

θ (T2). Then for each N ,
σN (x) ∈ lipα

θ (T2) by Lemma 3.4 (i) and ‖σN (x)‖α 6 ‖x‖α by Lemma 3.4 (ii), so
|f(σN (x))| 6 ‖f‖ ‖x‖α. But f(σN (x)) → (Tf)(x) by weak*-continuity of Tf and
Lemma 3.4 (ii), so we conclude that |(Tf)(x)| 6 ‖f‖ ‖x‖α for all x ∈ Lipα

θ (T2).
Thus ‖Tf‖ 6 ‖f‖.
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