α-LIPSCHITZ ALGEBRAS ON THE NONCOMMUTATIVE TORUS

NIK WEAVER

Communicated by Norberto Salinas

Abstract

We define deformed, noncommutative versions of the Lipschitz algebras $\operatorname{Lip}^{\alpha}\left(\mathbb{T}^{2}\right)$ and $\operatorname{lip}^{\alpha}\left(\mathbb{T}^{2}\right)$. Deformation preserves the property that the former is isometrically isomorphic to the second dual of the latter. KEYWORDS: Noncommutative torus, Lipschitz algebras, von Neumann algebras.

AMS Subject Classification: Primary 46L89; Secondary 46L57, 46E25.

The algebra $\operatorname{Lip}(X)$ of Lipschitz functions on a complete metric space X plays a role in noncommutative metric theory similar to that played by the algebra $C(K)$ in noncommutative topology. For instance, there is a robust duality between metric properties of X and algebraic properties of $\operatorname{Lip}(X)([24])$ which matches closed subsets with weak*-closed ideals etc. Furthermore, one has an abstract characterization of Lipschitz algebras in terms of derivations of abelian von Neumann algebras into abelian operator bimodules ([26]) which admits a natural extension to the noncommutative setting. For more on noncommutative metrics see [4], [5], [6], [7], [15], [17] and for more on the particular approach described above see [26], [27], [28]. The abstract commutative theory of Lipschitz algebras is considered in [1], [2], [10], [12], [19], [20], [21], [22], [23], [24], [25], [29], among other places.

For $0<\alpha \leqslant 1$ one calls a function $f: X \rightarrow \mathbb{C} \alpha$-Lipschitz (or Hölder) if it is Lipschitz with respect to the original metric on X raised to the power α. The space of α-Lipschitz functions on X is denoted $\operatorname{Lip}^{\alpha}(X)$. This concept
is of interest in connection with little Lipschitz functions. A Lipschitz function on X is little if its slopes are locally null, i.e. every point has neighborhoods the restrictions of f to which have arbitrarily small Lipschitz number. The space of little Lipschitz functions (respectively, little α-Lipschitz functions) is denoted $\operatorname{lip}(X)\left(\right.$ resp. $\left.\operatorname{lip}^{\alpha}(X)\right)$. In general, there may be no nonconstant little Lipschitz functions, but for $\alpha<1$ little α-Lipschitz functions always exist in abundance. These notions have long been important in harmonic analysis, and have also played a special role in the abstract theory of Lipschitz algebras, going back to the seminal paper [8] which initiated this theory.

At the moment we have no general noncommutative versions of α-Lipschitz or little Lipschitz functions. However, we wish to show here that there are reasonable versions of both concepts in relation to the noncommutative torus ([16]). Our definitions are based on an approach to α-Lipschitz functions on the unit circle developed in [13]. Thus, we define and study deformed, noncommutative versions $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ and $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ of the classical algebras $\operatorname{Lip}^{\alpha}\left(\mathbb{T}^{2}\right)$ and $\operatorname{lip}^{\alpha}\left(\mathbb{T}^{2}\right)$. Among our results is the fact that for $\alpha<1$ the space $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is isometrically isomorphic to the second dual of $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$. This holds in the commutative case by [2].

Our main interest in this material is that it provides a class of examples of noncommutative metrics which are not differential geometric in nature. For instance, the operator bimodule in Theorem 2.3 (ii) is not a Hilbert module; also, the derivation discussed there is not an actual differentiation. Much of what is done here generalizes immediately to the setting of an arbitrary Lie group acting on a von Neumann algebra. Another class of noncommutative metrics which are not Riemannian was given in [28].

Lipschitz functions on the noncommutative torus were discussed in [26] and some of our results here generalize work done there in the $\alpha=1$ case.

1. THE NONCOMMUTATIVE TORUS

We begin with a review of the noncommutative torus, as described in [16] (we use different notation here). Fix a real number $\theta \in[0,1)$ and define unitary operators $U, V \in B\left(l^{2}\left(\mathbb{Z}^{2}\right)\right)$ by setting

$$
U v_{m n}=v_{(m+1) n} \quad \text { and } \quad V v_{m n}=\mathrm{e}^{2 \pi \mathrm{i} \theta m} v_{m(n+1)}
$$

where $v_{m n}$ is the canonical basis of $l^{2}\left(\mathbb{Z}^{2}\right)$. Let $C_{\theta}\left(\mathbb{T}^{2}\right)$ and $L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$ respectively be the C^{*}-algebra and von Neumann algebra generated by U and V. In the $\theta=0$ case the Fourier transform identifies $C_{\theta}\left(\mathbb{T}^{2}\right)$ and $L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$ with $C\left(\mathbb{T}^{2}\right)$ and $L^{\infty}\left(\mathbb{T}^{2}\right)$,
respectively. However, for $\theta \neq 0$ these algebras are noncommutative and our "function space" notation is merely symbolic.

For $x \in L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$ and $N \geqslant 0$ define

$$
s_{N}(x)=\sum_{|m|,|n| \leqslant N} a_{m n} U^{m} V^{n}
$$

where $a_{m n}=\left\langle x v_{00}, v_{m n}\right\rangle$, and set

$$
\sigma_{N}(x)=\frac{s_{0}+\cdots+s_{N}}{N+1}
$$

These are respectively the partial sums and Cesaro means of the Fourier series of x. (For basic material on harmonic analysis see [9], [11], or [30].)

Define unbounded self-adjoint operators D_{1}, D_{2} on $l^{2}\left(\mathbb{Z}^{2}\right)$ by

$$
D_{1} v_{m n}=m v_{m n} \quad \text { and } \quad D_{2} v_{m n}=n v_{m n}
$$

For $\theta=0$ these correspond via the Fourier transform to $\mathrm{i} \partial / \partial x$ and $\mathrm{i} \partial / \partial y$. Then we have two actions γ^{1}, γ^{2} of \mathbb{R} by automorphisms of $L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$, given by

$$
\gamma_{t}^{k}(x)=\mathrm{e}^{-\mathrm{i} t D_{k}} x \mathrm{e}^{\mathrm{i} t D_{k}}
$$

for $k=1,2$. For $\theta=0$ these correspond to translations of $L^{\infty}\left(\mathbb{T}^{2}\right)$ in the two variables.

The following was noted in [26], and is probably well-known.
Proposition 1.1. (i) γ^{1} and γ^{2} are ultraweakly continuous actions of \mathbb{R} on $L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$.
(ii) $C_{\theta}\left(\mathbb{T}^{2}\right)$ is stable for the actions of γ^{1} and γ^{2}, and consists of precisely those elements of $L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$ for which both actions are continuous in operator norm.
(iii) For any $x \in L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right), s_{N}(x) \rightarrow x$ ultraweakly.
(iv) For any $x \in C_{\theta}\left(\mathbb{T}^{2}\right), \sigma_{N}(x) \rightarrow x$ in operator norm.

In [26] we defined a θ-deformed version of the algebra of Lipschitz functions on \mathbb{T}^{2} by $\operatorname{Lip}_{\theta}\left(\mathbb{T}^{2}\right)=\operatorname{dom}\left(\delta_{1}\right) \cap \operatorname{dom}\left(\delta_{2}\right)$, where $\delta_{k}(k=1,2)$ is the generator of the flow γ^{k}, i.e. $\delta_{k}(x)=\mathrm{i}\left[D_{k}, x\right]$. This is a variation on a definition in [4]. In the $\theta=0$ case it corresponds to precisely the algebra of Lipschitz functions on \mathbb{T}^{2}.

The following is also from [26].
Theorem 1.2. (i) $\operatorname{Lip}_{\theta}\left(\mathbb{T}^{2}\right)$ is a dual Banach space.
(ii) $\operatorname{Lip}_{\theta}\left(\mathbb{T}^{2}\right) \subset C_{\theta}\left(\mathbb{T}^{2}\right)$, densely in operator norm.
(iii) For any $x \in \operatorname{Lip}_{\theta}\left(\mathbb{T}^{2}\right), s_{N}(x) \rightarrow x$ in operator norm.
$\operatorname{Lip}_{\theta}\left(\mathbb{T}^{2}\right)$ can also be viewed in the following way. Consider $E=L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right) \oplus$ $L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$ as a Hilbert $L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$-bimodule in the natural way. Then one has an unbounded derivation $\delta: L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right) \rightarrow E$ defined by $\delta(x)=\delta_{1}(x) \oplus \delta_{2}(x)$. This exhibits $\operatorname{Lip}_{\theta}\left(\mathbb{T}^{2}\right)$ as the domain of a natural "exterior derivative" on the noncommutative torus.

2. NONCOMMUTATIVE α-LIPSCHITZ ALGEBRAS

We retain the notation of the previous section.
Definition 2.1. Let $0<\alpha \leqslant 1$. Then we define $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ to be the set of $x \in L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$ for which there exists a constant $C \geqslant 0$ such that

$$
\left\|x-\gamma_{t}^{k}(x)\right\| \leqslant C t^{\alpha}
$$

for $k=1,2$ and all $t>0$. We let $L^{\alpha}(x)$ be the least such value of C and norm $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ by

$$
\|x\|_{\alpha}=\max \left(\|x\|, L^{\alpha}(x)\right)
$$

which we call the Lipschitz norm. We define $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ to be the set of $x \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ such that

$$
\frac{\left\|x-\gamma_{t}^{k}(x)\right\|}{t^{\alpha}} \rightarrow 0
$$

for $k=1,2$ as $t \rightarrow 0$.
Proposition 2.2. (i) $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ and $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ are involutive Banach algebras for the Lipschitz norm $\|\cdot\|_{\alpha}$.
(ii) For $\theta=0, \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ and $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ are identified by means of the Fourier transform with the classical α-Lipschitz and little α-Lipschitz algebras on \mathbb{T}^{2}, respectively.

Proof. (i) Checking that $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ and $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ are involutive algebras is a straightforward calculation. For instance, if x and y belong to $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ then

$$
\begin{aligned}
\left\|x y-\gamma_{t}^{k}(x y)\right\| & \leqslant\left\|x y-x \gamma_{t}^{k}(y)\right\|+\left\|x \gamma_{t}^{k}(y)-\gamma_{t}^{k}(x) \gamma_{t}^{k}(y)\right\| \\
& \leqslant\|x\|\left\|y-\gamma_{t}^{k}(y)\right\|+\left\|x-\gamma_{t}^{k}(x)\right\|\left\|\gamma_{t}^{k}(y)\right\| \\
& \leqslant\left(\|x\| L^{\alpha}(y)+\|y\| L^{\alpha}(x)\right) t^{\alpha} \\
& \leqslant 2\|x\|_{\alpha}\|y\|_{\alpha} t^{\alpha}
\end{aligned}
$$

shows that $x y \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$. This also shows that $\|x y\|_{\alpha} \leqslant 2\|x\|_{\alpha}\|y\|_{\alpha}$, hence multiplication is continuous for the Lipschitz norm, although note that $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is not a Banach algebra in the stricter sense of satisfying $\|x y\| \leqslant\|x\|\|y\|$.

To see that $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is complete for the Lipschitz norm, let $\left(x_{n}\right) \subset \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ be Cauchy. It follows that $\left(x_{n}\right)$ is Cauchy in operator norm, hence converges in this sense to some $x \in L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$. For any $t>0$ choose n such that $\left\|x-x_{n}\right\| \leqslant t^{\alpha}$; then

$$
\begin{aligned}
\left\|x-\gamma_{t}^{k}(x)\right\| & \leqslant\left\|x-x_{n}\right\|+\left\|x_{n}-\gamma_{t}^{k}\left(x_{n}\right)\right\|+\left\|\gamma_{t}^{k}\left(x_{n}-x\right)\right\| \\
& \leqslant t^{\alpha}+C t^{\alpha}+t^{\alpha}=(C+2) t^{\alpha}
\end{aligned}
$$

where $C=\sup \left\|x_{n}\right\|_{\alpha}$. This shows that $x \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$. Furthermore, given $\varepsilon>0$ choose n large enough that $\left\|x_{m}-x_{n}\right\|_{\alpha} \leqslant \varepsilon$ for all $m>n$. Then for any $t>0$ we can find $m>n$ so that $\left\|x-x_{m}\right\| \leqslant \varepsilon t^{\alpha}$, and then

$$
\begin{aligned}
\left\|\left(x-x_{n}\right)-\gamma_{t}^{k}\left(x-x_{n}\right)\right\| & \leqslant\left\|\left(x-x_{m}\right)-\gamma_{t}^{k}\left(x-x_{m}\right)\right\|+\left\|\left(x_{m}-x_{n}\right)-\gamma_{t}^{k}\left(x_{m}-x_{n}\right)\right\| \\
& \leqslant 2 \varepsilon t^{\alpha}+\varepsilon t^{\alpha}=3 \varepsilon t^{\alpha} .
\end{aligned}
$$

This shows that $L^{\alpha}\left(x_{n}-x\right) \rightarrow 0$, and as we already know $\left\|x_{n}-x\right\| \rightarrow 0$, it follows that $\left\|x_{n}-x\right\|_{\alpha} \rightarrow 0$. Thus, $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is complete for the Lipschitz norm.

For completeness of $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ let $\left(x_{n}\right) \subset \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ be Cauchy, so that by the above x_{n} converges in Lipschitz norm to some $x \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$. We must show $x \in \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$. Given $\varepsilon>0$ choose n such that $\left\|x_{m}-x_{n}\right\|_{\alpha} \leqslant \varepsilon$ for $m>n$. Then since $x_{n} \in \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ there exists $\delta>0$ such that $t \leqslant \delta$ implies $\left\|x_{n}-\gamma_{t}^{k}\left(x_{n}\right)\right\| \leqslant \varepsilon t^{\alpha}$. For any $t \leqslant \delta$ we can find $m>n$ so that $\left\|x-x_{m}\right\|_{\alpha} \leqslant \varepsilon t^{\alpha}$, and then

$$
\begin{aligned}
&\left\|x-\gamma_{t}^{k}(x)\right\| \leqslant\left\|x-x_{m}\right\|+\left\|x_{n}-\gamma_{t}^{k}\left(x_{n}\right)\right\| \\
&+\left\|\left(x_{m}-x_{n}\right)-\gamma_{t}^{k}\left(x_{m}-x_{n}\right)\right\|+\left\|\gamma_{t}^{k}\left(x_{m}-x\right)\right\| \\
& \leqslant \varepsilon t^{\alpha}+\varepsilon t^{\alpha}+\varepsilon t^{\alpha}+\varepsilon t^{\alpha}=4 \varepsilon t^{\alpha}
\end{aligned}
$$

This shows that $\left\|x-\gamma_{t}^{k}(x)\right\| / t^{\alpha} \rightarrow 0$ as $t \rightarrow 0$, so $x \in \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$.
(ii) In the $\theta=0$ case, $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is identified with the set of functions $f \in$ $L^{\infty}\left(\mathbb{T}^{2}\right)$ which satisfy

$$
\left\|f-\gamma_{t}^{k}(f)\right\|_{\infty} \leqslant C t^{\alpha}
$$

for $k=1,2$ and all t. That is, these are the functions which satisfy

$$
\sup \left\{|f(x, y)-f(x+t, y)|,|f(x, y)-f(x, y+t)|:(x, y) \in \mathbb{T}^{2}\right\} \leqslant C t^{\alpha}
$$

for all $t>0$. This condition is automatically satisfied by any α-Lipschitz function on \mathbb{T}^{2}; conversely, for any function f which satisfies this condition we have

$$
\begin{aligned}
\left|f\left(x_{1}, y_{2}\right)-f\left(x_{2}, y_{2}\right)\right| & \leqslant\left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{1}\right)\right|+\left|f\left(x_{2}, y_{1}\right)+f\left(x_{2}, y_{2}\right)\right| \\
& \leqslant C\left(d^{\alpha}\left(x_{1}, x_{2}\right)+d^{\alpha}\left(y_{1}, y_{2}\right)\right) \\
& \leqslant 2 C d^{\alpha}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)
\end{aligned}
$$

where d denotes the ordinary Euclidean distance on \mathbb{T} and \mathbb{T}^{2}, hence f is α Lipschitz. Thus, for $\theta=0$ we may identify $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ with the α-Lipschitz functions on \mathbb{T}^{2}.

To see that $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is identified with the little α-Lipschitz functions, suppose that $t \leqslant \delta$ implies

$$
|f(x, y)-f(x+t, y)|,|f(x, y)-f(x, y+t)| \leqslant \varepsilon t^{\alpha}
$$

for all $(x, y) \in \mathbb{T}^{2}$; then $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \leqslant \delta$ implies

$$
\begin{aligned}
\left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}\right)\right| & \leqslant\left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{1}\right)\right|+\left|f\left(x_{2}, y_{1}\right)-f\left(x_{2}, y_{2}\right)\right| \\
& \leqslant \varepsilon d^{\alpha}\left(x_{1}, x_{2}\right)+\varepsilon d^{\alpha}\left(y_{1}, y_{2}\right) \\
& \leqslant 2 \varepsilon d^{\alpha}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)
\end{aligned}
$$

Conversely, if f is a little α-Lipschitz function then for every $\varepsilon>0$ we can find $\delta>0$ such that for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{T}^{2}, d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \leqslant \delta$ implies

$$
\left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}\right)\right| \leqslant \varepsilon d^{\alpha}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)
$$

(Each point has a neighborhood in which this is true, and then by compactness we can take δ to be the Lebesgue number of the resulting covering of \mathbb{T}^{2}.) In particular,

$$
|f(x, y)-f(x+t, y)|,|f(x, y)-f(x, y+t)| \leqslant \varepsilon t^{\alpha}
$$

for $t \leqslant \delta$, i.e. $\left\|f-\gamma_{t}^{k}(f)\right\|_{\infty} \leqslant \varepsilon t^{\alpha}$ for $t \leqslant \delta$.
We now wish to demonstrate that the definitions given in this paper match up with our previous work, specifically, that $\operatorname{Lip}_{\theta}^{1}\left(\mathbb{T}^{2}\right)$ equals the Lipschitz algebra $\operatorname{Lip}_{\theta}\left(\mathbb{T}^{2}\right)$ defined in [26] (and above in Section 1), and that each $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is a Lipschitz algebra in the sense of [26], i.e. is the domain of a von Neumann algebra derivation. For the latter, let

$$
E=\bigoplus_{t>0}^{\infty}\left(L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right) \oplus L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)\right)
$$

be the l^{∞} direct sum of von Neumann algebras. It is a von Neumann algebra, and it is also a dual operator $L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$-bimodule with left action given by the diagonal embedding of $L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$ in E and right action given by the embedding

$$
x \mapsto \bigoplus_{t>0}\left(\gamma_{t}^{1}(x) \oplus \gamma_{t}^{2}(x)\right)
$$

Define an unbounded map $\delta: L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right) \rightarrow E$ with domain $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ by $\delta=\bigoplus\left(\delta_{t}^{1} \oplus\right.$ δ_{t}^{2}) with

$$
\delta_{t}^{k}(x)=\frac{x-\gamma_{t}^{k}(x)}{t^{\alpha}}
$$

Notice that indeed $\delta(x) \in E$ if $x \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ since $\sup _{t, k}\left\|\delta_{t}^{k}(x)\right\|=L^{\alpha}(x)<\infty$.

Theorem 2.3. (i) $\operatorname{Lip}_{\theta}^{1}\left(\mathbb{T}^{2}\right)=\operatorname{Lip}_{\theta}\left(\mathbb{T}^{2}\right)$ as sets.
(ii) $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is the domain of an unbounded von Neumann algebra derivation with weak*-closed graph.

Proof. (i) Let $x \in L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$. Then $x \in \operatorname{Lip}_{\theta}^{1}\left(\mathbb{T}^{2}\right)$ if and only if

$$
\sup _{t>0}\left\{\frac{\left\|x-\gamma_{t}^{1}(x)\right\|}{t}, \frac{\left\|x-\gamma_{t}^{2}(x)\right\|}{t}\right\}<\infty
$$

while $x \in \operatorname{Lip}_{\theta}\left(\mathbb{T}^{2}\right)$ if and only if it belongs to the domains of the generators of γ^{1} and γ^{2}. According to [3], Proposition 3.1.23, these two conditions are equivalent. (Note however that the norm $\|x\|_{1}$ defined here on $\operatorname{Lip}_{\theta}^{1}\left(\mathbb{T}^{2}\right)$ does not agree with the norm $\|x\|_{L}$ given in [26] on $\operatorname{Lip}_{\theta}\left(\mathbb{T}^{2}\right)$, although the two are equivalent.)
(ii) An easy calculation shows that the map δ defined before the theorem is linear and self-adjoint and satisfies the derivation identity (with respect to the bimodule structure described above), and its domain is $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ by definition. To check ultraweak closure of the graph of δ, suppose $x_{\lambda} \oplus \delta\left(x_{\lambda}\right)$ is a bounded net in the graph which converges ultraweakly to some element $x \oplus y \in L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right) \oplus E$. (By the Krein-Smulian theorem, it is sufficient to consider bounded nets.) Write $y=\bigoplus\left(y_{t}^{1} \oplus y_{t}^{2}\right)$. Then for each $t>0$ we have

$$
y_{t}^{k}=\lim _{\lambda} \delta_{t}^{k}\left(x_{\lambda}\right)=\lim _{\lambda} \frac{\left(x_{\lambda}-\gamma_{t}^{k}\left(x_{\lambda}\right)\right)}{t^{\alpha}}=\frac{\left(x-\gamma_{t}^{k}(x)\right)}{t^{\alpha}}
$$

$(k=1,2)$. As this holds for all t and

$$
\sup _{t>0}\left\{\left\|y_{t}^{1}\right\|,\left\|y_{t}^{2}\right\|\right\}=\|y\|<\infty
$$

it follows that $x \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ and $\delta(x)=y$. Thus, the graph of δ is weak*-closed.

Corollary 2.4. $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is a dual Banach space.

Proof. For any $x \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ we have

$$
\begin{aligned}
\|x\|_{\alpha} & =\max \left(\|x\|, L^{\alpha}(x)\right)=\max \left(\|x\|, \sup _{t, k} \frac{\left\|x-\gamma_{t}^{k}(x)\right\|}{t^{\alpha}}\right) \\
& =\max (\|x\|,\|\delta(x)\|)=\|x \oplus \delta(x)\| .
\end{aligned}
$$

Thus, $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is linearly isometric to the graph of δ. But the latter is an ultraweakly closed subspace of $L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right) \oplus E$, hence a dual Banach space.

In consequence of this corollary $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ has a weak*-topology. In general it is distinct from the restriction of the ultraweak topology on $L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$, which of course is itself a weak*-topology. To avoid confusion we shall always refer to the latter topology with the term "ultraweak" rather than "weak*".

3. RELATIONS BETWEEN α-LIPSCHITZ SPACES

In this section we investigate the various containments that obtain among the big and little α-Lipschitz spaces, the algebra of polynomials in U and V, $C_{\theta}\left(\mathbb{T}^{2}\right)$, and $L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$. Corresponding statements for classical Lipschitz algebras were proved in [13] and [14] (for the unit circle) and [2] and [25] (for any compact metric space).

Our first lemma provides basic tools that we will use repeatedly. It is a noncommutative version of basic facts from harmonic analysis and was proved in [26]. Let K_{N} be the Fejér kernel,

$$
K_{N}(t)=\sum_{n=-N}^{N}\left(1-\frac{|n|}{N+1}\right) \mathrm{e}^{\mathrm{i} n t}=\frac{1}{N+1}\left(\frac{\sin ((N+1) t / 2)}{\sin (t / 2)}\right)^{2}
$$

It has the properties that:
(1) $K_{N}(t) \geqslant 0$ for all $t \in[-\pi, \pi]$;
(2) $\int_{-\pi}^{\pi} K_{N}(t) \mathrm{d} t=1$; and
(3) for any $\varepsilon>0, \int_{|t| \geqslant \varepsilon} K_{N}(t) \mathrm{d} t \rightarrow 0$ as $N \rightarrow \infty$.

Lemma 3.1. Let $x \in L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)$. Then

$$
\sigma_{N}(x)=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \gamma_{s}^{1}\left(\gamma_{t}^{2}(x)\right) K_{N}(s) K_{N}(t) \mathrm{d} s \mathrm{~d} t
$$

and

$$
\begin{aligned}
x-\sigma_{N}(x)= & \int_{-\pi}^{\pi}\left(x-\gamma_{s}^{1}(x)\right) K_{N}(s) \mathrm{d} s \\
& +\int_{-\pi}^{\pi} \gamma_{s}^{1}\left(\int_{-\pi}^{\pi}\left(x-\gamma_{t}^{2}(x)\right) K_{N}(t) \mathrm{d} t\right) K_{N}(s) \mathrm{d} s
\end{aligned}
$$

where all operator integrals are taken in the ultraweak sense.
Lemma 3.2. For any $\varepsilon>0$ there exists N large enough that $\left\|x-\sigma_{n}(x)\right\| \leqslant \varepsilon$ for all $x \in \operatorname{ball}\left(\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)\right)$ and $n \geqslant N$.

Proof. Consider the second formula in Lemma 3.1. For any $x \in \operatorname{ball}\left(\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)\right)$ we have

$$
\left\|\int_{-\pi}^{\pi}\left(x-\gamma_{s}^{1}(x)\right) K_{N}(s) \mathrm{d} s\right\| \leqslant \int_{-\pi}^{\pi}\left\|x-\gamma_{s}^{1}(x)\right\| K_{N}(s) \mathrm{d} s \leqslant \int_{-\pi}^{\pi}|s|^{\alpha} K_{N}(s) \mathrm{d} s
$$

and

$$
\begin{aligned}
& \left\|\int_{-\pi}^{\pi} \gamma_{s}^{1}\left(\int_{-\pi}^{\pi}\left(x-\gamma_{t}^{2}(x)\right) K_{N}(t) \mathrm{d} t\right) K_{N}(s) \mathrm{d} s\right\|_{-\pi}^{\pi} \\
& \quad \leqslant \int_{-\pi}^{\pi}\left\|\int_{-\pi}^{\pi}\left(x-\gamma_{t}^{2}(x)\right) K_{N}(t) \mathrm{d} t\right\| K_{N}(s) \mathrm{d} s=\left\|\int_{-\pi}^{\pi}\left(x-\gamma_{t}^{2}(x)\right) K_{N}(t) \mathrm{d} t\right\| \\
& \quad \leqslant \int_{-\pi}^{\pi}|t|^{\alpha} K_{N}(t) \mathrm{d} t
\end{aligned}
$$

Since the function $t \mapsto|t|^{\alpha}$ is continuous on $[-\pi, \pi]$ and vanishes at $t=0$, it follows that

$$
\int_{-\pi}^{\pi}|t|^{\alpha} K_{N}(t) \mathrm{d} t \rightarrow 0
$$

as $N \rightarrow \infty$. The second formula given in Lemma 3.1 then implies that for any $\varepsilon>0$ we can choose N large enough that $\left\|x-\sigma_{n}(x)\right\| \leqslant \varepsilon$ for all $x \in \operatorname{ball}\left(\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)\right)$ and $n \geqslant N$.

The next lemma was proved for $\operatorname{Lip}_{\theta}\left(\mathbb{T}^{2}\right)$ in [26]. The proof for $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ given here is essentially the same. The result in [26] can also be generalized in a different direction, in the broad setting of compact groups acting on C^{*}-algebras ([18]).

Lemma 3.3. On the unit ball of $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ the weak ${ }^{*}$-topology agrees with the operator norm topology.

Proof. Both topologies are Hausdorff on $\operatorname{ball}\left(\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)\right)$, and the weak*topology is compact. Furthermore, the weak*-topology is weaker than the operator norm topology; for if $x, x_{\lambda} \in \operatorname{ball}\left(\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)\right)$ and $x_{\lambda} \rightarrow x$ in operator norm, then in the notation of Section 2 we have $\delta_{t}^{k}\left(x_{\lambda}\right) \rightarrow \delta_{t}^{k}(x)$ in operator norm for each $k=1,2$ and $t>0$, hence (by boundedness) $x_{\lambda} \oplus \delta\left(x_{\lambda}\right) \rightarrow x \oplus \delta(x)$ ultraweakly, i.e. $x_{\lambda} \rightarrow x$ weak* Thus, it will suffice to show that the unit ball of $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is compact in operator norm.

To see this let $\left(x_{k}\right) \subset \operatorname{ball}\left(\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)\right)$; we will find a subsequence which converges in operator norm. (Since the topology is metric, we may use sequences rather than nets.) Recalling the representation on $l^{2}\left(\mathbb{Z}^{2}\right)$ described in Section 1, let $a_{m n}^{k}=\left\langle x_{k} v_{00}, v_{m n}\right\rangle$ be the Fourier coefficients of x_{k}. Since $\left\|x_{k}\right\| \leqslant\left\|x_{k}\right\|_{\alpha} \leqslant 1$ it follows that $\left|a_{m n}^{k}\right| \leqslant 1$ for all k, m, n and so we may choose a subsequence $x_{j_{k}}$ such that the coefficients $\left(a_{m n}^{j_{k}}\right)$ converge for each index m, n.

Let x be an ultraweak cluster point of $\left(x_{j_{k}}\right)$ and let $a_{m n}$ be its Fourier coefficients; then $a_{m n}$ is a cluster point of $\left(a_{m n}^{j_{k}}\right)$ for each m, n. But the latter sequences have been chosen to converge, so we must have $a_{m n}^{j_{k}} \rightarrow a_{m n}$ for each m, n. We will show that $x_{j_{k}} \rightarrow x$ in operator norm.

Given $\varepsilon>0$, by Lemma 3.2 we can choose N so that

$$
\left\|x-\sigma_{N}(x)\right\|,\left\|x_{j_{k}}-\sigma_{N}\left(x_{j_{k}}\right)\right\| \leqslant \varepsilon
$$

for all k. By the last paragraph we can then choose M so that $k \geqslant M$ implies

$$
\left|a_{m n}-a_{m n}^{j_{k}}\right| \leqslant \frac{\varepsilon}{(2 N+1)^{2}}
$$

for all $|m|,|n| \leqslant N$. This implies that $\left\|s_{n}(x)-s_{n}\left(x_{j_{k}}\right)\right\| \leqslant \varepsilon$ for $n \leqslant N$ hence $\left\|\sigma_{N}(x)-\sigma_{N}\left(x_{j_{k}}\right)\right\| \leqslant \varepsilon$. We conclude that

$$
\left\|x-x_{j_{k}}\right\| \leqslant\left\|x-\sigma_{N}(x)\right\|+\left\|\sigma_{N}(x)-\sigma_{N}\left(x_{j_{k}}\right)\right\|+\left\|\sigma_{N}\left(x_{j_{k}}\right)-x_{j_{k}}\right\| \leqslant 3 \varepsilon
$$

for $k \geqslant M$. So $x_{j_{k}} \rightarrow x$ in operator norm, as desired.
Lemma 3.4. (i) Any polynomial formed from U and V and their adjoints belongs to $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ for all $\alpha \leqslant 1$ and to $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ for all $\alpha<1$.
(ii) Let $x \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)(\alpha \leqslant 1)$. Then $\left\|\sigma_{N}(x)\right\|_{\alpha} \leqslant\|x\|_{\alpha}$ for all N and $\sigma_{N}(x) \rightarrow x$ weak ${ }^{*}$.
(iii) Let $x \in \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)(\alpha<1)$. Then $\sigma_{N}(x) \rightarrow x$ in Lipschitz norm.

Proof. (i) The operators U and V were defined in Section 1. Now U belongs to $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ for $\alpha<1$ since $\gamma_{t}^{2}(U)=U$ and

$$
\frac{\left\|U-\gamma_{t}^{1}(U)\right\|}{t^{\alpha}}=\frac{\left\|U-\mathrm{e}^{-\mathrm{i} t} U\right\|}{t^{\alpha}}=\frac{\left|1-\mathrm{e}^{-\mathrm{i} t}\right|}{t^{\alpha}} \rightarrow 0
$$

as $t \rightarrow 0$. For $\alpha=1$ we still have $U \in \operatorname{Lip}_{\theta}^{1}\left(\mathbb{T}^{2}\right)$ since $\left|1-\mathrm{e}^{-\mathrm{i} t}\right| / t$ is bounded for $t>0$. Similar statements hold for V, and so the polynomials formed from U and V and their adjoints belong to $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ for $\alpha<1$ and to $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ for $\alpha \leqslant 1$ by Proposition 2.2 (i).
(ii) First of all, $\sigma_{N}(x) \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ by part (i). The sequence is bounded because, using the first formula in Lemma 3.1,

$$
\begin{aligned}
\left\|\sigma_{N}(x)\right\|_{\alpha} & =\left\|\iint \gamma_{s}^{1}\left(\gamma_{t}^{2}(x)\right) K_{N}(s) K_{N}(t) \mathrm{d} s \mathrm{~d} t\right\|_{\alpha} \\
& \leqslant \iint\|x\|_{\alpha} K_{N}(s) K_{N}(t) \mathrm{d} s \mathrm{~d} t=\|x\|_{\alpha}
\end{aligned}
$$

Weak*-convergence then follows from Lemmas 3.2 and 3.3.
(iii) We have $\sigma_{N}(x) \in \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ by part (i). Given $\varepsilon>0$, find $\delta>0$ such that $t \leqslant \delta$ implies $\left\|x-\gamma_{t}^{k}(x)\right\| \leqslant \varepsilon t^{\alpha}$. Then choose N large enough that $n \geqslant N$ implies

$$
\int_{|s| \geqslant \delta} K_{n}(s) \mathrm{d} s \leqslant \frac{\varepsilon \delta^{\alpha}}{\|x\|}
$$

We are going to estimate $\left\|\left(x-\sigma_{n}(x)\right)-\gamma_{t}^{k}\left(x-\sigma_{n}(x)\right)\right\|$ (hence $\left.L^{\alpha}\left(x-\sigma_{n}(x)\right)\right)$ for $n \geqslant N$ by using the second formula in Lemma 3.1.

For $t \leqslant \delta$ and $n \geqslant N$, we have

$$
\begin{aligned}
& \left\|\int\left(\left(x-\gamma_{s}^{1}(x)\right)-\gamma_{t}^{k}\left(x-\gamma_{s}^{1}(x)\right)\right) K_{n}(s) \mathrm{d} s\right\| \\
& =\left\|\int\left(\left(x-\gamma_{t}^{k}(x)\right)-\gamma_{s}^{1}\left(x-\gamma_{t}^{k}(x)\right)\right) K_{n}(s) \mathrm{d} s\right\| \\
& \\
& \leqslant \int\left(\left\|x-\gamma_{t}^{k}(x)\right\|+\left\|\gamma_{s}^{1}\left(x-\gamma_{t}^{k}(x)\right)\right\|\right) K_{n}(s) \mathrm{d} s \leqslant 2 \varepsilon t^{\alpha}
\end{aligned}
$$

For $t \geqslant \delta$, our choice of N implies that

$$
\left\|\int_{|s| \geqslant \delta}\left(\left(x-\gamma_{s}^{1}(x)\right)-\gamma_{t}^{k}\left(x-\gamma_{s}^{1}(x)\right)\right) K_{n}(s) \mathrm{d} s\right\| \leqslant \int_{|s| \geqslant \delta} 4\|x\| K_{n}(s) \mathrm{d} s \leqslant 4 \varepsilon \delta^{\alpha} \leqslant 4 \varepsilon t^{\alpha}
$$

for $n \geqslant N$, while

$$
\begin{aligned}
\| \int_{|s| \leqslant \delta} & \left(\left(x-\gamma_{s}^{1}(x)\right)-\gamma_{t}^{k}\left(x-\gamma_{s}^{1}(x)\right)\right) K_{n}(s) \mathrm{d} s \| \\
& \leqslant \int_{|s| \leqslant \delta}\left(\left\|x-\gamma_{s}^{1}(x)\right\|+\left\|\gamma_{t}^{k}\left(x-\gamma_{s}^{1}(x)\right)\right\|\right) K_{n}(s) \mathrm{d} s \\
& \leqslant \int_{|s| \leqslant \delta} 2 \varepsilon|s|^{\alpha} K_{n}(s) \mathrm{d} s \leqslant 2 \varepsilon \delta^{\alpha} \leqslant 2 \varepsilon t^{\alpha}
\end{aligned}
$$

for $n \geqslant N$. Thus, for any $t>0$ we have a bound of $6 \varepsilon t^{\alpha}$ on the first integral in the second formula in Lemma 3.1 as applied to

$$
\left\|\left(x-\sigma_{n}(x)\right)-\gamma_{t}^{k}\left(x-\sigma_{n}(x)\right)\right\|
$$

the second integral is bounded similarly. We conclude that $L^{\alpha}\left(x-\sigma_{N}(x)\right) \rightarrow 0$, and as we already know that $\left\|x-\sigma_{N}(x)\right\| \rightarrow 0$ by Lemma 3.2, it follows that $\left\|x-\sigma_{N}(x)\right\|_{\alpha} \rightarrow 0$.

Theorem 3.5. (i) $\operatorname{lip}_{\theta}^{1}\left(\mathbb{T}^{2}\right)=\mathbb{C}$.
(ii) The space of polynomials formed from U and V and their adjoints is Lipschitz norm dense in $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ for $\alpha<1$ and weak ${ }^{*}$-dense in $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ for $\alpha \leqslant 1$.
(iii) $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right) \subset C_{\theta}\left(\mathbb{T}^{2}\right)$ for all $\alpha \leqslant 1$. If $\alpha<1$ then $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is operator norm (ultraweakly) dense in $C_{\theta}\left(\mathbb{T}^{2}\right)\left(L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)\right)$, and if $\alpha \leqslant 1$ then $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is operator norm (ultraweakly) dense in $C_{\theta}\left(\mathbb{T}^{2}\right)\left(L_{\theta}^{\infty}\left(\mathbb{T}^{2}\right)\right)$.
(iv) For $\alpha<\beta \leqslant 1$ we have $\operatorname{Lip}_{\theta}^{\beta}\left(\mathbb{T}^{2}\right) \subset \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$, densely in Lipschitz norm.

Proof. (i) It is clear that $\operatorname{lip}_{\theta}^{1}\left(\mathbb{T}^{2}\right)$ contains the constants. Conversely, for any $x \in \operatorname{Lip}_{\theta}^{1}\left(\mathbb{T}^{2}\right)$ we have

$$
\frac{\left(x-\gamma_{t}^{k}(x)\right)}{t} \rightarrow \mathrm{i}\left[D_{k}, x\right]
$$

ultraweakly. It follows that $x \in \operatorname{lip}_{\theta}^{1}\left(\mathbb{T}^{2}\right)$, i.e. $\left\|x-\gamma_{t}^{k}(x)\right\| / t \rightarrow 0$, only if $\left[D_{1}, x\right]=$ $\left[D_{2}, x\right]=0$. But then

$$
0=\left\langle\left[D_{1}, x\right] v_{00}, v_{m n}\right\rangle=m\left\langle x v_{00}, v_{m n}\right\rangle
$$

implies that the Fourier coefficient $a_{m n}$ vanishes for $m \neq 0$, and similarly $a_{m n}$ vanishes for $n \neq 0$. Thus the Fourier series of x consists of simply a constant term, and convergence of Fourier series (Lemma 3.4 (ii)) implies that x is a constant.
(ii) Containment was proved in Lemma 3.4 (i), and density follows from Lemma 3.4 (ii) and (iii).
(iii) For any $x \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ we have $\left\|x-\gamma_{t}^{k}(x)\right\| \leqslant L^{\alpha}(x) t^{\alpha} \rightarrow 0$ as $t \rightarrow 0$, so $x \in C_{\theta}\left(\mathbb{T}^{2}\right)$ by Proposition 1.1 (ii). This shows that $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right) \subset C_{\theta}\left(\mathbb{T}^{2}\right)$. The density assertions follow from Lemma 3.4 (i).
(iv) Suppose $x \in \operatorname{Lip}_{\theta}^{\beta}\left(\mathbb{T}^{2}\right)$. Then

$$
\left\|x-\gamma_{t}^{k}(x)\right\| \leqslant L^{\beta}(x) t^{\beta}=\left(L^{\beta}(x) t^{\beta-\alpha}\right) t^{\alpha}
$$

As $t^{\beta-\alpha} \rightarrow 0$ as $t \rightarrow 0$, this shows that $x \in \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$. Density follows from Lemma 3.4 (i) and (iii).
4. DOUBLE DUALITY

We now aim to prove for any $\alpha<1$ that $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is naturally isometrically isomorphic to the double dual of $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$. This was established for α-Lipschitz functions on the unit circle in [8] and later generalized to a large class of spaces by many people, most notably in [2] and [10] (see also [29]).

For $n \in \mathbb{N}$ define

$$
\mathcal{A}_{n}=C\left(\left[\frac{\pi}{n+1}, \frac{\pi}{n}\right], C_{\theta}\left(\mathbb{T}^{2}\right)\right)
$$

the C^{*}-algebra of continuous functions from the interval $[\pi /(n+1), \pi / n]$ into $C_{\theta}\left(\mathbb{T}^{2}\right)$. By Proposition 1.1 (ii), for any $x \in C_{\theta}\left(\mathbb{T}^{2}\right)$ the function

$$
\delta_{n}^{k}: t \mapsto \frac{\left(x-\gamma_{t}^{k}(x)\right)}{t^{\alpha}}
$$

(with domain $[\pi /(n+1), \pi / n]$) belongs to \mathcal{A}_{n}, and if $x \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ then these functions have uniformly bounded norms. Thus, we have a map

$$
\delta: \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right) \rightarrow \bigoplus_{n}^{\infty}\left(\mathcal{A}_{n} \oplus \mathcal{A}_{n}\right)
$$

into the l^{∞} direct sum, defined by $\delta=\bigoplus\left(\delta_{n}^{1} \oplus \delta_{n}^{2}\right)$. Note that $x \in \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ precisely if $\left\|\delta_{n}^{k}(x)\right\| \rightarrow 0$ for $k=1,2$ as $n \rightarrow \infty$, so that δ takes $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ into the c_{0} direct $\operatorname{sum} \bigoplus_{n}^{0}\left(\mathcal{A}_{n} \oplus \mathcal{A}_{n}\right)$.

Now define

$$
\mathcal{A}=C_{\theta}\left(\mathbb{T}^{2}\right) \oplus \bigoplus_{n}^{\infty}\left(\mathcal{A}_{n} \oplus \mathcal{A}_{n}\right)
$$

and

$$
\mathcal{B}=C_{\theta}\left(\mathbb{T}^{2}\right) \oplus \bigoplus_{n}^{0}\left(\mathcal{A}_{n} \oplus \mathcal{A}_{n}\right)
$$

(the l^{∞} and c_{0} direct sums, respectively). The map $\Gamma: x \mapsto x \oplus \delta(x)$ defines an isometric embedding of $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ in \mathcal{A} and of $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ in $\mathcal{B} \subset \mathcal{A}$.

Theorem 4.1. Let $0<\alpha<1$. Then $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right) \cong \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)^{* *}$.
Proof. We already know from Corollary 2.4 that $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ is a dual space. We begin by defining a map from the dual of $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ into the predual of $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$.

Given a bounded linear functional $f \in \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)^{*}$, we can extend it to a bounded linear functional $F \in \mathcal{B}^{*}$ via the embedding Γ of $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ in \mathcal{B}. Since \mathcal{B} is a c_{0} direct sum its dual space is an l^{1} direct sum of the dual summands, i.e.

$$
\mathcal{B}^{*}=C_{\theta}\left(\mathbb{T}^{2}\right)^{*} \oplus \bigoplus_{n}^{1}\left(\mathcal{A}_{n}^{*} \oplus \mathcal{A}_{n}^{*}\right)
$$

Therefore F has a natural action on \mathcal{A}, i.e. we may consider $F \in \mathcal{A}^{*}$, hence $F \circ \Gamma \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)^{*}$. We now must show that $F \circ \Gamma$ is weak ${ }^{*}$-continuous on $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$.

It will suffice to show that $F \circ \Gamma$ is weak*-continuous on the unit ball of $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$. We will apply Lemma 3.3. Thus, let $x, x_{m} \in \operatorname{ball}\left(\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)\right)$ and suppose $x_{m} \rightarrow x$ in operator norm. Let $\varepsilon>0$. Writing

$$
F=F_{0} \oplus \bigoplus_{n}\left(F_{n}^{1} \oplus F_{n}^{2}\right)
$$

we may choose N large enough that $\sum_{n>N}\left\|F_{n}^{k}\right\| \leqslant \varepsilon$ for $k=1,2$. Also, from the definition of δ_{n}^{k} we have $\delta_{n}^{k}\left(x_{m}\right) \rightarrow \delta_{n}^{k}(x)$ in \mathcal{A}_{n} for each k and n, so we may then choose M large enough that $m \geqslant M$ implies

$$
\left\|\delta_{n}^{k}\left(x_{m}\right)-\delta_{n}^{k}(x)\right\| \leqslant \frac{\varepsilon}{N\left\|F_{n}^{k}\right\|}
$$

for $k=1,2$ and all $n \leqslant N$. We may also take M large enough that $\left\|x_{m}-x\right\| \leqslant$ $\varepsilon /\left\|F_{0}\right\|$ for $m \geqslant M$. It follows that $m \geqslant M$ implies

$$
\begin{aligned}
\left|F\left(\Gamma\left(x_{m}\right)\right)-F(\Gamma(x))\right| \leqslant & \left|F_{0}\left(x_{m}\right)-F_{0}(x)\right|+\sum_{n, k}\left|F_{n}^{k}\left(\delta_{n}^{k}\left(x_{m}\right)\right)-F_{n}^{k}\left(\delta_{n}^{k}(x)\right)\right| \\
\leqslant & \left\|F_{0}\right\|\left\|x_{m}-x\right\|+\sum_{n \leqslant N, k}\left\|F_{n}^{k}\right\|\left\|\delta_{n}^{k}\left(x_{m}\right)-\delta_{n}^{k}(x)\right\| \\
& +\sum_{n>N, k}\left\|F_{n}^{k}\right\|\left\|\delta_{n}^{k}\left(x_{m}\right)-\delta_{n}^{k}(x)\right\| \\
\leqslant \varepsilon & +2 N\left(\frac{\varepsilon}{N}\right)+4 \varepsilon=7 \varepsilon .
\end{aligned}
$$

We conclude that $F\left(\Gamma\left(x_{m}\right)\right) \rightarrow F(\Gamma(x))$, and this completes the proof that $F \circ \Gamma$ is weak*-continuous on $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$.

We have seen that every bounded linear functional on $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ extends to a weak*-continuous linear functional on $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$. The extension is unique by weak*-density of $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ in $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ (Theorem 3.5 (ii)). Thus we may define a $\operatorname{map} T: \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)^{*} \rightarrow \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)_{*}$ by setting $T f=F \circ \Gamma$. This map is obviously 1-1, and it is onto since every weak*-continuous linear functional on $\operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ restricts to a bounded linear functional on $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$, of which it is then an extension. Also it is clear that $\|T f\| \geqslant\|f\|$, since $T f$ is an extension of f.

To complete the proof that $\operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)^{*} \cong \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)_{*}$ we must show that $\|T f\| \leqslant$ $\|f\|$ for any $f \in \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)^{*}$. To see this let $x \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$. Then for each N, $\sigma_{N}(x) \in \operatorname{lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$ by Lemma 3.4 (i) and $\left\|\sigma_{N}(x)\right\|_{\alpha} \leqslant\|x\|_{\alpha}$ by Lemma 3.4 (ii), so $\left|f\left(\sigma_{N}(x)\right)\right| \leqslant\|f\|\|x\|_{\alpha}$. But $f\left(\sigma_{N}(x)\right) \rightarrow(T f)(x)$ by weak*-continuity of $T f$ and Lemma 3.4 (ii), so we conclude that $|(T f)(x)| \leqslant\|f\|\|x\|_{\alpha}$ for all $x \in \operatorname{Lip}_{\theta}^{\alpha}\left(\mathbb{T}^{2}\right)$. Thus $\|T f\| \leqslant\|f\|$.

This research was supported by NSF grant DMS-9424370.

REFERENCES

1. R.F. Arens, J. Eells Jr., On embedding uniform and topological spaces, Pacific J. Math. 6(1956), 397-403.
2. W.G. Bade, P.C. Curtis, H.G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55(1987), 359377.
3. O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlag, 1979.
4. A. Connes, Compact metric spaces, Fredholm modules, and hyperfiniteness, Ergodic Theory Dynamics System 9(1989), 207-220.
5. A. Connes, Essay on physics and non-commutative geometry, in The Interface of Mathematics and Particle Physics, Clarendon Press, 1990, pp. 9-48.
6. A. Connes, Noncommutative Geometry, Academic Press, 1994.
7. A. Connes, J. Lott, The metric aspect of noncommutative geometry, in New Symmetry Principles in Quantum Field Theory, Plenum Press, 1992, pp. 53-93.
8. K. De Leeuw, Banach spaces of Lipschitz functions, Studia Math. 21(1961), 55-66.
9. G.H. Hardy, W.W. Rogozinski, Fourier Series, Cambridge Tracts in Math., vol. 38, 1950.
10. J.A. Johnson, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc. 148(1970), 147-169.
11. Y. KatZnelson, An Introduction to Harmonic Analysis, 2nd edition, Dover, 1976.
12. E. MayEr-Wolf, Isometries between Banach spaces of Lipschitz functions, Israel J. Math. 38(1981), 58-74.
13. H. Mirkil, Continuous translation of Hölder and Lipschitz functions, Canad. J. Math. 12(1960), 674-685.
14. J. Musielak, Z. Semadeni, Some classes of Banach spaces depending on a parameter, Studia Math. 20(1961), 271-284.
15. E. PARK, Isometries of noncommutative metric spaces, manuscript.
16. M.A. Rieffel, Non-commutative tori - a case study of non-commutative differentiable manifolds, Contemp. Math. 105(1990), 191-211.
17. M.A. Rieffel, Comments concerning non-commutative metrics, talk given at October 1993 Amer. Math. Soc. meeting at Texas A \& M.
18. M.A. Rieffel, personal communication.
19. D.R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111(1964), 240-272.
20. L. Waelbroeck, Closed ideals of Lipschitz functions, in Function Algebras, Scott, Foresman and Co., 1966, pp. 322-325.
21. N. Weaver, Lattices of Lipschitz functions, Pacific J. Math. 164(1994), 179-193.
22. N. Weaver, Isometries of noncompact Lipschitz spaces, Canad. Math. Bull. 38(1995), 242-249.
23. N. Weaver, Nonatomic Lipschitz spaces, Studia Math. 115(1995), 277-289.
24. N. Weaver, Order completeness in Lipschitz algebras, J. Funct. Anal. 130(1995), 118-130.
25. N. Weaver, Subalgebras of little Lipschitz algebras, Pacific J. Math. 173(1996), 283-293.
26. N. Weaver, Lipschitz algebras and derivations of von Neumann algebras, J. Funct. Anal. 139(1996), 261-300.
27. N. Weaver, Deformations of von Neumann algebras, J. Operator Theory $\mathbf{3 5}(1996)$, 223-239.
28. N. Weaver, Operator spaces and noncommutative metrics, manuscript.
29. N. Weaver, Quotients of little Lipschitz algebras, Proc. Amer. Math. Soc., to appear.
30. A. Zygmund, Trigonometric Series, 2nd edition, Cambridge University Press, 1959.

NIK WEAVER

Department of Mathematics
UCLA
Los Angeles, CA 90024
U.S.A.

E-mail: nweaver@math.ucla.edu

Received July 14, 1996; revised January 11, 1997.

