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Abstract. Suppose that 1 6 p < ∞, and G is a locally compact abelian

group with dual group Γ. Denote by M
(w)
p (Γ) the space of weak type (p, p)

multipliers for Lp(G). We show that the injection mapping of M
(w)
p (Γ) into

L∞(Γ) is bounded. This affords a short proof that M
(w)
p (Γ) is complete

with respect to the weak type (p, p) multiplier norm. When 1 < p < ∞,

the completeness of M
(w)
p (Γ) is further demonstrated by characterizing the

transforms of the weak type (p, p) multipliers as the translation-invariant
continuous linear mappings of Lp(G) into the weak Lp space of G. This

result permits M
(w)
p (Γ) to be supplied with a Banach space structure when

1 < p <∞.
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1. INTRODUCTION AND NOTATION

Let G be a locally compact abelian group with dual group Γ and given Haar
measure µG. For ψ ∈ L∞(G), we denote by Tψ the multiplier transform on L2(G)
corresponding to ψ: (Tψf )̂ = ψf̂ , for all f ∈ L2(G). If 1 6 p <∞, we say that ψ
is a multiplier of weak type (p, p) provided there is a real constant α such that

(1.1) µG({x ∈ G : |(Tψf)(x)| > y}) 6
αp

yp
‖f‖pp,

for all f ∈ L2(G) ∩ Lp(G), and all y > 0. In this case, the operator Tψ extends
uniquely from L2(G) ∩ Lp(G) to a linear mapping T (p)

ψ of Lp(G) into the µG-
measurable functions (identified modulo equality a.e.) such that whenever {fn}∞n=1
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converges to f in Lp(G), then {T (p)
ψ fn}∞n=1 converges in (Haar) measure to T (p)

ψ f .

Clearly T (p)
ψ is translation-invariant, and the inequality in (1.1) remains valid (with

the same constant α) for T (p)
ψ , all f ∈ Lp(G), and all y > 0. For 1 6 p < ∞,

the linear space consisting of all multipliers of weak type (p, p) (identified modulo
equality locally a.e.) will be denoted by M

(w)
p (Γ), and, for ψ ∈ M

(w)
p (Γ), we

symbolize by N
(w)
p (ψ) the smallest constant α > 0 such that (1.1) holds. Hence

N
(w)
p (ψ) is, in the usual parlance, the weak type (p, p) norm of T (p)

ψ on Lp(G)
(which is not a true operator norm). Elementary reasoning shows that the mapping
ψ ∈ M

(w)
p (Γ) 7→ T (p)

ψ is linear and injective, and that, for all ϕ ∈ M
(w)
p (Γ),

ψ ∈ M
(w)
p (Γ), and z ∈ C, we have N (w)

p (zϕ) = |z|N (w)
p (ϕ), and N

(w)
p (ϕ + ψ) 6

2[N (w)
p (ϕ) + N

(w)
p (ψ)]. Consequently for 1 6 p < ∞, N (w)

p (·) is a quasi-norm on
M

(w)
p (Γ).

The purpose of this note is to demonstrate that M (w)
p (Γ) is a quasi-Banach

space by establishing appropriate parallels between weak type and strong type
multipliers. More specifically, the fact that the space M (w)

p (Γ) is complete with
respect to N (w)

p (·) is an immediate consequence of the following theorem (shown
in Section 2). Here and henceforth, the symbol “K” with a (possibly empty) set
of subscripts will denote a non-negative real constant which depends only on its
subscripts, and which can change in value from one occurrence to another.

Theorem 1.1. If 1 6 p <∞, and ψ ∈M (w)
p (Γ), then

‖ψ‖L∞(Γ) 6 KpN
(w)
p (ψ).

In Section 3 we use Lorentz space methods to show that for 1 < p < ∞,
{T (p)
ψ : ψ ∈M (w)

p (Γ)} consists of the translation-invariant continuous linear map-
pings of Lp(G) into the weak Lp space ofG (= L(p,∞)(G,µG)). It follows that when
1 < p <∞, M (w)

p (Γ) has a Banach space norm which is equivalent to N (w)
p (·).

2. PROOF OF THEOREM 1.1

We denote by C(Γ) the Banach algebra of bounded, continuous, complex-valued
functions on Γ, equipped with the norm ‖f‖u = sup{|f(γ)| : γ ∈ Γ}.

Lemma 2.1. If 1 6 p < ∞, and ψ ∈ M
(w)
p (Γ) ∩ C(Γ), then ‖ψ‖u 6

KpN
(w)
p (ψ).

Proof. The case 1 < p < ∞ was established in [3], Theorem (2.6). So we
need only consider the case p = 1. Let Γd denote the group Γ endowed with the
discrete topology, and let ι : Γd → Γ be the identity mapping. By either [4],
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Theorem 1.3 or [4], Theorem 1.5, we see that there is an absolute constant c such
that the composite function ψ ◦ ι ∈M (w)

1 (Γd), with

(2.1) N
(w)
1 (ψ ◦ ι) 6 cN

(w)
1 (ψ).

(If we use [4], Theorem 1.3, then the constant c can be taken to be 1.) Let ν be
normalized Haar measure on b(G), the Bohr compactification of G. For ε > 0, and
γ ∈ Γ, we see with the aid of (2.1) that

(2.2) ν{x ∈ b(G) : |
(
Tψ◦ιγ

)
(x)| > cN

(w)
1 (ψ) + ε} 6

cN
(w)
1 (ψ)

cN
(w)
1 (ψ) + ε

< 1.

However, for each x ∈ b(G), |
(
Tψ◦ιγ

)
(x)| = |ψ(γ)|, and so the left member of (2.2)

must be 0. It follows that |ψ(γ)| 6 cN
(w)
1 (ψ)+ ε, for all γ ∈ Γ, and ε > 0. Letting

ε→ 0 completes the proof.

Lemma 2.2. Suppose that 1 6 p < ∞, k ∈ L1(Γ), and ψ ∈ M
(w)
p (Γ). Then

the convolution k ∗ ψ ∈M (w)
p (Γ) and

N (w)
p (k ∗ ψ) 6 Kp‖k‖L1(Γ)N

(w)
p (ψ).

Proof. For the case 1 < p < ∞, see [2], Lemma 2.1. The case p = 1 and
ψ ∈M (w)

1 (Γ) ∩ C(Γ) is treated in [4], Theorem 1.1. The general case, when p = 1
and ψ ∈ M (w)

1 (Γ) has recently been shown in [7], Theorem 1.2. (The convolution
theorems for p = 1 in [4] and [7] are motivated by the methods of [1].)

The proof of Theorem 1.1 is now readily carried out as follows. Given ψ ∈
M

(w)
p (Γ) and k ∈ L1(Γ), let k−(γ) ≡ k(−γ), and use Lemmas 2.1 and 2.2 to infer

that (k−) ∗ ψ ∈M (w)
p (Γ) ∩ C(Γ), and

(2.3)
∣∣∣ ∫
Γ

k(γ)ψ(γ) dγ
∣∣∣ 6 Kp‖k‖L1(Γ)N

(w)
p (ψ).

The conclusion of Theorem 1.1 is apparent, since (2.3) holds for all k ∈ L1(Γ).
Theorem 1.1 has the following consequence.

Corollary 2.3. For 1 6 p <∞, the space M (w)
p (Γ) is complete with respect

to the quasi-norm N
(w)
p (·).

Proof. Suppose that {ψn}∞n=1 ⊆ M
(w)
p (Γ), and N

(w)
p (ψm − ψn) → 0, as

m,n→∞. By Theorem 1.1 there is ψ ∈ L∞(Γ) such that ‖ψn−ψ‖L∞(Γ) → 0. It
follows that for each f ∈ L2(G) ∩ Lp(G), {Tψn

f}∞n=1 converges to Tψf in L2(G)
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and hence in measure. Suppose next that ε > 0. Use the Cauchy condition to
choose J ∈ N such that for m > J , n > J , f ∈ L2(G)∩Lp(G), and y > 0, we have

(2.4) µG{x ∈ G : |
(
Tψmf − Tψnf

)
(x)| > y} 6 εp‖f‖ppy−p.

For m > J held fixed, we know that (Tψmf − Tψnf) → (Tψmf − Tψf) in measure,
as n → ∞. Applying this fact to (2.4) we see that N (w)

p (ψm − ψ) 6 ε for all
m > J .

Remark 2.4. Obviously M (w)
2 (Γ) and L∞(Γ) are identical as linear spaces,

and, for each ψ ∈ L∞(Γ), we have N (w)
2 (ψ) 6 ‖ψ‖L∞(Γ). So in the case p = 2,

the statement of Theorem 1.1 asserts the existence of an absolute constant δ such
that

N
(w)
2 (ψ) 6 ‖ψ‖L∞(Γ) 6 δN

(w)
2 (ψ), for all ψ ∈ L∞(Γ).

3. CHARACTERIZATION OF M
(w)
p (Γ), 1 < p <∞,

BY TRANSLATION-INVARIANT OPERATORS

In this section we shall consider M (w)
p (Γ) when 1 < p < ∞. In order to place

the discussion in proper perspective, we shall require some aspects of the theory
of Lorentz spaces. For the general theory of Lorentz spaces associated with arbi-
trary measures, we refer the reader to the standard reference works in [6] and [8],
Section V.3. One cautionary remark is in order here: the discussion of Lorentz
spaces in [6] and [8] takes place under the blanket assumption that the underlying
measure space is sigma-finite. Consequently we shall only use results from [6] and
[8] which remain valid for our treatment of the general locally compact abelian
group G and its Haar measure µG.

Fix p in the range 1 < p < ∞, and let p′ be the index conjugate to p. For
structural considerations associated with weak type estimates, we shall utilize the
Lorentz spaces L(p,∞)(G,µG) and L(p′,1)(G,µG). If f is a measurable complex-
valued function on G, we denote by ϕ(f, ·) the distribution function of f specified
by ϕ(f, y) = µG{x ∈ G : |f(x)| > y}, for 0 < y < ∞. The decreasing rearrange-
ment f∗ of f is defined by writing, for 0 < t <∞, f∗(t) = inf{y > 0 : ϕ(f, y) 6 t}.
We further define

‖f‖∗p,∞ = sup{y[ϕ(f, y)]
1
p : 0 < y <∞}; ‖f‖∗p′,1 = (p′)−1

+∞∫
0

t−
1
p f∗(t) dt.

After the usual identification of measurable functions modulo equality µG-a.e.,
the Lorentz space L(p,∞)(G,µG) (respectively, L(p′,1)(G,µG)) consists of all f such
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that ‖f‖∗p,∞ <∞ (respectively, ‖f‖∗p′,1 <∞). In particular, each of L(p,∞)(G,µG)
and L(p′,1)(G,µG) is a linear space containing all integrable simple functions.
Moreover, as described in [6], Section 2, there are Banach space norms ‖ · ‖p,∞
and ‖ · ‖p′,1 on L(p,∞)(G,µG) and L(p′,1)(G,µG), respectively, which satisfy the
relations

(3.1)
‖f‖∗p,∞ 6 ‖f‖p,∞ 6 p′ ‖f‖∗p,∞, for all f ∈ L(p,∞)(G,µG);

‖g‖∗p′,1 6 ‖g‖p′,1 6 p‖g‖∗p′,1, for all g ∈ L(p′,1)(G,µG).

We shall be concerned with the first chain of inequalities in (3.1), since these
inequalities permit us to use the quasi-norm ‖ · ‖∗p,∞ for weak type inequalities,
while at the same time regarding L(p,∞)(G,µG) as a Banach space. In particular,
for each ψ ∈ M

(w)
p (Γ), T (p)

ψ can be viewed as a continuous linear operator from
Lp(G,µG) to the Banach space L(p,∞)(G,µG), with corresponding Banach space
operator norm ‖T (p)

ψ ‖ satisfying

(3.2) N (w)
p (ψ) 6 ‖T (p)

ψ ‖ 6 p′N (w)
p (ψ).

Since µG need not be sigma-finite, we shall require the following variant of
[6], pp. 261, 262 for duality relations.

Scholium 3.1. (see [2], Proposition 1.10) Suppose 1 < p < ∞. If g ∈
L(p,∞)(G,µG), and f ∈ L(p′,1)(G,µG), then

(3.3)
∫
G

|f | |g|dµG 6 p′‖g‖∗p,∞‖f‖∗p′,1.

On the other hand, if g is a complex-valued measurable function on G, E is a
sigma-finite measurable subset of G, g vanishes on the complement G \ E of E,
and, for some real constant A > 0 we have:∣∣∣ ∫

G

fg dµG
∣∣∣ 6 A‖f‖∗p′,1,

for every integrable simple function f which vanishes on G\E, then g ∈ L(p,∞)(G,µG),
and ‖g‖∗p,∞ 6 A.

Having set the stage, we now take up the central result of this section, which
is stated as follows.
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Theorem 3.2. Suppose that 1 < p < ∞, and S is a translation-invariant
linear mapping of weak type (p, p) on Lp(G). Then S = T (p)

ψ for some ψ ∈
M

(w)
p (Γ).

Proof. Denote byN (w)
p (S) the usual weak type (p, p) norm of S on Lp(G,µG).

In what follows, we shall regard S as a continuous linear mapping of Lp(G,µG)
into L(p,∞)(G,µG). For each u ∈ G, we shall signify by τu the corresponding
translation operator on measurable functions:

(
τuh

)
(x) = h(x+ u), for all x ∈ G.

To begin with, suppose that f and g are integrable simple functions on G.
Then, in terms of Lp(G)-valued Bochner integration, we have

f ∗ g =
∫
G

f(u)τ−ug dµG(u),

and consequently we can use the continuity and translation-invariance of S to infer
that

(3.4) S(f ∗ g) =
∫
G

f(u)τ−uSg dµG(u).

Now let h be another integrable simple function on G. Since h ∈ L(p′,1)(G,µG), we
see by Scholium 3.1 that h defines a continuous linear functional on L(p,∞)(G,µG).
Applying this fact and Fubini’s Theorem to (3.4), we obtain

(3.5)
∫
G

hS(f ∗ g) dµG =
∫
G

h(t)
(
f ∗ (Sg)

)
(t) dµG(t).

Notice that by virtue of Scholium 3.1, together with the continuity and translation-
invariance of S, the convolution f ∗ (Sg) is a bounded continuous function on G.
Clearly each of the functions Sg ∈ L(p,∞)(G,µG) and f vanishes outside some
countable union of compact sets, and hence so does f ∗ (Sg). In view of these
technical observations, we can let h in (3.5) run through the characteristic functions
of sets of finite measure to infer that for arbitrary integrable simple functions f
and g on G:

(3.6)

f ∗ (Sg) is a bounded continuous function on G such that

S(f ∗ g) = f ∗ (Sg), a.e. on G;(
f ∗ (Sg)

)
(t) =

(
(Sf) ∗ g

)
(t), for all t ∈ G.

Specializing the second equation in (3.6) to t = 0, we get∫
G

(
Sf

)
(u)g(−u) dµG(u) =

∫
G

f(u)
(
Sg

)
(−u) dµG(u).
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An application of (3.3) to the right-hand side permits us to infer that∣∣∣ ∫
G

(
Sf

)
(u)g(u) dµG(u)

∣∣∣ 6 p′‖f‖∗p′,1N (w)
p (S)‖g‖Lp(G).

It follows by Lebesgue space duality that for each integrable simple function f on
G, the function Sf ∈ Lp′(G,µG), with

(3.7) ‖Sf‖Lp′ (G) 6 p′N (w)
p (S)‖f‖∗p′,1.

Suppose now that g ∈ LpG), and let {gn}∞n=1 be a sequence of integrable
simple functions such that ‖gn − g‖Lp(G) → 0. By (3.6), we see that for an
arbitrary integrable simple function f and each n ∈ N, we have a.e. on G

(3.8) S(f ∗ gn) = f ∗ (Sgn) = (Sf) ∗ gn.

Since S is of weak type (p, p), the left-hand member of (3.8) obviously converges
in measure to S(f ∗ g). Moreover, Sgn → Sg in L(p,∞)(G,µG), and so the mid-
dle member of (3.8) converges pointwise on G to f ∗ (Sg). Since Sf ∈ Lp

′
(G),

the right-hand member of (3.8) converges pointwise on G to (Sf) ∗ g. Clearly
(Sf) ∗ g is a bounded continuous function on G, and it is easy to see from the
translation-invariance of S that f ∗ (Sg) is also bounded and continuous on G.
These observations allow us to replace the integrable simple function g in (3.6) by
an arbitrary element of Lp(G). Specifically, we have: for each integrable simple
function f on G and each g ∈ Lp(G), f ∗ (Sg) and (Sf) ∗ g are identical bounded
continuous functions on G such that

(3.9) S(f ∗ g) = f ∗ (Sg) = (Sf) ∗ g, a.e. on G.

Since ‖f‖Lp(µG) = ‖f‖∗
L(p,p)(G,µG)

6 ‖f‖∗p,1 ([6], (1.8)), the weak type (p, p) bound-
edness of S implies directly that

(3.10) ‖Sf‖∗p,∞ 6 N (w)
p (S)‖f‖∗p,1,

for every integrable simple function f on G. Moreover, an application of Cheby-
chev’s Inequality (for Lp

′
(µG)) to the left-hand member of (3.7) gives:

(3.11) ‖Sf‖∗p′,∞ 6 p′N (w)
p (S)‖f‖∗p′,1,

for every integrable simple function f on G.
Provided that our index p ∈ (1,∞) is distinct from 2, we can apply the

interpolation theorem for Lorentz spaces in [8], Theorem V.3.15, p. 197 to (3.10)
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and (3.11), and thereby deduce that S is of strong type (2, 2) on the linear space

of integrable simple functions. It now follows from the translation-invariance of

S that there is ψ ∈ L∞(G) such that Sf = (ψf̂)∨, for each integrable simple

function f on G. Using this and the weak type (p, p) boundedness of S on Lp(G),

we see easily that ψ ∈M (w)
p (Γ), and S = T (p)

ψ on Lp(G).

It remains now to establish the theorem in the remaining case p = 2. In this

case, the statement of the theorem obviously takes the following form: if S is a

translation-invariant linear mapping which is of weak type (2, 2) on L2(G), then

S is of strong type (2, 2) on L2(G). This formulation of the case p = 2 is known

to be true in the more general context of an amenable locally compact group ([5],

Theorem 5.4). In order to provide a detailed discussion of the current context,

we shall present a proof for the case p = 2 in the setting of our locally compact

abelian group G. We are indebted to Robert Kaufman for helpful conversations

regarding the approach used in this regard. Fix an integrable simple function f

on G, and put h = Sf . By (3.7), h ∈ L2(G), and by (3.9), we have:

(3.12) S(f ∗ F ) = F ∗ h, a.e. on G, for all F ∈ L2(G).

We now proceed to show that for each k ∈ L1(Γ)∩L2(Γ), the bounded continuous

function k ∗ ĥ defined on Γ satisfies

(3.13) ‖k ∗ ĥ‖u 6 K‖k‖L1(Γ)N
(w)
2 (S)‖f‖L1(µG).

In view of Theorem 1.1, it suffices for the inequality in (3.13) to prove that

(3.14) N
(w)
2 (k ∗ ĥ) 6 2‖k‖L1(Γ)N

(w)
2 (S)‖f‖L1(µG).

For the proof of (3.14), let F ∈ L1(G) ∩ L2(G). Since T
k∗̂hF ∈ L2(G), it vanishes

outside a set of sigma-finite measure. Hence by the second part of Scholium 3.1,

we need only establish that

(3.15)
∣∣∣ ∫
G

(T
k∗̂hF )W dµG

∣∣∣ 6 2‖k‖L1(Γ)‖F‖L2(µG)N
(w)
2 (S)‖W‖∗2,1 ‖f‖L1(µG),

for each integrable simple function W on G. We can obtain (3.15) by using

Plancherel’s Theorem, Fubini’s Theorem, (3.12), and Scholium 3.1 to reason as
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follows:∣∣∣ ∫
G

(T
k∗̂hF )W dµG

∣∣∣ =
∣∣∣ ∫
Γ

k(α)
{∫

Γ

F̂ (γ)Ŵ (γ) ĥ(γ − α) dγ
}

dα
∣∣∣

=
∣∣∣ ∫
Γ

k(α)
{∫
G

(
(αF ) ∗ h

)
(u)α(u)W (u) dµG(u)

}
dα

∣∣∣
=

∣∣∣ ∫
Γ

k(α)
{∫
G

(
S(f ∗ (αF ))

)
(u)α(u)W (u) dµG(u)

}
dα

∣∣∣
6 2N (w)

2 (S)‖F‖L2(µG)‖W‖∗2,1‖k‖L1(Γ)‖f‖L1(µG).

This completes the demonstration of (3.13).
Evaluating the convolution k ∗ ĥ in (3.13) at the identity element of Γ, we

infer that there is an absolute constant η such that∣∣∣ ∫
Γ

k(γ)ĥ(γ) dγ
∣∣∣ 6 η‖k‖L1(Γ)N

(w)
2 (S)‖f‖L1(µG), for all k ∈ L1(Γ) ∩ L2(Γ).

Recalling that h = Sf , we can summarize the preceding discussion as follows:

(3.16)
for each integrable simple function f on G, (Sf )̂ ∈ L∞(Γ), and satisfies

‖(Sf )̂ ‖L∞(Γ) 6 η N
(w)
2 (S)‖f‖L1(µG).

It will be convenient at this juncture to introduce the following additional
notation. Given a compact neighborhood V of the identity element in G, let χV
denote the characteristic function of V , and define fV on G by writing fV =
χV /µG(V ). Clearly fV is an integrable simple function such that ‖fV ‖L1(µG) = 1.
Now fix an integrable simple function g, and let ε be a positive real number. Since
Sg ∈ L2(G), standard considerations using the Generalized Minkowski Inequality
show that there is a compact neighborhood U of the identity in G such that

‖Sg − fU ∗ (Sg)‖L2(µG) 6 ε,

and consequently the triangle inequality for L2(G), followed by an application of
(3.9), gives

(3.17) ‖Sg‖L2(µG) 6 ε+ ‖(SfU ) ∗ g‖L2(µG).

However, (SfU ) ∗ g =
(
(SfU )̂ ĝ

)∨, and hence by (3.16) we have

‖(SfU ) ∗ g‖L2(µG) 6 η N
(w)
2 (S)‖g‖L2(µG).
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Using this in (3.17), and letting ε tend to 0, we see that

‖Sg‖L2(µG) 6 η N
(w)
2 (S)‖g‖L2(µG),

for every integrable simple function g on G. This fact, coupled with the weak type
(2, 2) boundedness of S on L2(G), shows that S is of strong type (2, 2) on L2(G),
and thereby completes the proof for the case p = 2.

When 1 < p < ∞, it follows from Theorem 3.2 that the injective linear
mapping ψ ∈ M

(w)
p (Γ) 7→ T (p)

ψ sends M (w)
p (Γ) onto the set Tp consisting of all

translation-invariant continuous linear mappings of Lp(µG) into the Banach space
L(p,∞)(G,µG) (furnished with the norm ‖·‖p,∞ discussed in (3.1)). Since it is clear
that Tp is a closed linear manifold in the space of bounded linear transformations
from Lp(µG) into L(p,∞)(G,µG), we can define a Banach space norm [ · ]

M
(w)
p (Γ)

on M
(w)
p (Γ) by taking [ψ]

M
(w)
p (Γ)

to be the Banach space operator norm of T (p)
ψ .

Hence Theorem 3.2 has the following corollary.

Corollary 3.3. If 1 < p < ∞, then M
(w)
p (Γ) has a Banach space norm

[ · ]
M

(w)
p (Γ)

such that

p− 1
p

[ψ]
M

(w)
p (Γ)

6 N (w)
p (ψ) 6 [ψ]

M
(w)
p (Γ)

, for all ψ ∈M (w)
p (Γ).
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