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Abstract. Let A be a maximal subdiagonal algebra of a von Neumann
algebra M with respect to a faithful normal expectation Φ. Then we show
that if ϕ is a faithful normal state of M such that ϕ ◦ Φ = ϕ, then A is
σϕ

t -invariant, where {σϕ
t }t∈R is the modular automorphism group associated

with ϕ. As an application, we prove that every σ-weakly closed subdiagonal
algebra of B(H) is a nest algebra with an atomic nest.
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1. INTRODUCTION AND PRELIMINARIES

In [1], Arveson introduced the notion of subdiagonal algebras to study the analy-
ticity in operator algebras. At first, we start by given the definition of subdiagonal
algebras. Let M be a von Neumann algebra on a separable complex Hilbert space
H, and let Φ be a faithful normal positive idempotent linear map from M onto
a von Neumann subalgebra D of M. A σ-weakly closed subalgebra A of M,
containing D, is called subdiagonal algebra in M with respect to Φ if

(i) A ∩ A∗ = D,
(ii) Φ is multiplicative on A, and
(iii) A + A∗ is σ-weakly dense in M.

The algebra D is called the diagonal of A. We say that A is a maximal subdiagonal
algebra in M with respect to Φ in case A is not properly contained in any other
subalgebra of M which is subdiagonal with respect to Φ.
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Although subdiagonal algebras are not assumed to be σ-weakly closed in
[1], the σ-weak closure of a subdiagonal algebra is again a subdiagonal algebra
([1], Remark 2.1.2). Thus we assume that our subdiagonal algebras are always
σ-weakly closed.

In [1], Arveson asked whether all (σ-weakly closed) subdiagonal algebras are
maximal subdiagonal algebras. In [3], Exel gave an affirmative answer to this
problem in finite case. That is, Exel showed that if A is finite in the sense that
there exists a faithful normal finite trace τ on M such that τ ◦ Φ = τ , then A is
automatically maximal subdiagonal.

In general, let A be a subdiagonal algebra of M with respect to Φ. Then
there exists a faithful normal state ϕ of M such that ϕ◦Φ = ϕ by the separability
of H.

First, we shall prove that, if A is maximal, then A is invariant under the
modular automorphism group {σϕ

t }t∈R of ϕ (cf. [5]). Further, as an application,
we shall show that every subdiagonal algebra A of B(H) is a nest algebra with an
atomic nest.

2. σϕ
t -INVARIANCE OF SUBDIAGONAL ALGEBRAS

Let M be a von Neumann algebra, acting on a separable Hilbert space H, and
let A be a subdiagonal algebra of M with respect to Φ. Put D = A ∩ A∗. Then
there exists a faithful normal state ϕ on M such that ϕ ◦ Φ = ϕ. Without loss
of generality, we may assume that M has a cyclic and separating vector ξ0 in H
such that ϕ(T ) = (Tξ0, ξ0) for any T ∈M.

Put A0 = {X ∈ A : Φ(X) = 0}, and we define the closed subspaces H1, H2

and H3 by H1 = [A0ξ0], H2 = [Dξ0] and H3 = [A∗0ξ0] respectively, where [S] is
the closed linear span of a subset S of H. Let Pi be the orthogonal projection
from H onto Hi for every i = 1, 2, 3. Let Am be the set of all A ∈ M such that
Φ(AAA0) = Φ(A0AA) = 0. By [1], Theorem 2.2.1, we recall that Am is a maximal
subdiagonal algebra in M with respect to Φ containing A. Then we easily have
the following lemma.

Lemma 2.1. Keep the notation as above. Then
(i) H = H1 ⊕H2 ⊕H3;
(ii) DHi ⊆ Hi (i = 1, 2, 3);
(iii) H1 = [(Am)0ξ0] and H3 = [(Am)∗0ξ0];
(iv) (Am)0(H1 ⊕H2) ⊆ H1 and (Am)∗0(H2 ⊕H3) ⊆ H3.

Considering the Hilbert space decomposition in (i), we have the following
lemma.
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Lemma 2.2. Keep the assumptions and the notation as above. Then

D =

D ∈M : D =

 D11 0 0
0 D22 0
0 0 D33


and

(Am)0 =

X ∈M : X =

 X11 X12 X13

0 0 X23

0 0 X33

 .

Proof. Put

B =

D ∈M : D =

 D11 0 0
0 D22 0
0 0 D33


and

C =

X ∈M : X =

 X11 X12 X13

0 0 X23

0 0 X33


respectively. Then it is clear that D ⊆ B and (Am)0 ⊆ C.

If D ∈ B, then Φ(D) ∈ D ⊆ B and so Φ(D) has the matrix form as follows:

Φ(D) =

 V11 0 0
0 V22 0
0 0 V33

 .

Since A0+D+A∗0 is σ-weakly dense inM, A0+A∗0 is σ-weakly dense in Ker(Φ). Let
P2 be the orthogonal projection from H onto H2. Then it is clear that P2(Xξ0) =
Φ(X)ξ0, X ∈ M. Thus P2XP2 = 0 for every X ∈ Ker(Φ). Since D − Φ(D) ∈
Ker(Φ), we have D22 − V22 = P2(D − Φ(D))P2 = 0. Hence we have

(D − Φ(D))ξ0 = (D22 − V22)ξ0 = 0.

Since ξ0 is a separating vector for M and ξ0 ∈ H2, we have D = Φ(D) ∈ D and
so D = B.

On the other hand, take any X ∈ C. Since Φ(X) ∈ D, Φ(X) is of the form

Φ(X) =

 V11 0 0
0 V22 0
0 0 V33

 .

Then we similarly have P2(Φ(X)−X)P2 = V22 = 0. Thus Φ(X) = 0.
It is trivial that C is a D-bimodule and (Am)0 ⊆ C. Hence it is easy to check

that D + C is a subdiagonal algebra of M with respect to Φ, containing Am. By
the maximality of Am, we have Am = D + C. This implies that (Am)0 = C. This
completes the proof.
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From Tomita-Takesaki theory, we define conjugate-linear operators S0 and
F0, with dense domains {Mξ0} and {M′ξ0} respectively by

S0Aξ0 = A∗ξ0 and F0Bξ0 = B∗ξ0 (A ∈M, B ∈M′).

By [5], Lemma 9.2.1, the operator S0 is preclosed, and the adjoint F is an extension
of F0. Further, if S is the closure of S0, then S∗ = F . Let D(S) be the domain of
S, and let G(S) be the graph of S.

Lemma 2.3. Keep the notation as above. Then the closed operator S has
the following matrix decomposition with respect to Lemma 2.1 (i):

S =

 0 0 S3

0 S2 0
S1 0 0


where for i = 1, 2, 3, Si is a closed operator with domain Fi in Hi such that
S1F1 = F3, S2F2 = F2 and S3F3 = F1.

Proof. Since {A0ξ0} ⊕ {Dξ0} ⊕ {A∗0ξ0} ⊆ D(S), we can define a preclosed
operator V0 by

V0(A + D + B∗)ξ0 = (A∗ + D∗ + B)ξ0

for A, B ∈ A0 and D ∈ D. Since S0 is an extension of V0, S is an extension of
the closure V of V0. Since G(S) is the norm closure of {Xξ0 ⊕ X∗ξ0 : X ∈ M}
and A0 + D + A∗0 is σ-weakly dense in M, it is easy to prove that S = V .

Let ζ ⊕ Sζ ∈ G(S). Since S is the closure of V0, there exist {An, Bn}∞n=1 in
A0 and {Dn}∞n=1 in D such that

lim
n→∞

(‖(An + Dn + B∗n)ξ0 − ζ‖2 + ‖(A∗n + D∗n + Bn)ξ0 − Sζ‖2) = 0.

Then, we have

lim
n→∞

(‖Anξ0 − P1ζ‖2 + ‖Dnξ0 − P2ζ‖2 + ‖B∗nξ0 − P3ζ‖2

+ ‖A∗nξ0 − P3Sζ‖2 + ‖D∗nξ0 − P2Sζ‖2 + ‖Bnξ0 − P1Sζ‖2) = 0,

where Pi is the projection from H onto Hi for i = 1, 2, 3. This implies that
Piζ ⊕ SPiζ ∈ G(S) and PiD(S) ⊂ D(S) for i = 1, 2, 3. Put Fi = PiD(S). Since
SF1 = F3, SF2 = F2 and SF3 = F1, we have the desired matrix form of S with
respect to Lemma 2.1 (i). This completes the proof.
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Put ∆ = S∗S. We recall that the modular automorphism group {σϕ
t }t∈R of

M associated with ϕ has the following form:

σϕ
t (X) = ∆itX∆−it (∀ t ∈ R, X ∈M).

Then we have the following theorem.

Theorem 2.4. Let A be a maximal subdiagonal algebra of M with respect
to Φ and let ϕ is a faithful normal state of M such that ϕ ◦ Φ = ϕ. Then A is
σϕ

t -invariant, that is σϕ
t (A) = A.

Proof. From Lemma 2.3, the adjoint S∗ of S has the matrix form

S∗ =

 0 0 S∗1
0 S∗2 0
S∗3 0 0


where S∗i is the adjoint operator of Si with domain F∗i (i = 1, 2, 3). Then the
modular operator ∆ has the matrix form

∆ =

 S∗1S1 0 0
0 S∗2S2 0
0 0 S∗3S3

 .

By Lemmas 2.2 and 2.3, it is easy to prove that, for every t ∈ R,

σϕ
t (D) = D and σϕ

t (A0) = A0 (t ∈ R).

Thus we have the theorem.

Let Mϕ be the centralizer of M associated with ϕ, that is, Mϕ = {A ∈M :
ϕ(AB) = ϕ(BA), ∀B ∈ M}. Recall that Mϕ is the fixed point algebra of M
with respect to {σϕ

t }t∈R and there exists a faithful normal expectation E from M
onto Mϕ (cf. [6], Theorem 1.2). We remark that Mϕ is a finite von Neumann
algebra.

Corollary 2.5. Keep the notation and assumptions as above. Then E(A)
is a maximal finite subdiagonal algebra of Mϕ with respect to Φ|Mϕ .

Proof. Let X ∈ M. By [6], Theorem 1.2, E(X) is in the σ-weak closure
of convex hull of {σϕ

t (X) : t ∈ R}. Since A is σϕ
t -invariant by Theorem 2.4, we

have E(A0) ⊂ A0 and E(D) ⊂ D. Then we easily prove that E(A) is a subdiagonal
algebra of Mϕ with respect to Φ|Mϕ . By [5], Proposition 9.2.14, ϕ|Mϕ is a faithful
normal trace on Mϕ. Thus E(A) is a finite subdiagonal algebra of Mϕ. By [3],
Theorem 7, E(A) is a maximal finite subdiagonal algebra of Mϕ. This completes
the proof.
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Finally, we remark about the question in [1], Remark 2.2.3, whether every
subdiagonal algebra must nessesarily be maximal subdiagonal. In [3], Exel showed
that every finite subdiagonal algebra is maximal subdiagonal. By Theorem 2.4,
we have following two questions.

Question 2.6. Is there a subdiagonal algebra which is not σϕ
t -invariant for

some faithful normal state ϕ on M such that ϕ ◦ Φ = ϕ ?

Question 2.7. If A is a σϕ
t -invariant subdiagonal algebra of M for every

faithful normal state ϕ on M such that ϕ ◦ Φ = ϕ, is A maximal subdiagonal ?

3. SUBDIAGONAL ALGEBRAS OF B(H)

Let N be a nest, that is, N is a chain of closed subspaces of H containing {0} and
H which is closed under intersection and closed span. Then the nest algebra algN
is the set of all operators T in B(H) such that TN ⊆ N for every N ∈ N . The
intersection D = algN ∩ (algN )∗ is the diagonal of algN . We recall that there
exists a faithful normal expectation from B(H) onto D if and only if N is atomic
(cf. [2], Theorem 8.6). In this case, algN is a subdiagonal algebra of B(H) with
respect to the expectation. In this section, we consider the converse, that is, if A

is a subdiagonal algebra of B(H) with respect to a faithful normal expectation Φ,
then A is a nest algebra with an atomic nest.

Our main theorem in this section is the following.

Theorem 3.1. Let A be a subdiagonal algebra of B(H) with respect to a
faithful normal expectation Φ. Then there exists an atomic nest N such that
A = algN .

The proof of Theorem 3.1 requires a few preliminary results.
Let A be a subdiagonal algebra of B(H) with respect to a faithful normal

expectation Φ. Since H is separable, there exists a faithful normal state ϕ on B(H)
such that ϕ ◦Φ = ϕ. Let ρ be the canonical trace of B(H). By [5], Lemma 9.2.19,
there is a positive contraction K in B(H) such that I−K is a trace-class operator
and

ρ((I −K)A) = ϕ(KA) = ϕ(AK) (A ∈ B(H)).

Moreover, both K and I −K are injective. Put F = K−1(I −K). Then by [5],
Lemma 9.2.20, the modular automorphism group {σϕ

t }t∈R of B(H) associated with
ϕ is written as

σϕ
t (X) = F itXF−it (X ∈ B(H), t ∈ R).
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Let B(H)ϕ be the centralizer of ϕ of B(H). Since the centralizer B(H)ϕ is
the fixed point algebra of {σϕ

t }t∈R (cf. [5], p. 697), we can show that B(H)ϕ is
the commutant of {F}. Since I − K is a trace class positive operator, we can

write I − K =
∞∑

n=1

⊕λnPn, where {λn}∞n=1 are the distinct eigenvalues of I − K

and for every n, Pn is the spectral projection of I −K corresponding to λn. Since

F = K−1(I −K) =
∞∑

n=1

⊕λn(1− λn)−1Pn, we can decompose

B(H)ϕ =
∞∑

n=1

⊕Mkn
,

where kn is the dimension of PnH, and Mkn
is the set of all kn × kn matrices on

PnH.
As in Section 2, there exists a faithful normal expectation E from B(H) onto

B(H)ϕ. Then we have the following proposition.

Proposition 3.2. Keep the notation and the assumptions as above. Then
there exists a family {Qn}∞n=1 of mutually orthogonal rank one projections in the

diagonal D of A such that
∞∑

n=1
Qn = I.

Proof. As in Section 2, let Am be the maximal subdiagonal algebra with
respect to Φ of B(H) containing A. Let Pn be as above. At first, we shall show
that Pn ∈ E(D) ⊂ D. We consider an invertible operator X = 2Pn ⊕ (I − Pn)
on H = PnH ⊕ P⊥n H. By Corollary 2.5, E(Am) is a finite maximal subdiagonal
algebra of B(H)ϕ with diagonal E(D). Hence, by [1], Theorem 4.4.1, there exist a
unitary operator U in B(H)ϕ and an invertible operator A in E(Am) ∩ E(Am)−1

such that X = UA. Since Pn is a central projection of B(H)ϕ, we can decompose
U = U1⊕U2 and A = A1⊕A2. It is clear that A1 = 2U∗1 and A2 = U∗2 , so we have
that σ(A) = 2σ(U∗1 ) ∪ σ(U∗2 ). It is also clear that σ(U∗1 )(⊂ T) is a finite subset of
T and σ(U∗2 ) ⊆ T, where T is the unit circle. If σ(U∗2 ) 6= T, then we know that
C\σ(A) is connected. If σ(U∗2 ) = T, then the only bounded component of C\σ(A)
is the open disc D. Thus we can choose a neighborhood Ω of σ(A) such that

(1) Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅,
(2) σ(A1) ⊂ Ω1, σ(A2) ⊂ Ω2, and
(3) the only bounded component of C \ Ω is a closed disc {λ ∈ C : |λ| 6 r}

with radius r less than one.

Define the holomorphic function f on Ω by

f(z) =
{

1, z ∈ Ω1

0, z ∈ Ω2.
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By [8], Theorem 13.9 there is a sequence {Ri} of rational functions with poles
at 0, such that Ri → f uniformly on compact subsets of Ω. Since both A and
A−1 are in E(Am), we have that Pn(= f(A)) ∈ E(Am), and so Pn ∈ E(D). By
Corollary 2.5, Pn ∈ D. Since PnE(Am)Pn is a subdiagonal algebra of Mkn

, by
[4], Theorem 2.1, PnE(Am)Pn is a nest subalgebra of Mkn

with a finite nest. So
PnE(Am)Pn contains a family of mutually orthogonal rank one projections whose
sum is Pn. This completes the proof.

Lemma 3.3. Keep the assumptions as above and also assume that A 6= B(H).
Then there exists a nontrivial A-invariant subspace of H.

Proof. By Proposition 3.2, we know that D′ is abelian. Hence, by Theo-
rems 6.2.1 and 6.2.2 in [1], we have ρ ◦ Φ = ρ, where ρ is the canonical trace of
B(H). By Proposition 3.2, there is a rank one projection e ⊗ e ∈ D such that
{A0e} 6= {0}, where e ⊗ e(x) = (x, e)e, ∀x ∈ H. Put M = [A0e], then M is
A-invariant. If T ∈ A0, then

(Te, e) = ρ(T (e⊗ e)) = ρ ◦ Φ(T (e⊗ e)) = 0.

Hence, M is nontrivial. This completes the proof.

Proof of Theorem 3.1. By Lemma 3.3 and Zorn’s lemma, there exists a
maximal nest N of A-invariant subspaces of H. Since N ⊂ D′ and D′ is atomic,
the nestN is atomic. Let {Eλ}λ∈Λ be the set of all atoms ofN . By the maximality
of N and Lemma 3.3, we have EλB(H)Eλ ⊂ D. This implies that N ′ = D and so
Φ(T ) =

∑
λ∈Λ

EλTEλ for every T in B(H). It is clear that A ⊂ algN .

Conversely, if T ∈ algN , then there exist nets Aα, Bα ∈ A such that Aα +
B∗α → T σ-weakly. For λ, µ ∈ Λ, there exist Pλ, Pµ ∈ N such that Eλ = Pλ	Pλ−

and Eµ = Pµ 	 Pµ− respectively. We define an order on Λ by

λ < µ ⇐⇒ Pλ < Pµ.

If λ > µ, then EλTEµ = 0 because T ∈ algN . If λ = µ, then EλTEλ ∈ D ⊂ A.
Since EλB∗αEµ = 0 in case that λ < µ, we have EλTEµ ∈ A. Therefore T =∑
λ6µ

EλTEµ ∈ A. This completes the proof.

In [9], Theorem 2, the third author and Watatani proved that if D is a sub-
factor of a finite dimensional factor M, then there exist no maximal subdiagonal
algebras of M with respect to the canonical conditional expectation from M onto
D unless D = M. The following corollary is in case that M = B(H).
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Corollary 3.4. If D is a subfactor of B(H), then there exist no maximal
subdiagonal algebras with diagonal D unless D = B(H).

Acknowledgements. This work was supported in part by a Grand-in-Aid for Scien-
tific Research from the Japanese Ministry of Education. The authors would like to thank
the referee for the valuable suggestions.

REFERENCES

1. W.B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89(1967), 578–642.
2. K.R. Davidson, Nest Algebras, Pitman Res. Notes Math., vol. 191, 1988.
3. R. Exel, Maximal subdiagonal algebras, Amer. J. Math. 110(1988), 775–782.
4. G. Ji, T. Ohwada, K.-S. Saito, Triangular forms of subdiagonal algebras, Hokkaido

Math. J., to appear.
5. R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras.

II, Academic Press, 1986.
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