CERTAIN STRUCTURE OF SUBDIAGONAL ALGEBRAS

GUOXING JI, TOMOYOSHI OHWADA and KICHI-SUKE SAITO

Communicated by William B. Arveson

ABSTRACT. Let \mathfrak{A} be a maximal subdiagonal algebra of a von Neumann algebra \mathcal{M} with respect to a faithful normal expectation Φ . Then we show that if φ is a faithful normal state of \mathcal{M} such that $\varphi \circ \Phi = \varphi$, then \mathfrak{A} is σ_t^{φ} -invariant, where $\{\sigma_t^{\varphi}\}_{t \in \mathbb{R}}$ is the modular automorphism group associated with φ . As an application, we prove that every σ -weakly closed subdiagonal algebra of $\mathcal{B}(\mathcal{H})$ is a nest algebra with an atomic nest.

KEYWORDS: von Neumann algebra, subdiagonal algebra.

MSC (2000): Primary 46L10; Secondary 47D25.

1. INTRODUCTION AND PRELIMINARIES

In [1], Arveson introduced the notion of subdiagonal algebras to study the analyticity in operator algebras. At first, we start by given the definition of subdiagonal algebras. Let \mathcal{M} be a von Neumann algebra on a separable complex Hilbert space \mathcal{H} , and let Φ be a faithful normal positive idempotent linear map from \mathcal{M} onto a von Neumann subalgebra \mathfrak{D} of \mathcal{M} . A σ -weakly closed subalgebra \mathfrak{A} of \mathcal{M} , containing \mathfrak{D} , is called subdiagonal algebra in \mathcal{M} with respect to Φ if

- (i) $\mathfrak{A} \cap \mathfrak{A}^* = \mathfrak{D}$,
- (ii) Φ is multiplicative on \mathfrak{A} , and
- (iii) $\mathfrak{A} + \mathfrak{A}^*$ is σ -weakly dense in \mathcal{M} .

The algebra \mathfrak{D} is called the diagonal of \mathfrak{A} . We say that \mathfrak{A} is a maximal subdiagonal algebra in \mathcal{M} with respect to Φ in case \mathfrak{A} is not properly contained in any other subalgebra of \mathcal{M} which is subdiagonal with respect to Φ .

Although subdiagonal algebras are not assumed to be σ -weakly closed in [1], the σ -weak closure of a subdiagonal algebra is again a subdiagonal algebra ([1], Remark 2.1.2). Thus we assume that our subdiagonal algebras are always σ -weakly closed.

In [1], Arveson asked whether all (σ -weakly closed) subdiagonal algebras are maximal subdiagonal algebras. In [3], Exel gave an affirmative answer to this problem in finite case. That is, Exel showed that if \mathfrak{A} is finite in the sense that there exists a faithful normal finite trace τ on \mathcal{M} such that $\tau \circ \Phi = \tau$, then \mathfrak{A} is automatically maximal subdiagonal.

In general, let \mathfrak{A} be a subdiagonal algebra of \mathcal{M} with respect to Φ . Then there exists a faithful normal state φ of \mathcal{M} such that $\varphi \circ \Phi = \varphi$ by the separability of \mathcal{H} .

First, we shall prove that, if \mathfrak{A} is maximal, then \mathfrak{A} is invariant under the modular automorphism group $\{\sigma_t^{\varphi}\}_{t\in\mathbb{R}}$ of φ (cf. [5]). Further, as an application, we shall show that every subdiagonal algebra \mathfrak{A} of $\mathcal{B}(\mathcal{H})$ is a nest algebra with an atomic nest.

2. σ_t^{φ} -INVARIANCE OF SUBDIAGONAL ALGEBRAS

Let \mathcal{M} be a von Neumann algebra, acting on a separable Hilbert space \mathcal{H} , and let \mathfrak{A} be a subdiagonal algebra of \mathcal{M} with respect to Φ . Put $\mathfrak{D} = \mathfrak{A} \cap \mathfrak{A}^*$. Then there exists a faithful normal state φ on \mathcal{M} such that $\varphi \circ \Phi = \varphi$. Without loss of generality, we may assume that \mathcal{M} has a cyclic and separating vector ξ_0 in \mathcal{H} such that $\varphi(T) = (T\xi_0, \xi_0)$ for any $T \in \mathcal{M}$.

Put $\mathfrak{A}_0 = \{X \in \mathfrak{A} : \Phi(X) = 0\}$, and we define the closed subspaces $\mathcal{H}_1, \mathcal{H}_2$ and \mathcal{H}_3 by $\mathcal{H}_1 = [\mathfrak{A}_0\xi_0], \mathcal{H}_2 = [\mathfrak{D}\xi_0]$ and $\mathcal{H}_3 = [\mathfrak{A}_0^*\xi_0]$ respectively, where [S] is the closed linear span of a subset S of \mathcal{H} . Let P_i be the orthogonal projection from \mathcal{H} onto \mathcal{H}_i for every i = 1, 2, 3. Let \mathfrak{A}_m be the set of all $A \in \mathcal{M}$ such that $\Phi(\mathfrak{A}A\mathfrak{A}_0) = \Phi(\mathfrak{A}_0A\mathfrak{A}) = 0$. By [1], Theorem 2.2.1, we recall that \mathfrak{A}_m is a maximal subdiagonal algebra in \mathcal{M} with respect to Φ containing \mathfrak{A} . Then we easily have the following lemma.

LEMMA 2.1. Keep the notation as above. Then

- (i) $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3$;
- (ii) $\mathfrak{D}\mathcal{H}_i \subseteq \mathcal{H}_i \ (i=1,2,3);$
- (iii) $\mathcal{H}_1 = [(\mathfrak{A}_m)_0 \xi_0] \text{ and } \mathcal{H}_3 = [(\mathfrak{A}_m)_0^* \xi_0];$
- (iv) $(\mathfrak{A}_m)_0(\mathcal{H}_1\oplus\mathcal{H}_2)\subseteq\mathcal{H}_1$ and $(\mathfrak{A}_m)_0^*(\mathcal{H}_2\oplus\mathcal{H}_3)\subseteq\mathcal{H}_3$.

Considering the Hilbert space decomposition in (i), we have the following lemma.

LEMMA 2.2. Keep the assumptions and the notation as above. Then

$$\mathfrak{D} = \left\{ D \in \mathcal{M} : D = \begin{pmatrix} D_{11} & 0 & 0 \\ 0 & D_{22} & 0 \\ 0 & 0 & D_{33} \end{pmatrix} \right\}$$

and

$$(\mathfrak{A}_m)_0 = \left\{ X \in \mathcal{M} : X = \begin{pmatrix} X_{11} & X_{12} & X_{13} \\ 0 & 0 & X_{23} \\ 0 & 0 & X_{33} \end{pmatrix} \right\}.$$

Proof. Put

$$\mathfrak{B} = \left\{ D \in \mathcal{M} : D = \begin{pmatrix} D_{11} & 0 & 0 \\ 0 & D_{22} & 0 \\ 0 & 0 & D_{33} \end{pmatrix} \right\}$$

and

$$\mathfrak{C} = \left\{ X \in \mathcal{M} : X = \begin{pmatrix} X_{11} & X_{12} & X_{13} \\ 0 & 0 & X_{23} \\ 0 & 0 & X_{33} \end{pmatrix} \right\}$$

respectively. Then it is clear that $\mathfrak{D} \subseteq \mathfrak{B}$ and $(\mathfrak{A}_m)_0 \subseteq \mathfrak{C}$.

If $D \in \mathfrak{B}$, then $\Phi(D) \in \mathfrak{D} \subseteq \mathfrak{B}$ and so $\Phi(D)$ has the matrix form as follows:

$$\Phi(D) = \begin{pmatrix} V_{11} & 0 & 0\\ 0 & V_{22} & 0\\ 0 & 0 & V_{33} \end{pmatrix}.$$

Since $\mathfrak{A}_0 + \mathfrak{D} + \mathfrak{A}_0^*$ is σ -weakly dense in $\mathcal{M}, \mathfrak{A}_0 + \mathfrak{A}_0^*$ is σ -weakly dense in Ker (Φ) . Let P_2 be the orthogonal projection from \mathcal{H} onto \mathcal{H}_2 . Then it is clear that $P_2(X\xi_0) = \Phi(X)\xi_0, X \in \mathcal{M}$. Thus $P_2XP_2 = 0$ for every $X \in \text{Ker}(\Phi)$. Since $D - \Phi(D) \in \text{Ker}(\Phi)$, we have $D_{22} - V_{22} = P_2(D - \Phi(D))P_2 = 0$. Hence we have

$$(D - \Phi(D))\xi_0 = (D_{22} - V_{22})\xi_0 = 0.$$

Since ξ_0 is a separating vector for \mathcal{M} and $\xi_0 \in \mathcal{H}_2$, we have $D = \Phi(D) \in \mathfrak{D}$ and so $\mathfrak{D} = \mathfrak{B}$.

On the other hand, take any $X \in \mathfrak{C}$. Since $\Phi(X) \in \mathfrak{D}$, $\Phi(X)$ is of the form

$$\Phi(X) = \begin{pmatrix} V_{11} & 0 & 0\\ 0 & V_{22} & 0\\ 0 & 0 & V_{33} \end{pmatrix}.$$

Then we similarly have $P_2(\Phi(X) - X)P_2 = V_{22} = 0$. Thus $\Phi(X) = 0$.

It is trivial that \mathfrak{C} is a \mathfrak{D} -bimodule and $(\mathfrak{A}_m)_0 \subseteq \mathfrak{C}$. Hence it is easy to check that $\mathfrak{D} + \mathfrak{C}$ is a subdiagonal algebra of \mathcal{M} with respect to Φ , containing \mathfrak{A}_m . By the maximality of \mathfrak{A}_m , we have $\mathfrak{A}_m = \mathfrak{D} + \mathfrak{C}$. This implies that $(\mathfrak{A}_m)_0 = \mathfrak{C}$. This completes the proof. From Tomita-Takesaki theory, we define conjugate-linear operators S_0 and F_0 , with dense domains $\{\mathcal{M}\xi_0\}$ and $\{\mathcal{M}'\xi_0\}$ respectively by

$$S_0A\xi_0 = A^*\xi_0$$
 and $F_0B\xi_0 = B^*\xi_0$ $(A \in \mathcal{M}, B \in \mathcal{M}').$

By [5], Lemma 9.2.1, the operator S_0 is preclosed, and the adjoint F is an extension of F_0 . Further, if S is the closure of S_0 , then $S^* = F$. Let $\mathcal{D}(S)$ be the domain of S, and let G(S) be the graph of S.

LEMMA 2.3. Keep the notation as above. Then the closed operator S has the following matrix decomposition with respect to Lemma 2.1 (i):

$$S = \begin{pmatrix} 0 & 0 & S_3 \\ 0 & S_2 & 0 \\ S_1 & 0 & 0 \end{pmatrix}$$

where for i = 1, 2, 3, S_i is a closed operator with domain \mathfrak{F}_i in \mathcal{H}_i such that $S_1\mathfrak{F}_1 = \mathfrak{F}_3$, $S_2\mathfrak{F}_2 = \mathfrak{F}_2$ and $S_3\mathfrak{F}_3 = \mathfrak{F}_1$.

Proof. Since $\{\mathfrak{A}_0\xi_0\} \oplus \{\mathfrak{D}\xi_0\} \oplus \{\mathfrak{A}_0^*\xi_0\} \subseteq \mathcal{D}(S)$, we can define a preclosed operator V_0 by

$$V_0(A + D + B^*)\xi_0 = (A^* + D^* + B)\xi_0$$

for $A, B \in \mathfrak{A}_0$ and $D \in \mathfrak{D}$. Since S_0 is an extension of V_0, S is an extension of the closure V of V_0 . Since G(S) is the norm closure of $\{X\xi_0 \oplus X^*\xi_0 : X \in \mathcal{M}\}$ and $\mathfrak{A}_0 + \mathfrak{D} + \mathfrak{A}_0^*$ is σ -weakly dense in \mathcal{M} , it is easy to prove that S = V.

Let $\zeta \oplus S\zeta \in G(S)$. Since S is the closure of V_0 , there exist $\{A_n, B_n\}_{n=1}^{\infty}$ in \mathfrak{A}_0 and $\{D_n\}_{n=1}^{\infty}$ in \mathfrak{D} such that

$$\lim_{n \to \infty} (\|(A_n + D_n + B_n^*)\xi_0 - \zeta\|^2 + \|(A_n^* + D_n^* + B_n)\xi_0 - S\zeta\|^2) = 0.$$

Then, we have

$$\lim_{n \to \infty} (\|A_n \xi_0 - P_1 \zeta\|^2 + \|D_n \xi_0 - P_2 \zeta\|^2 + \|B_n^* \xi_0 - P_3 \zeta\|^2 + \|A_n^* \xi_0 - P_3 S \zeta\|^2 + \|D_n^* \xi_0 - P_2 S \zeta\|^2 + \|B_n \xi_0 - P_1 S \zeta\|^2) = 0,$$

where P_i is the projection from \mathcal{H} onto \mathcal{H}_i for i = 1, 2, 3. This implies that $P_i \zeta \oplus SP_i \zeta \in G(S)$ and $P_i \mathcal{D}(S) \subset \mathcal{D}(S)$ for i = 1, 2, 3. Put $\mathfrak{F}_i = P_i \mathcal{D}(S)$. Since $S\mathfrak{F}_1 = \mathfrak{F}_3, S\mathfrak{F}_2 = \mathfrak{F}_2$ and $S\mathfrak{F}_3 = \mathfrak{F}_1$, we have the desired matrix form of S with respect to Lemma 2.1 (i). This completes the proof.

312

Put $\Delta = S^*S$. We recall that the modular automorphism group $\{\sigma_t^{\varphi}\}_{t \in \mathbb{R}}$ of \mathcal{M} associated with φ has the following form:

$$\sigma_t^{\varphi}(X) = \Delta^{\mathrm{i}t} X \Delta^{-\mathrm{i}t} \quad (\forall t \in \mathbb{R}, \ X \in \mathcal{M}).$$

Then we have the following theorem.

THEOREM 2.4. Let \mathfrak{A} be a maximal subdiagonal algebra of \mathcal{M} with respect to Φ and let φ is a faithful normal state of \mathcal{M} such that $\varphi \circ \Phi = \varphi$. Then \mathfrak{A} is σ_t^{φ} -invariant, that is $\sigma_t^{\varphi}(\mathfrak{A}) = \mathfrak{A}$.

Proof. From Lemma 2.3, the adjoint S^* of S has the matrix form

$$S^* = \begin{pmatrix} 0 & 0 & S_1^* \\ 0 & S_2^* & 0 \\ S_3^* & 0 & 0 \end{pmatrix}$$

where S_i^* is the adjoint operator of S_i with domain \mathfrak{F}_i^* (i = 1, 2, 3). Then the modular operator Δ has the matrix form

$$\Delta = \begin{pmatrix} S_1^* S_1 & 0 & 0 \\ 0 & S_2^* S_2 & 0 \\ 0 & 0 & S_3^* S_3 \end{pmatrix}.$$

By Lemmas 2.2 and 2.3, it is easy to prove that, for every $t \in \mathbb{R}$,

$$\sigma_t^{\varphi}(\mathfrak{D}) = \mathfrak{D} \quad \text{and} \quad \sigma_t^{\varphi}(\mathfrak{A}_0) = \mathfrak{A}_0 \quad (t \in \mathbb{R}).$$

Thus we have the theorem.

Let \mathcal{M}^{φ} be the centralizer of \mathcal{M} associated with φ , that is, $\mathcal{M}^{\varphi} = \{A \in \mathcal{M} : \varphi(AB) = \varphi(BA), \forall B \in \mathcal{M}\}$. Recall that \mathcal{M}^{φ} is the fixed point algebra of \mathcal{M} with respect to $\{\sigma_t^{\varphi}\}_{t \in \mathbb{R}}$ and there exists a faithful normal expectation \mathcal{E} from \mathcal{M} onto \mathcal{M}^{φ} (cf. [6], Theorem 1.2). We remark that \mathcal{M}^{φ} is a finite von Neumann algebra.

COROLLARY 2.5. Keep the notation and assumptions as above. Then $\mathcal{E}(\mathfrak{A})$ is a maximal finite subdiagonal algebra of \mathcal{M}^{φ} with respect to $\Phi|_{\mathcal{M}^{\varphi}}$.

Proof. Let $X \in \mathcal{M}$. By [6], Theorem 1.2, $\mathcal{E}(X)$ is in the σ -weak closure of convex hull of $\{\sigma_t^{\varphi}(X) : t \in \mathbb{R}\}$. Since \mathfrak{A} is σ_t^{φ} -invariant by Theorem 2.4, we have $\mathcal{E}(\mathfrak{A}_0) \subset \mathfrak{A}_0$ and $\mathcal{E}(\mathfrak{D}) \subset \mathfrak{D}$. Then we easily prove that $\mathcal{E}(\mathfrak{A})$ is a subdiagonal algebra of \mathcal{M}^{φ} with respect to $\Phi|_{\mathcal{M}^{\varphi}}$. By [5], Proposition 9.2.14, $\varphi|_{\mathcal{M}^{\varphi}}$ is a faithful normal trace on \mathcal{M}^{φ} . Thus $\mathcal{E}(\mathfrak{A})$ is a finite subdiagonal algebra of \mathcal{M}^{φ} . By [3], Theorem 7, $\mathcal{E}(\mathfrak{A})$ is a maximal finite subdiagonal algebra of \mathcal{M}^{φ} . This completes the proof. Finally, we remark about the question in [1], Remark 2.2.3, whether every subdiagonal algebra must nessesarily be maximal subdiagonal. In [3], Exel showed that every finite subdiagonal algebra is maximal subdiagonal. By Theorem 2.4, we have following two questions.

QUESTION 2.6. Is there a subdiagonal algebra which is not σ_t^{φ} -invariant for some faithful normal state φ on \mathcal{M} such that $\varphi \circ \Phi = \varphi$?

QUESTION 2.7. If \mathfrak{A} is a σ_t^{φ} -invariant subdiagonal algebra of \mathcal{M} for every faithful normal state φ on \mathcal{M} such that $\varphi \circ \Phi = \varphi$, is \mathfrak{A} maximal subdiagonal ?

3. SUBDIAGONAL ALGEBRAS OF $\mathcal{B}(\mathcal{H})$

Let \mathcal{N} be a nest, that is, \mathcal{N} is a chain of closed subspaces of \mathcal{H} containing $\{0\}$ and \mathcal{H} which is closed under intersection and closed span. Then the nest algebra $\operatorname{alg} \mathcal{N}$ is the set of all operators T in $\mathcal{B}(\mathcal{H})$ such that $TN \subseteq N$ for every $N \in \mathcal{N}$. The intersection $\mathfrak{D} = \operatorname{alg} \mathcal{N} \cap (\operatorname{alg} \mathcal{N})^*$ is the diagonal of $\operatorname{alg} \mathcal{N}$. We recall that there exists a faithful normal expectation from $\mathcal{B}(\mathcal{H})$ onto \mathfrak{D} if and only if \mathcal{N} is atomic (cf. [2], Theorem 8.6). In this case, $\operatorname{alg} \mathcal{N}$ is a subdiagonal algebra of $\mathcal{B}(\mathcal{H})$ with respect to the expectation. In this section, we consider the converse, that is, if \mathfrak{A} is a subdiagonal algebra of $\mathcal{B}(\mathcal{H})$ with respect to a faithful normal expectation Φ , then \mathfrak{A} is a nest algebra with an atomic nest.

Our main theorem in this section is the following.

THEOREM 3.1. Let \mathfrak{A} be a subdiagonal algebra of $\mathcal{B}(\mathcal{H})$ with respect to a faithful normal expectation Φ . Then there exists an atomic nest \mathcal{N} such that $\mathfrak{A} = \operatorname{alg} \mathcal{N}$.

The proof of Theorem 3.1 requires a few preliminary results.

Let \mathfrak{A} be a subdiagonal algebra of $\mathcal{B}(\mathcal{H})$ with respect to a faithful normal expectation Φ . Since \mathcal{H} is separable, there exists a faithful normal state φ on $\mathcal{B}(\mathcal{H})$ such that $\varphi \circ \Phi = \varphi$. Let ρ be the canonical trace of $\mathcal{B}(\mathcal{H})$. By [5], Lemma 9.2.19, there is a positive contraction K in $\mathcal{B}(\mathcal{H})$ such that I - K is a trace-class operator and

 $\rho((I - K)A) = \varphi(KA) = \varphi(AK) \quad (A \in \mathcal{B}(\mathcal{H})).$

Moreover, both K and I - K are injective. Put $F = K^{-1}(I - K)$. Then by [5], Lemma 9.2.20, the modular automorphism group $\{\sigma_t^{\varphi}\}_{t \in \mathbb{R}}$ of $\mathcal{B}(\mathcal{H})$ associated with φ is written as

$$\sigma_t^{\varphi}(X) = F^{it}XF^{-it} \quad (X \in \mathcal{B}(\mathcal{H}), \ t \in \mathbb{R}).$$

Let $\mathcal{B}(\mathcal{H})^{\varphi}$ be the centralizer of φ of $\mathcal{B}(\mathcal{H})$. Since the centralizer $\mathcal{B}(\mathcal{H})^{\varphi}$ is the fixed point algebra of $\{\sigma_t^{\varphi}\}_{t\in\mathbb{R}}$ (cf. [5], p. 697), we can show that $\mathcal{B}(\mathcal{H})^{\varphi}$ is the commutant of $\{F\}$. Since I - K is a trace class positive operator, we can write $I - K = \sum_{n=1}^{\infty} \oplus \lambda_n P_n$, where $\{\lambda_n\}_{n=1}^{\infty}$ are the distinct eigenvalues of I - Kand for every n, P_n is the spectral projection of I - K corresponding to λ_n . Since $F = K^{-1}(I - K) = \sum_{n=1}^{\infty} \oplus \lambda_n (1 - \lambda_n)^{-1} P_n$, we can decompose

$$\mathcal{B}(\mathcal{H})^{\varphi} = \sum_{n=1}^{\infty} {}^{\oplus} M_{k_n},$$

where k_n is the dimension of $P_n\mathcal{H}$, and M_{k_n} is the set of all $k_n \times k_n$ matrices on $P_n\mathcal{H}$.

As in Section 2, there exists a faithful normal expectation \mathcal{E} from $\mathcal{B}(\mathcal{H})$ onto $\mathcal{B}(\mathcal{H})^{\varphi}$. Then we have the following proposition.

PROPOSITION 3.2. Keep the notation and the assumptions as above. Then there exists a family $\{Q_n\}_{n=1}^{\infty}$ of mutually orthogonal rank one projections in the diagonal \mathfrak{D} of \mathfrak{A} such that $\sum_{n=1}^{\infty} Q_n = I$.

Proof. As in Section 2, let \mathfrak{A}_m be the maximal subdiagonal algebra with respect to Φ of B(H) containing \mathfrak{A} . Let P_n be as above. At first, we shall show that $P_n \in \mathcal{E}(\mathfrak{D}) \subset \mathfrak{D}$. We consider an invertible operator $X = 2P_n \oplus (I - P_n)$ on $\mathcal{H} = P_n \mathcal{H} \oplus P_n^{\perp} \mathcal{H}$. By Corollary 2.5, $\mathcal{E}(\mathfrak{A}_m)$ is a finite maximal subdiagonal algebra of $\mathcal{B}(\mathcal{H})^{\varphi}$ with diagonal $\mathcal{E}(\mathfrak{D})$. Hence, by [1], Theorem 4.4.1, there exist a unitary operator U in $\mathcal{B}(\mathcal{H})^{\varphi}$ and an invertible operator A in $\mathcal{E}(\mathfrak{A}_m) \cap \mathcal{E}(\mathfrak{A}_m)^{-1}$ such that X = UA. Since P_n is a central projection of $\mathcal{B}(\mathcal{H})^{\varphi}$, we can decompose $U = U_1 \oplus U_2$ and $A = A_1 \oplus A_2$. It is clear that $A_1 = 2U_1^*$ and $A_2 = U_2^*$, so we have that $\sigma(A) = 2\sigma(U_1^*) \cup \sigma(U_2^*)$. It is also clear that $\sigma(U_1^*)(\subset \mathbb{T})$ is a finite subset of \mathbb{T} and $\sigma(U_2^*) \subseteq \mathbb{T}$, where \mathbb{T} is the unit circle. If $\sigma(U_2^*) \neq \mathbb{T}$, then we know that $\mathbb{C} \setminus \sigma(A)$ is connected. If $\sigma(U_2^*) = \mathbb{T}$, then the only bounded component of $\mathbb{C} \setminus \sigma(A)$ is the open disc \mathbb{D} . Thus we can choose a neighborhood Ω of $\sigma(A)$ such that

- (1) $\Omega = \Omega_1 \cup \Omega_2, \ \overline{\Omega_1} \cap \overline{\Omega_2} = \emptyset,$
- (2) $\sigma(A_1) \subset \Omega_1, \, \sigma(A_2) \subset \Omega_2$, and

(3) the only bounded component of $\mathbb{C} \setminus \Omega$ is a closed disc $\{\lambda \in \mathbb{C} : |\lambda| \leq r\}$ with radius r less than one.

Define the holomorphic function f on Ω by

$$f(z) = \begin{cases} 1, & z \in \Omega_1 \\ 0, & z \in \Omega_2. \end{cases}$$

By [8], Theorem 13.9 there is a sequence $\{R_i\}$ of rational functions with poles at 0, such that $R_i \to f$ uniformly on compact subsets of Ω . Since both A and A^{-1} are in $\mathcal{E}(\mathfrak{A}_m)$, we have that $P_n(=f(A)) \in \mathcal{E}(\mathfrak{A}_m)$, and so $P_n \in \mathcal{E}(\mathfrak{D})$. By Corollary 2.5, $P_n \in \mathfrak{D}$. Since $P_n \mathcal{E}(\mathfrak{A}_m) P_n$ is a subdiagonal algebra of \mathcal{M}_{k_n} , by [4], Theorem 2.1, $P_n \mathcal{E}(\mathfrak{A}_m) P_n$ is a nest subalgebra of \mathcal{M}_{k_n} with a finite nest. So $P_n \mathcal{E}(\mathfrak{A}_m) P_n$ contains a family of mutually orthogonal rank one projections whose sum is P_n . This completes the proof.

LEMMA 3.3. Keep the assumptions as above and also assume that $\mathfrak{A} \neq \mathcal{B}(\mathcal{H})$. Then there exists a nontrivial \mathfrak{A} -invariant subspace of \mathcal{H} .

Proof. By Proposition 3.2, we know that \mathfrak{D}' is abelian. Hence, by Theorems 6.2.1 and 6.2.2 in [1], we have $\rho \circ \Phi = \rho$, where ρ is the canonical trace of $\mathcal{B}(\mathcal{H})$. By Proposition 3.2, there is a rank one projection $e \otimes e \in \mathfrak{D}$ such that $\{\mathfrak{A}_0 e\} \neq \{0\}$, where $e \otimes e(x) = (x, e)e$, $\forall x \in \mathcal{H}$. Put $\mathfrak{M} = [\mathfrak{A}_0 e]$, then \mathfrak{M} is \mathfrak{A} -invariant. If $T \in \mathfrak{A}_0$, then

$$(Te, e) = \rho(T(e \otimes e)) = \rho \circ \Phi(T(e \otimes e)) = 0.$$

Hence, \mathfrak{M} is nontrivial. This completes the proof.

Proof of Theorem 3.1. By Lemma 3.3 and Zorn's lemma, there exists a maximal nest \mathcal{N} of \mathfrak{A} -invariant subspaces of \mathcal{H} . Since $\mathcal{N} \subset \mathfrak{D}'$ and \mathfrak{D}' is atomic, the nest \mathcal{N} is atomic. Let $\{E_{\lambda}\}_{\lambda \in \Lambda}$ be the set of all atoms of \mathcal{N} . By the maximality of \mathcal{N} and Lemma 3.3, we have $E_{\lambda}\mathcal{B}(\mathcal{H})E_{\lambda} \subset \mathfrak{D}$. This implies that $\mathcal{N}' = \mathfrak{D}$ and so $\Phi(T) = \sum_{\lambda \in \Lambda} E_{\lambda}TE_{\lambda}$ for every T in $\mathcal{B}(\mathcal{H})$. It is clear that $\mathfrak{A} \subset \operatorname{alg} \mathcal{N}$.

Conversely, if $T \in \operatorname{alg} \mathcal{N}$, then there exist nets A_{α} , $B_{\alpha} \in \mathfrak{A}$ such that $A_{\alpha} + B_{\alpha}^* \to T \sigma$ -weakly. For λ , $\mu \in \Lambda$, there exist P_{λ} , $P_{\mu} \in \mathcal{N}$ such that $E_{\lambda} = P_{\lambda} \ominus P_{\lambda-}$ and $E_{\mu} = P_{\mu} \ominus P_{\mu-}$ respectively. We define an order on Λ by

$$\lambda < \mu \Longleftrightarrow P_{\lambda} < P_{\mu}.$$

If $\lambda > \mu$, then $E_{\lambda}TE_{\mu} = 0$ because $T \in \operatorname{alg} \mathcal{N}$. If $\lambda = \mu$, then $E_{\lambda}TE_{\lambda} \in \mathfrak{D} \subset \mathfrak{A}$. Since $E_{\lambda}B_{\alpha}^{*}E_{\mu} = 0$ in case that $\lambda < \mu$, we have $E_{\lambda}TE_{\mu} \in \mathfrak{A}$. Therefore $T = \sum_{\lambda \leqslant \mu} E_{\lambda}TE_{\mu} \in \mathfrak{A}$. This completes the proof.

In [9], Theorem 2, the third author and Watatani proved that if \mathfrak{D} is a subfactor of a finite dimensional factor \mathcal{M} , then there exist no maximal subdiagonal algebras of \mathcal{M} with respect to the canonical conditional expectation from \mathcal{M} onto \mathfrak{D} unless $\mathfrak{D} = \mathcal{M}$. The following corollary is in case that $\mathcal{M} = \mathcal{B}(\mathcal{H})$. CERTAIN STRUCTURE OF SUBDIAGONAL ALGEBRAS

COROLLARY 3.4. If \mathfrak{D} is a subfactor of $\mathcal{B}(\mathcal{H})$, then there exist no maximal subdiagonal algebras with diagonal \mathfrak{D} unless $\mathfrak{D} = \mathcal{B}(\mathcal{H})$.

Acknowledgements. This work was supported in part by a Grand-in-Aid for Scientific Research from the Japanese Ministry of Education. The authors would like to thank the referee for the valuable suggestions.

REFERENCES

- 1. W.B. ARVESON, Analyticity in operator algebras, Amer. J. Math. 89(1967), 578-642.
- 2. K.R. DAVIDSON, Nest Algebras, Pitman Res. Notes Math., vol. 191, 1988.
- 3. R. EXEL, Maximal subdiagonal algebras, Amer. J. Math. 110(1988), 775–782.
- 4. G. JI, T. OHWADA, K.-S. SAITO, Triangular forms of subdiagonal algebras, *Hokkaido* Math. J., to appear.
- 5. R.V. KADISON, J.R. RINGROSE, Fundamentals of the Theory of Operator Algebras. II, Academic Press, 1986.
- I. KOVACS, J. SZÜCS, Ergodic type theorems in von Neumann algebras, Acta Sci. Math. (Szeged) 27(1966), 233–246.
- R. LOEBL, P.S. MUHLY, Analyticity and flows in von Neumann algebras, J. Funct. Anal. 29(1978), 214–252.
- 8. W. RUDIN, *Real and Complex Analysis*, the third edition, McGraw-Hill Book Company, 1987.
- K.-S. SAITO, Y. WATATANI, Subdiagonal algebras for subfactors. II, Canad. Math. Bull. 40(1997), 254-256.

GUOXING JI Department of Mathematical Science Graduate School of Sci. and Technology Niigata University Niigata, 950-21 JAPAN TOMOYOSHI OHWADA Department of Mathematical Science Graduate School of Sci. and Technology Niigata University Niigata, 950-21 JAPAN

E-mail: ji@dmis.gs.niigata-u.ac.jp

E-mail: ohwada@dmis.gs.niigata-u.ac.jp

KICHI-SUKE SAITO Department of Mathematics Faculty of Science Niigata University Niigata, 950-21 JAPAN

E-mail: saito@math.sc.niigata-u.ac.jp

Received October 9, 1996; revised May 15, 1997.