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ABSTRACT. Let 2 be a maximal subdiagonal algebra of a von Neumann
algebra M with respect to a faithful normal expectation ®. Then we show

that if ¢ is a faithful normal state of M such that ¢ o & = ¢, then 2 is

of-invariant, where {0} }.cr is the modular automorphism group associated

with ¢. As an application, we prove that every o-weakly closed subdiagonal
algebra of B(H) is a nest algebra with an atomic nest.
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1. INTRODUCTION AND PRELIMINARIES

In [1], Arveson introduced the notion of subdiagonal algebras to study the analy-
ticity in operator algebras. At first, we start by given the definition of subdiagonal
algebras. Let M be a von Neumann algebra on a separable complex Hilbert space
‘H, and let ® be a faithful normal positive idempotent linear map from M onto
a von Neumann subalgebra ® of M. A o-weakly closed subalgebra 20 of M,
containing ®, is called subdiagonal algebra in M with respect to ® if

(i) ANA* =D,
(if) ® is multiplicative on 2, and
(iii) A + A* is o-weakly dense in M.
The algebra ® is called the diagonal of 2[. We say that 2l is a maximal subdiagonal

algebra in M with respect to ® in case 2 is not properly contained in any other

subalgebra of M which is subdiagonal with respect to ®.
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Although subdiagonal algebras are not assumed to be o-weakly closed in
[1], the o-weak closure of a subdiagonal algebra is again a subdiagonal algebra
([1], Remark 2.1.2). Thus we assume that our subdiagonal algebras are always
o-weakly closed.

In [1], Arveson asked whether all (o-weakly closed) subdiagonal algebras are
maximal subdiagonal algebras. In [3], Exel gave an affirmative answer to this
problem in finite case. That is, Exel showed that if 2 is finite in the sense that
there exists a faithful normal finite trace 7 on M such that 70 ® = 7, then 2 is
automatically maximal subdiagonal.

In general, let 2 be a subdiagonal algebra of M with respect to ®. Then
there exists a faithful normal state ¢ of M such that ¢ o ® = ¢ by the separability
of H.

First, we shall prove that, if % is maximal, then 2 is invariant under the
modular automorphism group {o{ }er of ¢ (cf. [5]). Further, as an application,
we shall show that every subdiagonal algebra 21 of B(H) is a nest algebra with an

atomic nest.

2. Jf—INVARIANCE OF SUBDIAGONAL ALGEBRAS

Let M be a von Neumann algebra, acting on a separable Hilbert space H, and
let A be a subdiagonal algebra of M with respect to ®. Put ® = AN A*. Then
there exists a faithful normal state ¢ on M such that ¢ o ® = ¢. Without loss
of generality, we may assume that M has a cyclic and separating vector &, in ‘H
such that o(T) = (T, &) for any T € M.

Put Ay = {X € A : ®(X) = 0}, and we define the closed subspaces Hi, Ha
and Hz by Hy = [olo], Ha = [D&] and Hsz = [Ai&o] respectively, where [S] is
the closed linear span of a subset S of H. Let P; be the orthogonal projection
from H onto H; for every i = 1,2,3. Let 2L, be the set of all A € M such that
D(AAAy) = P(™ApAA) = 0. By [1], Theorem 2.2.1, we recall that 2, is a maximal
subdiagonal algebra in M with respect to ® containing 2. Then we easily have
the following lemma.

LEMMA 2.1. Keep the notation as above. Then
(i) H="H1® Hao @ Hs;
(ii) OH; CH; (i=1,2,3);
(iii) H1 = [(Am)obo] and Hz = [(Am)5éo];
(iV) (le)O(Hl D Hz) C 'Hy and (le)a(Hg D Hg) C Hs.

Considering the Hilbert space decomposition in (i), we have the following

lemma.
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LEMMA 2.2. Keep the assumptions and the notation as above. Then

Dy,
D= DeM:D= 0 DQQ
D33

0 0
and
X1 X12 X13
(le)(): XeM: X = 0 X23
0 X33
Proof. Put
D1y 0 0
B=SDeM:D= 0 Doo 0
0 0 Ds3
and
Xu X2 Xi3
¢ = XeM: X = 0 0 X23
0 0 X33

respectively. Then it is clear that ® C B and (2,,)o C €.
If D € B, then (D) € © C B and so ¢(D) has the matrix form as follows:

Vi 0 0
oD)=( 0 Ve 0
0 0 Va3

Since Ap+D+AUf is o-weakly dense in M, Ao+A§ is o-weakly dense in Ker(®). Let
P, be the orthogonal projection from H onto Hs. Then it is clear that Py(X§p) =
®(X)&, X € M. Thus P,XP, = 0 for every X € Ker(®). Since D — ®(D) €
Ker(®), we have Day — Vag = Po(D — ®(D))P, = 0. Hence we have

(D —®(D))& = (Do — Va2)& = 0.

Since & is a separating vector for M and &, € Hs, we have D = ®(D) € © and
so D = B.
On the other hand, take any X € €. Since ®(X) € ©, ®(X) is of the form

Vii 0 0
o(X)=| 0 Ve 0
0 0 Va3

Then we similarly have Py(®(X) — X )P, = Va3 = 0. Thus ®(X) =0.

It is trivial that € is a ©-bimodule and (,,)o C €. Hence it is easy to check
that ® + € is a subdiagonal algebra of M with respect to ®, containing 2,,,. By
the maximality of 2,,, we have 2, =D + €. This implies that (2,,)o = €. This
completes the proof. 1
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From Tomita-Takesaki theory, we define conjugate-linear operators Sy and
Fy, with dense domains {M¢&y} and {M’&y} respectively by

S()Afo = A*fo and F()Bfo = B*§0 (A € M, B e M/)

By [5], Lemma 9.2.1, the operator Sy is preclosed, and the adjoint F' is an extension
of Fy. Further, if S is the closure of Sy, then S* = F. Let D(S) be the domain of
S, and let G(S) be the graph of S.

LEMMA 2.3. Keep the notation as above. Then the closed operator S has

the following matriz decomposition with respect to Lemma 2.1 (i):

0 0 53
S=10 Sy 0
S1 0 0
where for i = 1,2,3, S; is a closed operator with domain §; in H; such that

5181 = 83, 5282 = §2 and S383 = F1.

Proof. Since {2p&o} @ {D&} @ {A5éo} € D(S), we can define a preclosed
operator V) by
Vo(A+ D+ B")§ = (A" + D" + B)&

for A, B € g and D € ©. Since Sy is an extension of Vj, S is an extension of
the closure V' of Vj. Since G(S) is the norm closure of {X&, & X*& : X € M}
and Ao + O + A is o-weakly dense in M, it is easy to prove that S = V.

Let ¢ @ S¢ € G(S). Since S is the closure of Vp, there exist {A,, B,}22 in
Ap and {D,}>2; in D such that

lim ([|(An + D + By)&o — ¢l + (A}, + D5, + Bn)& — S¢|I*) = 0.

n—oo

Then, we have

lim ([ Ango — Pi¢|* + [1Dngo — PoCl* + [1Bri&o — PsC]l*
+ | Anéo — PaSCI* + 1D — PaSC* + [1Buko — PLSCIP) =0,
where P; is the projection from H onto H; for ¢ = 1,2,3. This implies that
Pi¢ ® SP¢ € G(S) and P,D(S) C D(S) for i = 1,2,3. Put §; = P/D(S). Since

ST1 = §3,5F2 = §2 and S§F3 = §F1, we have the desired matrix form of S with
respect to Lemma 2.1 (i). This completes the proof. 1
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Put A = S8*S. We recall that the modular automorphism group {o{ };cr of
M associated with ¢ has the following form:

of (X) = APXAT" (VteR, X € M).
Then we have the following theorem.

THEOREM 2.4. Let A be a mazimal subdiagonal algebra of M with respect
to ® and let ¢ is a faithful normal state of M such that ¢ o ® = . Then A is

of -invariant, that is of (A) = 2.

Proof. From Lemma 2.3, the adjoint S* of S has the matrix form

0 0 S
s*=(0 S 0
S 0 0

where S} is the adjoint operator of S; with domain §} (¢ = 1,2,3). Then the
modular operator A has the matrix form

SiS1 0 0
A=| 0 88 0
0 0 SiSs

By Lemmas 2.2 and 2.3, it is easy to prove that, for every ¢t € R,
of (D)= and of(Ag)=Ao (tER).
Thus we have the theorem. 1§

Let M? be the centralizer of M associated with ¢, that is, M?® = {4 € M :
p(AB) = ¢(BA), VB € M}. Recall that M¥ is the fixed point algebra of M
with respect to {0} }+cr and there exists a faithful normal expectation £ from M
onto M? (cf. [6], Theorem 1.2). We remark that M is a finite von Neumann
algebra.

COROLLARY 2.5. Keep the notation and assumptions as above. Then E(2)
is a maximal finite subdiagonal algebra of M with respect to ®|pqe.

Proof. Let X € M. By [6], Theorem 1.2, £(X) is in the o-weak closure
of convex hull of {¢f(X) : t € R}. Since 2 is of-invariant by Theorem 2.4, we
have £(p) C Ap and E(D) C D. Then we easily prove that £(2) is a subdiagonal
algebra of M¥ with respect to ®|sp¢. By [5], Proposition 9.2.14, ¢| e is a faithful
normal trace on M¥. Thus £(2) is a finite subdiagonal algebra of M¥. By [3],
Theorem 7, £(2) is a maximal finite subdiagonal algebra of M¥. This completes
the proof. 1
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Finally, we remark about the question in [1], Remark 2.2.3, whether every
subdiagonal algebra must nessesarily be maximal subdiagonal. In [3], Exel showed
that every finite subdiagonal algebra is maximal subdiagonal. By Theorem 2.4,

we have following two questions.

QUESTION 2.6. Is there a subdiagonal algebra which is not o -invariant for
some faithful normal state ¢ on M such that oo ® = ¢ ?

QUESTION 2.7. If 2 is a o) -invariant subdiagonal algebra of M for every
faithful normal state ¢ on M such that ¢ o ® = ¢, is A maximal subdiagonal ?

3. SUBDIAGONAL ALGEBRAS OF B(H)

Let N be a nest, that is, N is a chain of closed subspaces of H containing {0} and
‘H which is closed under intersection and closed span. Then the nest algebra alg N
is the set of all operators T in B(H) such that TN C N for every N € N. The
intersection ® = alg N N (algNV)* is the diagonal of alg N. We recall that there
exists a faithful normal expectation from B(H) onto @ if and only if A/ is atomic
(cf. [2], Theorem 8.6). In this case, alg  is a subdiagonal algebra of B(H) with
respect to the expectation. In this section, we consider the converse, that is, if 2
is a subdiagonal algebra of B(H) with respect to a faithful normal expectation @,
then 2 is a nest algebra with an atomic nest.

Our main theorem in this section is the following.

THEOREM 3.1. Let 2 be a subdiagonal algebra of B(H) with respect to a

faithful normal expectation ®. Then there ewists an atomic nest N such that

A =algN.

The proof of Theorem 3.1 requires a few preliminary results.

Let 2 be a subdiagonal algebra of B(H) with respect to a faithful normal
expectation ®. Since H is separable, there exists a faithful normal state ¢ on B(H)
such that ¢ o ® = . Let p be the canonical trace of B(H). By [5], Lemma 9.2.19,
there is a positive contraction K in B(H) such that I — K is a trace-class operator
and

p((I - K)A) = p(KA) = p(AK) (A € B(H)).

Moreover, both K and I — K are injective. Put F = K~!(I — K). Then by [5],
Lemma 9.2.20, the modular automorphism group {0y };cr of B(H) associated with
 is written as

of (X)=F'XF™" (X € B(H), t €R).
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Let B(H)¥ be the centralizer of ¢ of B(H). Since the centralizer B(H)? is
the fixed point algebra of {07 }ter (cf. [5], p. 697), we can show that B(H)? is
the commutant of {F'}. Since I — K is a trace class positive operator, we can

o0

write I — K = Y%\, P,, where {)\,}22, are the distinct eigenvalues of I — K
n=1

and for every n, P, is the spectral projection of I — K corresponding to A,,. Since

F=K'I-K)=Y%\,(1-X,)"'P,, we can decompose
n=1

B(H)? = * My,
n=1

where k, is the dimension of P,’H, and My, is the set of all k,, x k,, matrices on
PH.

As in Section 2, there exists a faithful normal expectation £ from B(H) onto
B(H)?. Then we have the following proposition.

ProOPOSITION 3.2. Keep the notation and the assumptions as above. Then

there exists a family {Qn}22 1 of mutually orthogonal rank one projections in the

o0
diagonal ® of A such that > Q, = 1.
n=1

Proof. As in Section 2, let 2, be the maximal subdiagonal algebra with
respect to ® of B(H) containing A. Let P, be as above. At first, we shall show
that P, € £(®) C ©. We consider an invertible operator X = 2P, & (I — P,)
on H = P,H @ P:H. By Corollary 2.5, £(2,,) is a finite maximal subdiagonal
algebra of B(H)? with diagonal £(®). Hence, by [1], Theorem 4.4.1, there exist a
unitary operator U in B(H)? and an invertible operator A in £(2,,) N &™) ~?
such that X = UA. Since P, is a central projection of B(H)¥, we can decompose
U=U,®&Uz;and A= A;®As. Itisclear that A; = 2U; and Ay = Us, so we have
that 0(A) = 20(Uy) Uo(U3). It is also clear that o(U;)(C T) is a finite subset of
T and o(Us) C T, where T is the unit circle. If o(Us) # T, then we know that
C\o(A) is connected. If o(Us) = T, then the only bounded component of C\o(A)
is the open disc D. Thus we can choose a neighborhood Q2 of o(A) such that

(1) Q=Q,UQ, Q1 NQy =0,

(2) (A1) C Q, 0(A2) C Qg, and

(3) the only bounded component of C\ Q is a closed disc {A € C: |\| <7}

with radius r less than one.

Define the holomorphic function f on Q by

17 ZEQl
f<z)_{0, 2 € Q.



316 GUOXING J1, TOMOYOSHI OHWADA AND KICHI-SUKE SAITO

By [8], Theorem 13.9 there is a sequence {R;} of rational functions with poles
at 0, such that R; — f uniformly on compact subsets of 2. Since both A and
A~Y are in £(,,), we have that P,(= f(A4)) € E®@n), and so P, € £(D). By
Corollary 2.5, P, € ®. Since P,E(,,)P, is a subdiagonal algebra of My, , by
[4], Theorem 2.1, P,,E(,,) P, is a nest subalgebra of My, with a finite nest. So
P,E(A,,) P, contains a family of mutually orthogonal rank one projections whose

sum is P,. This completes the proof. 1

LEMMA 3.3. Keep the assumptions as above and also assume that A # B(H).

Then there exists a nontrivial A-invariant subspace of H.

Proof. By Proposition 3.2, we know that @’ is abelian. Hence, by Theo-
rems 6.2.1 and 6.2.2 in [1], we have p o ® = p, where p is the canonical trace of
B(H). By Proposition 3.2, there is a rank one projection e ® e € © such that
{Uoe} # {0}, where e ® e(x) = (x,e)e, Vo € H. Put M = [Ape], then M is
-invariant. If T € Ay, then

(Te,e) =p(T(e®e)) =po®(T(e®e)) =0.

Hence, 901 is nontrivial. This completes the proof. 1

Proof of Theorem 3.1. By Lemma 3.3 and Zorn’s lemma, there exists a
maximal nest A/ of UA-invariant subspaces of H. Since N'C ®’ and D’ is atomic,
the nest NV is atomic. Let {E)}xea be the set of all atoms of /. By the maximality
of N and Lemma 3.3, we have E\B(H)E, C ®. This implies that N/ = © and so

O(T) = > E\TE) for every T in B(H). It is clear that A C alg .
AEA
Conversely, if T' € alg N, then there exist nets A,, B, € U such that A, +

B — T o-weakly. For A\, u € A, there exist Py, P, € N such that Ey = P\OP,_
and E,, = P, © P,_ respectively. We define an order on A by

A< p<= P\ <P,

If A > p, then ExTE,, = 0 because T € alg/N. If A = p, then EATE, € © C .
Since EyB}E, = 0 in case that A < u, we have E\TFE,, € 2. Therefore T' =
> E\TE, € 2. This completes the proof. 1
ALp

In [9], Theorem 2, the third author and Watatani proved that if D is a sub-
factor of a finite dimensional factor M, then there exist no maximal subdiagonal
algebras of M with respect to the canonical conditional expectation from M onto
D unless ® = M. The following corollary is in case that M = B(H).
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COROLLARY 3.4. If ® is a subfactor of B(H), then there exist no mazimal
subdiagonal algebras with diagonal ® unless © = B(H).
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