UNIQUE EXTENSION OF PURE STATES OF C^{*}-ALGEBRAS

L.J. BUNCE and C.-H. CHU

Communicated by Şerban Strătila

Abstract

Let A be a C^{*}-subalgebra of a C^{*}-algebra B. We say that A has the pure extension property in B if every pure state of A has a unique pure state extension to B.

We show that A has the pure extension property in B if and only if there is a weak expectation on B for the atomic representation of A, among several equivalent conditions, including the unique extension of type I factor states. If A is separable and B is a von Neumann algebra, we show that the pure extension property is equivalent to that every factor state of A extends to a unique factor state of B which is in turn equivalent to that A is dual and the minimal projections of A are minimal in B. If A has the pure extension property in B, then there is a natural map $\widehat{\alpha}$ between their spectra \widehat{A} and \widehat{B}. We study the relationship of \widehat{A} and \widehat{B} under $\widehat{\alpha}$ as well as the unique extension of atomic states.

KEYWORDS: C^{*}-algebra, pure extension property, atomic extension property, weak expectation, hereditary subalgebra.

MSC (2000): 46L05, 46L10, 46L30.

1. INTRODUCTION

Let A be a C^{*}-subalgebra of a C^{*}-algebra B. The set of extensions, in the state space of B, of a pure state φ of A is a weak*-closed face so that by the KreinMilman Theorem φ extends to at least one pure state of B which, if unique, is also the unique extension of φ in the state space of B ([25], 4.1.17).

We say that A has the pure extension property (PEP) in B if every pure state of A extends uniquely to a pure state of B.

When B is abelian, the pure extension property of A in B is in outcome a minor variation of the Stone-Weierstrass Theorem. But deep investigations of

Kadison and Singer ([21]), Anderson ([8]) and Archbold ([9]) reveal the subtlety of the pure extension property when A is abelian but B is not abelian. A strong form of pure extension property institutionalised in the theory of perfect C^{*}-algebras has been investigated in penetrating detail by Akemann and Shultz ([5]).

In this paper we investigate the pure extension property for arbitrary C^{*} algebras A and B. Contrary to the special case in which A is abelian ([17]), the PEP of A in B need not be implemented by a conditional expectation from B onto A in general. Instead, as we will show, PEP is equivalent to the existence of certain weak expectations as well as to other conditions, including unique extension of type I factor states (cf. Theorem 2.8). A consequence of the classical StoneWeierstrass Theorem is that if A is abelian and has the PEP in B, then A is an ideal of a maximal abelian subalgebra of B. With the assistance of a noncommutative version (Theorem 3.3) of this result for arbitrary A, we give several characterisations (Theorem 3.8) of the PEP for a separable C^{*}-subalgebra of a von Neumann algebra. When A has the PEP in B, there is a natural map $\widehat{\alpha}: \widehat{A} \rightarrow \widehat{B}$, between the corresponding spectra \widehat{A} and \widehat{B}, which we exploit in Section 4 to study the extensions of atomic states.

Generally we shall use standard notation to be found in [25]. If A is a C^{*} algebra, $S(A)$ will denote the state space of A and $P(A)$ the set of pure states of A. Given a normal state φ of a von Neumann algebra M, we denote by $\mathrm{s}(\varphi)$ and $\mathrm{c}(\varphi)$, respectively, the support projection and the central support projection of φ in M. For a C^{*}-algebra A, here habitually identified with its canonical image in $A^{* *}$, the states of A identify with the normal states of $A^{* *}$. Given a state φ of A, we define the homomorphism $\tau_{\varphi}: A \rightarrow A^{* *} \mathrm{c}(\varphi)$ by $\tau_{\varphi}(a)=a \mathrm{c}(\varphi)$. We let $\left(\pi_{\varphi}, H_{\varphi}, h_{\varphi}\right)$ denote the GNS-representation associated with φ. The normal extension of π_{φ} to $A^{* *}$ restricts to an isomorphism from $A^{* *} \mathrm{c}(\varphi)$ onto $\overline{\pi_{\varphi}(A)}$, the weak*-closure of $\pi_{\varphi}(A)$ in the algebra $B\left(H_{\varphi}\right)$ of bounded linear operators on H_{φ}. We call φ a factor state of A if $A^{* *} \mathrm{c}(\varphi)$ is a factor. Further, φ is called a factor state of type I if $A^{* *} \mathrm{c}(\varphi)$ is a factor of type I. The set of factor states and the set of factor states of type I will be denoted by $F(A)$ and $F_{\mathrm{I}}(A)$ respectively. Let z_{A} be the supremum of all minimal central projections in $A^{* *}$. Then $A^{* *} z_{A}$ is the atomic part of $A^{* *}$ and we refer to $\tau_{a}: a \in A \mapsto a z_{A} \in A^{* *} z_{A}$ as the atomic representation of A. The canonical inclusion $A \hookrightarrow A^{* *}$ is the universal representation of A.

It follows from [25], 3.1.6, 4.1.7 that A has the PEP in B if and only if A has the PEP in $H(A)$, the hereditary C^{*}-subalgebra generated by A in B. If e is the identity of $A^{* *}$ (identified with the weak*-closure of A in $B^{* *}$), an increasing net $\left(a_{\lambda}\right)$ in A, with $0 \leqslant a_{\lambda} \leqslant e$ for all λ, is an approximate unit of A if and only if
$a_{\lambda} \rightarrow e$ strongly. This follows from [4], 3.1, as does the fact that the following are equivalent (see also [5], 2.32):
(a) $H(A)=B$;
(b) A and B have a common approximate unit;
(c) no pure state of B vanishes on A;
(d) every pure state of B restricts to a state of A.

Further, (b) implies that every approximate unit of A is an approximate unit of B; and "pure state" in (c) and (d) may be replaced by "state".

We also note that A is hereditary in B (i.e. $A=H(A))$ if (and only if) every state of A has unique extension to a state of B ([22]). We have been informed by the referee that this result has also appeared in [20].

A C^{*}-algebra B is called scattered if $B^{* *}$ is a direct sum of type I factors, or equivalently, if B has a composition series in which each successive quotient is isomorphic to the C^{*}-algebra $K(H)$ of compact operators on some Hilbert space H ([16], [23]). A C^{*}-algebra B is called dual if it is isomorphic to a C^{*}-subalgebra of some $K(H)$, or equivalently, every maximal abelian subalgebra of A is generated by minimal projections [19], 4.7.20.

We wish to thank the referee for many helpful suggestions.

2. UNIQUE EXTENSIONS AND WEAK EXPECTATIONS

Let A be a C^{*}-subalgebra of a C^{*}-algebra B and let M be a von Neumann algebra. A weak expectation for a ${ }^{*}$-homomorphism $\pi: A \rightarrow M$ is a linear contraction $\mathcal{P}: B \rightarrow \overline{\pi(A)}$ satisfying $\mathcal{P} \mid A=\pi$, where $\overline{\pi(A)}$ is the weak ${ }^{*}$-closure of $\pi(A)$ in M. Given a factor state φ of A with GNS representation π_{φ}, Tsui ([31]) has shown that φ can be extended to a factor state of B if there is a weak expectation for π_{φ}. Tsui's proof is based on Sakai's lecture in the 1973 Wabash Conference. The connection between weak expectations and factor state extensions has been developed in fine detail by Archbold and Batty ([12]). We note that the normal extension $\bar{\pi}: A^{* *} \rightarrow M$ of $\pi: A \rightarrow M$ factors through the isomorphism $A^{* *} \mathrm{c}(\pi)=$ $A^{* *} / \bar{\pi}^{-1}(0) \rightarrow \overline{\pi(A)}$ where $\mathrm{c}(\pi) \in A^{* *}$ is the central support of π. Therefore the existence of a weak expectation \mathcal{P} for π amounts to the existence of a contractive projection $\mathcal{Q}: B^{* *} \rightarrow A^{* *} \mathrm{c}(\pi)$ such that $\bar{\pi} \circ \mathcal{Q} \mid A^{* *}=\bar{\pi}$, where \mathcal{P} and \mathcal{Q} are related by $\mathcal{P}=\bar{\pi} \circ \mathcal{Q} \mid B$. It follows that \mathcal{P} is completely positive and satisfies

$$
\mathcal{P}\left(a b a^{\prime}\right)=\pi(a) \mathcal{P}(b) \pi\left(a^{\prime}\right)
$$

for $a, a^{\prime} \in A$ and $b \in B$ (cf. [12], Proposition 2.1). In particular, the latter property implies that, if $\varphi \in S(A)$ has the GNS representation $\left(\pi_{\varphi}, H_{\varphi}, h_{\varphi}\right)$ and if \mathcal{P} is a weak expectation for π_{φ}, then the map $\mathcal{P} \mapsto \varphi \circ \mathcal{P}=\left\langle\mathcal{P}(\cdot) h_{\varphi}, h_{\varphi}\right\rangle$ is injective ([12], Corollary 2.2). We will sometimes substitute for the GNS representation π_{φ} its equivalent $\tau_{\varphi}: A \rightarrow A^{* *} \mathrm{c}(\varphi)$ where $\tau_{\varphi}(a)=a \mathrm{c}(\varphi)$. The normal extension of τ_{φ} to $A^{* *}$ will also be denoted by τ_{φ}.

Given $\varphi \in S(A)$, the (possibly empty) convex set \mathcal{E}_{φ} of weak expectations for $\tau_{\varphi}: A \rightarrow A^{* *} \mathrm{c}(\varphi)$ is compact in the point-weak topology. Let $S_{\varphi}=\{\varphi \circ \mathcal{P}$: $\left.\mathcal{P} \in \mathcal{E}_{\varphi}\right\}$. Then $S_{\varphi} \subset E_{\varphi} \equiv\{\psi \in S(B): \psi \mid A=\varphi\}$. If \mathcal{E}_{φ} is nonempty, we define a $\operatorname{map} \alpha_{\varphi}: \mathcal{E}_{\varphi} \rightarrow S_{\varphi}$ by $\alpha_{\varphi}(\mathcal{P})=\varphi \circ \mathcal{P}$. This notation is retained in the following two results of which we shall make frequent use.

Theorem 2.1. ([31]) Let A be a C^{*}-subalgebra of a C^{*}-algebra B. If $\varphi \in$ $F(A)$ and \mathcal{E}_{φ} is nonempty, then the extreme points of S_{φ} are factor states of B (extending φ).

Theorem 2.2. ([12]) Let A be a C^{*}-subalgebra of a C^{*}-algebra B. We have:
(i) $\alpha_{\varphi}: \mathcal{E}_{\varphi} \rightarrow S_{\varphi}$ is an affine homeomorphism for every $\varphi \in S(A)$ with $\mathcal{E}_{\varphi} \neq \emptyset ;$
(ii) for every $\varphi \in P(A), \mathcal{E}_{\varphi} \neq \emptyset$ and $E_{\varphi}=S_{\varphi}$.

Proof. (i) This is [12], Corollary 2.2 as remarked above.
(ii) This is implicit in [12], Theorem 2.3. Indeed, given $\varphi \in P(A)$ with extension $\psi \in E_{\varphi}$, employing the usual GNS notation as above, the following identification (cf. [19], 2.10.2) may be made: $h_{\varphi}=h_{\psi}=h$ say, $H_{\varphi}=\left[\pi_{\psi}(A) h\right]$ and $\pi_{\varphi}(a)=\pi_{\psi}(a) \mid H_{\varphi}$ for $a \in A$. Let E be the orthogonal projection of H_{ψ} onto H_{φ}. Then the map $\mathcal{Q}: B \rightarrow \overline{\pi_{\varphi}(A)}=B\left(H_{\varphi}\right)$ given by

$$
\mathcal{Q}(b)=E \pi_{\psi}(b) E
$$

is a weak expectation for π_{φ} with $\psi(b)=\langle\mathcal{Q}(b) h, h\rangle$. Hence $\mathcal{P}: B \xrightarrow{\mathcal{Q}} \overline{\pi_{\varphi}(A)} \xrightarrow{\text { iso }}$ $A^{* *} \mathrm{c}(\varphi)$ is a weak expectation for τ_{φ} and $\psi=\varphi \circ \mathcal{P}$.

Lemma 2.3. Let M be a von Neumann subalgebra of a von Neumann algebra N where M is a factor containing the identity of N. Suppose each normal state of M extends to a unique normal factor state of N. Then N contains a unique minimal central projection z, and also $M z=N z$.

Proof. By assumption, N has normal factor states and hence at least one minimal central projection z say.

We show that every normal state of $M z$ extends to a unique normal state of $N z$ which will yield $M z=N z$.

Let φ be a normal state of $M z$ and let $\bar{\varphi}$ be a normal state of $N z$ extending φ. Then $\bar{\varphi}$ extends to a unique normal state ψ of N given by $\psi(\cdot)=\bar{\varphi}(\cdot z)$. As $\psi(z)=1, \psi$ is a factor state of N. On the other hand, the normal state $\varphi(\cdot z)$ of M extends to a unique normal factor state ω of N, and as $\psi \mid M=\varphi(\cdot z)$, we have $\psi=\omega$ which gives $\bar{\varphi}=\omega \mid N z$.

Finally, fix any normal state ψ of M with unique normal factor state extension ω on N. As M is a factor, it is isomorphic to $M z$ via the isomorphism $x \mapsto x z$. So there is a normal state φ on $M z$ such that $\psi(\cdot)=\varphi(\cdot z)$. By the above arguments, we have $\omega|N z=\omega| M z=\varphi$. So $\omega(z)=1$ and $z=\mathrm{c}(\omega)$. This shows that z is unique.

Remark 2.4. We note that in Lemma 2.3, the algebra N need not be a factor. For example, let $N=\left(L^{\infty}(0,1) \bar{\otimes} A\right) \oplus(1 \otimes A)$ where A is a factor, and let $M=\{(x, x): x \in 1 \otimes A\}$. Then $1_{N} \in M \subset N$ and $M e=N e$ where $e=(0, f)$ with f being the identity of $1 \otimes A$. We have that e is the unique minimal central projection of N and each normal state of M has a unique extension to a normal factor state of N.

Theorem 2.5. Let A be a C^{*}-subalgebra of a C^{*}-algebra B. Then we have (i) \Rightarrow (ii) \Leftrightarrow (iii) in the following conditions:
(i) each factor state of A has a unique extension to a state of B;
(ii) each factor state of A has a unique extension to a factor state of B;
(iii) there is a weak expectation $\mathcal{P}: B \longrightarrow A^{* *}$ for $A \hookrightarrow A^{* *}$ such that for each $\varphi \in F(A)$ with an extension $\bar{\varphi} \in F(B)$, we have $\bar{\varphi}=\varphi \circ \mathcal{P}$.

Proof. (ii) \Rightarrow (iii) Let $\varphi \in F(A)$ and let $\bar{\varphi} \in F(B)$ extend φ. Consider the inclusion

$$
A^{* *} \mathrm{c}(\varphi) \hookrightarrow \mathrm{c}(\varphi) B^{* *} \mathrm{c}(\varphi) .
$$

We show that every normal state ψ of $A^{* *} \mathrm{c}(\varphi)$ extends uniquely to a normal factor state of $\mathrm{c}(\varphi) B^{* *} \mathrm{c}(\varphi)$. Such a state ψ may be identified with $\psi \in F(A)$ satisfying $\mathrm{c}(\psi)=\mathrm{c}(\varphi)$. Let $\bar{\psi} \in F(B)$ extend ψ. Then $\bar{\psi}$ acts on $\mathrm{c}(\varphi) B^{* *} \mathrm{c}(\varphi)$ as a normal factor state (as $\bar{\psi}(\mathrm{c}(\varphi) \mathrm{c}(\bar{\psi}))=1$) extending ψ on $A^{* *} \mathrm{c}(\varphi)$. Now let ω be any normal factor state of $\mathrm{c}(\varphi) B^{* *} \mathrm{c}(\varphi)$ extending ψ. Then $\omega(z \mathrm{c}(\varphi))=1$ for some minimal central projection z in $B^{* *}$. Hence the unique normal extension of ω to $B^{* *}$ is supported by z and therefore is a factor state extending ψ and must equal $\bar{\psi}$ by (ii). So ψ extends uniquely to a normal factor state of $\mathrm{c}(\varphi) B^{* *} \mathrm{c}(\varphi)$. Hence, by Lemma 2.3, we have $A^{* *} \mathrm{c}(\varphi) \mathrm{c}(\bar{\varphi})=\mathrm{c}(\varphi) B^{* *} \mathrm{c}(\varphi) \mathrm{c}(\bar{\varphi})$.

Consider the maps

$$
\sigma: b \in B \longmapsto \mathrm{c}(\varphi) b \mathrm{c}(\varphi) \mathrm{c}(\bar{\varphi}) \in \mathrm{c}(\varphi) B^{* *} \mathrm{c}(\varphi) \mathrm{c}(\bar{\varphi}) ;
$$

$$
\tau: x \in A^{* *} \mathrm{c}(\varphi) \longmapsto x \mathrm{c}(\bar{\varphi}) \in A^{* *} \mathrm{c}(\varphi) \mathrm{c}(\bar{\varphi})
$$

and note that σ is a linear contraction, that τ is a $*$-isomorphism since $A^{* *} \mathrm{c}(\varphi)$ is a factor, and that $\tau^{-1} \circ \sigma \mid A=\tau_{\varphi}$. Hence $\mathcal{P}_{\varphi}=\tau^{-1} \circ \sigma: B \rightarrow A^{* *} c(\varphi)$ is a weak expectation for τ_{φ} which, by (ii), Theorem 2.1 and Theorem 2.2 (i), is the unique such weak expectation. It now follows from [12], Theorem 2.6 that there is a weak expectation $\mathcal{P}: B \rightarrow A^{* *}$ for $A \hookrightarrow A^{* *}$. Hence $\tau_{\varphi} \circ \mathcal{P}=\mathcal{P}_{\varphi}$ by uniqueness, so that

$$
\varphi \circ \mathcal{P}=\varphi \circ \tau_{\varphi} \circ \mathcal{P}=\varphi \circ \mathcal{P}_{\varphi}=\bar{\varphi}
$$

where the final equality comes from Theorem 2.1.
(iii) \Rightarrow (ii) Given (iii), by [12], Theorem $2.6(4) \Rightarrow(3)$, together with Theorem 2.1 (see also [12], Proposition 2.5) each $\varphi \in F(A)$ has an extension in $F(B)$ from which (ii) is now immediate.
(i) \Rightarrow (ii) Take $\varphi \in F(A)$ with extension $\bar{\varphi} \in S(B)$. By an argument similar to that in the proof of (ii) \Rightarrow (iii), every normal state of $A^{* *} \mathrm{c}(\varphi)$ extends to a unique normal factor state of $\mathrm{c}(\varphi) B^{* *} \mathrm{c}(\varphi)$ and therefore, as before, the map $\mathcal{P}_{\varphi}: B \rightarrow A^{* *} \mathrm{c}(\varphi)$ is a weak expectation for τ_{φ}. Hence $\bar{\varphi} \in F(B)$ by Theorem 2.1.

Corollary 2.6. Let A be a C^{*}-subalgebra of a C^{*}-algebra B. Suppose that A is a von Neumann algebra. The following conditions are equivalent:
(i) every $\varphi \in F(A)$ has a unique extension to some $\bar{\varphi} \in F(B)$;
(ii) there is a contractive projection $\mathcal{P}: B \rightarrow A$ such that for each $\varphi \in F(A)$ with an extension $\bar{\varphi} \in F(B)$, we have $\bar{\varphi}=\varphi \circ \mathcal{P}$.

Proof. Let $\pi: A \rightarrow \pi(A) \subset B(H)$ be a faithful normal representation. If each factor state of A extends to a unique factor state of B, then by Theorem 2.5 (ii) \Rightarrow (iii) and [12], Theorem $2.6(4) \Rightarrow(3)$, there is a weak expectation $\mathcal{Q}: B \rightarrow \overline{\pi(A)}=\pi(A)$ for π. Then $\mathcal{P}=\pi^{-1} \circ \mathcal{Q}$ is a contractive projection from B onto A. The proof is concluded as in Theorem 2.5.

Proposition 2.7. Let A be a C^{*}-subalgebra of a C^{*}-algebra B. Let $\varphi \in$ $P(A)$ with an extension $\bar{\varphi} \in P(B)$. The following conditions are equivalent:
(i) $\bar{\varphi}$ is the unique extension of φ;
(ii) $\mathrm{s}(\varphi)=\mathrm{s}(\bar{\varphi})$;
(iii) $A^{* *} \mathrm{c}(\varphi)$ is an hereditary subalgebra of $B^{* *} \mathrm{c}(\bar{\varphi})$;
(iv) there is a unique weak expectation $\mathcal{P}_{\varphi}: B \rightarrow A^{* *} \mathrm{c}(\varphi)$ for $\tau_{\varphi}: A \rightarrow$ $A^{* *} \mathrm{c}(\varphi)$ where $\mathcal{P}_{\varphi}(b)=\mathrm{c}(\varphi) b \mathrm{c}(\varphi)$.

Proof. (i) \Rightarrow (ii) As $\bar{\varphi}(\mathrm{s}(\varphi))=1$, we have $\mathrm{s}(\bar{\varphi}) \leqslant \mathrm{s}(\varphi)$ in $B^{* *}$. If $\mathrm{s}(\bar{\varphi}) \neq \mathrm{s}(\varphi)$, we can choose $\tau \in S(B)$ such that $\tau(\mathrm{s}(\varphi)-\mathrm{s}(\bar{\varphi}))=1$. Then $\tau(\mathrm{s}(\varphi))=1$ and
$\tau(\mathrm{s}(\bar{\varphi}))=0$. In particular, $\mathrm{s}(\tau \mid A)=\mathrm{s}(\varphi)$, by minimality, so that $\tau \mid A=\varphi$ and hence that $\tau=\bar{\varphi}$ contradicting $\tau(\mathrm{s}(\bar{\varphi}))=0$. Hence $\mathrm{s}(\bar{\varphi})=\mathrm{s}(\varphi)$.
(ii) \Rightarrow (iii) Let $\mathrm{s}(\varphi)=\mathrm{s}(\bar{\varphi})$. Then $\mathrm{s}(\varphi)$ lies in the weak*-closed ideal $A^{* *} \cap$ $B^{* *} \mathrm{c}(\bar{\varphi})$ as therefore does $\mathrm{c}(\varphi)$. Hence $\mathrm{c}(\varphi) \leqslant \mathrm{c}(\bar{\varphi})$. Therefore $\mathrm{c}(\varphi) B^{* *} \mathrm{c}(\varphi)$ is a type I factor which we may identify with some $B(H)$ and $A^{* *} \mathrm{c}(\varphi)$ accordingly with a type I subfactor M containing 1_{H} and a minimal projection e of $B(H)$. Let $z \in M^{\prime}$ and let f be any minimal projection of M. Then f is minimal in $B(H)$ as it is equivalent to e in M. Therefore we have $z f=f z f \in \mathbb{C} \cdot f \subset M$. It follows that $z \in M$ and hence $M^{\prime}=\mathbb{C} \cdot 1$ which gives $M=M^{\prime \prime}=B(H)$, proving (iii).
(iii) \Rightarrow (i) and (iv). Given any extension τ of φ, we have $\tau(\mathrm{c}(\varphi))=1$ so that

$$
\tau(b)=\tau(\mathrm{c}(\varphi) b c(\varphi))=\varphi(\mathrm{c}(\varphi) b \mathrm{c}(\varphi))=\bar{\varphi}(b)
$$

for $b \in B$, proving (i) which implies that the $\operatorname{map} \mathcal{P}_{\varphi}$ in (iv) is a weak expectation. Its uniqueness then follows from Theorem 2.2.
(iv) \Rightarrow (i) Since (iv) implies that $\mathrm{c}(\varphi) B \mathrm{c}(\varphi) \subset A^{* *} \mathrm{c}(\varphi)$, we see (i) follows as in the proof of (iii) \Rightarrow (i).

Theorem 2.8. Let A be a C^{*}-subalgebra of a C^{*}-algebra B. The following conditions are equivalent:
(i) each $\varphi \in P(A)$ has a unique extension in $P(B)$;
(ii) Each $\varphi \in F_{\mathrm{I}}(A)$ has a unique extension in $S(B)$;
(iii) each $\varphi \in F_{\mathrm{I}}(A)$ has a unique extension in $F(B)$;
(iv) each $\varphi \in F_{\mathrm{I}}(A)$ has a unique extension in $F_{\mathrm{I}}(B)$;
(v) $A^{* *} z_{A}$ is an l^{∞}-sum of hereditary subalgebras of $B^{* *} z_{B}$;
(vi) there is a unique weak expectation $\mathcal{P}: B \rightarrow A^{* *} z_{A}$ for the atomic representation τ_{a} of A and it is given by $\mathcal{P}(b)=\sum e_{j}$ be ${ }_{j}$ for $b \in B$, where e_{j} are minimal central projections in $A^{* *} z_{A}$ with $z_{A}=\sum e_{j}$;
(vii) there is a contractive projection $\mathcal{Q}: B^{* *} \rightarrow A^{* *} z_{A}$ such that $\varphi \circ \mathcal{Q}$ is the unique extension in $S(B)$ of each $\varphi \in P(A)$.

Proof. (i) $\Rightarrow(\mathrm{v})$ Let $\left(\varphi_{j}\right)$ be a family of mutually inequivalent pure states of A such that $z_{A}=\sum \mathrm{c}\left(\varphi_{j}\right)$. By Proposition 2.7, we have

$$
A^{* *} z_{A}=\sum A^{* *} \mathrm{c}\left(\varphi_{j}\right)=\sum \mathrm{c}\left(\varphi_{j}\right) B^{* *} \mathrm{c}\left(\varphi_{j}\right) \subset B^{* *} z_{B}
$$

(v) \Rightarrow (ii) Let $\varphi \in F_{\mathrm{I}}(A)$. Then $\mathrm{c}(\varphi)=\mathrm{c}(\psi)$ for some $\psi \in P(B)$ and (v) implies that $A^{* *} \mathrm{c}(\varphi)=A^{* *} \mathrm{c}(\psi)=\mathrm{c}(\psi) B^{* *} \mathrm{c}(\psi)=\mathrm{c}(\varphi) B^{* *} \mathrm{c}(\varphi)$ which in turn implies (ii).
(ii) \Rightarrow (iii) \Rightarrow (iv) Given $\varphi \in F_{\mathrm{I}}(A)$, then $A^{* *} \mathrm{c}(\varphi)$ is a type I factor and hence injective. So there is a weak expectation $\mathcal{P}: B \rightarrow A^{* *} \mathrm{c}(\varphi)$ for $A \rightarrow A^{* *} \mathrm{c}(\varphi)$
implying that φ has a factor state extension on B, by Theorem 2.1 , some of which must be type I ([12], Theorem 3.2).
(iv) \Rightarrow (i) This is obvious.
(i) \Rightarrow (vi) By injectivity of $A^{* *} z_{A}$, there is a weak expectation $\mathcal{P}: B \rightarrow A^{* *} z_{A}$ for the atomic representation $\tau_{\mathrm{a}}: A \rightarrow A^{* *} z_{A}$. Let \mathcal{Q} be another weak expectation for τ_{a}. Then (i) implies that $\varphi \circ \mathcal{P}=\varphi \circ \mathcal{Q}$ for all $\varphi \in P(A)$ which gives $\mathcal{P}=\mathcal{Q}$ since $P(A)$ separates points of $A^{* *} z_{A}$. Now the formula for \mathcal{P} is seen from the proof of (i) $\Rightarrow(\mathrm{v})$.
(vi) \Rightarrow (i), (vii) For each $\varphi \in P(A)$, the condition (vi) implies that $A^{* *} c(\varphi)=$ $\mathrm{c}(\varphi) B^{* *} \mathrm{c}(\varphi)$ from which (i) follows as in the proof of Proposition 2.7 (iv) \Rightarrow (i). In addition, we see that $\mathcal{Q}(b)=\sum e_{i} b e_{i}$ where the e_{i} are minimal central projections in $A^{* *}$ with $\sum e_{i}=z_{A}$ and $b \in B^{* *}$, defines a contractive projection $\mathcal{Q}: B^{* *} \rightarrow A^{* *} z_{A}$ satisfying (vii).

By Theorem 2.5 and Theorem 2.8, we have
Corollary 2.9. Let A be a type I C^{*}-subalgebra of a C^{*}-algebra B. The following conditions are equivalent:
(i) A has the PEP in B;
(ii) each $\varphi \in F(A)$ has a unique extension to $\bar{\varphi} \in F(B)$;
(iii) each $\varphi \in F(A)$ has a unique extension to $\bar{\varphi} \in S(B)$;
(iv) there is a weak expectation $\mathcal{P}: B \rightarrow A^{* *}$ for $A \hookrightarrow A^{* *}$ such that $\varphi \circ \mathcal{P} \in$ $F(B)$ is the unique extension of each $\varphi \in F(A)$.

REMARK 2.10. In (iv) of the above corollary, the weak expectation $\mathcal{P}: B \rightarrow$ $A^{* *}$ for $A \hookrightarrow A^{* *}$ cannot be replaced by a contractive projection $B \rightarrow A$ even when A is liminal and separable, as may be seen by combining [5], Proposition 3.14 and the proof of [11], Theorem 2.1.

3. RELATIVE COMMUTANTS

Given a C^{*}-subalgebra A of a C^{*}-algebra B, we let

$$
\begin{gathered}
A^{c}=\{b \in B: a b=b a \forall a \in A\} \\
A^{\perp}=\{b \in B: b A=A b=0\}
\end{gathered}
$$

denote respectively the relative commutant and the annihilator of A in B. The centre of A is denoted by $Z(A)$. For subsets S and T of B, we let $S \cdot T=\{$ st : $s \in S, t \in T\}$ and let $[S]$ denote the norm closed linear span of S while $C^{*}(S)$ denotes the C^{*}-subalgebra generated by S. If $S=\left\{x_{1}, \ldots, x_{n}\right\}$, we will also write $C^{*}(S)=C^{*}\left(x_{1}, \ldots, x_{n}\right)$.

Lemma 3.1. Let A be a prime C^{*}-subalgebra of a unital C^{*}-algebra B and let A have the PEP in B. Then we have $A^{\mathrm{c}}=A^{\perp}+\mathbb{C} \cdot 1$.

Proof. We show that the quotient $A^{\mathrm{c}} / A^{\perp}$ has no zero divisor and hence is one-dimensional.

For self-adjoint $x \in A^{\mathrm{c}}$, we let $C_{x}=\left[A \cdot C^{*}(1, x)\right]$ and $J_{x}=\left[A \cdot C^{*}(x)\right]$. Then A has PEP in C_{x}.

Note that the pure states of C_{x} restrict to pure states of A. Indeed, given $\varphi \in P\left(C_{x}\right)$ with the GNS-representation $\pi_{\varphi}: C_{x} \rightarrow B\left(H_{\varphi}\right)$ and normal extension $\tilde{\pi}_{\varphi}$, then $\tilde{\pi}_{\varphi}(x) \in \mathbb{C} \cdot 1$ so that $\overline{\pi_{\varphi}(A)}=B\left(H_{\varphi}\right)$. But A and C_{x} have common approximate unit so that $\varphi \mid A$ is a state, hence $\pi_{\varphi} \mid A$ is irreducible and so $\varphi \mid A \in$ $P(A)$. By PEP, A separates points of $P\left(C_{x}\right) \cup\{0\}$. As J_{x} is a two-sided ideal of C_{x}, by [19], 11.1.3 and 11.1.7 the irreducible representations of J_{x} restrict to those of $A \cap J_{x}$. So $J_{x}=0$ if $A \cap J_{x}=0$.

Now take self-adjoint elements x and y in $A^{\text {c }}$ such that $x y \in A^{\perp}$. Then $C^{*}(x) \cdot C^{*}(y) \cdot A=0$. Hence $J_{x} \cdot J_{y}=0$ and therefore $\left(A \cap J_{x}\right) \cap\left(A \cap J_{y}\right)=$ $A \cap J_{x} \cap J_{y}=0$ which implies either $A \cap J_{x}=0$ or $A \cap J_{y}=0$ because A is prime. It follows that $J_{x}=0$ or $J_{y}=0$, that is, $x \in A^{\perp}$ or $y \in A^{\perp}$. This shows that $A^{\mathrm{c}} / A^{\perp}$ has no zero divisor.

Given a proper C^{*}-subalgebra A of a C^{*}-algebra B, consider the weak*compact convex set

$$
S=\left\{f \in B^{*}: f=f^{*},\|f\| \leqslant 1, f(A)=0\right\} .
$$

Let $g \in \partial S$ and let $g=g_{1}-g_{2}$ be its orthogonal decomposition with $g_{1}, g_{2} \geqslant 0$. Put $\tau=g_{1}+g_{2}$. The following lemma is taken from Sakai's book ([28]).

Lemma 3.2. Let A, B and τ be as above and suppose that:
(i) A and B have a common approximate unit;
(ii) $Z\left(\overline{\pi_{\tau}(A)}\right) \subset Z\left(\overline{\pi_{\tau}(B)}\right)$.

Then $\overline{\pi_{\tau}(A)}$ is a nonzero factor.
Proof. The required argument is the same as in [28], 4.1.9 with lines 10-14 of that proof omitted.

Theorem 3.3. Let A be a C^{*}-subalgebra with PEP in a C^{*}-algebra B. Then:
(i) $A \cdot A^{\mathrm{c}} \subset A$;
(ii) $A^{\mathrm{c}}=Z(A)$ if A and B have a common approximate unit.

Proof. (i) We may suppose that B has a unit. Let x be a self-adjoint element of $A^{\text {c }}$. We show that the C^{*}-algebra $E=\left[A \cdot C^{*}(1, x)\right]$ is equal to A. Suppose
that $A \neq E$. Let g, g_{1}, g_{2} and τ be chosen as in the remarks preceding Lemma 3.2. We claim that $\overline{\pi_{\tau}(A)}$ is a nonzero factor. Indeed, it is evident that Condition (i) of Lemma 3.2 is satisfied. To see that Condition (ii) of Lemma 3.2 holds, we note that E is a two-sided ideal of $D=C^{*}(A \cup\{x\})$ so that $\pi_{\tau}: E \rightarrow B\left(H_{\tau}\right)$ extends to $\overline{\pi_{\tau}}: D \rightarrow B\left(H_{\tau}\right)$ with $\overline{\overline{\pi_{\tau}}(D)}=\overline{\pi_{\tau}(E)}$. But $\overline{\overline{\pi_{\tau}}(D)}$ is generated by $\overline{\pi_{\tau}}(x)$ and $\overline{\pi_{\tau}(A)}$, and the former lies in the commutant of the latter. Hence we have $Z\left(\overline{\pi_{\tau}(A)}\right) \subset Z\left(\overline{\overline{\pi_{\tau}}(D)}\right)=Z\left(\overline{\pi_{\tau}(E)}\right)$.

Therefore $\pi_{\tau}(A)$ is a prime C^{*}-algebra. But $\pi_{\tau}(A)=\overline{\pi_{\tau}}(A)$ has the PEP in $\overline{\pi_{\tau}}(D)$. Therefore $\pi_{\tau}(E)=\overline{\pi_{\tau}}(E)=\left[\overline{\pi_{\tau}}(A) \cdot C^{*}\left(1, \overline{\pi_{\tau}}(x)\right)\right]=\pi_{\tau}(A)$ where the final equality comes from Lemma 3.1. Hence we have $E=A+\operatorname{ker} \pi_{\tau}$. As $g\left(\operatorname{ker} \pi_{\tau}\right)=0$, this implies that $g(E)=0$ which is a contradiction proving (i).
(ii) Let $\left(a_{\lambda}\right)$ be a common approximate unit of A and B, and let $x \in A^{\mathrm{c}}$. Then by (i), we have $x=\lim a_{\lambda} x \in A$.

A Banach space X is called a Grothendieck space ([18]) if each $\sigma\left(X^{*}, X\right)$ convergent sequence in X^{*} is $\sigma\left(X^{*}, X^{* *}\right)$-convergent. The quotient of a Grothendieck space is also a Grothendieck space. Pfitzner ([26]) has shown that every von Neumann algebra is a Grothendieck space. In Proposition 3.6 and Theorem 3.8 below, one can actually replace the von Neumann algebra M by a C^{*}-algebra A which is a Grothendieck space. The proofs, however, only make use of a weaker property that $\sigma\left(A^{*}, A\right)$-convergent sequence of positive functionals is $\sigma\left(A^{*}, A^{* *}\right)$ convergent. This fact has been proved by Akemann, Dodd and Gamlen ([3]) for von Neumann algebras.

Lemma 3.4. Let A be a dual C^{*}-subalgebra of a C^{*}-algebra B. Then the following conditions are equivalent:
(i) A has the PEP in B;
(ii) the minimal projections of A are minimal in B;
(iii) A is a c_{o}-sum of hereditary C^{*}-subalgebras of B.

Proof. (i) \Rightarrow (ii) Let $p \in A$ be a minimal projection. Then $\mathbb{C} \cdot p$ has PEP in A. By Condition (i), $\mathbb{C} \cdot p$ has PEP in $p B p$ and hence $p B p$ can not have two distinct pure states. So $p B p=\mathbb{C} \cdot p$, that is, p is minimal in B.
(ii) \Rightarrow (iii) By [19], 4.7.20, we may suppose that A is simple dual. In this case, it follows from Proposition 2.7 (ii) \Rightarrow (iii) that the type I factor $A^{* *}=A^{* *} z_{A}$ is an hereditary subalgebra of $B^{* *} z_{B}$. Hence $A=A^{* *} \cap B$ is an hereditary subalgebra of B.
(iii) \Rightarrow (i) Each pure state of A is supported by a hereditary subalgebra of B and hence has unique extension in $S(B)$.

Lemma 3.5. Let A be a separable C^{*}-subalgebra of a C^{*}-algebra B and let B be a Grothendieck space. If A has the PEP in B, then A is scattered.

Proof. By [17], Theorem 7 together with Theorem 2.7, it suffices to show that A is of type I. To this end let $\varphi, \psi \in P(A)$ be such that $\operatorname{ker} \pi_{\varphi}=\operatorname{ker} \pi_{\psi}$. By a theorem of Glimm (see [19], p. 190), it is sufficient to show that π_{φ} and π_{ψ} are equivalent. By [19], 3.4.2 (ii) and separability, φ is the w^{*}-limit of a sequence of pure states $\left(\psi_{n}\right)$ associated with π_{ψ}. By [17], Lemma 1, we have $\bar{\varphi}=\mathrm{w}^{*}$ - $\lim \bar{\psi}_{n}$ where $\bar{\tau} \in P(B)$ denotes the unique extension of $\tau \in P(A)$. As B is a Grothendieck space, this implies $\bar{\varphi}=\sigma\left(B^{*}, B^{* *}\right)-\lim \bar{\psi}_{n}$ which gives $\varphi\left(c_{\psi}\right)=\bar{\varphi}\left(c_{\psi}\right)=\lim \overline{\psi_{n}}\left(c_{\psi}\right)=1$. Hence $\mathrm{c}(\varphi)=\mathrm{c}(\psi)$ proving that π_{φ} and π_{ψ} are equivalent.

Proposition 3.6. Let A be a nonzero separable C^{*}-subalgebra of M / I where M is a von Neumann algebra and I is the norm-closed ideal of M such that M / I is antiliminal. Then A does not have PEP in M / I.

In particular, no nonzero separable C^{*}-subalgebra of the Calkin algebra $B(H) / K(H)$ has the PEP in $B(H) / K(H)$.

Proof. Suppose otherwise, then by Lemma 3.5, A must contain a nonzero simple dual ideal which necessarily has the PEP in M / I. Now Lemma 3.4 contradicts the fact that M / I is antiliminal.

Lemma 3.7. Let A be a separable C^{*}-algebra acting irreducibly on a Hilbert space H. If A has the PEP in $B(H)$, then $A=K(H)$.

Proof. By Lemma 3.5, A is type I and so contains $K(H)$ which implies that $A / K(H)$ has the PEP in $B(H) / K(H)$. Hence $A=K(H)$ by Proposition 3.6.

The following extends Theorem 6 and Theorem 7 of [17].
Theorem 3.8. Let A be a separable C^{*}-subalgebra of a von Neumann algebra M. The following conditions are equivalent:
(i) A has the PEP in M;
(ii) every $\varphi \in F(A)$ has unique extension in $S(M)$;
(iii) every $\varphi \in F(A)$ has unique extension in $\overline{F(M)}$;
(iv) every $\varphi \in F(A)$ has unique extension in $F(M)$;
(v) A is a dual C^{*}-algebra and each minimal projection of A is minimal in M;
(vi) A is a c_{o}-sum of hereditary subalgebras of M.

Proof. In view of Corollary 2.9 and Lemma 3.4, it is sufficient to show that (i) implies that A is dual.

By Lemma 3.5, Condition (i) implies that there is a sequence $\left(z_{n}\right)$ of orthogonal central projections in the weak*-closure \bar{A} with $\bar{A}=\left(\bigoplus_{n} \bar{A} z_{n}\right)_{l_{\infty}}$ where each $\bar{A} z_{n}$ is a type I factor. As A has the PEP in \bar{A}, each $A z_{n}$ has the PEP in $\bar{A} z_{n}$ implying that $A z_{n}$ is simple dual, by Lemma 3.7, contained in A by Theorem 3.3 (i). Let $D=\left(\bigoplus_{n} A z_{n}\right)_{c_{o}}$ which is a dual C^{*}-subalgebra of A. We show that $A=D$. It is evident if $\left(z_{n}\right)$ is finite. Suppose $\left(z_{n}\right)$ is infinite. Let $a \in A$. If $\left\|a z_{n}\right\| \nrightarrow 0$, then passing to a subsequence and scaling, we may suppose that $\left\|a z_{n}\right\| \geqslant 1$ for all n. Given any subset $\alpha \subset \mathbb{N}$, let $a_{\alpha}=\left(\bigoplus_{n \in \alpha} a z_{n}\right)_{l_{\infty}}=a\left(\bigoplus_{n \in \alpha} z_{n}\right)_{l_{\infty}}$ which is in A by Theorem 3.3 (i). But for $\alpha, \beta \subset \mathbb{N}$ with $\alpha \neq \beta$, we have $\left\|a_{\alpha}-a_{\beta}\right\| \geqslant 1$. This contradicts separability. Therefore $\left\|a z_{n}\right\| \rightarrow 0$ and so $a=\left(\bigoplus_{n} a z_{n}\right)_{c_{0}} \in D$. Hence $A=D$ and the proof is complete.

4. ATOMIC EXTENSIONS

Let A be a C^{*}-algebra and let $K \subset S(A)$. We define the σ-convex hull of K to be the following set in which the sum is norm-convergent:

$$
\sigma(K)=\left\{\sum \lambda_{n} \varphi_{n}: \varphi \in K, \lambda_{n} \geqslant 0, \sum \lambda_{n}=1\right\}
$$

We have $\sigma(P(A))=\left\{\varphi \in S(A): \varphi\left(z_{A}\right)=1\right\}$, the set of atomic states of A which identifies with the normal state space of $A^{* *} z_{A}$. It is more generally true that the normal state space of an atomic von Neumann algebra is the σ-convex hull of its pure normal states. We have $F_{\mathrm{I}}(A) \subset \sigma(P(A))$. In fact, a state lies in $F_{\mathrm{I}}(A)$ if and only if it is a σ-convex sum of equivalent pure states ([13]). In particular, $F_{\mathrm{I}}(A)$ consists precisely of the atomic factor states of A. As a natural development of previous sections, we shall consider the general question of unique extension of atomic states.

Let A be a C^{*}-subalgebra of a C^{*}-algebra B. We say that A has the atomic extension property (AEP) in B if each atomic state of A has unique extension to an atomic state of B. Note that AEP implies PEP.

It is evident that every atomic state of A extends to an atomic state of B. In particular, if A is a hereditary subalgebra of B, then A has the AEP in B. However, this may not be true if A is the sum of two orthogonal hereditary subalgebras of B because, for instance, when A is finite-dimensional, the AEP in B implies unique extension of states of A.

Let \widehat{A} and $\operatorname{Prim} A$ denote the space of equivalence classes of irreducible representations of A and the primitive ideal space of A. In notation, we shall not
distinguish between an irreducible representation of A and its equivalence class. Recall that the canonical surjections ([26], 4.2.12, 4.3.3)

$$
\varphi \in P(A) \rightarrow \pi_{\varphi} \in \widehat{A}, \quad \pi \in \widehat{A} \rightarrow \operatorname{ker} \pi \in \operatorname{Prim} A
$$

are open and continuous.
Let A have the PEP in B and let

$$
\alpha: \varphi \in P(A) \rightarrow \bar{\varphi} \in P(B)
$$

denote the unique extension map.
Let $\varphi_{1}, \varphi_{2} \in P(A)$.
(a) If φ_{1} and φ_{2} are equivalent, then $\varphi_{1}(\cdot)=\varphi_{2}\left(a \cdot a^{*}\right)$ for some $a \in A$. By PEP, we have $\bar{\varphi}_{1}(\cdot)=\bar{\varphi}_{2}\left(a \cdot a^{*}\right)$. Hence $\bar{\varphi}_{1}$ and $\bar{\varphi}_{2}$ are equivalent. This gives rise to the mapping

$$
\widehat{\alpha}: \pi_{\varphi} \in \widehat{A} \rightarrow \pi_{\bar{\varphi}} \in \widehat{B} \quad(\varphi \in P(A))
$$

(b) If $\operatorname{ker} \pi_{\varphi_{1}}=\operatorname{ker} \pi_{\varphi_{2}}$, then φ_{2} is a weak*-limit of pure states equivalent to φ_{1} by [19], 3.4.3. By (a), together with the continuity of α ([17], Lemma 1), $\overline{\varphi_{2}}$ is a weak*-limit of pure states equivalent to $\overline{\varphi_{1}}$ from which it follows that $\operatorname{ker} \pi_{\bar{\varphi}_{1}} \subset$ $\operatorname{ker} \bar{\varphi}_{2}$ and hence that $\operatorname{ker} \pi_{\bar{\varphi}_{1}} \subset \operatorname{ker} \pi_{\bar{\varphi}_{2}}([19], 2.4 .11)$. Therefore $\operatorname{ker} \pi_{\bar{\varphi}_{1}}=\operatorname{ker} \pi_{\bar{\varphi}_{2}}$. Thus the mapping

$$
\check{\alpha}: \operatorname{ker} \pi_{\varphi} \in \operatorname{Prim} A \rightarrow \operatorname{ker} \pi_{\bar{\varphi}} \in \operatorname{Prim} B \quad(\varphi \in P(A))
$$

is well-defined.
Retaining the above notation, we have
Proposition 4.1. If A has the PEP in B, then the following

is a commutative diagram of continuous maps, where the horizontal maps are the canonical ones.

Proof. The maps $\widehat{\alpha}$ and $\check{\alpha}$ are continuous because α is continuous and the horizontal maps are open and continuous surjections.

If A has PEP in B, we shall write

$$
P_{A}(B)=\{\psi \in P(B): \psi \mid A \in P(A)\}
$$

A subset $K \subset P(B)$ is said to be saturated if K is a union of equivalence classes of pure states in $P(B)$.

Theorem 4.2. Let A have the PEP in B. Then the following conditions are equivalent:
(i) A has the atomic extension property in B;
(ii) each atomic state of A has unique extension in $S(B)$;
(iii) $A^{* *} z_{A}$ is a hereditary subalgebra of $B^{* *} z_{B}$;
(iv) $\mathrm{c}(\varphi)=\mathrm{c}(\bar{\varphi}) z_{A}$ for all $\varphi \in P(A)$ with extension $\bar{\varphi} \in P(B)$;
(v) $\widehat{\alpha}: \widehat{A} \rightarrow \widehat{B}$ is injective;
(vi) $\sigma\left(P_{A}(B)\right)$ is a norm-closed face of $S(B)$.

Proof. Given $\varphi \in P(A)$, let $\bar{\varphi} \in P(B)$ be its unique extension.
(i) \Rightarrow (iii) $A^{* *} z_{A}$ and $z_{A} B^{* *} z_{A}$ have the same predual and hence are equal.
(iii) \Rightarrow (iv) By the proof of Proposition 2.7, condition (iii) implies that for $\varphi \in P(A), \mathrm{c}(\bar{\varphi}) z_{A}$ is a minimal central projection of $z_{A} B^{* *} z_{A}=A^{* *} z_{A}$ majorising, and hence being equal to, $\mathrm{c}(\varphi)$.
(iv) $\Rightarrow(\mathrm{v})$ This is obvious.
(v) \Rightarrow (iii) \Rightarrow (vi) Let $\widehat{\alpha}$ be injective. Write $z_{A}=\sum \mathrm{c}\left(\varphi_{i}\right)$ where $\left(\varphi_{i}\right)$ is a family of mutually inequivalent pure states of A. By assumption, the $\mathrm{c}\left(\bar{\varphi}_{i}\right)$ are mutually orthogonal, and each $\mathrm{c}\left(\varphi_{i}\right) \leqslant \mathrm{c}\left(\bar{\varphi}_{i}\right)$ by the proof of Proposition 2.7. It follows from this and Proposition 2.7 (i) \Rightarrow (iv) that

$$
z_{A} B^{* *} z_{A}=\sum \mathrm{c}\left(\varphi_{i}\right) B^{* *} \mathrm{c}\left(\varphi_{i}\right)=\sum A^{* *} \mathrm{c}\left(\varphi_{i}\right)=A^{* *} z_{A}
$$

giving (iii). In turn, this identifies $P_{A}(B)$ with the set of all pure normal states of $z_{A} B^{* *} z_{A}$. Hence we have $\sigma\left(P_{A}(B)\right)=\left\{\psi \in S(B): \psi\left(z_{A}\right)=1\right\}$.
(vi) \Rightarrow (ii) Put $K=P_{A}(B)$. We have $\psi\left(z_{A}\right)=1$ for all $\psi \in \sigma(K)$. Assuming (v), by [15], p. 245, we have $\sigma(K)=\{\psi \in S(B): \psi(e)=1\}$ for some projection $e \leqslant z_{A}$ in $B^{* *}$. But Proposition 2.7 implies that $\mathrm{s}(\varphi)=\mathrm{s}(\bar{\varphi}) \leqslant e$ for all $\varphi \in P(A)$, from which we deduce that $e=z_{A}$. Hence $\psi \in S(B)$ lies in $\sigma(K)$ if and only if $\psi \mid A$ is an atomic state.

Let φ be an atomic state of A and let $\psi \in S(B)$ be an extension of φ. We may write φ as a σ-convex sum of a sequence of pure states of A. Partitioning these pure states by equivalence classes, we may organise φ as a $\operatorname{sum} \varphi=\sum_{n} \alpha_{n} \varphi_{n}$ where $\left(\alpha_{n}\right)$ is a finite or infinite sequence of positive real numbers and $\left(\varphi_{n}\right)$ a
mutually disjoint sequence in $F_{\mathrm{I}}(A)$ (cf. [13]). By Theorem 2.8, each φ_{n} has a unique extension to $\bar{\varphi}_{n} \in S(B)$. We claim that $\psi=\sum_{n} \alpha_{n} \bar{\varphi}_{n}$.

By earlier argument, we have $\psi=\sum_{1}^{\infty} \lambda_{n} \bar{\tau}_{n}$ for some $\lambda_{n} \geqslant 0$ with $\sum \lambda_{n}=1$ and $\tau_{n} \in P(A)$. Hence

$$
\sum_{n} \alpha_{n} \varphi_{n}=\sum_{n} \lambda_{n} \tau_{n}
$$

For each m and n, we have $\mathrm{c}\left(\tau_{n}\right)=\mathrm{c}\left(\varphi_{m}\right)$ or $\mathrm{c}\left(\tau_{n}\right) \mathrm{c}\left(\varphi_{m}\right)=0$. Thus, putting for each $m, S_{m}=\left\{n: \mathrm{c}\left(\tau_{n}\right)=\mathrm{c}\left(\varphi_{m}\right)\right\}$, we have, for $x \in A$,

$$
\alpha_{m} \varphi_{m}(x)=\sum_{n} \alpha_{n} \varphi_{n}\left(x c\left(\varphi_{m}\right)\right)=\sum_{n} \lambda_{n} \tau_{n}\left(x c\left(\varphi_{m}\right)\right)=\sum_{n \in S_{m}} \lambda_{n} \tau_{n}(x)
$$

so that $\alpha_{m}^{-1} \sum_{n \in S_{m}} \lambda_{n} \bar{\tau}_{n} \in S(B)$ extends φ_{m} and therefore equals $\bar{\varphi}_{m}$. It follows that $\psi=\sum_{n} \alpha_{n} \bar{\varphi}_{n}$ as required.

Remark 4.3. We are grateful to the referee for indicated to us condition (ii) in Theorem 4.2.

Corollary 4.4. Let A have the PEP in B. The following conditions are equivalent:
(i) $P_{A}(B)$ is saturated;
(ii) $\mathrm{c}(\varphi)=\mathrm{c}(\bar{\varphi})$ for every $\varphi \in P(A)$;
(iii) $\sigma\left(P_{A}(B)\right)$ is a split face of $S(B)$.

Proof. (i) \Rightarrow (ii) Let $\varphi \in P(A)$ with extension $\bar{\varphi} \in P(B)$. By Proposition 2.7 (iii), we have $A^{* *} \mathrm{c}(\varphi)=\mathrm{c}(\varphi) B^{* *} \mathrm{c}(\varphi) \subset B^{* *} \mathrm{c}(\bar{\varphi})$. Let e be a minimal projection of $B^{* *} \mathrm{c}(\bar{\varphi})$. Then $e=\mathrm{s}(\psi)$ for some $\psi \in P(B)$ and $\mathrm{c}(\bar{\varphi})=\mathrm{c}(\psi)$. As $P_{A}(B)$ is saturated, we have $\psi \mid A \in P(A)$ so that $e \in A^{* *}$ by Proposition 2.7 (ii). Therefore $B^{* *} \mathrm{c}(\bar{\varphi}) \subset A^{* *}$ and $\mathrm{c}(\bar{\varphi})$ must be a minimal central projection in $A^{* *}$ implying that $\mathrm{c}(\bar{\varphi})=\mathrm{c}(\varphi)$. It follows that z_{A} is in the centre of $B^{* *}$.
(ii) \Rightarrow (iii) We have $\mathrm{c}(\varphi)=\mathrm{c}(\bar{\varphi})$ for every $\varphi \in P(A)$ and hence the proof of Theorem 4.2 gives

$$
\sigma\left(P_{A}(B)\right)=\left\{\psi \in S(B): \psi\left(z_{A}\right)=1\right\}
$$

which is a split face of $S(B)$ ([15], p. 245).
(iii) \Rightarrow (i) Let $\sigma\left(P_{A}(B)\right)$ be a split face of $S(B)$. Then Theorem 4.2 together with [15], p. 245 implies that A has the atomic extension property in B and that z_{A} is a central projection in $B^{* *} z_{B}$. Therefore, if $\psi \in P(B)$ is equivalent to a state in $P_{A}(B)$, then $\psi \mid A$ must be atomic and ψ its unique extension, forcing $\psi \mid A \in P(A)$ so that $\psi \in P_{A}(B)$. So $P_{A}(B)$ is saturated.

We remark that the map $\widehat{\alpha}: \widehat{A} \rightarrow \widehat{B}$ may be injective without being an embedding (i.e. $\widehat{\alpha}$ may not be a homeomorphism onto $\widehat{\alpha}(\widehat{A})$). In fact, it is possible for $\hat{\alpha}$ to be a bijection without being a homeomorphism even when B is separable type I and A is abelian, as is shown by the following example.

Example 4.5. Let H be an infinite dimensional separable Hilbert space. Let e be a minimal projection in $B(H)$ and let M be a maximal abelian von Neumann subalgebra of $(1-e) B(H)(1-e)$ without atomic part. Choose (as we may) a separable weak ${ }^{*}$-dense C^{*}-subalgebra D of M containing $1-e$. Put $A=D+\mathbb{C} \cdot e$ and $B=D+K$ where $K=K(H)$. Then $1 \in A \subset B$ where A is abelian and B is separable of type I , and A has the PEP in B. To see the latter, let $\varphi \in P(A)$ and let $\bar{\varphi} \in P(B)$ be an extension of φ. If $\varphi(e)=1$, then $\bar{\varphi}$ is concentrated on K and is clearly the unique extension of φ. Otherwise $\varphi(e)=0$ in which case, to show that $\bar{\varphi}$ is unique, it is enough to show that $\bar{\varphi}(K)=0$. But, if $\bar{\varphi}(K) \neq 0$, then $\bar{\varphi}$ has unique extension to a pure normal state ψ of $B(H)$. This leads to the contradiction that $\psi \mid M$ is a pure normal state of M. Indeed, given $\psi \mid M=1 / 2\left(\psi_{1}+\psi_{2}\right)$ with $\psi_{1}, \psi_{2} \in S(M)$, then ψ_{1}, ψ_{2} are normal and $\psi_{1}\left|A=\psi_{2}\right| A=\varphi$, so that $\psi_{1}=\psi_{2}$, as required, since D is weak ${ }^{*}$-dense in M. The map $\check{\alpha}: \operatorname{Prim}(A) \rightarrow \operatorname{Prim}(B)$ is a bijection given by $\check{\alpha}(Q+\mathbb{C} \cdot e)=Q+K$ for each $Q \in \operatorname{Prim}(D)$ and $\check{\alpha}(D)=\{0\}$. However, as B is not liminal, $\operatorname{Prim}(B)$ is not Hausdorff so $\widehat{\alpha}(=\check{\alpha})$ is not a homeomorphism.

On the other hand, we have the following result.
Proposition 4.6. Let A have the PEP in B with $P_{A}(B)$ saturated. Then $\widehat{\alpha}: \widehat{A} \rightarrow \widehat{B}$ is an embedding.

Proof. We note that $\widehat{\alpha}$ is injective by Corollary 4.4 (i) \Rightarrow (iii) and Theo rem $4.2(\mathrm{vi}) \Rightarrow(\mathrm{v})$. Let \mathcal{I} be a closed two-sided ideal of A and $\operatorname{put} \mathcal{J}=\cap\left\{\operatorname{ker} \pi_{\bar{\varphi}}\right.$: $\varphi \in P(A), \varphi(\mathcal{I})=0\}$, where $\bar{\varphi} \in P(B)$ denotes the unique extension of $\varphi \in P(A)$. We have $\mathrm{c}(\varphi)=\mathrm{c}(\bar{\varphi})$ for each $\varphi \in P(A)$ by the proof of Corollary 4.4. It follows that $\mathcal{I}=A \cap \mathcal{J}$. Thus, for $\varphi \in P(A)$, we have $\pi_{\varphi}(\mathcal{I}) \neq\{0\}$ if and only if $\pi_{\bar{\varphi}}(\mathcal{J}) \neq\{0\}$. Hence $\widehat{\alpha}(\widehat{\mathcal{I}})=\widehat{\mathcal{J}} \cap \widehat{\alpha}(\widehat{A})$ which, together with Proposition 4.1, proves that $\widehat{\alpha}: \widehat{A} \rightarrow \widehat{\alpha}(\widehat{A})$ is a homeomorphism.

Given a C^{*}-algebra A, let $\operatorname{Ideal}(A)$ denote the set of all norm-closed two-sided ideals of A.

Proposition 4.7. Let A have PEP in B and let $\widehat{\alpha}: \widehat{A} \rightarrow \widehat{B}$ be a homeomorphism. Then the map $\beta: \mathcal{I} \in \operatorname{Ideal}(A) \mapsto \mathcal{I}_{B} \in \operatorname{Ideal}(B)$ is a bijection with inverse $\mathcal{J} \in \operatorname{Ideal}(B) \mapsto \mathcal{J} \cap A \in \operatorname{Ideal}(A)$ where \mathcal{I}_{B} is the norm-closed two-sided ideal in B generated by \mathcal{I}. Moreover, $\beta \mid \operatorname{Prim}(A)=\check{\alpha}: \operatorname{Prim}(A) \rightarrow \operatorname{Prim}(B)$, which is also a homeomorphism.

Proof. Let $\mathcal{I} \in \operatorname{Ideal}(A)$. By assumption, $\widehat{\alpha}(\widehat{\mathcal{I}})=\widehat{\mathcal{J}}$ for some $\mathcal{J} \in \operatorname{Ideal}(B)$. For $\varphi \in P(A)$, with unique extension $\bar{\varphi} \in P(B)$, we have $\varphi(\mathcal{I})=0$ if and only if $\bar{\varphi}(\mathcal{J})=0$; but $\bar{\varphi}(\mathcal{J})=0$ if and only if $\varphi(A \cap \mathcal{J})=0$. Hence $A \cap \mathcal{J}=\mathcal{I}$. In particular $\mathcal{I}_{B} \subset \mathcal{J}$. Let $\pi \in \widehat{B}$ with $\pi\left(\mathcal{I}_{B}\right)=0$. By assumption, π is equivalent to $\pi_{\bar{\varphi}}$ for some $\varphi \in P(A)$. We have $\bar{\varphi}\left(\mathcal{I}_{B}\right)=0$ so that $\varphi(\mathcal{I})=0$ and hence $\bar{\varphi}(\mathcal{J})=0$ which implies $\pi(\mathcal{J})=0$. Hence $\mathcal{I}_{B}=\mathcal{J}$. Given $K \in \operatorname{Ideal}(B)$, a simple argument gives $K=(K \cap A)_{B}$, proving the first statement.

For $\varphi \in P(A)$, we have $A \cap \operatorname{ker} \pi_{\bar{\varphi}} \subset \operatorname{ker} \pi_{\varphi}=\mathcal{I}$, say, as π_{φ} is equivalent to a subrepresentation of $\pi_{\bar{\varphi}} \mid A$. By the first part of the proof, $\varphi(\mathcal{I})=0$ implies $\bar{\varphi}\left(\mathcal{I}_{B}\right)=0$. So

$$
\mathcal{I}=A \cap \mathcal{I}_{B} \subset A \cap \operatorname{ker} \pi_{\bar{\varphi}} \subset \mathcal{I}
$$

which gives $\mathcal{I}_{B}=\operatorname{ker} \pi_{\bar{\varphi}}$ since β^{-1} is injective.
Remark 4.8. Let A have the PEP in B.
(a) It follows from Proposition 2.7, Theorem 4.2 and Corollary 4.4 (cf. [5], Proposition 2.24) that the following are equivalent:
(i) $\widehat{\alpha}: \widehat{A} \rightarrow \widehat{B}$ is a homeomorphism and z_{A} is a central projection in $B^{* *}$;
(ii) $A^{* *} z_{A}=B^{* *} z_{B}$;
(iii) A separates $P(B) \cup\{0\}$;
(b) $\widehat{\alpha}: \widehat{A} \rightarrow \widehat{B}$ may be a homeomorphism without $P_{A}(B)$ being saturated. For example, if B is nonabelian, choose $\psi \in P(B)$ which is not a homomorphism and put $A=L_{\psi} \cap L_{\psi}^{*}$ where $L_{\psi}=\left\{x \in B: \psi\left(x^{*} x\right)=0\right\}$. Restriction induces a homeomorphism $\widehat{B} \rightarrow \widehat{A}([25], 4.1 .0)$, the inverse of which is $\widehat{\alpha}$. As $z_{A}=z_{B}-\mathrm{s}(\psi)$ is not central in $B^{* *}, P_{A}(B)$ is not saturated by Corollary 4.4. In Example 4.10 we will give another example in which $1 \in A \subset B$.

Given a C^{*}-algebra A, let

$$
A_{\mathrm{c}}=\left\{x \in A^{* *} z_{A}: x, x^{*} x \text { and } x x^{*} \text { are continuous on } P(A) \cup\{0\}\right\} .
$$

Then A_{c} is a C^{*}-algebra with an approximate unit in common with A and, when A is identified with $A z_{A}$, satisfies the following conditions ([5], 2.9):
(i) A has the PEP in A_{c}.
(ii) $P_{A}\left(A_{\mathrm{c}}\right)$ is saturated and dense in $P\left(A_{\mathrm{c}}\right)$.

Proposition 4.9. Let A have the atomic extension property in B.
(i) If all primitive quotients of B are scattered, then A is a hereditary subalgebra of B.
(ii) If all primitive quotients of A are scattered and if $\widehat{\alpha}: \widehat{A} \rightarrow \widehat{B}$ is a homeomorphism, then A is a hereditary subalgebra of B.

Proof. (i) Let all primitive quotients of B be scattered and note that this condition is inherited by $H(A)$, the hereditary C^{*}-subalgebra of B generated by A. Note also that A has the AEP in $H(A)$. Thus, cutting down to $H(A)$, we may suppose that A and B have common approximate unit. Let $\psi \in P(B)$. Then $A \mathrm{c}(\psi)$ has the AEP in $B \mathrm{c}(\psi)$ and they have common approximate unit. But $B \mathrm{c}(\psi)$ is scattered, as therefore is $A c(\psi)$, and so every state of $\operatorname{Ac}(\psi)$ has unique extension to a state of $B \mathrm{c}(\psi)$. Hence $A \mathrm{c}(\psi)=B \mathrm{c}(\psi)$ by [22]. So $A^{* *} \mathrm{c}(\psi)=B^{* *} \mathrm{c}(\psi)$ is a type I factor implying that $\mathrm{c}(\psi) z_{A} \neq 0$. It follows that $\mathrm{c}(\psi)=\mathrm{c}(\bar{\varphi}) \geqslant \mathrm{c}(\varphi)$ for some $\varphi \in P(A)$ with extension $\bar{\varphi} \in P(B)$ (using the proof of Proposition 2.7) so that $A^{* *} \mathrm{c}(\varphi)=B^{* *} \mathrm{c}(\varphi)$ and we deduce that $\mathrm{c}(\varphi)$ is central in $B^{* *}$ and in turn, that $\mathrm{c}(\psi)=\mathrm{c}(\varphi)$. Therefore $A^{* *} z_{A}=B^{* *} z_{B}$ and so A separates $P(B) \cup\{0\}$ (cf. Remark 4.8). Hence $A=B$ by Kaplansky's theorem ([19], 11.1.8), as B is type I.
(ii) The inclusions $A \hookrightarrow H(A)$ and $H(A) \hookrightarrow B$ exhibit the AEP. Let $\widehat{\alpha}_{1}$: $\widehat{A} \rightarrow \widehat{H(A)}$ and $\widehat{\alpha}_{2}: \widehat{H(A)} \rightarrow \widehat{B}$ be the corresponding continuous maps given by Proposition 4.1, both of which are injective, by Theorem 4.2, and hence bijective as $\widehat{\alpha}=\widehat{\alpha}_{2} \circ \widehat{\alpha}_{1}$. Therefore $\widehat{\alpha}_{1}$ is a homeomorphism. Consequently we may suppose that $H(A)=B$.

Let $\psi \in P(B)$. Then $\mathrm{c}(\psi)=\mathrm{c}(\bar{\varphi})$ for some $\bar{\varphi} \in P(B)$ with $\varphi=\bar{\varphi} \mid A \in P(A)$, by assumption. As in (i), $A \mathrm{c}(\psi), B \mathrm{c}(\psi)$ have common approximate unit and $A \mathrm{c}(\psi)$ has AEP in $B \mathrm{c}(\psi)$. But $A \mathrm{c}(\psi)$ is scattered as $\operatorname{ker} \pi_{\psi} \cap A=\operatorname{ker} \pi_{\bar{\varphi}} \cap A=\operatorname{ker} \pi_{\varphi}$ by Proposition 4.7, and so $A \mathrm{c}(\psi)=B \mathrm{c}(\psi)$. Hence all the primitive quotients of B are scattered and the result follows from (i).

Regarding Proposition 4.9, if either A or B is liminal, then its primitive quotients are automatically scattered. We conclude with an example which shows that a slight relaxation in the conditions can render both parts of Proposition 4.9 false. To this end we exhibit below two unequal primitive type I C^{*}-algebras A and B such that $1 \in A \subset B, A$ has the AEP in B and $\widehat{\alpha}: \widehat{A} \rightarrow \widehat{B}$ is a homeomorphism.

Example 4.10. Let $D=C[0,1]$ and embed $D^{* *}$ as a von Neumann subalgebra of some $B(H)$, with the same identity, such that all minimal projections of $D^{* *}$ are properly infinite in $B(H)$. Put $K=K(H)$ and let $z D^{* *}\left(\neq D^{* *}\right)$ be the atomic part of $D^{* *}$. We note that $z K z$ is a hereditary C^{*}-subalgebra of $B=D+K$ and is an ideal of the C^{*}-algebra $A=D+z K z$. Further, as $D^{* *} \cap K=\{0\}$, the map
$A \rightarrow z B(H) z: a \mapsto a z$ is faithful, inducing a faithful irreducible representation $A \rightarrow B(z H)$. In particular, A and B are primitive type I with $1 \in A \varsubsetneqq B$. We claim that A has the PEP in B.

Indeed, let $\varphi \in P(A)$ with extension $\bar{\varphi} \in P(B)$. As $z K z$ is hereditary in B, we may suppose to establish uniqueness of $\bar{\varphi}$ that $\varphi(z K z)=0$. If $\bar{\varphi}(K) \neq 0$, then $\bar{\varphi}$ extends to a vector state $\omega_{h}=\langle\cdot h, h\rangle$ on $B(H)$, in which case, $\omega_{h} \mid D^{* *}$ is a normal extension of $\varphi \mid D \in P(D)$ which implies that $\omega_{h}(z)=1$ and hence that $\omega_{h}(K)=\omega_{h}(z K z)=\varphi(z K z)=0$. This contradiction proves that $\bar{\varphi}(K)=0$ and in turn that A has the PEP in B, as claimed. Finally, by Theorem $4.2(\mathrm{v}) \Rightarrow$ (i), A has the AEP in B because the map $\widehat{\alpha}=\check{\alpha}: \operatorname{Prim} A \rightarrow \operatorname{Prim} B$ is given by $\check{\alpha}(0)=0$ and $\check{\alpha}(Q+z K z)=Q+K$ for each $Q \in \operatorname{Prim} D$, which is easily seen to be a homeomorphism.

REFERENCES

1. C.A. Akemann, The general Stone-Weierstrass problem, J. Funct. Anal. 4(1969), 277-294.
2. C.A. Akemann, J. Anderson, G.K. Pedersen, Diffuse sequences and perfect C^{*} algebras, Trans. Amer. Math. Soc. 298(1986), 747-762.
3. C.A. Akemann, P.G. Dodd, J.L.B. Gamlen, Weak compactness in the dual of a C^{*}-algebra, J. Funct. Anal. 10(1972), 446-450.
4. C.A. Akemann, G.K. Pedersen, Ideal perturbations of elements in C^{*}-algebras, Math. Scand. 41(1977), 117-139.
5. C.A. Akemann, F.W. Shultz, Perfect C^{*}-Algebras, Mem. Amer. Math. Soc., vol. 55, 1985.
6. E.M. Alfsen, T.B. Andersen, Split faces of compact convex sets, Proc. London Math. Soc. (3) 21(1970), 415-442.
7. E.M. Alfsen, H. Hanche-Olsen, F.W. Shultz, State spaces of C^{*}-algebras, Acta Math. 144(1980), 267-305.
8. J. Anderson, Extensions, restrictions and representations of states of C^{*}-algebras, Trans. Amer. Math. Soc. 249(1979), 303-329.
9. R.J. Archbold, Extensions of states of C^{*}-algebras, J. London Math. Soc. (2) 21(1980), 351-354.
10. R.J. Archbold, On factorial states of operator algebras, J. Funct. Anal. 55(1984), 25-38.
11. R.J. Archbold, On perfect C^{*}-algebras, Proc. Amer. Math. Soc. 97(1986), 413-417.
12. R.J. Archbold, C.J.K. Batty, Extensions of factorial states of C^{*}-algebras, J. Funct. Anal. 63(1985), 86-100.
13. R.J. Archbold, C.J.K. Batty, On factorial states of C^{*}-algebras. II, J. Operator Theory 13(1985), 131-142.
14. R.J. Archbold, J.W. Bunce, K.D. Gregson, Extensions of states of C^{*}-algebras. II, Proc. Roy. Soc. Edinburgh Sect. A 92(1982), 113-122.
15. L.Asimow, A.J. Ellis, Convexity and its Applications in Functional Analysis, Academic Press, London 1980.
16. C.-H. Chu, A note on scattered C^{*}-algebras and the Radon-Nikodym property, J. London Math. Soc. (2) 24(1981), 533-536.
17. C.-H. Chu, M. Kusuda, On factor states of C^{*}-algebras and their extensions, Proc. Amer. Math. Soc. 124(1996), 207-215.
18. J. Diestel, Grothendieck Spaces and Cector Measures, in Vector and Operatorvalued Measures and Applications, Academic Press, New York, 1973, pp. 97108.
19. J. Dixmier, C^{*}-Algebras, North-Holland, New York 1982.
20. K.D. Gregson, Extension of pure states of C^{*}-algebras, Ph.D. Dissertation, University of Aberdeen, 1986.
21. R.V. Kadison, I.M. Singer, Extensions of pure states, Amer. J. Math. 81(1959), 383-400.
22. M. Kusuda, Unique state extension and hereditary C^{*}-subalgebras, Math. Ann. 288(1990), 201-209.
23. H.E. Jensen, Scattered C^{*}-algebras, Math. Scand. 41(1977), 308-314.
24. R. Longo, Solution of the factorial Stone-Weierstrass conjecture, an application of standard split W*-inclusions, Invent. Math. 26(1984), 145-155.
25. G.K. Pedersen, C^{*}-Algebras and their Automorphism Groups, Academic Press, 1979.
26. H. Pfitzner, Weak compactness in the dual of a C^{*}-algebra is determined commutatively, Math. Ann. 298(1994), 349-371.
27. S. Popa, Semiregular maximal abelian $*$-subalgebras and the solution to the factor state Stone-Weierstrass problem, Invent. Math. 298(1984), 157-161.
28. S. Sakai, C^{*}-Algebras and W^{*}-Algebras, Springer-Verlag, New York 1971.
29. F.W. Shultz, Pure states as a dual object for C^{*}-algebras, Comm. Math. Phys. 82(1982), 497-509.
30. M. Takesaki, Theory of Operator Algebras. I, Springer-Verlag, New York 1979.
31. S.-K. Tsui, Factor state extension on nuclear C^{*}-algebras, Yokohama Math. J. 29(1981), 157-160.
32. S. Wright, On factorial states, Rocky Mountain J. Math. 12(1982), 569-579.
L.J. BUNCE
Department of Mathematics
University of Reading
Reading RG6 2AX
ENGLAND
C.-H. CHU

Goldsmiths College University of London London SE14 6NW

ENGLAND

