UNIQUE EXTENSION OF PURE STATES OF C^* -ALGEBRAS

L.J. BUNCE and C.-H. CHU

Communicated by Şerban Strătilă

ABSTRACT. Let A be a C^* -subalgebra of a C^* -algebra B. We say that A has the *pure extension property* in B if every pure state of A has a unique pure state extension to B.

We show that A has the pure extension property in B if and only if there is a weak expectation on B for the atomic representation of A, among several equivalent conditions, including the unique extension of type I factor states. If A is separable and B is a von Neumann algebra, we show that the pure extension property is equivalent to that every factor state of A extends to a unique factor state of B which is in turn equivalent to that A is dual and the minimal projections of A are minimal in B. If A has the pure extension property in B, then there is a natural map $\hat{\alpha}$ between their spectra \hat{A} and \hat{B} . We study the relationship of \hat{A} and \hat{B} under $\hat{\alpha}$ as well as the unique extension of atomic states.

 $\label{eq:Keywords} \mbox{Keywords: C^*-algebra, pure extension property, atomic extension property, weak expectation, hereditary subalgebra.}$

MSC (2000): 46L05, 46L10, 46L30.

1. INTRODUCTION

Let A be a C^{*}-subalgebra of a C^{*}-algebra B. The set of extensions, in the state space of B, of a pure state φ of A is a weak^{*}-closed face so that by the Krein-Milman Theorem φ extends to at least one pure state of B which, if unique, is also the unique extension of φ in the state space of B ([25], 4.1.17).

We say that A has the *pure extension property* (PEP) in B if every pure state of A extends uniquely to a pure state of B.

When B is abelian, the pure extension property of A in B is in outcome a minor variation of the Stone-Weierstrass Theorem. But deep investigations of Kadison and Singer ([21]), Anderson ([8]) and Archbold ([9]) reveal the subtlety of the pure extension property when A is abelian but B is not abelian. A strong form of pure extension property institutionalised in the theory of *perfect* C^* -algebras has been investigated in penetrating detail by Akemann and Shultz ([5]).

In this paper we investigate the pure extension property for arbitrary C^* algebras A and B. Contrary to the special case in which A is abelian ([17]), the PEP of A in B need not be implemented by a conditional expectation from Bonto A in general. Instead, as we will show, PEP is equivalent to the existence of certain weak expectations as well as to other conditions, including unique extension of type I factor states (cf. Theorem 2.8). A consequence of the classical Stone-Weierstrass Theorem is that if A is abelian and has the PEP in B, then A is an ideal of a maximal abelian subalgebra of B. With the assistance of a noncommutative version (Theorem 3.3) of this result for arbitrary A, we give several characterisations (Theorem 3.8) of the PEP for a separable C^* -subalgebra of a von Neumann algebra. When A has the PEP in B, there is a natural map $\hat{\alpha} : \hat{A} \to \hat{B}$, between the corresponding spectra \hat{A} and \hat{B} , which we exploit in Section 4 to study the extensions of atomic states.

Generally we shall use standard notation to be found in [25]. If A is a C^* algebra, S(A) will denote the state space of A and P(A) the set of pure states of A. Given a normal state φ of a von Neumann algebra M, we denote by $s(\varphi)$ and $c(\varphi)$, respectively, the support projection and the central support projection of φ in M. For a C^* -algebra A, here habitually identified with its canonical image in A^{**} , the states of A identify with the normal states of A^{**} . Given a state φ of A, we define the homomorphism $\tau_{\varphi} : A \to A^{**}c(\varphi)$ by $\tau_{\varphi}(a) = ac(\varphi)$. We let $(\pi_{\varphi}, H_{\varphi}, h_{\varphi})$ denote the GNS-representation associated with φ . The normal extension of π_{φ} to A^{**} restricts to an isomorphism from $A^{**}c(\varphi)$ onto $\pi_{\varphi}(A)$, the weak*-closure of $\pi_{\varphi}(A)$ in the algebra $B(H_{\varphi})$ of bounded linear operators on H_{φ} . We call φ a factor state of A if $A^{**}c(\varphi)$ is a factor. Further, φ is called a factor state of type I if $A^{**c}(\varphi)$ is a factor of type I. The set of factor states and the set of factor states of type I will be denoted by F(A) and $F_{I}(A)$ respectively. Let z_{A} be the supremum of all minimal central projections in A^{**} . Then $A^{**}z_A$ is the atomic part of A^{**} and we refer to $\tau_a : a \in A \mapsto az_A \in A^{**}z_A$ as the *atomic representation* of A. The canonical inclusion $A \hookrightarrow A^{**}$ is the universal representation of A.

It follows from [25], 3.1.6, 4.1.7 that A has the PEP in B if and only if A has the PEP in H(A), the hereditary C^{*}-subalgebra generated by A in B. If e is the identity of A^{**} (identified with the weak^{*}-closure of A in B^{**}), an increasing net (a_{λ}) in A, with $0 \leq a_{\lambda} \leq e$ for all λ , is an approximate unit of A if and only if $a_{\lambda} \rightarrow e$ strongly. This follows from [4], 3.1, as does the fact that the following are equivalent (see also [5], 2.32):

- (a) H(A) = B;
- (b) A and B have a common approximate unit;
- (c) no pure state of B vanishes on A;
- (d) every pure state of B restricts to a state of A.

Further, (b) implies that *every* approximate unit of A is an approximate unit of B; and "pure state" in (c) and (d) may be replaced by "state".

We also note that A is hereditary in B (i.e. A = H(A)) if (and only if) every state of A has unique extension to a state of B ([22]). We have been informed by the referee that this result has also appeared in [20].

A C^* -algebra B is called *scattered* if B^{**} is a direct sum of type I factors, or equivalently, if B has a composition series in which each successive quotient is isomorphic to the C^* -algebra K(H) of compact operators on some Hilbert space H([16], [23]). A C^* -algebra B is called *dual* if it is isomorphic to a C^* -subalgebra of some K(H), or equivalently, every maximal abelian subalgebra of A is generated by minimal projections [19], 4.7.20.

We wish to thank the referee for many helpful suggestions.

2. UNIQUE EXTENSIONS AND WEAK EXPECTATIONS

Let A be a C^* -subalgebra of a C^* -algebra B and let M be a von Neumann algebra. A weak expectation for a *-homomorphism $\pi : A \to M$ is a linear contraction $\mathcal{P} : B \to \overline{\pi(A)}$ satisfying $\mathcal{P}|A = \pi$, where $\overline{\pi(A)}$ is the weak*-closure of $\pi(A)$ in M. Given a factor state φ of A with GNS representation π_{φ} , Tsui ([31]) has shown that φ can be extended to a factor state of B if there is a weak expectation for π_{φ} . Tsui's proof is based on Sakai's lecture in the 1973 Wabash Conference. The connection between weak expectations and factor state extensions has been developed in fine detail by Archbold and Batty ([12]). We note that the normal extension $\overline{\pi} : A^{**} \to M$ of $\pi : A \to M$ factors through the isomorphism $A^{**}c(\pi) =$ $A^{**}/\overline{\pi^{-1}}(0) \to \overline{\pi(A)}$ where $c(\pi) \in A^{**}$ is the central support of π . Therefore the existence of a weak expectation \mathcal{P} for π amounts to the existence of a contractive projection $\mathcal{Q} : B^{**} \to A^{**}c(\pi)$ such that $\overline{\pi} \circ \mathcal{Q}|A^{**} = \overline{\pi}$, where \mathcal{P} and \mathcal{Q} are related by $\mathcal{P} = \overline{\pi} \circ \mathcal{Q}|B$. It follows that \mathcal{P} is completely positive and satisfies

$$\mathcal{P}(aba') = \pi(a)\mathcal{P}(b)\pi(a')$$

for $a, a' \in A$ and $b \in B$ (cf. [12], Proposition 2.1). In particular, the latter property implies that, if $\varphi \in S(A)$ has the GNS representation $(\pi_{\varphi}, H_{\varphi}, h_{\varphi})$ and if \mathcal{P} is a weak expectation for π_{φ} , then the map $\mathcal{P} \mapsto \varphi \circ \mathcal{P} = \langle \mathcal{P}(\cdot)h_{\varphi}, h_{\varphi} \rangle$ is injective ([12], Corollary 2.2). We will sometimes substitute for the GNS representation π_{φ} its equivalent $\tau_{\varphi} : A \to A^{**}c(\varphi)$ where $\tau_{\varphi}(a) = ac(\varphi)$. The normal extension of τ_{φ} to A^{**} will also be denoted by τ_{φ} .

Given $\varphi \in S(A)$, the (possibly empty) convex set \mathcal{E}_{φ} of weak expectations for $\tau_{\varphi} : A \to A^{**}c(\varphi)$ is compact in the point-weak topology. Let $S_{\varphi} = \{\varphi \circ \mathcal{P} : \mathcal{P} \in \mathcal{E}_{\varphi}\}$. Then $S_{\varphi} \subset E_{\varphi} \equiv \{\psi \in S(B) : \psi | A = \varphi\}$. If \mathcal{E}_{φ} is nonempty, we define a map $\alpha_{\varphi} : \mathcal{E}_{\varphi} \to S_{\varphi}$ by $\alpha_{\varphi}(\mathcal{P}) = \varphi \circ \mathcal{P}$. This notation is retained in the following two results of which we shall make frequent use.

THEOREM 2.1. ([31]) Let A be a C^{*}-subalgebra of a C^{*}-algebra B. If $\varphi \in F(A)$ and \mathcal{E}_{φ} is nonempty, then the extreme points of S_{φ} are factor states of B (extending φ).

THEOREM 2.2. ([12]) Let A be a C^{*}-subalgebra of a C^{*}-algebra B. We have: (i) $\alpha_{\varphi} : \mathcal{E}_{\varphi} \to S_{\varphi}$ is an affine homeomorphism for every $\varphi \in S(A)$ with $\mathcal{E}_{\varphi} \neq \emptyset$;

(ii) for every $\varphi \in P(A)$, $\mathcal{E}_{\varphi} \neq \emptyset$ and $E_{\varphi} = S_{\varphi}$.

Proof. (i) This is [12], Corollary 2.2 as remarked above.

(ii) This is implicit in [12], Theorem 2.3. Indeed, given $\varphi \in P(A)$ with extension $\psi \in E_{\varphi}$, employing the usual GNS notation as above, the following identification (cf. [19], 2.10.2) may be made: $h_{\varphi} = h_{\psi} = h$ say, $H_{\varphi} = [\pi_{\psi}(A)h]$ and $\pi_{\varphi}(a) = \pi_{\psi}(a)|H_{\varphi}$ for $a \in A$. Let E be the orthogonal projection of H_{ψ} onto H_{φ} . Then the map $\mathcal{Q}: B \to \overline{\pi_{\varphi}(A)} = B(H_{\varphi})$ given by

$$\mathcal{Q}(b) = E\pi_{\psi}(b)E$$

is a weak expectation for π_{φ} with $\psi(b) = \langle \mathcal{Q}(b)h, h \rangle$. Hence $\mathcal{P} : B \xrightarrow{\mathcal{Q}} \overline{\pi_{\varphi}(A)} \xrightarrow{\text{iso}} A^{**}c(\varphi)$ is a weak expectation for τ_{φ} and $\psi = \varphi \circ \mathcal{P}$.

LEMMA 2.3. Let M be a von Neumann subalgebra of a von Neumann algebra N where M is a factor containing the identity of N. Suppose each normal state of M extends to a unique normal factor state of N. Then N contains a unique minimal central projection z, and also Mz = Nz.

Proof. By assumption, N has normal factor states and hence at least one minimal central projection z say.

We show that every normal state of Mz extends to a unique normal state of Nz which will yield Mz = Nz.

Let φ be a normal state of Mz and let $\overline{\varphi}$ be a normal state of Nz extending φ . Then $\overline{\varphi}$ extends to a unique normal state ψ of N given by $\psi(\cdot) = \overline{\varphi}(\cdot z)$. As $\psi(z) = 1$, ψ is a factor state of N. On the other hand, the normal state $\varphi(\cdot z)$ of M extends to a unique normal factor state ω of N, and as $\psi|M = \varphi(\cdot z)$, we have $\psi = \omega$ which gives $\overline{\varphi} = \omega|Nz$.

Finally, fix any normal state ψ of M with unique normal factor state extension ω on N. As M is a factor, it is isomorphic to Mz via the isomorphism $x \mapsto xz$. So there is a normal state φ on Mz such that $\psi(\cdot) = \varphi(\cdot z)$. By the above arguments, we have $\omega | Nz = \omega | Mz = \varphi$. So $\omega(z) = 1$ and $z = c(\omega)$. This shows that z is unique.

REMARK 2.4. We note that in Lemma 2.3, the algebra N need not be a factor. For example, let $N = (L^{\infty}(0,1)\overline{\otimes}A) \oplus (1 \otimes A)$ where A is a factor, and let $M = \{(x,x) : x \in 1 \otimes A\}$. Then $1_N \in M \subset N$ and Me = Ne where e = (0, f) with f being the identity of $1 \otimes A$. We have that e is the unique minimal central projection of N and each normal state of M has a unique extension to a normal factor state of N.

THEOREM 2.5. Let A be a C^{*}-subalgebra of a C^{*}-algebra B. Then we have (i) \Rightarrow (ii) \Leftrightarrow (iii) in the following conditions:

- (i) each factor state of A has a unique extension to a state of B;
- (ii) each factor state of A has a unique extension to a factor state of B;

(iii) there is a weak expectation $\mathcal{P} : B \longrightarrow A^{**}$ for $A \hookrightarrow A^{**}$ such that for each $\varphi \in F(A)$ with an extension $\overline{\varphi} \in F(B)$, we have $\overline{\varphi} = \varphi \circ \mathcal{P}$.

Proof. (ii) \Rightarrow (iii) Let $\varphi \in F(A)$ and let $\overline{\varphi} \in F(B)$ extend φ . Consider the inclusion

$$A^{**}\mathbf{c}(\varphi) \hookrightarrow \mathbf{c}(\varphi)B^{**}\mathbf{c}(\varphi).$$

We show that every normal state ψ of $A^{**}c(\varphi)$ extends uniquely to a normal factor state of $c(\varphi)B^{**}c(\varphi)$. Such a state ψ may be identified with $\psi \in F(A)$ satisfying $c(\psi) = c(\varphi)$. Let $\overline{\psi} \in F(B)$ extend ψ . Then $\overline{\psi}$ acts on $c(\varphi)B^{**}c(\varphi)$ as a normal factor state (as $\overline{\psi}(c(\varphi)c(\overline{\psi})) = 1$) extending ψ on $A^{**}c(\varphi)$. Now let ω be any normal factor state of $c(\varphi)B^{**}c(\varphi)$ extending ψ . Then $\omega(zc(\varphi)) = 1$ for some minimal central projection z in B^{**} . Hence the unique normal extension of ω to B^{**} is supported by z and therefore is a factor state extending ψ and must equal $\overline{\psi}$ by (ii). So ψ extends uniquely to a normal factor state of $c(\varphi)B^{**}c(\varphi)$. Hence, by Lemma 2.3, we have $A^{**}c(\varphi)c(\overline{\varphi}) = c(\varphi)B^{**}c(\varphi)c(\overline{\varphi})$.

Consider the maps

$$\sigma: b \in B \longmapsto c(\varphi)bc(\varphi)c(\overline{\varphi}) \in c(\varphi)B^{**}c(\varphi)c(\overline{\varphi});$$

L.J. BUNCE AND C.-H. CHU

$$\tau: x \in A^{**} \mathbf{c}(\varphi) \longmapsto x \mathbf{c}(\overline{\varphi}) \in A^{**} \mathbf{c}(\varphi) \mathbf{c}(\overline{\varphi})$$

and note that σ is a linear contraction, that τ is a *-isomorphism since $A^{**}c(\varphi)$ is a factor, and that $\tau^{-1} \circ \sigma | A = \tau_{\varphi}$. Hence $\mathcal{P}_{\varphi} = \tau^{-1} \circ \sigma : B \to A^{**}c(\varphi)$ is a weak expectation for τ_{φ} which, by (ii), Theorem 2.1 and Theorem 2.2 (i), is the unique such weak expectation. It now follows from [12], Theorem 2.6 that there is a weak expectation $\mathcal{P} : B \to A^{**}$ for $A \hookrightarrow A^{**}$. Hence $\tau_{\varphi} \circ \mathcal{P} = \mathcal{P}_{\varphi}$ by uniqueness, so that

$$\varphi \circ \mathcal{P} = \varphi \circ \tau_{\varphi} \circ \mathcal{P} = \varphi \circ \mathcal{P}_{\varphi} = \overline{\varphi}$$

where the final equality comes from Theorem 2.1.

(iii) \Rightarrow (ii) Given (iii), by [12], Theorem 2.6 (4) \Rightarrow (3), together with Theorem 2.1 (see also [12], Proposition 2.5) each $\varphi \in F(A)$ has an extension in F(B)from which (ii) is now immediate.

(i) \Rightarrow (ii) Take $\varphi \in F(A)$ with extension $\overline{\varphi} \in S(B)$. By an argument similar to that in the proof of (ii) \Rightarrow (iii), every normal state of $A^{**}c(\varphi)$ extends to a unique normal factor state of $c(\varphi)B^{**}c(\varphi)$ and therefore, as before, the map $\mathcal{P}_{\varphi} : B \to A^{**}c(\varphi)$ is a weak expectation for τ_{φ} . Hence $\overline{\varphi} \in F(B)$ by Theorem 2.1.

COROLLARY 2.6. Let A be a C^* -subalgebra of a C^* -algebra B. Suppose that A is a von Neumann algebra. The following conditions are equivalent:

(i) every $\varphi \in F(A)$ has a unique extension to some $\overline{\varphi} \in F(B)$;

(ii) there is a contractive projection $\mathcal{P}: B \to A$ such that for each $\varphi \in F(A)$ with an extension $\overline{\varphi} \in F(B)$, we have $\overline{\varphi} = \varphi \circ \mathcal{P}$.

Proof. Let $\pi : A \to \pi(A) \subset B(H)$ be a faithful normal representation. If each factor state of A extends to a unique factor state of B, then by Theorem 2.5 (ii) \Rightarrow (iii) and [12], Theorem 2.6 (4) \Rightarrow (3), there is a weak expectation $Q: B \to \overline{\pi(A)} = \pi(A)$ for π . Then $\mathcal{P} = \pi^{-1} \circ Q$ is a contractive projection from B onto A. The proof is concluded as in Theorem 2.5.

PROPOSITION 2.7. Let A be a C^{*}-subalgebra of a C^{*}-algebra B. Let $\varphi \in P(A)$ with an extension $\overline{\varphi} \in P(B)$. The following conditions are equivalent:

(i) $\overline{\varphi}$ is the unique extension of φ ;

(ii) $s(\varphi) = s(\overline{\varphi});$

(iii) $A^{**}c(\varphi)$ is an hereditary subalgebra of $B^{**}c(\overline{\varphi})$;

(iv) there is a unique weak expectation $\mathcal{P}_{\varphi} : B \to A^{**}c(\varphi)$ for $\tau_{\varphi} : A \to A^{**}c(\varphi)$ where $\mathcal{P}_{\varphi}(b) = c(\varphi)bc(\varphi)$.

Proof. (i) \Rightarrow (ii) As $\overline{\varphi}(s(\varphi)) = 1$, we have $s(\overline{\varphi}) \leq s(\varphi)$ in B^{**} . If $s(\overline{\varphi}) \neq s(\varphi)$, we can choose $\tau \in S(B)$ such that $\tau(s(\varphi) - s(\overline{\varphi})) = 1$. Then $\tau(s(\varphi)) = 1$ and

 $\tau(\mathbf{s}(\overline{\varphi})) = 0$. In particular, $\mathbf{s}(\tau|A) = \mathbf{s}(\varphi)$, by minimality, so that $\tau|A = \varphi$ and hence that $\tau = \overline{\varphi}$ contradicting $\tau(\mathbf{s}(\overline{\varphi})) = 0$. Hence $\mathbf{s}(\overline{\varphi}) = \mathbf{s}(\varphi)$.

(ii) \Rightarrow (iii) Let $s(\varphi) = s(\overline{\varphi})$. Then $s(\varphi)$ lies in the weak*-closed ideal $A^{**} \cap B^{**}c(\overline{\varphi})$ as therefore does $c(\varphi)$. Hence $c(\varphi) \leq c(\overline{\varphi})$. Therefore $c(\varphi)B^{**}c(\varphi)$ is a type I factor which we may identify with some B(H) and $A^{**}c(\varphi)$ accordingly with a type I subfactor M containing 1_H and a minimal projection e of B(H). Let $z \in M'$ and let f be any minimal projection of M. Then f is minimal in B(H) as it is equivalent to e in M. Therefore we have $zf = fzf \in \mathbb{C} \cdot f \subset M$. It follows that $z \in M$ and hence $M' = \mathbb{C} \cdot 1$ which gives M = M'' = B(H), proving (iii).

(iii) \Rightarrow (i) and (iv). Given any extension τ of φ , we have $\tau(\mathbf{c}(\varphi)) = 1$ so that

$$\tau(b) = \tau(\mathbf{c}(\varphi)b\mathbf{c}(\varphi)) = \varphi(\mathbf{c}(\varphi)b\mathbf{c}(\varphi)) = \overline{\varphi}(b)$$

for $b \in B$, proving (i) which implies that the map \mathcal{P}_{φ} in (iv) is a weak expectation. Its uniqueness then follows from Theorem 2.2.

(iv) \Rightarrow (i) Since (iv) implies that $c(\varphi)Bc(\varphi) \subset A^{**}c(\varphi)$, we see (i) follows as in the proof of (iii) \Rightarrow (i).

THEOREM 2.8. Let A be a C^* -subalgebra of a C^* -algebra B. The following conditions are equivalent:

- (i) each $\varphi \in P(A)$ has a unique extension in P(B);
- (ii) Each $\varphi \in F_{I}(A)$ has a unique extension in S(B);
- (iii) each $\varphi \in F_{I}(A)$ has a unique extension in F(B);
- (iv) each $\varphi \in F_{I}(A)$ has a unique extension in $F_{I}(B)$;
- (v) $A^{**}z_A$ is an l^{∞} -sum of hereditary subalgebras of $B^{**}z_B$;

(vi) there is a unique weak expectation $\mathcal{P} : B \to A^{**}z_A$ for the atomic representation τ_a of A and it is given by $\mathcal{P}(b) = \sum e_j be_j$ for $b \in B$, where e_j are minimal central projections in $A^{**}z_A$ with $z_A = \sum e_j$;

(vii) there is a contractive projection $\mathcal{Q} : B^{**} \to A^{**}z_A$ such that $\varphi \circ \mathcal{Q}$ is the unique extension in S(B) of each $\varphi \in P(A)$.

Proof. (i) \Rightarrow (v) Let (φ_j) be a family of mutually inequivalent pure states of A such that $z_A = \sum c(\varphi_j)$. By Proposition 2.7, we have

$$A^{**}z_A = \sum A^{**}c(\varphi_j) = \sum c(\varphi_j)B^{**}c(\varphi_j) \subset B^{**}z_B.$$

 $(\mathbf{v}) \Rightarrow (ii)$ Let $\varphi \in F_{\mathbf{I}}(A)$. Then $\mathbf{c}(\varphi) = \mathbf{c}(\psi)$ for some $\psi \in P(B)$ and (v) implies that $A^{**}\mathbf{c}(\varphi) = A^{**}\mathbf{c}(\psi) = \mathbf{c}(\psi)B^{**}\mathbf{c}(\psi) = \mathbf{c}(\varphi)B^{**}\mathbf{c}(\varphi)$ which in turn implies (ii).

(ii) \Rightarrow (iii) \Rightarrow (iv) Given $\varphi \in F_{\mathrm{I}}(A)$, then $A^{**}\mathrm{c}(\varphi)$ is a type I factor and hence injective. So there is a weak expectation $\mathcal{P}: B \to A^{**}\mathrm{c}(\varphi)$ for $A \to A^{**}\mathrm{c}(\varphi)$ implying that φ has a factor state extension on *B*, by Theorem 2.1, some of which must be type I ([12], Theorem 3.2).

 $(iv) \Rightarrow (i)$ This is obvious.

(i) \Rightarrow (vi) By injectivity of $A^{**}z_A$, there is a weak expectation $\mathcal{P} : B \to A^{**}z_A$ for the atomic representation $\tau_a : A \to A^{**}z_A$. Let \mathcal{Q} be another weak expectation for τ_a . Then (i) implies that $\varphi \circ \mathcal{P} = \varphi \circ \mathcal{Q}$ for all $\varphi \in P(A)$ which gives $\mathcal{P} = \mathcal{Q}$ since P(A) separates points of $A^{**}z_A$. Now the formula for \mathcal{P} is seen from the proof of (i) \Rightarrow (v).

 $(\text{vi}) \Rightarrow (\text{i}), (\text{vii})$ For each $\varphi \in P(A)$, the condition (vi) implies that $A^{**}c(\varphi) = c(\varphi)B^{**}c(\varphi)$ from which (i) follows as in the proof of Proposition 2.7 (iv) \Rightarrow (i). In addition, we see that $\mathcal{Q}(b) = \sum e_i b e_i$ where the e_i are minimal central projections in A^{**} with $\sum e_i = z_A$ and $b \in B^{**}$, defines a contractive projection $\mathcal{Q}: B^{**} \to A^{**}z_A$ satisfying (vii).

By Theorem 2.5 and Theorem 2.8, we have

COROLLARY 2.9. Let A be a type I C^* -subalgebra of a C^* -algebra B. The following conditions are equivalent:

- (i) A has the PEP in B;
- (ii) each $\varphi \in F(A)$ has a unique extension to $\overline{\varphi} \in F(B)$;
- (iii) each $\varphi \in F(A)$ has a unique extension to $\overline{\varphi} \in S(B)$;

(iv) there is a weak expectation $\mathcal{P} : B \to A^{**}$ for $A \hookrightarrow A^{**}$ such that $\varphi \circ \mathcal{P} \in F(B)$ is the unique extension of each $\varphi \in F(A)$.

REMARK 2.10. In (iv) of the above corollary, the weak expectation $\mathcal{P}: B \to A^{**}$ for $A \hookrightarrow A^{**}$ cannot be replaced by a contractive projection $B \to A$ even when A is limited and separable, as may be seen by combining [5], Proposition 3.14 and the proof of [11], Theorem 2.1.

3. RELATIVE COMMUTANTS

Given a C^* -subalgebra A of a C^* -algebra B, we let

$$A^{c} = \{ b \in B : ab = ba \ \forall a \in A \}$$

$$A^{\perp} = \{b \in B : bA = Ab = 0\}$$

denote respectively the relative commutant and the annihilator of A in B. The centre of A is denoted by Z(A). For subsets S and T of B, we let $S \cdot T = \{st : s \in S, t \in T\}$ and let [S] denote the norm closed linear span of S while $C^*(S)$ denotes the C^* -subalgebra generated by S. If $S = \{x_1, \ldots, x_n\}$, we will also write $C^*(S) = C^*(x_1, \ldots, x_n)$.

326

Unique extension of pure states of C^* -algebras

LEMMA 3.1. Let A be a prime C^* -subalgebra of a unital C^* -algebra B and let A have the PEP in B. Then we have $A^c = A^{\perp} + \mathbb{C} \cdot 1$.

Proof. We show that the quotient A^c/A^{\perp} has no zero divisor and hence is one-dimensional.

For self-adjoint $x \in A^c$, we let $C_x = [A \cdot C^*(1, x)]$ and $J_x = [A \cdot C^*(x)]$. Then A has PEP in C_x .

Note that the pure states of C_x restrict to pure states of A. Indeed, given $\varphi \in P(C_x)$ with the GNS-representation $\pi_{\varphi}: C_x \to B(H_{\varphi})$ and normal extension $\tilde{\pi}_{\varphi}$, then $\tilde{\pi}_{\varphi}(x) \in \mathbb{C} \cdot 1$ so that $\overline{\pi_{\varphi}(A)} = B(H_{\varphi})$. But A and C_x have common approximate unit so that $\varphi|A$ is a state, hence $\pi_{\varphi}|A$ is irreducible and so $\varphi|A \in P(A)$. By PEP, A separates points of $P(C_x) \cup \{0\}$. As J_x is a two-sided ideal of C_x , by [19], 11.1.3 and 11.1.7 the irreducible representations of J_x restrict to those of $A \cap J_x$. So $J_x = 0$ if $A \cap J_x = 0$.

Now take self-adjoint elements x and y in A^c such that $xy \in A^{\perp}$. Then $C^*(x) \cdot C^*(y) \cdot A = 0$. Hence $J_x \cdot J_y = 0$ and therefore $(A \cap J_x) \cap (A \cap J_y) = A \cap J_x \cap J_y = 0$ which implies either $A \cap J_x = 0$ or $A \cap J_y = 0$ because A is prime. It follows that $J_x = 0$ or $J_y = 0$, that is, $x \in A^{\perp}$ or $y \in A^{\perp}$. This shows that A^c/A^{\perp} has no zero divisor.

Given a proper C^* -subalgebra A of a C^* -algebra B, consider the weak*-compact convex set

$$S = \{ f \in B^* : f = f^*, \|f\| \le 1, \, f(A) = 0 \}.$$

Let $g \in \partial S$ and let $g = g_1 - g_2$ be its orthogonal decomposition with $g_1, g_2 \ge 0$. Put $\tau = g_1 + g_2$. The following lemma is taken from Sakai's book ([28]).

LEMMA 3.2. Let A, B and τ be as above and suppose that: (i) A and B have a common approximate unit; (ii) $Z(\overline{\pi_{\tau}(A)}) \subset Z(\overline{\pi_{\tau}(B)}).$ Then $\overline{\pi_{\tau}(A)}$ is a nonzero factor.

Proof. The required argument is the same as in [28], 4.1.9 with lines 10–14 of that proof omitted. \blacksquare

THEOREM 3.3. Let A be a C^{*}-subalgebra with PEP in a C^{*}-algebra B. Then: (i) $A \cdot A^{c} \subset A$;

(ii) $A^{c} = Z(A)$ if A and B have a common approximate unit.

Proof. (i) We may suppose that B has a unit. Let x be a self-adjoint element of A^{c} . We show that the C^{*} -algebra $E = [A \cdot C^{*}(1, x)]$ is equal to A. Suppose

that $A \neq E$. Let g, g_1, g_2 and τ be chosen as in the remarks preceding Lemma 3.2. We claim that $\overline{\pi_{\tau}(A)}$ is a nonzero factor. Indeed, it is evident that Condition (i) of Lemma 3.2 is satisfied. To see that Condition (ii) of Lemma 3.2 holds, we note that E is a two-sided ideal of $D = C^*(A \cup \{x\})$ so that $\pi_{\tau} : E \to B(H_{\tau})$ extends to $\overline{\pi_{\tau}} : D \to B(H_{\tau})$ with $\overline{\overline{\pi_{\tau}(D)}} = \overline{\pi_{\tau}(E)}$. But $\overline{\overline{\pi_{\tau}(D)}}$ is generated by $\overline{\pi_{\tau}(x)}$ and $\overline{\pi_{\tau}(A)}$, and the former lies in the commutant of the latter. Hence we have $Z(\overline{\pi_{\tau}(A)}) \subset Z(\overline{\overline{\pi_{\tau}(D)}}) = Z(\overline{\pi_{\tau}(E)})$.

Therefore $\pi_{\tau}(A)$ is a prime C^* -algebra. But $\pi_{\tau}(A) = \overline{\pi_{\tau}}(A)$ has the PEP in $\overline{\pi_{\tau}}(D)$. Therefore $\pi_{\tau}(E) = \overline{\pi_{\tau}}(E) = [\overline{\pi_{\tau}}(A) \cdot C^*(1, \overline{\pi_{\tau}}(x))] = \pi_{\tau}(A)$ where the final equality comes from Lemma 3.1. Hence we have $E = A + \ker \pi_{\tau}$. As $g(\ker \pi_{\tau}) = 0$, this implies that g(E) = 0 which is a contradiction proving (i).

(ii) Let (a_{λ}) be a common approximate unit of A and B, and let $x \in A^{c}$. Then by (i), we have $x = \lim a_{\lambda}x \in A$.

A Banach space X is called a Grothendieck space ([18]) if each $\sigma(X^*, X)$ convergent sequence in X^* is $\sigma(X^*, X^{**})$ -convergent. The quotient of a Grothendieck space is also a Grothendieck space. Pfitzner ([26]) has shown that every von Neumann algebra is a Grothendieck space. In Proposition 3.6 and Theorem 3.8 below, one can actually replace the von Neumann algebra M by a C^* -algebra Awhich is a Grothendieck space. The proofs, however, only make use of a weaker property that $\sigma(A^*, A)$ -convergent sequence of positive functionals is $\sigma(A^*, A^{**})$ convergent. This fact has been proved by Akemann, Dodd and Gamlen ([3]) for von Neumann algebras.

LEMMA 3.4. Let A be a dual C^* -subalgebra of a C^* -algebra B. Then the following conditions are equivalent:

- (i) A has the PEP in B;
- (ii) the minimal projections of A are minimal in B;
- (iii) A is a c_{o} -sum of hereditary C^{*}-subalgebras of B.

Proof. (i) \Rightarrow (ii) Let $p \in A$ be a minimal projection. Then $\mathbb{C} \cdot p$ has PEP in A. By Condition (i), $\mathbb{C} \cdot p$ has PEP in pBp and hence pBp can not have two distinct pure states. So $pBp = \mathbb{C} \cdot p$, that is, p is minimal in B.

(ii) \Rightarrow (iii) By [19], 4.7.20, we may suppose that A is simple dual. In this case, it follows from Proposition 2.7 (ii) \Rightarrow (iii) that the type I factor $A^{**} = A^{**}z_A$ is an hereditary subalgebra of $B^{**}z_B$. Hence $A = A^{**} \cap B$ is an hereditary subalgebra of B.

(iii) \Rightarrow (i) Each pure state of A is supported by a hereditary subalgebra of B and hence has unique extension in S(B).

LEMMA 3.5. Let A be a separable C^* -subalgebra of a C^* -algebra B and let B be a Grothendieck space. If A has the PEP in B, then A is scattered.

Proof. By [17], Theorem 7 together with Theorem 2.7, it suffices to show that A is of type I. To this end let $\varphi, \psi \in P(A)$ be such that $\ker \pi_{\varphi} = \ker \pi_{\psi}$. By a theorem of Glimm (see [19], p. 190), it is sufficient to show that π_{φ} and π_{ψ} are equivalent. By [19], 3.4.2 (ii) and separability, φ is the w^{*}-limit of a sequence of pure states (ψ_n) associated with π_{ψ} . By [17], Lemma 1, we have $\overline{\varphi} = w^*$ -lim $\overline{\psi}_n$ where $\overline{\tau} \in P(B)$ denotes the unique extension of $\tau \in P(A)$. As B is a Grothendieck space, this implies $\overline{\varphi} = \sigma(B^*, B^{**})$ -lim $\overline{\psi}_n$ which gives $\varphi(c_{\psi}) = \overline{\varphi}(c_{\psi}) = \lim \overline{\psi_n}(c_{\psi}) = 1$. Hence $c(\varphi) = c(\psi)$ proving that π_{φ} and π_{ψ} are equivalent.

PROPOSITION 3.6. Let A be a nonzero separable C^* -subalgebra of M/I where M is a von Neumann algebra and I is the norm-closed ideal of M such that M/I is antiliminal. Then A does not have PEP in M/I.

In particular, no nonzero separable C^* -subalgebra of the Calkin algebra B(H)/K(H) has the PEP in B(H)/K(H).

Proof. Suppose otherwise, then by Lemma 3.5, A must contain a nonzero simple dual ideal which necessarily has the PEP in M/I. Now Lemma 3.4 contradicts the fact that M/I is antiliminal.

LEMMA 3.7. Let A be a separable C^* -algebra acting irreducibly on a Hilbert space H. If A has the PEP in B(H), then A = K(H).

Proof. By Lemma 3.5, A is type I and so contains K(H) which implies that A/K(H) has the PEP in B(H)/K(H). Hence A = K(H) by Proposition 3.6.

The following extends Theorem 6 and Theorem 7 of [17].

THEOREM 3.8. Let A be a separable C^* -subalgebra of a von Neumann algebra M. The following conditions are equivalent:

(i) A has the PEP in M;

(ii) every $\varphi \in F(A)$ has unique extension in S(M);

(iii) every $\varphi \in F(A)$ has unique extension in $\overline{F(M)}$;

(iv) every $\varphi \in F(A)$ has unique extension in F(M);

(v) A is a dual C^* -algebra and each minimal projection of A is minimal in M;

(vi) A is a c_o -sum of hereditary subalgebras of M.

Proof. In view of Corollary 2.9 and Lemma 3.4, it is sufficient to show that (i) implies that A is dual.

By Lemma 3.5, Condition (i) implies that there is a sequence (z_n) of orthogonal central projections in the weak*-closure \overline{A} with $\overline{A} = \left(\bigoplus_n \overline{A} z_n\right)_{l_{\infty}}$ where each $\overline{A} z_n$ is a type I factor. As A has the PEP in \overline{A} , each $A z_n$ has the PEP in $\overline{A} z_n$ implying that $A z_n$ is simple dual, by Lemma 3.7, contained in A by Theorem 3.3 (i). Let $D = \left(\bigoplus_n A z_n\right)_{c_o}$ which is a dual C^* -subalgebra of A. We show that A = D. It is evident if (z_n) is finite. Suppose (z_n) is infinite. Let $a \in A$. If $||a z_n|| \neq 0$, then passing to a subsequence and scaling, we may suppose that $||a z_n|| \geq 1$ for all n. Given any subset $\alpha \subset \mathbb{N}$, let $a_\alpha = \left(\bigoplus_{n \in \alpha} a z_n\right)_{l_\infty} = a \left(\bigoplus_{n \in \alpha} z_n\right)_{l_\infty}$ which is in A by Theorem 3.3 (i). But for $\alpha, \beta \subset \mathbb{N}$ with $\alpha \neq \beta$, we have $||a_\alpha - a_\beta|| \geq 1$. This contradicts separability. Therefore $||a z_n|| \to 0$ and so $a = \left(\bigoplus_n a z_n\right)_{c_0} \in D$. Hence A = D and the proof is complete.

4. ATOMIC EXTENSIONS

Let A be a C^{*}-algebra and let $K \subset S(A)$. We define the σ -convex hull of K to be the following set in which the sum is norm-convergent:

$$\sigma(K) = \Big\{ \sum \lambda_n \varphi_n : \varphi \in K, \, \lambda_n \ge 0, \, \sum \lambda_n = 1 \Big\}.$$

We have $\sigma(P(A)) = \{\varphi \in S(A) : \varphi(z_A) = 1\}$, the set of *atomic states* of A which identifies with the normal state space of $A^{**}z_A$. It is more generally true that the normal state space of an atomic von Neumann algebra is the σ -convex hull of its pure normal states. We have $F_I(A) \subset \sigma(P(A))$. In fact, a state lies in $F_I(A)$ if and only if it is a σ -convex sum of equivalent pure states ([13]). In particular, $F_I(A)$ consists precisely of the atomic factor states of A. As a natural development of previous sections, we shall consider the general question of unique extension of atomic states.

Let A be a C^* -subalgebra of a C^* -algebra B. We say that A has the *atomic* extension property (AEP) in B if each atomic state of A has unique extension to an atomic state of B. Note that AEP implies PEP.

It is evident that every atomic state of A extends to an atomic state of B. In particular, if A is a hereditary subalgebra of B, then A has the AEP in B. However, this may not be true if A is the sum of two orthogonal hereditary subalgebras of B because, for instance, when A is finite-dimensional, the AEP in B implies unique extension of states of A.

Let \widehat{A} and Prim A denote the space of equivalence classes of irreducible representations of A and the primitive ideal space of A. In notation, we shall not distinguish between an irreducible representation of A and its equivalence class. Recall that the canonical surjections ([26], 4.2.12, 4.3.3)

$$\varphi \in P(A) \to \pi_{\varphi} \in \widehat{A}, \quad \pi \in \widehat{A} \to \ker \pi \in \operatorname{Prim} A$$

are open and continuous.

Let A have the PEP in B and let

$$\alpha: \varphi \in P(A) \to \overline{\varphi} \in P(B)$$

denote the unique extension map.

Let $\varphi_1, \varphi_2 \in P(A)$.

(a) If φ_1 and φ_2 are equivalent, then $\varphi_1(\cdot) = \varphi_2(a \cdot a^*)$ for some $a \in A$. By PEP, we have $\overline{\varphi}_1(\cdot) = \overline{\varphi}_2(a \cdot a^*)$. Hence $\overline{\varphi}_1$ and $\overline{\varphi}_2$ are equivalent. This gives rise to the mapping

$$\widehat{\alpha}: \pi_{\varphi} \in \widehat{A} \to \pi_{\overline{\varphi}} \in \widehat{B} \quad (\varphi \in P(A)).$$

(b) If ker $\pi_{\varphi_1} = \ker \pi_{\varphi_2}$, then φ_2 is a weak*-limit of pure states equivalent to φ_1 by [19], 3.4.3. By (a), together with the continuity of α ([17], Lemma 1), $\overline{\varphi_2}$ is a weak*-limit of pure states equivalent to $\overline{\varphi_1}$ from which it follows that ker $\pi_{\overline{\varphi_1}} \subset \ker \overline{\varphi_2}$ and hence that ker $\pi_{\overline{\varphi_1}} \subset \ker \pi_{\overline{\varphi_2}}$ ([19], 2.4.11). Therefore ker $\pi_{\overline{\varphi_1}} = \ker \pi_{\overline{\varphi_2}}$. Thus the mapping

$$\check{\alpha}: \ker \pi_{\varphi} \in \operatorname{Prim} A \to \ker \pi_{\overline{\varphi}} \in \operatorname{Prim} B \quad (\varphi \in P(A))$$

is well-defined.

Retaining the above notation, we have

PROPOSITION 4.1. If A has the PEP in B, then the following

P(A)	\longrightarrow	\widehat{A}	\longrightarrow	$\operatorname{Prim} A$
$\alpha \downarrow$		$\widehat{\alpha} \Big $		$\check{\alpha} \Big\downarrow$
P(B)	\longrightarrow	\widehat{B}	\longrightarrow	$\operatorname{Prim} B$

is a commutative diagram of continuous maps, where the horizontal maps are the canonical ones.

Proof. The maps $\hat{\alpha}$ and $\check{\alpha}$ are continuous because α is continuous and the horizontal maps are open and continuous surjections.

If A has PEP in B, we shall write

$$P_A(B) = \{ \psi \in P(B) : \psi | A \in P(A) \}.$$

A subset $K \subset P(B)$ is said to be *saturated* if K is a union of equivalence classes of pure states in P(B).

THEOREM 4.2. Let A have the PEP in B. Then the following conditions are equivalent:

- (i) A has the atomic extension property in B;
- (ii) each atomic state of A has unique extension in S(B);
- (iii) $A^{**}z_A$ is a hereditary subalgebra of $B^{**}z_B$;

(iv) $c(\varphi) = c(\overline{\varphi})z_A$ for all $\varphi \in P(A)$ with extension $\overline{\varphi} \in P(B)$;

(v) $\widehat{\alpha} : \widehat{A} \to \widehat{B}$ is injective;

(vi) $\sigma(P_A(B))$ is a norm-closed face of S(B).

Proof. Given $\varphi \in P(A)$, let $\overline{\varphi} \in P(B)$ be its unique extension.

(i) \Rightarrow (iii) $A^{**}z_A$ and $z_A B^{**}z_A$ have the same predual and hence are equal.

(iii) \Rightarrow (iv) By the proof of Proposition 2.7, condition (iii) implies that for $\varphi \in P(A)$, $c(\overline{\varphi})z_A$ is a minimal central projection of $z_A B^{**} z_A = A^{**} z_A$ majorising, and hence being equal to, $c(\varphi)$.

(iv) \Rightarrow (v) This is obvious.

 $(v) \Rightarrow (iii) \Rightarrow (vi)$ Let $\hat{\alpha}$ be injective. Write $z_A = \sum c(\varphi_i)$ where (φ_i) is a family of mutually inequivalent pure states of A. By assumption, the $c(\overline{\varphi_i})$ are mutually orthogonal, and each $c(\varphi_i) \leq c(\overline{\varphi_i})$ by the proof of Proposition 2.7. It follows from this and Proposition 2.7 (i) \Rightarrow (iv) that

$$z_A B^{**} z_A = \sum c(\varphi_i) B^{**} c(\varphi_i) = \sum A^{**} c(\varphi_i) = A^{**} z_A,$$

giving (iii). In turn, this identifies $P_A(B)$ with the set of all pure normal states of $z_A B^{**} z_A$. Hence we have $\sigma(P_A(B)) = \{\psi \in S(B) : \psi(z_A) = 1\}$.

(vi) \Rightarrow (ii) Put $K = P_A(B)$. We have $\psi(z_A) = 1$ for all $\psi \in \sigma(K)$. Assuming (v), by [15], p. 245, we have $\sigma(K) = \{\psi \in S(B) : \psi(e) = 1\}$ for some projection $e \leq z_A$ in B^{**} . But Proposition 2.7 implies that $s(\varphi) = s(\overline{\varphi}) \leq e$ for all $\varphi \in P(A)$, from which we deduce that $e = z_A$. Hence $\psi \in S(B)$ lies in $\sigma(K)$ if and only if $\psi|A$ is an atomic state.

Let φ be an atomic state of A and let $\psi \in S(B)$ be an extension of φ . We may write φ as a σ -convex sum of a sequence of pure states of A. Partitioning these pure states by equivalence classes, we may organise φ as a sum $\varphi = \sum_{n} \alpha_n \varphi_n$ where (α_n) is a finite or infinite sequence of positive real numbers and (φ_n) a

332

mutually disjoint sequence in $F_{I}(A)$ (cf. [13]). By Theorem 2.8, each φ_{n} has a unique extension to $\overline{\varphi}_{n} \in S(B)$. We claim that $\psi = \sum_{n} \alpha_{n} \overline{\varphi}_{n}$.

By earlier argument, we have $\psi = \sum_{1}^{\infty} \lambda_n \overline{\tau}_n$ for some $\lambda_n \ge 0$ with $\sum \lambda_n = 1$ and $\tau_n \in P(A)$. Hence

$$\sum_{n} \alpha_n \varphi_n = \sum_{n} \lambda_n \tau_n$$

For each m and n, we have $c(\tau_n) = c(\varphi_m)$ or $c(\tau_n)c(\varphi_m) = 0$. Thus, putting for each m, $S_m = \{n : c(\tau_n) = c(\varphi_m)\}$, we have, for $x \in A$,

$$\alpha_m \varphi_m(x) = \sum_n \alpha_n \varphi_n(x c(\varphi_m)) = \sum_n \lambda_n \tau_n(x c(\varphi_m)) = \sum_{n \in S_m} \lambda_n \tau_n(x),$$

so that $\alpha_m^{-1} \sum_{n \in S_m} \lambda_n \overline{\tau}_n \in S(B)$ extends φ_m and therefore equals $\overline{\varphi}_m$. It follows that $\psi = \sum_n \alpha_n \overline{\varphi}_n$ as required.

REMARK 4.3. We are grateful to the referee for indicated to us condition (ii) in Theorem 4.2.

COROLLARY 4.4. Let A have the PEP in B. The following conditions are equivalent:

(i) P_A(B) is saturated;
(ii) c(φ) = c(φ) for every φ ∈ P(A);
(iii) σ(P_A(B)) is a split face of S(B).

Proof. (i) \Rightarrow (ii) Let $\varphi \in P(A)$ with extension $\overline{\varphi} \in P(B)$. By Proposition 2.7 (iii), we have $A^{**}c(\varphi) = c(\varphi)B^{**}c(\varphi) \subset B^{**}c(\overline{\varphi})$. Let e be a minimal projection of $B^{**}c(\overline{\varphi})$. Then $e = s(\psi)$ for some $\psi \in P(B)$ and $c(\overline{\varphi}) = c(\psi)$. As $P_A(B)$ is saturated, we have $\psi | A \in P(A)$ so that $e \in A^{**}$ by Proposition 2.7 (ii). Therefore $B^{**}c(\overline{\varphi}) \subset A^{**}$ and $c(\overline{\varphi})$ must be a minimal central projection in A^{**} implying that $c(\overline{\varphi}) = c(\varphi)$. It follows that z_A is in the centre of B^{**} .

(ii) \Rightarrow (iii) We have $c(\varphi) = c(\overline{\varphi})$ for every $\varphi \in P(A)$ and hence the proof of Theorem 4.2 gives

$$\sigma(P_A(B)) = \{\psi \in S(B) : \psi(z_A) = 1\}$$

which is a split face of S(B) ([15], p. 245).

(iii) \Rightarrow (i) Let $\sigma(P_A(B))$ be a split face of S(B). Then Theorem 4.2 together with [15], p. 245 implies that A has the atomic extension property in B and that z_A is a central projection in $B^{**}z_B$. Therefore, if $\psi \in P(B)$ is equivalent to a state in $P_A(B)$, then $\psi|A$ must be atomic and ψ its unique extension, forcing $\psi|A \in P(A)$ so that $\psi \in P_A(B)$. So $P_A(B)$ is saturated. We remark that the map $\widehat{\alpha} : \widehat{A} \to \widehat{B}$ may be injective without being an *embedding* (i.e. $\widehat{\alpha}$ may not be a homeomorphism onto $\widehat{\alpha}(\widehat{A})$). In fact, it is possible for $\widehat{\alpha}$ to be a bijection without being a homeomorphism even when B is separable type I and A is abelian, as is shown by the following example.

EXAMPLE 4.5. Let H be an infinite dimensional separable Hilbert space. Let e be a minimal projection in B(H) and let M be a maximal abelian von Neumann subalgebra of (1-e)B(H)(1-e) without atomic part. Choose (as we may) a separable weak*-dense C*-subalgebra D of M containing 1 - e. Put $A = D + \mathbb{C} \cdot e$ and B = D + K where K = K(H). Then $1 \in A \subset B$ where A is abelian and B is separable of type I, and A has the PEP in B. To see the latter, let $\varphi \in P(A)$ and let $\overline{\varphi} \in P(B)$ be an extension of φ . If $\varphi(e) = 1$, then $\overline{\varphi}$ is concentrated on K and is clearly the unique extension of φ . Otherwise $\varphi(e) = 0$ in which case, to show that $\overline{\varphi}$ is unique, it is enough to show that $\overline{\varphi}(K) = 0$. But, if $\overline{\varphi}(K) \neq 0$, then $\overline{\varphi}$ has unique extension to a pure normal state ψ of B(H). This leads to the contradiction that $\psi | M$ is a pure normal state of M. Indeed, given $\psi | M = 1/2(\psi_1 + \psi_2)$ with $\psi_1, \psi_2 \in S(M)$, then ψ_1, ψ_2 are normal and $\psi_1|A = \psi_2|A = \varphi$, so that $\psi_1 = \psi_2$, as required, since D is weak*-dense in M. The map $\check{\alpha}$: $\operatorname{Prim}(A) \to \operatorname{Prim}(B)$ is a bijection given by $\check{\alpha}(Q + \mathbb{C} \cdot e) = Q + K$ for each $Q \in Prim(D)$ and $\check{\alpha}(D) = \{0\}$. However, as B is not limited, Prim(B) is not Hausdorff so $\hat{\alpha}$ (= $\check{\alpha}$) is not a homeomorphism.

On the other hand, we have the following result.

PROPOSITION 4.6. Let A have the PEP in B with $P_A(B)$ saturated. Then $\widehat{\alpha}: \widehat{A} \to \widehat{B}$ is an embedding.

Proof. We note that $\widehat{\alpha}$ is injective by Corollary 4.4 (i) \Rightarrow (iii) and Theo rem 4.2 (vi) \Rightarrow (v). Let \mathcal{I} be a closed two-sided ideal of A and put $\mathcal{J} = \cap \{\ker \pi_{\overline{\varphi}} : \varphi \in P(A), \varphi(\mathcal{I}) = 0\}$, where $\overline{\varphi} \in P(B)$ denotes the unique extension of $\varphi \in P(A)$. We have $c(\varphi) = c(\overline{\varphi})$ for each $\varphi \in P(A)$ by the proof of Corollary 4.4. It follows that $\mathcal{I} = A \cap \mathcal{J}$. Thus, for $\varphi \in P(A)$, we have $\pi_{\varphi}(\mathcal{I}) \neq \{0\}$ if and only if $\pi_{\overline{\varphi}}(\mathcal{J}) \neq \{0\}$. Hence $\widehat{\alpha}(\widehat{\mathcal{I}}) = \widehat{\mathcal{J}} \cap \widehat{\alpha}(\widehat{A})$ which, together with Proposition 4.1, proves that $\widehat{\alpha} : \widehat{A} \to \widehat{\alpha}(\widehat{A})$ is a homeomorphism.

Given a C^* -algebra A, let Ideal(A) denote the set of all norm-closed two-sided ideals of A.

Unique extension of pure states of $C^{\ast}\mbox{-}{\rm algebras}$

PROPOSITION 4.7. Let A have PEP in B and let $\hat{\alpha} : \hat{A} \to \hat{B}$ be a homeomorphism. Then the map $\beta : \mathcal{I} \in \text{Ideal}(A) \mapsto \mathcal{I}_B \in \text{Ideal}(B)$ is a bijection with inverse $\mathcal{J} \in \text{Ideal}(B) \mapsto \mathcal{J} \cap A \in \text{Ideal}(A)$ where \mathcal{I}_B is the norm-closed two-sided ideal in B generated by \mathcal{I} . Moreover, $\beta | \text{Prim}(A) = \check{\alpha} : \text{Prim}(A) \to \text{Prim}(B)$, which is also a homeomorphism.

Proof. Let $\mathcal{I} \in \text{Ideal}(A)$. By assumption, $\widehat{\alpha}(\widehat{\mathcal{I}}) = \widehat{\mathcal{J}}$ for some $\mathcal{J} \in \text{Ideal}(B)$. For $\varphi \in P(A)$, with unique extension $\overline{\varphi} \in P(B)$, we have $\varphi(\mathcal{I}) = 0$ if and only if $\overline{\varphi}(\mathcal{J}) = 0$; but $\overline{\varphi}(\mathcal{J}) = 0$ if and only if $\varphi(A \cap \mathcal{J}) = 0$. Hence $A \cap \mathcal{J} = \mathcal{I}$. In particular $\mathcal{I}_B \subset \mathcal{J}$. Let $\pi \in \widehat{B}$ with $\pi(\mathcal{I}_B) = 0$. By assumption, π is equivalent to $\pi_{\overline{\varphi}}$ for some $\varphi \in P(A)$. We have $\overline{\varphi}(\mathcal{I}_B) = 0$ so that $\varphi(\mathcal{I}) = 0$ and hence $\overline{\varphi}(\mathcal{J}) = 0$ which implies $\pi(\mathcal{J}) = 0$. Hence $\mathcal{I}_B = \mathcal{J}$. Given $K \in \text{Ideal}(B)$, a simple argument gives $K = (K \cap A)_B$, proving the first statement.

For $\varphi \in P(A)$, we have $A \cap \ker \pi_{\overline{\varphi}} \subset \ker \pi_{\varphi} = \mathcal{I}$, say, as π_{φ} is equivalent to a subrepresentation of $\pi_{\overline{\varphi}}|A$. By the first part of the proof, $\varphi(\mathcal{I}) = 0$ implies $\overline{\varphi}(\mathcal{I}_B) = 0$. So

$$\mathcal{I} = A \cap \mathcal{I}_B \subset A \cap \ker \pi_{\overline{\varphi}} \subset \mathcal{I}$$

which gives $\mathcal{I}_B = \ker \pi_{\overline{\varphi}}$ since β^{-1} is injective.

REMARK 4.8. Let A have the PEP in B.

(a) It follows from Proposition 2.7, Theorem 4.2 and Corollary 4.4 (cf. [5], Proposition 2.24) that the following are equivalent:

(i) $\widehat{\alpha} : \widehat{A} \to \widehat{B}$ is a homeomorphism and z_A is a central projection in B^{**} ;

- (ii) $A^{**}z_A = B^{**}z_B;$
- (iii) A separates $P(B) \cup \{0\};$

(b) $\hat{\alpha} : \hat{A} \to \hat{B}$ may be a homeomorphism without $P_A(B)$ being saturated. For example, if B is nonabelian, choose $\psi \in P(B)$ which is not a homomorphism and put $A = L_{\psi} \cap L_{\psi}^*$ where $L_{\psi} = \{x \in B : \psi(x^*x) = 0\}$. Restriction induces a homeomorphism $\hat{B} \to \hat{A}$ ([25], 4.1.0), the inverse of which is $\hat{\alpha}$. As $z_A = z_B - s(\psi)$ is not central in B^{**} , $P_A(B)$ is not saturated by Corollary 4.4. In Example 4.10 we will give another example in which $1 \in A \subset B$.

Given a C^* -algebra A, let

 $A_{c} = \{x \in A^{**}z_{A} : x, x^{*}x \text{ and } xx^{*} \text{ are continuous on } P(A) \cup \{0\}\}.$

Then A_c is a C^* -algebra with an approximate unit in common with A and, when A is identified with Az_A , satisfies the following conditions ([5], 2.9):

- (i) A has the PEP in $A_{\rm c}$.
- (ii) $P_A(A_c)$ is saturated and dense in $P(A_c)$.

PROPOSITION 4.9. Let A have the atomic extension property in B.

(i) If all primitive quotients of B are scattered, then A is a hereditary subalgebra of B.

(ii) If all primitive quotients of A are scattered and if $\hat{\alpha} : \hat{A} \to \hat{B}$ is a homeomorphism, then A is a hereditary subalgebra of B.

Proof. (i) Let all primitive quotients of B be scattered and note that this condition is inherited by H(A), the hereditary C^* -subalgebra of B generated by A. Note also that A has the AEP in H(A). Thus, cutting down to H(A), we may suppose that A and B have common approximate unit. Let $\psi \in P(B)$. Then $Ac(\psi)$ has the AEP in $Bc(\psi)$ and they have common approximate unit. But $Bc(\psi)$ is scattered, as therefore is $Ac(\psi)$, and so every state of $Ac(\psi)$ has unique extension to a state of $Bc(\psi)$. Hence $Ac(\psi) = Bc(\psi)$ by [22]. So $A^{**}c(\psi) = B^{**}c(\psi)$ is a type I factor implying that $c(\psi)z_A \neq 0$. It follows that $c(\psi) = c(\overline{\varphi}) \ge c(\varphi)$ for some $\varphi \in P(A)$ with extension $\overline{\varphi} \in P(B)$ (using the proof of Proposition 2.7) so that $A^{**}c(\varphi) = B^{**}c(\varphi)$ and we deduce that $c(\varphi)$ is central in B^{**} and in turn, that $c(\psi) = c(\varphi)$. Therefore $A^{**}z_A = B^{**}z_B$ and so A separates $P(B) \cup \{0\}$ (cf. Remark 4.8). Hence A = B by Kaplansky's theorem ([19], 11.1.8), as B is type I.

(ii) The inclusions $A \hookrightarrow H(A)$ and $H(A) \hookrightarrow B$ exhibit the AEP. Let $\widehat{\alpha}_1 : \widehat{A} \to \widehat{H(A)}$ and $\widehat{\alpha}_2 : \widehat{H(A)} \to \widehat{B}$ be the corresponding continuous maps given by Proposition 4.1, both of which are injective, by Theorem 4.2, and hence bijective as $\widehat{\alpha} = \widehat{\alpha}_2 \circ \widehat{\alpha}_1$. Therefore $\widehat{\alpha}_1$ is a homeomorphism. Consequently we may suppose that H(A) = B.

Let $\psi \in P(B)$. Then $c(\psi) = c(\overline{\varphi})$ for some $\overline{\varphi} \in P(B)$ with $\varphi = \overline{\varphi} | A \in P(A)$, by assumption. As in (i), $Ac(\psi)$, $Bc(\psi)$ have common approximate unit and $Ac(\psi)$ has AEP in $Bc(\psi)$. But $Ac(\psi)$ is scattered as ker $\pi_{\psi} \cap A = \ker \pi_{\overline{\varphi}} \cap A = \ker \pi_{\varphi}$ by Proposition 4.7, and so $Ac(\psi) = Bc(\psi)$. Hence all the primitive quotients of Bare scattered and the result follows from (i).

Regarding Proposition 4.9, if either A or B is limital, then its primitive quotients are automatically scattered. We conclude with an example which shows that a slight relaxation in the conditions can render both parts of Proposition 4.9 false. To this end we exhibit below two unequal primitive type I C^* -algebras A and B such that $1 \in A \subset B$, A has the AEP in B and $\hat{\alpha} : \hat{A} \to \hat{B}$ is a homeomorphism.

EXAMPLE 4.10. Let D = C[0, 1] and embed D^{**} as a von Neumann subalgebra of some B(H), with the same identity, such that all minimal projections of D^{**} are properly infinite in B(H). Put K = K(H) and let $zD^{**} (\neq D^{**})$ be the atomic part of D^{**} . We note that zKz is a hereditary C^* -subalgebra of B = D + K and is an ideal of the C^* -algebra A = D + zKz. Further, as $D^{**} \cap K = \{0\}$, the map

 $A \to zB(H)z : a \mapsto az$ is faithful, inducing a faithful irreducible representation $A \to B(zH)$. In particular, A and B are primitive type I with $1 \in A \subsetneq B$. We claim that A has the PEP in B.

Indeed, let $\varphi \in P(A)$ with extension $\overline{\varphi} \in P(B)$. As zKz is hereditary in B, we may suppose to establish uniqueness of $\overline{\varphi}$ that $\varphi(zKz) = 0$. If $\overline{\varphi}(K) \neq 0$, then $\overline{\varphi}$ extends to a vector state $\omega_h = \langle \cdot h, h \rangle$ on B(H), in which case, $\omega_h | D^{**}$ is a normal extension of $\varphi | D \in P(D)$ which implies that $\omega_h(z) = 1$ and hence that $\omega_h(K) = \omega_h(zKz) = \varphi(zKz) = 0$. This contradiction proves that $\overline{\varphi}(K) = 0$ and in turn that A has the PEP in B, as claimed. Finally, by Theorem 4.2 (v) \Rightarrow (i), A has the AEP in B because the map $\widehat{\alpha} = \check{\alpha}$: Prim $A \to \operatorname{Prim} B$ is given by $\check{\alpha}(0) = 0$ and $\check{\alpha}(Q + zKz) = Q + K$ for each $Q \in \operatorname{Prim} D$, which is easily seen to be a homeomorphism.

REFERENCES

- C.A. AKEMANN, The general Stone-Weierstrass problem, J. Funct. Anal. 4(1969), 277–294.
- C.A. AKEMANN, J. ANDERSON, G.K. PEDERSEN, Diffuse sequences and perfect C^{*}algebras, Trans. Amer. Math. Soc. 298(1986), 747–762.
- C.A. AKEMANN, P.G. DODD, J.L.B. GAMLEN, Weak compactness in the dual of a C^{*}-algebra, J. Funct. Anal. 10(1972), 446–450.
- C.A. AKEMANN, G.K. PEDERSEN, Ideal perturbations of elements in C^{*}-algebras, Math. Scand. 41(1977), 117–139.
- C.A. AKEMANN, F.W. SHULTZ, Perfect C*-Algebras, Mem. Amer. Math. Soc., vol. 55, 1985.
- E.M. ALFSEN, T.B. ANDERSEN, Split faces of compact convex sets, Proc. London Math. Soc. (3) 21(1970), 415–442.
- E.M. ALFSEN, H. HANCHE-OLSEN, F.W. SHULTZ, State spaces of C*-algebras, Acta Math. 144(1980), 267–305.
- J. ANDERSON, Extensions, restrictions and representations of states of C*-algebras, Trans. Amer. Math. Soc. 249(1979), 303–329.
- R.J. ARCHBOLD, Extensions of states of C*-algebras, J. London Math. Soc. (2) 21(1980), 351–354.
- R.J. ARCHBOLD, On factorial states of operator algebras, J. Funct. Anal. 55(1984), 25–38.
- 11. R.J. ARCHBOLD, On perfect C*-algebras, Proc. Amer. Math. Soc. 97(1986), 413-417.
- R.J. ARCHBOLD, C.J.K. BATTY, Extensions of factorial states of C^{*}-algebras, J. Funct. Anal. 63(1985), 86–100.
- R.J. ARCHBOLD, C.J.K. BATTY, On factorial states of C*-algebras. II, J. Operator Theory 13(1985), 131–142.
- R.J. ARCHBOLD, J.W. BUNCE, K.D. GREGSON, Extensions of states of C^{*}-algebras. II, Proc. Roy. Soc. Edinburgh Sect. A 92(1982), 113–122.
- L.ASIMOW, A.J. ELLIS, Convexity and its Applications in Functional Analysis, Academic Press, London 1980.

- C.-H. CHU, A note on scattered C*-algebras and the Radon-Nikodym property, J. London Math. Soc. (2) 24(1981), 533–536.
- C.-H. CHU, M. KUSUDA, On factor states of C*-algebras and their extensions, Proc. Amer. Math. Soc. 124(1996), 207–215.
- J. DIESTEL, Grothendieck Spaces and Cector Measures, in Vector and Operatorvalued Measures and Applications, Academic Press, New York, 1973, pp. 97– 108.
- 19. J. DIXMIER, C*-Algebras, North-Holland, New York 1982.
- 20. K.D. GREGSON, Extension of pure states of C^* -algebras, Ph.D. Dissertation, University of Aberdeen, 1986.
- R.V. KADISON, I.M. SINGER, Extensions of pure states, Amer. J. Math. 81(1959), 383–400.
- M. KUSUDA, Unique state extension and hereditary C*-subalgebras, Math. Ann. 288(1990), 201–209.
- 23. H.E. JENSEN, Scattered C*-algebras, Math. Scand. 41(1977), 308-314.
- R. LONGO, Solution of the factorial Stone-Weierstrass conjecture, an application of standard split W*-inclusions, *Invent. Math.* 26(1984), 145–155.
- 25. G.K. PEDERSEN, C^* -Algebras and their Automorphism Groups, Academic Press, 1979.
- H. PFITZNER, Weak compactness in the dual of a C*-algebra is determined commutatively, Math. Ann. 298(1994), 349–371.
- S. POPA, Semiregular maximal abelian *-subalgebras and the solution to the factor state Stone-Weierstrass problem, *Invent. Math.* 298(1984), 157–161.
- 28. S. SAKAI, C^* -Algebras and W^* -Algebras, Springer-Verlag, New York 1971.
- 29. F.W. SHULTZ, Pure states as a dual object for C^* -algebras, Comm. Math. Phys. **82**(1982), 497–509.
- 30. M. TAKESAKI, Theory of Operator Algebras. I, Springer-Verlag, New York 1979.
- S.-K. TSUI, Factor state extension on nuclear C*-algebras, Yokohama Math. J. 29(1981), 157–160.
- 32. S. WRIGHT, On factorial states, Rocky Mountain J. Math. 12(1982), 569-579.

L.J. BUNCE Department of Mathematics University of Reading Reading RG6 2AX ENGLAND C.-H. CHU Goldsmiths College University of London London SE14 6NW ENGLAND

Received October 11, 1996.