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Abstract. Let Aθ be the universal C∗-algebra generated by two unitaries
U, V with V U = ρUV , where ρ = e2πiθ and θ is rational. Let AutAθ be the
group of ∗-automorphisms of Aθ. It is shown that if θ 6= 1/2 then the image
of the natural map from AutAθ to HomeoT2 is the subgroup Homeo+T2 of
orientation preserving homeomorphisms of the torus T2. Hence there exist
exact sequences

0 → Inn Aθ → Aut Aθ → Homeo T2 → 0

when θ = 1/2 and

0 → Inn Aθ → Aut Aθ → Homeo +T2 → 0

when θ 6= 1/2, where InnAθ is the group of inner automorphisms.
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A rational rotation C∗-algebra is the universal C∗-algebra Aθ generated by a pair
U, V of unitaries with V U = ρUV , where ρ = e2πiθ and θ = p/q is rational (with
p, q coprime and 0 6 p < q). A convenient description of Aθ was given in [1],
based on a similar description in [4]. This description utilises the q × q matrices

U0 =


1

ρ
. . .

ρq−1

 and V0 =
(

0 Iq−1

1 0

)

and the associated matrices W1 = Up
′

0 and W2 = V p
′′

0 where 0 < p′, p′′ < q,
pp′ ≡ −1 (mod q) and pp′′ ≡ 1 (mod q). Explicitly

W1 =


1

ω−1

. . .
ω−(q−1)

 and W2 =
(

0 Iq−p′′

Ip′′ 0

)

where ω = e2πi/q. The description of Aθ in terms of W1 and W2 is then

Aθ =
{
f ∈ C(R2,Mq) : f(λ+m,µ+ n) = Wn

1 W
m
2 f(λ, µ)Wm∗

2 Wn∗
1

for all (λ, µ) ∈ R2 and all (m,n) ∈ Z2
}
.

It sometimes proves convenient to specify elements of Aθ by their restriction to
[0, 1]2, as was done in [1].

In this description, the generating unitaries U and V are given by U(λ, µ) =
e2πiλ/qU0 and V (λ, µ) = e2πiµ/qV0. The elements Uq and V q generate the centre
ZAθ of Aθ, which is identified with

{f ∈ C(R2,C) : f(λ+m,µ+n) = f(λ, µ) for all (λ, µ) ∈ R2 and all (m,n) ∈ Z2}

and hence to C(T2,C), where T2 denotes the 2-dimensional torus.
Each automorphism α of Aθ restricts to an automorphism of ZAθ and hence

gives rise to a homeomorphism α̃ of T2 such that (αf)(x) = f(α̃−1x) for each
x ∈ T2. Let σ : AutAθ → Homeo T2 be the associated group homomorphism,
with σ(α) = α̃. It is a simple consequence of 2.19 of [6] that the kernel of σ is
InnAθ, the group of inner automorphisms of Aθ. The main purpose of the present
note is to describe the range of σ and hence to obtain an exact sequence for AutAθ.
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The fact, established in Theorem 2.22 of [6], that each element σ(α) = α̃ fixes the
Dixmier-Douady class δ(Aθ) ∈ H3(T2,Z) is no restriction since, by Theorem 3.21
of [5], H3(T2,Z) = 0.

It follows easily from Lemmas 3.1 and 3.2 of [4] and the fact that the image
of σ is a subgroup that this image is all of HomeoT2 when θ = 1/2 and contains
Homeo+T2, the set of orientation preserving homeomorphisms, when θ 6= 1/2.
It will now be shown that in the latter case every element in the image of σ is
orientation preserving.

Lemma 1. If α is an automorphism of Aθ with (αf)(λ, µ) = f(µ, λ) for all
f ∈ ZAθ then there exists a continuous family (λ, µ) 7→ Xλ,µ of unitaries in Mq

such that (αf)(λ, µ) = Xλ,µf(µ, λ)X∗
λ,µ for all (λ, µ) ∈ [0, 1]2 and all f ∈ Aθ.

Proof. Construct three overlapping, symmetric subsets R, S, T to cover
[0, 1]2 by R = {(λ, µ) : λ + µ > 5/4}, S = {(λ, µ) : 2/3 6 λ + µ 6 4/3} and
T = {(λ, µ) : λ+µ 6 3/4}. Then the restriction maps from Aθ into C(R,Mq) and
C(T,Mq) are surjective, whereas the image of the restriction map from Aθ into
C(S,Mq) is {f ∈ C(S,Mq) : f(0, 1) = W ∗

2W1f(1, 0)W ∗
1W2}.

If α is an automorphism of Aθ then an automorphism αR is well-defined on
C(R,Mq) by the formula αRfR = (αf)R, where fR denotes the restriction to R
of f ∈ Aθ. To see this, assume that fR = gR. If (α(f − g))R 6= 0 then there exists
h ∈ ZAθ, supported on R, with α(f − g)h 6= 0. However, by the symmetry of
R, α−1(h) is supported on R and hence α−1(α(f − g)h) = (f − g)α−1(h) = 0,
giving a contradiction. Similar arguments then show that automorphisms αS , αT
are defined by αSfS = (αf)S and αT fT = (αf)T .

An automorphism βR of C(R,Mq) is defined by (βRf)(λ, µ) = f(µ, λ) and
the same formula defines an automorphism βT of C(T,Mq). In the case of the
restriction to S, an automorphism βS is defined by (βSf)(λ, µ) = Uλ−µf(µ, λ)U∗

λ−µ
where {Ut : −1 6 t 6 1} is a continuous path of unitaries joining U−1 = (W ∗

2W1)2

to U1 = I.
The automorphisms αRβ−1

R , αSβ
−1
S , αTβ

−1
T are inner, by the results of 2.19

of [6]; this uses the facts, from Corollary 3.8 of [5], that H2(R,Z) = 0, H2(S̃,Z) =
0 and H2(T,Z) = 0, where S̃ denotes S with the points (0, 1) and (1, 0) identified.
Hence there are continuous families (λ, µ) 7→ Xλ,µ, (λ, µ) 7→ Yλ,µ and (λ, µ) 7→
Zλ,µ of unitaries defined on R, S, T respectively such that

(αf)(λ, µ) = Xλ,µf(µ, λ)X∗
λ,µ for (λ, µ) ∈ R,

(αf)(λ, µ) = Yλ,µf(µ, λ)Y ∗
λ,µ for (λ, µ) ∈ S and

(αf)(λ, µ) = Zλ,µf(µ, λ)Z∗
λ,µ for (λ, µ) ∈ T.
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There then exists a continuous scalar valued family (λ, µ) 7→ gλ,µ on R ∩ S such
that gλ,µYλ,µ = Xλ,µ on R ∩ S. Let this family be extended to S and define
Xλ,µ = gλ,µYλ,µ for (λ, µ) ∈ S. After a similar extension to T , a family of unitaries
with the required properties is obtained.

Lemma 2. If there exists a continuous family (λ, µ) 7→ Xλ,µ of unitaries in
Mq, for (λ, µ) ∈ [0, 1]2, such that (λ, µ) 7→ Xλ,µf(µ, λ)X∗

λ,µ is an element of Aθ
for each f ∈ Aθ, then θ = 1/2.

Proof. If a continuous family of unitaries exists as in the statement of the
lemma, then the restriction of this family to the boundary of the square is a closed
path homotopic to a point and therefore the restriction of (λ, µ) 7→ detXλ,µ to
the boundary of the square has winding number zero. The consequences of this
will now be explored.

From the conditions Xλ,1f(1, λ)X∗
λ,1 = W1Xλ,0f(0, λ)X∗

λ,0W
∗
1 and f(1, λ) =

W2f(0, λ)W ∗
2 it follows that there exists a continuous scalar valued map λ 7→ ψλ

with Xλ,1W2 = ψλW1Xλ,0 for each λ ∈ [0, 1]. Similarly, from X1,µf(µ, 1)X∗
1,µ =

W2X0,µf(µ, 0)X∗
0,µW

∗
2 and f(µ, 1) = W1f(µ, 0)W ∗

1 , there exists a continuous
scalar valued map µ 7→ ϕµ with X1,µW1 = ϕµW2X0,µ for all µ ∈ [0, 1]. Then
X1,1 = ψ1W1X1,0W

∗
2 = ψ1ϕ0W1W2X0,0W

∗
1W

∗
2 and X1,1 = ϕ1W2X0,1W

∗
1 =

ϕ1ψ0W2W1X0,0W
∗
2W

∗
1 = ρ2p′′p′

ϕ1ψ0W1W2X0,0W
∗
1W

∗
2 (where W1 = Up

′

0 and
W2 = V p

′′

0 ). Thus ψ1ϕ0 = ρ2p′′p′
ϕ1ψ0.

From detXλ,1 = ψqλ detW1W
∗
2 detXλ,0 and detX1,µ = ϕqµdetW2W

∗
1 detX0,µ

for each λ, µ ∈ [0, 1] it follows that the winding number of (λ, µ) 7→ detXλ,µ

around the boundary of the square is equal to that of {ψqλ/ϕ
q
λ : 0 6 λ 6 1},

which is a closed path because ψ1ϕ0 = ρ2p′′p′
ϕ1ψ0 and hence ψq1ϕ

q
0 = ϕq1ψ

q
0. How-

ever {ψλ/ϕλ : 0 6 λ 6 1} is a path joining ψ0/ϕ0 to ψ1/ϕ1 = ρ2p′′p′
ψ0/ϕ0 =

e4πip′/qψ0/ϕ0. Since the winding number of {(ψλ/ϕλ)q : 0 6 λ 6 1} is zero it
therefore follows that e4πip′/q = 1. From 0 < p′ < q it follows that p′/q = 1/2
and so q = 2p′ is even with 2p′p ≡ 0 (mod q). However, by the definition of p′,
p′p ≡ −1 (mod q) so q = 2 and therefore p = 1.

The following result can now be proved.

Proposition 3. Let Aθ be the rational rotation algebra corresponding to
θ = p/q, with p, q coprime and 0 6 p < q. If θ 6= 1/2, then Homeo+T2 is the
range of the natural map σ : AutAθ → Homeo T2.

Proof. If there exists α ∈ AutAθ with σ(α) orientation reversing then there
exists β ∈ AutAθ with σ(β) = σ(α)τ where τ(λ, µ) = (µ, λ). Hence σ(α−1β) = τ ,
contradicting Lemmas 1 and 2.
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When Proposition 3 is combined with the known results of [4] and [6] sum-

marised earlier it gives the existence of exact sequences

(1) 0 → InnAθ → AutAθ
σ→ Homeo T2 → 0

when θ = 1/2 and

(2) 0 → InnAθ → AutAθ
σ→ Homeo+T2 → 0

when θ 6= 1/2.

For each homeomorphism ψ of T2 there is an associated group automorphism

ψ∗ of H1(T2). This gives rise, via the identification of H1(T2) with Z2 described

in Example 7.14 of [7], to an element Aψ of GL(2,Z), which belongs to SL(2,Z)

when ψ ∈ Homeo+T2. The map π : ψ 7→ Aψ is a group homomorphsim with

kernel the set Homeo0T2 of homeomorphisms homotopic to the identity and so πσ

is a group homomorphism with kernel K = {α : σ(α) ∈ Homeo0T2}. Hence the

exact sequences above yield the sequences

(3) 0 → K → AutAθ
πσ→ GL(2,Z) → 0

when θ = 1/2 and

(4) 0 → K → AutAθ
πσ→ SL(2,Z) → 0

when θ 6= 1/2. In both cases

(5) 0 → InnAθ → K → Homeo 0T2.

The exact sequence (4) provides a contrast with the behaviour for irrational θ

where, by the results of [3], the corresponding map is onto GL(2,Z).

Recall from [2] and [8] that the map A 7→ βA, where βA(U) = ρac/2UaV c

and βA(V ) = ρbd/2U bV d gives an action of SL(2,Z) on Aθ, which can easily be

adapted to give a splitting of the exact sequence (4). The following result shows

that, at least in general, there is no splitting of the exact sequences (1) and (2).

It seems likely that the exact sequence (3) also does not split.
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Proposition 4. If q is even there is no element α of order 2 in AutAθ with
σ(α)(λ, µ) = (λ+ 1/2, µ) on R2/Z2.

Proof. The automorphism β of Aθ defined by β(U) = eπi/qU , β(V ) = V

satisfies (βf)(λ, µ) = f(λ+ 1/2, µ) for each f ∈ Aθ and each (λ, µ) ∈ R2. By 2.19
of [4], any other automorphism α with σ(α) = σ(β) is of the form (Ad g)β for
some unitary g ∈ Aθ. If α2 = id then, for each f ∈ Aθ and (λ, µ) ∈ R2,

f(λ, µ) = g(λ, µ)β(Ad gβf)(λ, µ)g(λ, µ)∗

= g(λ, µ)g
(
λ+

1
2
, µ

)
f(λ+ 1, µ)g

(
λ+

1
2
, µ

)∗

g(λ, µ)∗

= g(λ, µ)g
(
λ+

1
2
, µ

)
W2f(λ, µ)W ∗

2 g

(
λ+

1
2
, µ

)∗

g(λ, µ)∗

and hence g(λ, µ)g(λ + 1/2, µ)W2 = hλ,µ1 for some hλ,µ ∈ C. Thus (λ, µ) 7→
hλ,µW

∗
2 = gβ(g)(λ, µ) and so (λ, µ) 7→ hλ,µW

∗
2 belongs to Aθ. Noting that each

element of Aθ can be written uniquely in the form
∑
fijU

iV j , where fij ∈ ZAθ
for 0 6 i, j 6 q − 1, it follows that hλ,µ = f(λ, µ)e−2πiµp′′/q for some f ∈ ZAθ.
Thus

g

(
λ+

1
2
, µ

)
= g(λ, µ)∗f(λ, µ)e−2πiµp′′/qW ∗

2

for each λ, µ ∈ [0, 1]2. Furthermore, since g is a unitary, |f(λ, µ)| = 1 for each λ, µ.
As in the proof of Lemma 2, the winding number of det(g(λ, µ)) around

the path {(0, µ) : 0 6 µ 6 1} ∪ {(λ, 1) : 0 6 λ 6 1/2} ∪ {(1/2, 1 − µ) :
0 6 µ 6 1} ∪ {(1 − λ, 0) : 1/2 6 λ 6 1} must be zero. However g(λ, 1) =
W1g(λ, 0)W ∗

1 , so the appropriate condition is that the winding number k of µ 7→
det g(0, µ) for 0 6 µ 6 1 is equal to that of µ 7→ det(g(0, µ)∗f(0, µ)e−2πiµp′′/q),
i.e. to µ 7→ e−2πiµp′′

f(0, µ)q det(g(0, µ)∗). (Note that det g(0, 0) = det g(0, 1) and
det g(1/2, 0) = det g(1/2, 1).) Thus k = −k − p′′ + `q where ` is the winding
number of µ 7→ f(0, µ). Hence, if q is even, then so is p′′, which contradicts the
definition pp′′ ≡ 1 (mod q).
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