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Abstract. Let A be a C∗-algebra, and B a complex normed non-associative
algebra. We prove that, if B has an approximate unit bounded by one, then,
for every linear isometry F from B onto A, there exists a Jordan-isomorphism
G : B → A and a unitary element u in the multiplier algebra of A such that
F (x) = uG(x) for all x in B. We also prove that, if G is an isometric Jordan-
isomorphism from B onto A, then there exists a self-adjoint element ϕ in
the centre of the multiplier algebra of the closed ideal of A generated by the
commutators satisfying ‖ϕ‖ 6 1 and

G(xy) =
1

2
(G(x)G(y) + G(y)G(x) + ϕ(G(x)G(y)−G(y)G(x)))

for all x, y in B.
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0. INTRODUCTION

The aim of this paper is to prove the following two theorems.

Theorem A. Let A be a non-zero C∗-algebra, B a non-associative normed
complex algebra with an approximate unit bounded by one, and F a linear isometry
from B onto A. Then F can be written in the form F = L ◦ G, where G is an
isometric Jordan-homomorphism from B onto A, and L is the operator of left
multiplication on A by a suitable unitary element in the multiplier algebra of A.
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Theorem B. Let A be a C∗-algebra, B a complex normed non-associative
algebra, and F : B → A a surjective isometric Jordan-homomorphism. Then there
exists a self-adjoint element ϕ in the centre of the multiplier algebra of the closed
ideal of A generated by the commutators satisfying ‖ϕ‖ 6 1 and

F (uv) =
1
2
(F (u)F (v) + F (v)F (u) + ϕ(F (u)F (v)− F (v)F (u)))

for all u, v in B.

Theorems A and B above are non-associative variants of Theorems 7 and 10,
respectively, in the paper of R.V. Kadison ([17]). The reader is also referred to
[6], [13], [14], [15], [19], [20], [21], [31], and [34] for related results. We note that
Theorems A and B provide previously unknown results in the associative setting
(see Corollaries 1.3, 2.8, and 2.9, and Remark 2.10).

1. ISOMETRIES

Given a vector space X, each bilinear mapping from X×X into X will be called a
product on X. For u in X, those products f on X satisfying f(u, x) = f(x, u) = x

for all x in X are called u-admissible. A product f on (the vector space of)
an algebra A is said to be Jordan-admissible if, for every x, y in A, the equality
f(x, y) + f(y, x) = xy + yx holds. Unless explicitly stated otherwise, all products
on a normed space X will be assumed to be continuous, so that each product f
on X has a natural norm ‖f‖ given by

‖f‖ := sup{‖f(x, y)‖ : x, y ∈ X, ‖x‖ 6 1, ‖y‖ 6 1}.

It is easy to see that, if X is a normed space, and if u is a norm-one element in X,
then the set of all norm-one u-admissible products on X is a face of the closed unit
ball of the normed space of all products on X (see for instance [22], Lemma 1.5).
It follows that, if A is a norm-unital normed algebra, and if 1 denotes the unit
of A, then every norm-one Jordan-admissible product on A is 1-admissible. Note
also that, if A is a non-zero C∗-algebra, and if f is a Jordan-admissible product on
A, then ‖f‖ > 1, and therefore the set of all norm-one Jordan-admissible products
on A is a convex subset of the Banach space of all products on A.

Let X be a normed space, and u be a norm-one element in X. The set of
states of X relative to u,D(X,u), is defined by

D(X,u) := {φ ∈ X∗ : ‖φ‖ = φ(u) = 1}.
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For complex X, an element x in X is said to be hermitian (relative to u) if φ(x)
belongs to R whenever φ is in D(X,u), and the set of all hermitian elements in
X is denoted by H(X,u). A Vidav algebra is a norm-unital complete normed
complex algebra A satisfying A = H(A,1)⊕ iH(A,1), where 1 stands for the unit
of A. For such an algebra, the mapping x+ iy → x− iy (x, y ∈ H(A,1)) is called
the natural involution of A.

Now let A be a non-zero C∗-algebra with a unit 1, and f be a norm-one
1-admissible product on A. Denote by A1 and A2 the normed algebras consisting
of the Banach space of the associative Vidav algebra A and the product

f1 : (x, y) → 2−1(xy + yx) and f2 : (x, y) → 2−1(f(x, y) + f(y, x)),

respectively. The definition of a Vidav algebra only involves the underlying Banach
space and one distinguished element, the unit. Therefore, A1 and A2 are commu-
tative Vidav algebras as well. Since they have the same unit (equal to the unit 1
of A), they have also the same natural involution (equal to the C∗-involution of
A), which is multiplicative on A1 in an obvious manner and also on A2 thanks to
[25], Theorem 1. Now, since the mapping F : x→ x from A1 to A2 is a surjective
linear isometry preserving the units, the argument in the proof of the implication
(i) ⇒ (ii) of [15], Lemma 6, shows that F is an algebra isomorphism, so f1 = f2 ,
and so the product f on A is Jordan-admissible. The results we have just shown
are collected in the next lemma.

Lemma 1.1. Let A be a C∗-algebra with unit 1, and f a product on A with
‖f‖ 6 1. Then f is Jordan-admissible if and only if it is 1-admissible.

Recall that a Jordan-homomorphism between two algebras A and B is a
linear mapping F : A→ B such that F (x2) = (F (x))2 for all x in A (equivalently,
F (xy + yx) = F (x)F (y) + F (y)F (x) for all x, y in A). Let X be a normed space,
and u be a norm-one element in X. We say that u is a vertex of the closed unit
ball of X if the conditions x ∈ X and φ(x) = 0 for all φ in D(X,u) imply x = 0.
It is well-known and easy to see that the vertex property for u implies that u is
an extreme point of the closed unit ball of X.

Corollary 1.2. Let A be a C∗-algebra, and B a norm-unital complex
normed non-associative algebra. If there exists a surjective linear isometry from
B to A, then A has a unit, and the surjective linear isometries from B to A are
the mappings of the form b→ uF (b), where u is a unitary element in A, and F is
an isometric Jordan-homomorphism from B onto A.
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Proof. Let G be a linear isometry from B onto A. By the non-associative

version of the Bohnenblust-Karlin theorem ([8], see for instance [29], Theorem 1.5),

the unit (say v) of B is a vertex of the closed unit ball of B, hence u := G(v) is

a vertex of the closed unit ball of A, and therefore A has a unit 1 ([30], Proposi-

tion 1.6.1) and u is a unitary element of A ([8], Example 4.1). Now, consider the

linear isometry F : b→ u∗G(b) from B onto A. Then the mapping

f : (x, y) → F (F−1(x)F−1(y))

from A × A to A is a 1-admissible product on A with ‖f‖ 6 1. Finally, apply

Lemma 1.1.

Proof of Theorem A. Since B is linearly isometric to a C∗-algebra and every

product on a C∗-algebra is Arens regular ([26], [33]), it follows that the product

of B∗∗ (equal to the third Arens transpose of that of B) is w∗-continuous in

each of its variables. Then, since B has an approximate unit bounded by one, a

straightforward verification shows that B∗∗ has a unit and that such a unit has

norm equal to one (take a w∗-limit point in B∗∗ of the approximate unit of B).

By Corollary 1.2, there exists a unitary element u in A∗∗ and an isometric Jordan-

homomorphism Φ from B∗∗ onto A∗∗ such that F ∗∗(β) = uΦ(β) for all β in B∗∗.

For an arbitrary element x in A, we can write x = F (b) for a suitable b in B, so

that

xu∗x = F (b)u∗F (b) = uΦ(b)u∗uΦ(b) = uΦ(b)Φ(b) = uΦ(b2) = F (b2) ∈ A.

By [1], Proposition 4.4, u belongs to the multiplier algebra of A. Therefore Φ maps

B onto A, and the mappingG : b→ Φ(b) from B onto A is a Jordan-isomorphism.

Theorem A, together with [28], Theorem 2, leads directly to the following

result.

Corollary 1.3. An associative normed complex algebra B is a C∗-algebra

(for its own product and norm, and a suitable involution) if (and only if) B is

linearly isometric to a C∗-algebra and has an approximate unit bounded by one.
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2. JORDAN-ISOMORPHISMS

This section is devoted to prove Theorem B and derive its main corollaries.

Lemma 2.1. Let A be a non-zero C∗-algebra, f a norm-one Jordan-admis-
sible product on A, and P a primitive ideal of A. Then there exists a real number
ρ with 0 6 ρ 6 1 and such that f(x, y)− ρxy − (1− ρ)yx belongs to P for all x, y
in A.

Proof. For every product h on a normed space X, denote by hr the product
onX defined by hr(x, y) := h(y, x) for all x, y inX, and let h∗∗∗ : X∗∗×X∗∗ → X∗∗

stand for the third Arens transpose of h, ([7]). Then, denoting by g the C∗-product
of A and keeping in mind that C∗-algebras are Arens regular, we have

f∗∗∗ + f r∗∗∗ = g∗∗∗ + gr∗∗∗ = g∗∗∗ + g∗∗∗r.

Regard the bidual A∗∗ of A as a W ∗-algebra under the product g∗∗∗, which in the
following will be denoted by juxtaposition. It follows that, if 1 denotes the unit
of A∗∗, then the product 2−1(f∗∗∗ + f r∗∗∗) on A∗∗ is 1 -admissible. By the face
property of the set of norm-one 1 -admissible products, also f∗∗∗ is 1-admissible.
Now take an irreducible representation π of A on a Hilbert space H in such a way
that the kernel of π is the given primitive ideal P . It is known that there exists a
central projection e in A∗∗ such that the W ∗-algebra BL(H) (of all bounded linear
operators on H) can be identified with the W ∗-algebra eA∗∗ in such a way that,
up to that identification, π becomes the mapping x → ex from A to eA∗∗ (see
for instance [24], Theorem 3.8.2). Since f∗∗∗ is a norm-one 1-admissible product
on A∗∗ and e is a central projection in A∗∗, it follows from Lemma 1.1 and [29],
Lemma 5.15, that, for all α, β in A∗∗, the equality

f∗∗∗(eα, eβ) = ef∗∗∗(α, β)

holds. As a consequence, we have f∗∗∗(eA∗∗, eA∗∗) ⊆ eA∗∗ and the mapping
(m,n) → f∗∗∗(m,n) from eA∗∗×eA∗∗ to eA∗∗ is a norm-one e-admissible product
on eA∗∗. Then, since eA∗∗ and BL(H) are isomorphic as W ∗-algebras and e is
the unit of eA∗∗, we may apply the determination of norm-one IdH -admissible
products on BL(H) ([29], Theorem 5.17) to get the existence of a real number ρ
with 0 6 ρ 6 1 and

f∗∗∗(m,n) = ρmn+ (1− ρ)nm

for all m,n in eA∗∗. Finally, for x, y in A, we have

e(f(x, y)− ρxy − (1− ρ)yx) = f∗∗∗(ex, ey)− ρ(ex)(ey)− (1− ρ)(ey)(ex) = 0,

hence f(x, y)− ρxy − (1− ρ)yx belongs to Ker(π) = P , as required.
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Remark 2.2. Let A be a non-zero C∗-algebra, f be a norm-one product on
A, and let 1 denote the unit of A∗∗. We have seen in the above proof that, if f
is Jordan-admissible on A, then f∗∗∗ is 1-admissible on A∗∗. The converse is also
true: if f∗∗∗ is 1-admissible on A∗∗, then, by Lemma 1.1, f∗∗∗ is Jordan-admissible
on A∗∗, hence f is Jordan-admissible on A. It follows from the face property of
the set of norm-one 1 -admissible products on A∗∗ that the set of all norm-one
Jordan-admissible products on A is a face of the closed unit ball of the Banach
space of all products on A.

From now on, for a C∗-algebra A,Prim(A) will denote the set of all primitive
ideals of A endowed with the hull-kernel topology.

Lemma 2.3. Let A be a non-zero C∗-algebra, and f a norm-one Jordan-
admissible product on A. For each Q in Prim(A), set

h(Q) := {ρ ∈ [0, 1] : f(x, y)− ρxy − (1− ρ)yx ∈ Q for all x, y in A}.

Let {Pλ}λ∈Λ be a net in Prim(A) converging to some P ∈ Prim(A), {ρλ}λ∈Λ a
net of real numbers with ρλ ∈ h(Pλ) for all λ in Λ, and ρ be a limit point of the
net {ρλ}λ∈Λ. Then ρ belongs to h(P ).

Proof. Let ε be an arbitrary positive number. For λ in Λ, choose µ(λ) in Λ
such that µ(λ) > λ and |ρµ(λ) − ρ| 6 ε. Then, for x, y in A and λ in Λ, we have

f(x, y)− ρxy − (1− ρ)yx+ Pµ(λ) = (ρµ(λ) − ρ)[x, y] + Pµ(λ),

hence

‖f(x, y)− ρxy − (1− ρ)yx+ Pµ(λ)‖ 6 ε‖[x, y]‖,

where, as usual, we have denoted by [x, y] the commutator xy− yx. Since, for x, y
in A, the set

{Q ∈ Prim(A) : ‖f(x, y)− ρxy − (1− ρ)yx+Q‖ 6 ε‖[x, y]‖}

is closed in Prim(A) ([11], Proposition 3.3.2), and P belongs to the closure of the
set {Pµ(λ) : λ ∈ Λ}, it follows

‖f(x, y)− ρxy − (1− ρ)yx+ P‖ 6 ε‖[x, y]‖

for all x, y in A. Now the proof is concluded by letting ε→ 0.
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The centroid Γ(A) of an algebra A is the set of all linear operators ϕ on A

satisfying ϕ(xy) = xϕ(y) = ϕ(x)y for all x, y in A. If the algebra A has a unit,
then Γ(A) naturally identifies with the centre of A. If A is a C∗-algebra, then
Γ(A) is a closed commutative subalgebra of the Banach algebra of all bounded
linear operators on A and, endowed with the operator norm and the involution ∗
defined for ϕ in Γ(A) by ϕ∗(x) := (ϕ(x∗))∗ for all x in A, becomes a C∗-algebra.
Moreover, Γ(A) identifies with the centre of the multiplier algebra of A so that,
according to the Dauns-Hofmann theorem [24], Corollary 4.4.8, for ϕ in Γ(A) and
P in Prim(A), there is a unique complex number ϕ̂(P ) such that ϕx − ϕ̂(P )x
belongs to P for all x in A, and ϕ→ ϕ̂ becomes a ∗-isomorphism from Γ(A) onto
the C∗-algebra of all bounded continuous complex-valued functions on Prim(A).

From now on, for a C∗-algebra A, A0 will denote the closed (two-sided) ideal
of A generated by the commutators in A.

Lemma 2.4. Let A be a non-zero C∗-algebra. Then, for ϕ in Γ(A0), we have

2‖ϕ‖ = sup{‖ϕ[x, y]‖ : x, y ∈ A, ‖x‖ 6 1, ‖y‖ 6 1}.

Proof. Let ϕ be in Γ(A0), and ε be an arbitrary positive number. Then
there exist Q in Prim(A0) and ρ in C satisfying ϕb − ρb ∈ Q for all b in A0 and
|ρ| > ‖ϕ‖− ε. Writing Q = A0 ∩P for a suitable P in Prim(A) not containing A0,
the C∗-algebra A/P is not commutative so, by Kaplansky’s characterization of
commutativity ([18], Appendix III, Theorem B), there exists a norm-one element
α in A/P with α2 = 0. Putting β := α+α∗ and γ := α−α∗, we easily verify that
the equalities ‖β‖ = ‖γ‖ = 1 and ‖[β, γ]‖ = 2 are true. Now, choose z, t in A with
z ∈ β, t ∈ γ, and max{‖z‖, ‖t‖} 6 1 + ε, and set x := ‖z‖−1z and y := ‖t‖−1t.
Then x and y are norm-one elements in A, and we have

(1 + ε)2‖ϕ[x, y]‖ > ‖z‖ ‖t‖ ‖ϕ[x, y]‖ = ‖ϕ[z, t]‖
> ‖ϕ[z, t] + P‖ = ‖ρ[z, t] + P‖
= ‖ρ[β, γ]‖ = 2|ρ| > 2(‖ϕ‖ − ε).

For every C∗-algebra A, we denote by Asa the self-adjoint part of A.

Proposition 2.5. Let A be a non-zero C∗-algebra. For ϕ in Γ(A0), let fϕ

stand for the product on A defined by fϕ(x, y) := 1
2 (xy + yx + ϕ[x, y]). Then

ϕ → fϕ is an isometric affine bijection from the closed unit ball of Γ(A0)sa onto
the set of all norm-one Jordan-admissible products on A.

Proof. Let ϕ be in the closed unit ball of Γ(A0)sa. Then clearly fϕ is a
Jordan-admissible product on A. For P in Prim(A) not containing A0, P ∩ A0
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is a primitive ideal of A0, so there exists ρ in R with |ρ| 6 1 and satisfying

ϕb − ρb ∈ P ∩ A0 for all b in A0. The same conclusion is obviously true (with

ρ = 0, for example) if the primitive ideal P of A contains A0. Therefore, for all P

in Prim(A) and all x, y in A, we have

‖fϕ(x, y)+P‖ =
1
2
‖xy+yx+ρ[x, y]+P‖ =

1
2
‖(1+ρ)xy+(1−ρ)yx+P‖ 6 ‖x‖ ‖y‖,

hence

‖fϕ(x, y)‖ = sup{‖fϕ(x, y) + P‖ : P ∈ Prim(A)} 6 ‖x‖ ‖y‖.

It follows that fϕ is a norm-one Jordan-admissible product on A.

Now, clearly, the mapping ϕ → fϕ from the closed unit ball of Γ(A0)sa
into the set of all norm-one Jordan-admissible products on A is affine, and, by

Lemma 2.4, it is isometric.

Let f be an arbitrary norm-one Jordan-admissible product on A. By Lem-

ma 2.1, for P in Prim(A) there is ρ(P ) in R with 0 6 ρ(P ) 6 1 and such that

f(x, y) − ρ(P )xy − (1 − ρ(P ))yx ∈ P for all x, y in A, and it is clear that such

a number ρ(P ) is uniquely determined whenever P does not contain A0. Now,

denoting by Ω the open subset of Prim(A) consisting of all primitive ideals of A

which do not contain A0, Lemma 2.3 gives us that the mapping P → ρ(P ) from

Ω to [0, 1] is continuous. Since the mapping P → A0 ∩ P from Ω to Prim(A0) is

a homeomorphism ([11], Proposition 3.2.1), it follows from the Dauns-Hofmann

theorem that there exists some ψ in Γ(A0) with 0 6 ψ 6 1 and such that

ψb − ρ(P )b ∈ P for all P in Ω and all b in A0. Putting ϕ := 2ψ − 1, ϕ be-

longs to the closed unit ball of Γ(A0)sa and, for all x, y in A and all P in Ω, we

have fϕ(x, y) = yx+ ψ[x, y], hence

fϕ(x, y) + P = yx+ ρ(P )[x, y] + P = ρ(P )xy + (1− ρ(P ))yx+ P = f(x, y) + P.

The equality fϕ(x, y)+P = f(x, y)+P we have just obtained for all x, y in A and

P in Ω, remains also true for P in Prim(A)\Ω, since then we have xy+P = yx+P

for all x, y in A, and Lemma 2.1 applies. It follows that f = fϕ.

Proof of Theorem B. If the C∗-algebra A is non-zero, then the mapping

(x, y) → F (F−1(x)F−1(y)) from A × A to A is a norm-one Jordan-admissible

product on A. Now apply Proposition 2.5.
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Let A be a C∗-algebra. If ψ is in Γ(A) with 0 6 ψ 6 1, then

(x, y) → ψxy + (1− ψ)yx

is a norm-one Jordan-admissible product on A. Indeed, for x, y in A, we have
ψxy + (1− ψ)yx = 1

2 (xy + yx+ (2ψ − 1)[x, y]), ‖2ψ − 1‖ 6 1, and the restriction
of 2ψ − 1 to A0 can be seen as an element of Γ(A0)sa (use that A0 = A2

0), hence
Proposition 2.5 applies. In general, not every norm-one Jordan-admissible product
on A is of the above form, even if A has a unit and the given product is associative
(see for instance [31], Example 2.3).

Examples like the one quoted above are rather artificial. In fact, the next
proposition is devoted to provide an intrinsic characterization of those C∗-algebras
allowing the pathology in such examples, and shows in particular that “most” C∗-
algebras do not admit such a pathology. A C∗-algebra A is said to be boundedly
centrally closed if, for every closed essential ideal I of A, the restriction mapping
Γ(A) → Γ(I) is surjective. This is equivalent to require the same condition for
every closed ideal I of A. For, if I is a closed ideal of a C∗-algebra A, then
J := I ⊕ AnnA(I) is a closed essential ideal of A and the restriction mapping
Γ(J) → Γ(I) is clearly surjective. All prime C∗-algebras are boundedly centrally
closed, because if A is a prime C∗-algebra, and if I is a non-zero closed ideal of
A, then I is a prime C∗-algebra, so Γ(I) is a prime commutative C∗-algebra, and
so Γ(I) reduces to the complex multiples of the identity operator on I. On the
other hand, the proof of [2], Theorem 2 shows that a C∗-algebra A is boundedly
centrally closed if and only if the annihilator of every ideal of A is of the form Ae

for some central projection e in A, and therefore all AW ∗-algebras are boundedly
centrally closed. Also, for every C∗-algebra A, the local multiplier algebra Mloc(A)
of A, introduced by G.A. Elliot ([12]) and G.K. Pedersen ([23]), and the bounded
central closure cA of A (see [4] p. 165 for the definition) are boundedly centrally
closed C∗-algebras (see [2], Theorem 2 and [4], Proposition 3.10, respectively).
Note that, if A is an AW ∗-algebra, then Mloc(A) = A ([3], Proposition 3.3). Note
also that boundedly centrally closed C∗-algebras can be characterized among all
C∗-algebras A by the property that Prim(A) is extremely disconnected (i.e., the
closure in Prim(A) of every open subset is open ([4], Proposition 2.9)).

Corollary 2.6. For a C∗-algebra A, consider the following assertions:
(i) A is either prime, an AW ∗-algebra, or of the form Mloc(C) or cC for

some C∗-algebra C.
(ii) A is boundedly centrally closed.
(iii) The restriction mapping Γ(A) → Γ(A0) is surjective.
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(iv) Every norm-one Jordan-admissible product on A is of the form

(x, y) → ψxy + (1− ψ)yx

for some ψ in Γ(A).
(v) Every norm-one Jordan-admissible product on A is of the form

(x, y) → ψxy + (1− ψ)yx

for some ψ in Γ(A) with 0 6 ψ 6 1.
(vi) For every complex normed non-associative algebra B, and every surjec-

tive isometric Jordan-homomorphism F : B → A, there exists an element ψ in
Γ(A) with 0 6 ψ 6 1 satisfying F (uv) = ψF (u)F (v) + (1 − ψ)F (v)F (u) for all
u, v in B.

Then (i) ⇒ (ii), (ii)⇒ (iii), and (iii), (iv), (v), and (vi) are equivalent.

Proof. In view of the above comments, only the equivalences (iii) ⇔ (iv) ⇔
(v) ⇔ (vi) require proofs. The implications (iii) ⇒ (iv) and (iv) ⇒ (v) follow
from Proposition 2.5 and [27], Theorem 1, respectively. (v) ⇒ (vi) because, if B
and F are as in (vi), then the mapping (x, y) → F (F−1(x)F−1(y)) from A × A

to A is a norm-one Jordan-admissible product on A. Finally, let us prove that
(vi) implies (iii). To verify (iii), it is enough to show that every element ϕ in the
closed unit ball of Γ(A0)sa is the restriction to A0 of some element in Γ(A). But
Proposition 2.5 gives us that, for such a ϕ, the normed space of A endowed with
the product (x, y) → 1

2 (xy + yx + ϕ[x, y]) is a complex normed non-associative
algebra (say B) and, clearly, the mapping x → x from B to A is a surjective
isometric Jordan-homomorphism. By the assumption (vi), there exists ψ in Γ(A)
satisfying

1
2
(xy + yx+ ϕ[x, y]) = ψxy + (1− ψ)yx =

1
2
(xy + yx+ (2ψ − 1)[x, y])

for all x, y in A. This implies ϕ = (2ψ − 1)|A0.

For a normed space X, we denote by Π(X) the normed space of all products
on X.

Corollary 2.7. Let A be a non-zero C∗-algebra, and f a Jordan-admissible
product on A. Then the following assertions are equivalent:

(i) f is associative (continuity of f is not required here).
(ii) f is an extreme point of the closed unit ball of Π(A).
(iii) f is an extreme point of the set of all norm-one Jordan-admissible prod-

ucts on A.
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(iv) There exists a self-adjoint unitary element ϕ in Γ(A0) such that

f(x, y) =
1
2
(xy + yx+ ϕ[x, y])

for all x, y in A.

Proof. (i) ⇒ (ii) By assumption (i) and [28], Theorem 2, the Banach space
of A, endowed with the product f and the C∗-involution of A, is a C∗-algebra.
Now apply Proposition 1.6.6 of [30], Proposition 2.5, and Remark 2.2.

(ii) ⇒ (iii) This implication is clear.
(iii) ⇒ (iv) Since the extreme points of the closed unit ball of Γ(A0)sa are

the self-adjoint unitary elements in Γ(A0) ([30], Proposition 1.6.3), the existence
of ϕ in Γ(A0) as required in (iv) follows from assumption (iii) and Proposition 2.5.

(iv) ⇒ (i) Let ϕ be the element in Γ(A0) given by assumption (iv). We have
ϕ2 = 1 and ϕ(ab) = aϕ(b), ϕ(ba) = ϕ(b)a whenever a is in A and b is in A0. Hence,
for all x, y, z in A, we find

4f(f(x, y), z) = 2f(xy + yx+ ϕ[x, y], z)

= (xy + yx+ ϕ[x, y])z + z(xy + yx+ ϕ[x, y])

+ ϕ[xy + yx+ ϕ[x, y], z]

= 2(xyz + zyx) + 2ϕ(xyz − zyx)

= x(yz + zy + ϕ[y, z]) + (yz + zy + ϕ[y, z])x

+ ϕ[x, yz + zy + ϕ[y, z]]

= 2f(x, yz + zy + ϕ[y, z]) = 4f(x, f(y, z)).

Let A be a C∗-algebra. It follows from the above corollary that the C∗-
product of A is an extreme point of the closed unit ball of Π(A). Actually a better
result holds, namely the C∗-product of A is a vertex of the closed unit ball of Π(A)
([16]).

Corollary 2.8. Let A be a C∗-algebra, B a complex associative algebra,
and F : B → A a surjective Jordan-isomorphism. Then there exists a self-adjoint
unitary element ϕ in Γ(A0) such that

F (uv) =
1
2
(F (u)F (v) + F (v)F (u) + ϕ[F (u), F (v)])

for all u, v in B.

Proof. The mapping (x, y) → F (F−1(x)F−1(y)) from A × A to A is an
associative Jordan-admissible product on A. Now apply Corollary 2.7.
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Let A and B be algebras over the same field, and F : B → A be a bijective
linear mapping such that there exist ideals P,Q of B satisfying that B = P ⊕Q,
F |P is a homomorphism, and F |Q is an anti-homomorphism. Then we say that F
is the sum of an isomorphism and an anti-isomorphism. Mappings F as above are
Jordan-isomorphisms. However, it is not true in general that surjective Jordan-
∗-isomorphisms between C∗-algebras behave in such a manner (cf. the already
quoted example in [31]).

Corollary 2.9. Let A be a boundedly centrally closed C∗-algebra, B a
complex associative algebra, and F : B → A a surjective Jordan-isomorphism.
Then F is the sum of an isomorphism and an anti-isomorphism.

Proof. By Corollary 2.8, there exists a self-adjoint unitary element ϕ in Γ(A0)
such that

F (uv) =
1
2
(F (u)F (v) + F (v)F (u) + ϕ[F (u), F (v)])

for all u, v in B. Let I be the closed essential ideal of A defined by
I := A0 ⊕ AnnA(A0), and φ be the unique element in Γ(I) extending 1

2 (1 + ϕ)
and vanishing on AnnA(A0). Since A is boundedly centrally closed, there exists
ψ in Γ(A) such that ψ|I = φ. Since φ is a projection in Γ(I) and the restriction
mapping Γ(A) → Γ(I) is an injective ∗-homomorphism, ψ is a projection in Γ(A)
and we have

F (uv) = ψF (u)F (v) + (1− ψ)F (v)F (u)

for all u, v in B. Then it is routine to verify that P := F−1(ψA) and Q :=
F−1((1−ψ)A) are ideals of B satisfying that B = P ⊕Q,F |P is a homomorphism,
and F |Q is an anti-homomorphism.

An alternative proof of Corollary 2.9 is provided in [5], Chapter 6, by applying
the purely algebraic result in [9], Theorem 2.3.

Remark 2.10. Since surjective Jordan-homomorphisms from C∗-algebras to
C∗-algebras are continuous (see for instance the introduction of [32]), and closed
Jordan-ideals of C∗-algebras are ideals ([10], Theorem 5.3), the following variants
of Corollaries 2.8 and 2.9 hold. If F is a Jordan-homomorphism from the C∗-
algebra B onto the C∗-algebra A, then there exists a self-adjoint unitary element
ϕ in Γ(A0) such that

F (uv) =
1
2
(F (u)F (v) + F (v)F (u) + ϕ[F (u), F (v)])

for all u, v in B. If in addition A is boundedly centrally closed, then F is “the sum
of an epimorphism and an anti-epimorphism” in the sense of [31].
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3. AN APPLICATION

We conclude this paper with a geometric characterization of C∗-algebras among
non-associative normed complex algebras. The proof involves Theorem A and the
arguments in the proof of Theorem B.

Theorem 3.1. Let B be a non-associative normed complex algebra. Then
the following assertions are equivalent:

(i) B is a C∗-algebra with respect to the given product and norm.
(ii) B is linearly isometric to a C∗-algebra, has an approximate unit bounded

by one, and the product of B is an extreme point of the closed unit ball of Π(B).

Proof. The implication (i) ⇒ (ii) follows from Corollary 2.7. Let us assume
that (ii) holds. Then there exists a linear isometry from B onto some C∗-algebra
A. By Theorem A, there also exists an isometric Jordan homomorphism F from
B onto A. Since the product of B is an extreme point of the closed unit ball of
Π(B), and the mapping

f → [(x, y) → F{f(F−1(x), F−1(x))}]

from Π(B) to Π(A) is a surjective linear isometry, it follows that h : (x, y) →
F (F−1(x)F−1(x)) is a Jordan-admissible product on A and an extreme point of
the closed unit ball of Π(A). By Corollary 2.7 and [28], Theorem 2, the Banach
space of A, endowed with the product h and the C∗-involution of A, is a C∗-algebra
(say C). Finally, F becomes an isometric algebra isomorphism from B onto the
C∗-algebra C.
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