
J. OPERATOR THEORY

40(1998), 87–111

c© Copyright by Theta, 1998

ON CONDITIONAL EXPECTATIONS OF FINITE INDEX

MICHAEL FRANK and EBERHARD KIRCHBERG

Communicated by Şerban Strătilă

Abstract. For a conditional expectation E on a (unital) C∗-algebra A there
exists a real number K > 1 such that the mapping K · E − idA is positive
if and only if there exists a real number L > 1 such that the mapping
L · E − idA is completely positive, among other equivalent conditions. The
estimate (min K) 6 (min L) 6 (min K)[min K] is valid, where [·] denotes the
entire part of a real number. As a consequence the notion of a “conditional
expectation of finite index” is identified with that class of conditional expec-
tations, which extends and completes results of M. Pimsner, S. Popa ([27],
[28]), M. Baillet, Y. Denizeau and J.-F. Havet ([6]) and Y. Watatani ([35])
and others.
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Treating conditional expectations on C∗-algebras we follow the definition of
M. Takesaki’s and Ş. Strătilă’s monographs [32], [30]: conditional expectations E
on a C∗-algebra A are projections of norm one of A into a C∗-subalgebra B ⊆ A

leaving B invariant. Immediate consequences are: E is a B-bimodule map on
A, and the extension of faithful conditional expectations E to the bidual Banach
space and W ∗-algebra A∗∗ yield normal faithful conditional expectations onto the
canonically normally embedded W ∗-subalgebra B∗∗ preserving the common iden-
tity. Consequently, for faithful conditional expectations on C∗-algebras A, the
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C∗-algebra can always supposed to be unital, and E(1A) = 1B = 1A, cf. [32] and
[5], Lemma 4.1.4 for details.

Studying the literature about conditional expectations of finite index on C∗-
algebras we obtain two mainstreams of investigations: one direction is concerned
with normal conditional expectations of finite index on W ∗-factors and several
phenomena which occur in more special settings of this case. The other direction
treats the algebraically characterizable case (see Y. Watatani [35], [19]) where the
original C∗-algebra A is a finitely generated C∗-module over the (unital) image
C∗-algebra B.

A first definition for conditional expectations to be of finite index was given
by M. Pimsner and S. Popa ([27, [28]) in the context ofW ∗-algebrasM generalizing
results of H. Kosaki ([22]) and V.F.R. Jones ([15]): there has to exist a constant
K > 1 such that (K · E − idM ) is a positive mapping on M . However, attempts
to describe the more general situation of conditional expectations on C∗-algebras
with arbitrary centers to be “of finite index” in some sense(s) get into difficulties,
as the gap of knowledge separating Proposition 3.3 and Theorem 3.5 of the paper
[6] on W ∗-algebras by M. Baillet, Y. Denizeau and J.-F. Havet shows. For non-
trivial centers of W ∗-algebras M they obtained that even in the case of normal
faithful conditional expectations E on M the index value can be calculated only in
situations when there exists a number L > 1 such that the mapping (L ·E − idM )
is completely positive, which seems to be more since the difference (minL) =
(minK)2 at least appears, cf. Example 1.6. S. Popa showed that for normal
conditional expectations E : M → N ⊆ M the conditions of [6], Proposition 3.3,
Theorem 3.5 are equivalent, [28], Theorem 1.1.6, Remark 1.1.7. Y. Watatani’s
attempt to overcome this difficulty in the algebraic way considering the C∗-algebra
A as a finitely generated projective module over the (unital) image C∗-algebra B
of the conditional expectation E turned out to be unsuitable to give a general
solution of the key problems.

Let us give an example which is characteristic for situations for which the
algebraic approach does not work but which are, nevertheless, well-behaved in
some sense: let A be the C∗-algebra C([−1, 1]) all continuous functions on the
interval [−1, 1]. Consider the normal conditional expectation E on A defined by

E(f)(x) =
f(x) + f(−x)

2
for x ∈ [−1, 1].

The image C∗-algebra B can be identified with the set {f ∈ A : f(x) = f(−x)
for x ∈ [−1, 1]} inheriting the C∗-structure from A. The Hilbert B-module
{A,E(〈 · , · 〉A)} is not self-dual since the bounded B-linear mapping

E(f∗0 f)(x) =
f∗0 (x)f(x) + f∗0 (−x)f(−x)

2
for x ∈ [−1, 1], f ∈ A,
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f0(x) =


1 x ∈ (0, 1];
0 x = 0;
−1 x ∈ [−1, 0);

maps A into B, however f0 does not belong to A. Consequently, the Hilbert B-
module {A,E(〈 · , · 〉A)} cannot be finitely generated and projective, and E is not
of finite index in the sense of Y. Watatani’s algebraic definition. Nevertheless,
E has a very good property: the mapping (2 · E − idM ) is obviously completely
positive. Beside this a careful analysis yields the B-reflexivity of the Hilbert B-
module {A,E(〈 · , · 〉A)}.

Investigating such kind of conditional expectations in some more detail we
obtain that the existence of a number K > 1 such that the mapping (K · E −
idA) is positive should be sufficient to imply very good properties of E, see [6],
Proposition 3.3, [3], [14], Theorem 3.4, 3.5 and [28], Theorem 1.1.6, Remark 1.1.7.
We use the notations

K(E) = inf{K : (K · E − idA) is positive on A},
L(E) = inf{L : (L · E − idA) is completely positive on A}.

If there does not exist any finite numberK or L with the properties striven for, then
K(E) = ∞ or L(E) = ∞. To close the gap of knowledge separating Proposition 3.3
and Theorem 3.5 of [6] for the general C∗-case and to obtain the right general
definition for conditional expectations on C∗-algebras to be of finite index we show
the following fact generalizing the partial results by P. Jolissaint ([14], Theorems
3.4, 3.5), by E. Andruchow and D. Stojanoff ([4], Proposition 2.1, Corollary 2.4)
and by S. Popa ([28], Theorem 1.1.6, Remark 1.1.7).

Theorem 1. Let A, B be C∗-algebras, where B is a C∗-subalgebra of A.
Let E : A→ B ⊆ A be a conditional expectation with fixed point set B. Then the
following three conditions on E are equivalent:

(i) E is faithful and the (right) pre-Hilbert B-module {A,E(〈 · , · 〉A)} is
complete with respect to the norm ‖E(〈 · , · 〉A)‖1/2

B , where 〈a, b〉A = a∗b for every
a, b ∈ A;

(ii) There exists a number K > 1 such that the mapping (K · E − idA) is
positive;

(iii) There exists a number L > 1 such that the mapping (L · E − idA) is
completely positive.

If the second condition is valid for some K, then every number L > K · [K]
realizes the third condition, where [K] denotes the entire part of K. In some
situations the equality L(E) = K(E)2 ∈ N is valid.
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Definition 2. (cf. [22], [27], [28]) Let A and B be C∗-algebras, where B is
a C∗-subalgebra of A. Let E : A→ B ⊆ A be a conditional expectation with fixed
point set B. If there exists a number K > 1 such that the mapping (K ·E− idA) is
positive, then E is of finite index. The index value can be calculated in the center
of either the bidual W ∗-algebra A∗∗ or its discrete part.

Plan of the proof. We start with the simple observation that the conditional
expectation E on the C∗-algebra A can be continued to a normal conditional
expectation E∗∗ on the bidual W ∗-algebra A∗∗ of A preserving property (ii) above
with the same minimal number K(E∗∗) = K(E) > 1. Normality follows from a
general extension property of conditional expectations [5], Lemma 4.1.4, whereas
the additional property can be derived from monotonicity or from the up-down-up
theorem of G.K. Pedersen ([26], II.2.4), for example.

The next step is explained separately in Proposition 1.3 below: the projection
of W ∗-algebras to their discrete (i.e. atomic type I) part commutes with normal
faithful conditional expectations E of finite index if condition (ii) holds for E,
i.e. the discrete part can be considered separately without loss of generality. This
leads to a detailed study of discrete W ∗-algebras and conditional expectations on
them. The theorem will be proven for this class, see Propositions 1.2, 1.3.

To return to the general C∗-case we make use of a theorem of Ch. A. Akemann
stating that the ∗-homomorphism of a C∗-algebra A into the discrete part of its
bidual W ∗-algebra A∗∗ which arises as the composition of the canonical embedding
of A into A∗∗ followed by the projection to the discrete part of A∗∗ is an injective
∗-homomorphism, [1], p. 278 and [2], p. 1. A conditional expectation E on A with
property (ii) for some real number K > 1 has an extension E∗∗ to A∗∗ and in
particular, to the discrete part of A∗∗ where A is faithfully ∗-represented. E∗∗

restricted to this ∗-representation of A recovers E and K, and condition (ii) holds
for the restriction of E∗∗ to the discrete part of A∗∗ for the same number K > 1.
Since Theorem 1 is fulfilled for E∗∗, it holds for its restriction E to the faithfully
represented original C∗-algebra A with the same minimal numbers K(E), L(E),
and condition (iii), and the estimates turn out to be valid.

The equivalence of the conditions (i) and (ii) follows from [6], Proposi-
tion 3.3 for the W ∗-case. To give an independent argument we show how to
derive condition (ii) from condition (i). If A is complete with respect to the
norm ‖E(〈 · , · 〉A)‖1/2, then there exists a number K such that the inequality
K‖E(x∗x)‖ > ‖x∗x‖ holds for every x ∈ A by the general theory of Banach
spaces. Set x = a(ε+ E(a∗a))−1/2 with a ∈ A and observe that

(ε+ E(a∗a))−
1
2 · E(a∗a) · (ε+ E(a∗a))−

1
2 6 1A.
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This implies the inequality K · 1A > (ε + E(a∗a))−1/2a∗a(ε + E(a∗a))−1/2,
and multiplying by (ε+E(a∗a))1/2 from both sides we obtain K(ε+E(a∗a)) > a∗a

for every ε > 0, every a ∈ A. This yields condition (ii). The converse is obvious
by spectral theory.

In the next four sections we explain some details and consequences of our
investigations. The first section is concerned with the property of normal condi-
tional expectations E of finite index to commute with the abstract projection of
W ∗-algebras to their discrete part, as well as with the proof of Theorem 1 for the
discrete W ∗-case. In Section 2 we show that those mappings E commute with the
abstract projections of W ∗-algebras to their finite, infinite, continuous type I, type
II1, type II∞ and type III parts, too. This extends results of S. Sakai ([29]) and
J. Tomiyama ([33]) for general normal conditional expectations. Section three is
devoted to the investigation of the index value of general conditional expectations
of finite index and of Jones’ tower constructions. There exists an index value for
E : A → B ⊆ A inside the center of A iff the discrete part of the index value of
the extended normal conditional expectation E∗∗ inside the center of the bidual
W ∗-algebra A∗∗ of A belongs to the canonical embedding of A into the discrete
part of A∗∗. For normal conditional expectations E : M → N ⊆M of finite index
on W ∗-algebras M the Jones’ tower always exists. The Jones’ tower exists in the
general C∗-case if Ind(E) is contained in the center of B. The last section collects
some interpretations of the results obtained in terms of non-commutative topology
and some dimension estimates in the case of finite centers.

1. THE DISCRETE W ∗-CASE

We want to consider discrete W ∗-algebras, i.e. W ∗-algebras for which the supre-
mum of all minimal projections contained equals their identity. First of all, we
have to recall the structure of normal conditional expectations on type I factors
over separable and finite dimensional Hilbert spaces the image of which is a (type I)
subfactor. As a partial case we describe normal states. Subsequently we will make
use of the inner structure of these mappings.

Example 1.1. Let E be a normal conditional expectation on the set M =
B(l2) of all bounded linear operators on the separable Hilbert space l2 or on
M = Mn(C), respectively. Suppose, its image is a W ∗-subfactor N ⊆ M . Then
the Hilbert space l2 (or Cn) can be decomposed as the tensor product of two
Hilbert spaces Ho and Ko, l2 = Ho ⊗ Ko, (Cn = Ho ⊗ Ko, resp.) such that



92 Michael Frank and Eberhard Kirchberg

the representation of M as the W ∗-tensor product B(Ho) ⊗ B(Ko) allows the
description of E by the formula

E(T ⊗ S) = T ⊗ Tr(C · S)idKo

for a unique trace class operator C ∈ B(Ko)+h with Tr(C) = 1 and for arbi-
trary T ∈ B(Ho), S ∈ B(Ko) on elementary tensors, (cf. [8], Lemma 3.3.1, 3.3.2,
[34], Proposition 2.4). Note that E is faithful if and only if zero is not an eigen-
value of the operator C. To satisfy the condition (ii) of Theorem 1 the inequality
‖T‖ 6 K‖E(T )‖ has to be valid for a positive number K ∈ N (to be fixed) and for
every operator T ∈ M . Denote by Pn ∈ B(Ko) that projection which maps Ko

onto the eigenspace of the n-th eigenvalue λn of the trace class operator C. Then
this inequality can be rewritten as

(1.1) 1 = ‖idHo ⊗ Pn‖ 6 K‖E(idHo ⊗ Pn)‖ = λnK.

If Ko is infinite dimensional, then the eigenvalues of C form a sequence con-
verging to zero. Such an assumption contradicts to the finiteness and universality
of the constant K in the inequality (1.1). Hence, E satisfies condition (ii) of
Theorem 1 if and only if the dimension of Ko is finite.

The image N = E(M) can be identified with the W ∗-subalgebra B(Ho) ⊗
idKo ' B(Ho). Therefore, the set {idHo ⊗Pn,i : i = 1, . . . ,dim(Pn(Ko)), n ∈ N}∪
{minimal partial isometries between them} is an orthogonal basis of the Hilbert
N -module {M,E(〈 · , · 〉M )}, where the projections {Pn,i : i ∈ N} vary over a set
of pairwise orthogonal minimal subprojections of the corresponding eigenspace
projection Pn of C. In case we assume Theorem 1 (ii) to be valid, the index of E
exists in the sense of Y. Watatani ([35]) and equals

Ind(E) =

(
dim(Ko)∑

n=1

(λn)−1

)
· idM .

Note that this special structure of some conditional expectations of finite
index on σ-finite type I factors is not preserved for similar ones over non-separable
Hilbert spaces, as we shall obtain during our investigations. The structure of E
described above implies that Ind(E) ∈ {1} ∪ [4,∞), whereas in the non-separable
case the discrete series of possible index values between one and four arises addi-
tionally.

Now we are going to investigate normal conditional expectations on W ∗-
algebras satisfying condition (ii) of Theorem 1 and their restrictions to the discrete
part. We start with a proposition which was obtained by J. Tomiyama ([33])
investigating normal conditional expectations. For completeness, we include a
short proof of it which is different from J. Tomiyama’s:
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Proposition 1.2. (J. Tomiyama) Let M be a discrete W ∗-algebra and
E : M → N ⊆ M be a normal faithful conditional expectation with respect to
N . Then N is a discrete W ∗-algebra.

Proof. Let PN ∈ N be the projection which maps N onto its discrete part.
The projection PN is known to be contained in the center of N . Since E(1M−PN )
is positive and belongs to the center of N too, it has a carrier projection r ∈ N

which is contained in the center of N . Note that (1M−PN ) and N commute inside
M . Consider the W ∗-subalgebra (1M − PN )M(1M − PN ) of M . Let r1 be the
smallest central projection ofN satisfying the equality nr1(1M−PN ) = n(1M−PN )
for every n ∈ N . Then (1M − PN ) = (1M − PN )r1 and r1 6 r. Applying E we
obtain E(1M − PN ) = E(1M − PN )r1 and hence, r1 = r. That means, the
mapping nr → nr(1M − PN ) is a faithful normal ∗-homomorphism from Nr into
(1M − PN )M(1M − PN ).

Furthermore, E maps the discrete W ∗-algebra (1M −PN )M(1M −PN ) faith-
fully onto Nr, and Nr does not possess any discrete part. Fix a normal state
f on Nr with support projection pf . The centralizer c(f) of the state f in-
side pf (Nr)pf coincides with the fixed point algebra of the associated KMS-
group σf on pf (Nr)pf , and there exists a normal faithful conditional expectation
E′ : pf (Nr)pf → c(f) such that f ≡ f ◦ E′ on pf (Nr)pf , cf. [31]. Composing the
normal conditional expectations E, E′ and the normal state f we obtain a normal
state f ◦E′ ◦E = f ◦E on the discrete W ∗-algebra pf (1M − PN )M(1M − PN )pf

which possesses a non-discrete centralizer since c(f) is non-discrete and contained
in it. This is a contradiction, since the intersection of the centralizer of the normal
state f ◦ E with pf (1M − PN )M(1M − PN )pf has to be isomorphic to a direct
integral of orthogonal direct sums of finite matrix algebras over the discrete center
of pf (1M − PN )M(1M − PN )pf , which can be supposed to be finite by a special
choice of f . (This structure of the centralizers can be derived from the structure
of normal states on discrete W ∗-factors, cf. Example 1.1 and [32].) Consequently,
r = 0, 1M = PN = 1N inside M , and N has to be discrete.

We want to remark that we have always to be careful of the structure of
the centers of M and of N and of their interrelation. For example, set M =∑
k∈Z

M2,(k)(C) and consider the normal faithful conditional expectation

M =
∑
k∈Z

M2,(k)(C) → N =
∑
k∈Z

C(k){(
a(k) b(k)

c(k) d(k)

)
(k)

: k ∈ Z

}
→
{
λ(k) =

d(k) + a(k+1)

2
: k ∈ Z

}
,
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where the normal embedding of N into M is defined by the formula{(
λ(k−1) 0

0 λ(k)

)
(k)

: k ∈ Z

}
.

The centers ofM and ofN are both isomorphic to l∞(Z), however their intersection
is the smallest possible one — the complex multiples of the identity. By the way,
the index of this mapping equals 4 · 1M . The most unpleasant circumstance is
the non-existence of a common central direct integral decomposition of M and N
commuting with the conditional expectation E : M → N described above, causing
difficulties in proving. As the referee pointed out to us the following proposition
was independently observed by S. Popa ([28], 1.1.2):

Proposition 1.3. Let M be a W ∗-algebra and E : M → N ⊆M be a nor-
mal conditional expectation leaving N invariant, for which there exists a number
K > 1 such that the mapping (K · E − idM ) is a positive mapping. Then the
essential part of the preimage of the discrete part of N is contained in the discrete
part of M , and the image of the discrete part of M is exactly the discrete part
of N . That is, the projection to the discrete part of W ∗-algebras commutes with
normal conditional expectations E on them possessing this additional property.

Proof. Recall that E is faithful by the additional condition. Let p ∈ N be a
minimal projection of N and let q 6 p be a projection of M . Since E is faithful,
E(q) 6= 0 and the inequality 0 < E(q) 6 E(p) = p holds. Since p is minimal inside
N , there exists a number µ ∈ (0, 1] such that E(q) = µp. That is,

E(µ−1 · q) = p,

and because of the additional condition on E we obtain

K · p > K · E(µ−1q) > µ−1q > 0

and the estimate µ > K−1.
Suppose, p ∈ N can be decomposed into a sum of pairwise orthogonal (ar-

bitrary) projections {qα : α ∈ I} inside M . Obviously, qα 6 p for every α ∈ I,
and

p = E(p) =
∑
α∈I

E(qα) =

(∑
α∈I

µα

)
p >

(∑
α∈I

K−1
(α)

)
p.

Consequently, the sum has to be finite and the maximal number of non-
trivial summands is [K], the entire part of K. We see that the projections {qα :
α ∈ I} ∈ M possess only finitely many subprojections and hence, belong to the
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discrete part of M . This shows that the discrete part of N = E(M) is completely
contained in the discrete part of M .

By the way, we obtain that every minimal projection p ∈ N has to be rep-
resented only in a small part of the central direct integral decomposition of M
with finite-dimensional center. Extending p ∈ N ⊆ M by the partial isometries
of N ⊆ M every W ∗-factor block of N turns out to be represented in a part
of the central direct integral decomposition of M with finite-dimensional center.
Conversely, E maps each W ∗-factor block of M into a part of the central direct
integral decomposition of N with finite-dimensional center, cf. [6], Corollary 3.18.

Let PN denote the projection which maps N onto its discrete part. Subject
to the first part of the present proof, PN belongs to the discrete part of M since
PN is the supremum of all minimal projections of N . Applying Proposition 1.2 to
the discrete part PM ·M of M (where PM denotes the (central) projection of M
which carries its discrete part) we obtain the equality PM = PN in the center of
M by the faithfulness of E.

Corollary 1.4. Let M be a discrete W ∗-algebra and E : M → N ⊆M be
a normal conditional expectation for which there exists a number K > 1 such that
the mapping (K · E − idM ) is positive. Then:

(i) The center of M is finite-dimensional if and only if the center of N is
finite-dimensional.

(ii) The positive part of the preimage of a minimal projection p ∈ N is
contained in the finite dimensional W ∗-subalgebra pMp of M generated by the
minimal projections of M which are subprojections of p. The dimension of pMp

is at most [K]2, where [K] denotes the entire part of K.
(iii) For a minimal projection p ∈ N the minimal projections generating pMp

are mapped by E to the set {µ · p : K−1 6 µ 6 1}. The image of pMp is Cp,
i. e. E acts on pMp as a normal state.

(iv) If q1, q2 are two orthogonal minimal projections of M , then either
E(q1Mq1) ≡ E(q2Mq2) or E(q1Mq1) ∩ E(q2Mq2) = {0}.

We restrict our attention to the situation when N is a type I W ∗-factor.
Then the center of M has to be finite dimensional. If we consider M as a self-dual
(right) Hilbert N -module with the N -valued inner product E(〈 · , · 〉M ), (where
〈a, b〉M = a∗b for a, b ∈ M), we can try to count the index of E applying [6],
Theorem 3.5. We have to find a suitable Hilbert N -module basis {mα : α ∈ I} of
M and to count the sum

∑
α
mαm

∗
α. If this sum is finite in M in the sense of w∗-

convergence for some basis, then it is the same for every other Hilbert N -module
basis of M .



96 Michael Frank and Eberhard Kirchberg

We start with a decomposition of the identity 1N = 1M into a w*-sum of
pairwise orthogonal minimal projections {pν} ⊂ N , and with a subdecomposition
of this sum into a w*-sum of pairwise orthogonal minimal projections {qα : α ∈
I} ⊂ M . In our special setting, a suitable basis contains this maximal set of
pairwise orthogonal minimal projections {qα} ofM weighted down by the inverse of
the number µα arising by the equality E(qα) = µαpν for some minimal projection
pν of N with µα ∈ [K−1, 1] (compare with Example 1.1):{√

µ−1
α · qα : α ∈ I

}
⊆ basis.

If M is commutative, then the Hilbert N -module basis of M is complete,
and

Ind(E) =
∑
α∈I

√
µ−1

α · qα ·
(√

µ−1
α · qα

)∗
6 K

∑
α∈I

qα 6 K · 1M

by [6], Theorem 3.5. But, if M is non-commutative, then we have to add all
the minimal partial isometries {uβ : β ∈ J} of M each connecting two minimal
projections, but also weighted down by the inverse of the number µβ arising by
the equality E(u∗βuβ) = µβpν for a minimal projection pν of N , µβ ∈ [K−1, 1],
(compare with Example 1.1 again):{√

µ−1
α · qα : α ∈ I

}
∪
{√

µ−1
β · uβ : β ∈ J

}
≡ basis.

The Hilbert N -module basis of M is complete, but rather big. However, based
on special Hilbert W ∗-module isomorphisms ([10]) we can reduce the generating
set of partial isometries {uβ : β ∈ J} ⊂ M . For this aim, we define equivalence
classes of them by the rule: uβ ∼ uγ if and only if qαuβ = qαuγ 6= 0 for some
minimal projection qα ∈M of our choice and uβ = uγv for some partial isometry
v ∈ N linking the projections {pν} ⊂ N . By application of Hilbert W ∗-module
isomorphisms we obtain a sufficiently large set of generators of M as right Hilbert
N -module if we select only one representative of each equivalence class supplemen-
tary to our choice of minimal projections. As the result, the number of selected
partial isometries {uβ : β ∈ J} ⊂ M satisfying qαuβ = uβ for a fixed minimal
projection qα ∈M is limited by ([K]− 1).

Now we can easily estimate the index value in norm to check the w*-conver-
gence of the appropriate series inside M :

(1.2)

Ind(E) =
∑
α∈I

√
µ−1

α · qα ·
(√

µ−1
α · qα

)∗
+
∑
β∈J

√
µ−1

β · uβ ·
(√

µ−1
β · uβ

)∗
6 K

(∑
α∈I

qα +
∑
β∈J

uβu
∗
β

)
6 (K · [K])

∑
α∈I

qα 6 (K · [K]) · 1M .
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Consequently, ‖Ind(E)‖M 6 K · [K], and E is of finite index in the sense of
M. Baillet, Y. Denizeau and J.-F. Havet ([6], Theorem 3.5). Furthermore, the
mapping ((K · [K]) · E − idM ) is completely positive by the same theorem.

Proposition 1.5. If M is supposed to be a discrete W ∗-algebra, then The-
orem 1 is valid.

For a proof we have only to realize that the equality L(E) = ‖Ind(E)‖ is
valid by [6], Theorem 3.5, (a)–(b), and the value ‖Ind(E)‖ was estimated by the
number (K(E) · [K(E)]) from above by (1.2). (Of course, in special situations this
estimate may be far from being sharp.)

Example 1.6. ([6], Examples 3.7) Let N be a W ∗-algebra. Let M be the
C∗-algebra of all 2×2-matrices with entries from N . The embedding of N into M
can be described as that subset of M consisting of the N -multiples of the identity
matrix. Consider the conditional expectation

E

(
a b

c d

)
=
a+ d

2

(
1 0
0 1

)
.

Denote by ejk those elements of M which possess only one non-zero element at
that place where the j-th row and the k-th column intersect, the identity of N .
Then the set {

√
2 · ejk : j, k = 1, 2} is a Hilbert N -module basis of M , and the

index of E has the value Ind(E) = 4 · idM2 .

If N is commutative, then the mapping (K(i◦E)− idM ) is positive for K > 2
already, whereas it is completely positive for L > 4 only. That is, the minimal
constants of item (ii) and of item (iii) of Theorem 1 may be different, in general,
and in our special setting 4 = L(E) = K(E)2 = 22 ∈ N.

On the contrary, if N is a type I∞, type II1 or separably representable infinite
W ∗-factor, then L(E) = K(E), see [6], [35]. That is, our estimate of the number
L(E) by the number K(E) does not give a formula to calculate the value of L(E)
precisely, in general.

Furthermore, a general estimate L(E) 6 [K(E)]2 is not true: modify the
preceding example with λ ∈ (0, 1) setting

Eλ

(
a b

c d

)
= (λa+ (1− λ)d)

(
1 0
0 1

)
.

Then K(Eλ) = max{λ−1, (1 − λ)−1} and Ind(Eλ) = L(Eλ) = λ−1 + (1 − λ)−1.
For every small ε > 0 and the choice λ(ε) = 1/(2 + ε) the assumption L(Eλ) 6

[K(Eλ)]2 leads to the contradiction ε2 < 0 since

L(Eλ(ε)) = 4 +
ε2

1 + ε
, K(Eλ(ε)) = 2 + ε.
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Corollary 1.7. In contrast to the separable situation (see Example 1.1)
there exist type I factors M on non-separable Hilbert spaces and normal conditional
expectations E of finite index on them with factor image realizing the discrete index
series between one and four.

Proof. Start with the hyperfinite type II1 factor A and the appropriate (nor-
mal) conditional expectation E of finite index on it the image W ∗-algebra of which
is a factor again, (see [15], [27]). Turn to the discrete part M of the bidual W ∗-
algebra A∗∗ of A. The extended normal conditional expectation E∗∗ has the same
invariant K(E∗∗) = K(E), hence, also its restriction to the discrete part M of
A∗∗ does. But M is a type I factor, i.e. M has not any non-trivial central pro-
jection since A has not any non-trivial two-sided norm-closed ideal. Indeed, every
central projection p ∈ M can be decomposed into an orthogonal sum of minimal
projections {pα}. For every projection pα the orthogonal complement (1M − pα)
is the carrier projection of the w*-closure of an appropriate maximal norm-closed
left (or right) ideal Iα of A. Consequently, (1M − p) ∈ Z(M) should be the carrier
projection of the intersection

⋂
α
Iα ≡

⋂
α
I∗α ⊆ A which should be a norm-closed

two-sided ideal, and the claim is obvious.

As a corollary we obtain the structure of the relative commutant in the
general C∗-setting:

Corollary 1.8. Let E : A → B ⊆ A be a conditional expectation of finite
index on a C∗-algebra A. The relative commutant of B inside A is a subhomoge-
neous C∗-algebra of finite type, i.e. it is a C∗-subalgebra of some matrix algebra
Mn(C) with n < ∞ and with entries from a commutative W ∗-algebra C, for ex-
ample C = Z((B∗∗)discr).

Proof. Consider the restriction of the (normal) extended conditional expec-
tation E∗∗ of E to the discrete part of A∗∗. Since E maps the relative commutant
B′∩A of B with respect to A to the center of B , the same is true for the restricted
mapping E∗∗ and the appropriate injectively ∗-represented C∗-subalgebras of the
discrete part of A∗∗. Note that (B∗∗)′ ∩A∗∗ ⊇ B′ ∩A. The center of the discrete
part of B∗∗ is discrete, and the preimage of every minimal projection of it is a ma-
trix algebra of dimension lower-equal [K(E)]2 by Corollary 1.4(i). Consequently,
the injectively ∗-represented C∗-algebra B′∩A is contained in the C∗-algebra of all
n× n-matrices with n = [K(E)]2 and with entries from the center of the discrete
part of B∗∗.
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2. DECOMPOSITION PRESERVING PROPERTIES

By the work of S. Sakai ([29]) and of J. Tomiyama ([33]) it has been known that
normal conditional expectations preserve semi-finiteness, type I and discreteness
of W ∗-algebras as properties of their image W ∗-subalgebras. We want to show
that normal conditional expectations E of finite index not only commute with
the abstract projection of W ∗-algebras to their discrete part, but also with many
canonical abstract projections of W ∗-algebras to other parts of them. We obtain
that such mappings E possess a decomposition into their restrictions to the ap-
propriate type components of the W ∗-algebras involved. The same observations
were made by S. Popa ([28], 1.1.2) independently, a fact which was brought to
our attention by the referee. Another result on projections which belongs to both
Z(N) and Z(M) can be found in [7], Theorem 1.

We would like to point out that the word “preimage” subsequently refers to
that part of the preimage of N via E which is spanned by the positive part of it
inside M . Of course, the kernel of E is spread out over all parts of the central
decomposition of M into W ∗-types, in general.

Proposition 2.1. Let M be a W ∗-algebra and E : M → N ⊆ M be a
normal faithful conditional expectation leaving N invariant. Then the image of
the finite part of M is exactly the finite part of N .

If E is additionally of finite index, then the preimage of the finite (resp.,
infinite) part of N is contained in the finite (resp., infinite) part of M . That
is, the projection to the finite (resp., infinite) part of W ∗-algebras commutes with
normal conditional expectations E of finite index. Moreover, E commutes with
the projection to the type II1 part, to the continuous type Ifin part and with the
projection to the non-discrete infinite part of W ∗-algebras.

Proof. Suppose E to be faithful. Denote a normal faithful center-valued nor-
malized trace on the finite part M ·Pfin of M by tr(·). Suppose r ∈ N is the central
carrier projection of E(Pfin). By the same arguments as in the proof of Propo-
sition 1.2, the C∗-subalgebras Nr and N · E(Pfin) are identical W ∗-subalgebras.
The mapping E ◦ tr ◦ E is a normal faithful positive normalized mapping on Nr

taking values in the center of Nr. Beside this, E ◦ tr◦E is tracial on Nr. Commu-
tative W ∗-algebras are generally known to possess a decomposition into σ-finite
W ∗-subalgebras like ∑

α∈I

⊕
C(α) ⊕

∑
β∈J

⊕
L∞([0, 1], λ)(β)

up to ∗-isomorphism by [32], III.1.22 and [14], Proposition 1.14.10, where λ denotes
the Lebesgue measure on [0, 1]. Considering the direct integral decomposition of
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Nr over its center and taking faithful normal states on the σ-finite components of
Z(Nr) to be composed with the mapping E ◦ tr ◦E, we obtain a separating set of
tracial normal states on Nr. Consequently, Nr is finite, cf. [5], Proposition 6.5.15.

The second statement is an easy consequence of the proof of [14], Theo-
rem 1.6 (1) if we consider arbitrary finite W ∗-algebras N and apply the criterion
on finiteness of W ∗-algebras of Sakai ([5], Theorem 6.3.12) in this generalized
setting.

The continuous type Ifin part of M (i.e. the part with continuous center and
finite-dimensional fibres in the appropriate direct integral decomposition over it) is
mapped to the continuous type Ifin part of N since E maps the type I part of M to
the type I part of N by the results of J. Tomiyama ([33]) and since E preserves the
finite part and the discrete part by our previous results. Conversely, the projection
of N to its continuous type Ifin part can be decomposed into the sum of finitely
many pairwise orthogonal abelian projections {pn : n = 1, . . . ,m} ⊆ N . Since

E(x) =
m∑

n1,n2=1

pn1E(x)pn2 =
m∑

n1,n2=1

E(pn1xpn2)

for all E(x) of the continuous type Ifin part of N , and since the W ∗-subalgebras
{pn1Npn2 : n1, n2 = 1, . . . ,m} are commutative, the preimage of the continuous
type Ifin part of N has to be of finite subhomogeneous type inside M by Corol-
lary 1.8. That is, it is contained in the continuous type Ifin part of M since E
preserves the discrete and the finite W ∗-parts.

Since the projections of W ∗-algebras to their discrete, their finite and their
infinite parts, respectively, commute with conditional expectations E of finite index
on them and because they are realized by central projections Pdiscr, PIcontfin , Pfin

and Pinfin of Z(M)∩Z(N) the mapping E commutes with the product projections
PII1 = Pfin(1M − Pdiscr − PIcontfin) and Pinfin(1M − Pdiscr), too.

Proposition 2.2. Let M be a W ∗-algebra and E : M → N ⊆ M be a
normal faithful conditional expectation leaving N invariant. If E is of finite index,
then:

(i) The image of the continuous type I∞ part of M is contained in the
continuous type I∞ part of N , and the preimage of the continuous type I∞ part of
N is contained in the continuous type I∞ part of M .

(ii) The image of the type II∞ part of M is contained in the type II∞ part
of N , and the preimage of the type II∞ part of N is contained in the type II∞ part
of M .
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(iii) The image of the type III part of M is contained in the type III part of
N , and the preimage of the type III part of N is contained in the type III part
of M .

Proof. By [32], Lemma V.2.29, the preimage of the type III part of N is
completely contained in the type III part of M even if the faithful conditional
expectation E is not assumed to be of finite index. This implies that the semi-
finite part of M is mapped by E into the semi-finite part of N .

Let E be of finite index. The type II∞ part of M is denoted by M · PII∞ .
There exists a faithful semi-finite normal center-valued trace tr on M ·PII∞ , cf. [5],
Proposition 6.5.8. Since E commutes with the projection of W ∗-algebras to their
finite part and to their discrete part by Proposition 1.3 and 2.1, the W ∗-subalgebra
E(M · PII∞) is contained in the direct sum of the continuous type I∞ and of the
type II∞ part of N . Consider the mappings

{f ◦ E ◦ tr ◦ E : f ∈ Z(N)∗}

on the W ∗-subalgebra E(M · PII∞) ⊆ N . These mappings form a faithful family
of semi-finite normal traces on the positive cone of E(M · PII∞). By [5], Proposi-
tion 6.5.7 the W ∗-algebra E(M ·PII∞) has to be semi-finite, and hence, of type II∞.

Conversely, let N be of type II∞ and M arbitrary. Let p ∈ N be a finite
projection. Then the preimage of the type II1 W ∗-subalgebra pNp is exactly the
W ∗-subalgebra pMp. By Proposition 2.1, pMp has to be of type II1, too, since E
is supposed to be of finite index. By [5], Theorem 6.5.10 there exists an increasing
net {pα : α ∈ I} of finite projections in N with strong limit 1N inside N . Since E is
faithful and normal, the least upper bound of the net {pα} ⊂ N ⊆M with respect
to M is 1M = 1N , again. Consequently, M equals the w*-closure of the union of
all type II1 W ∗-subalgebras {pαMpα : α ∈ I}, and it has to be of type II∞.

Now let N be of continuous type I∞ and M arbitrary. Let p ∈ N be an
abelian projection. The preimage of the commutative W ∗-subalgebra pNp of N
equals the W ∗-subalgebra pMp ⊆ M . It has to be of subhomogeneous type by
Corollary 1.8, and hence, it has to be contained in a matrix algebra of finite size
with entries from some commutative W ∗-algebra. That is, pMp is of continuous
type Ifin and possesses sufficiently many abelian subprojections of p with least
upper bound p. Since the set of all abelian projections {pα : α ∈ I} of N has least
upper bound 1N with respect to N , the least upper bound of them with respect
to M has to be 1M = 1N , too, since E is normal and faithful. Then M is the
w*-closure of the union of continuous type Ifin W

∗-subalgebras {pαMpα : α ∈ I}.
The set of abelian projections of M has least upper bound 1M and hence, M is of
continuous type I∞.
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Summing up the considerations above, E maps the type III part of M into
the type III part of N , and the continuous type I∞ part of M into the continuous
type I∞ part of N .

Since EndN (M) and N have a common center and since the W ∗-type of
p · EndN (M) is the same as for pN for any suitable p ∈ Z(N), we conclude that
for finite W ∗-algebras M with finite-dimensional center and normal conditional
expectations of finite index E : M → N ⊆ M the W ∗-algebra M is always a
finitely generated projective N -module in the standard decomposition of M as a
Hilbert N -module via E, cf. [14], Theorem 2.2 (2).

By the examples of P. H. Loi ([23]) we conclude that conditional expectations
of finite index on type IIIλ factors, 0 < λ < 1, can map them to type IIIλm

subfactors for any natural number m ∈ N. Consequently, we can expect type
preserving properties for conditional expectations of finite index on type III W ∗-
algebras only in the type III0 and III1 cases, if at all. This question remains
unsolved for the time being.

3. THE GENERAL JONES’ TOWER CONSTRUCTION

The next step should be the construction of the Jones’ tower in the general
C∗-case and the estimate of a hopefully existing index value for conditional ex-
pectations E : A → B ⊆ A. The general construction of the Jones’ tower in the
W ∗-case was shown by S. Popa ([28], 1.2.2). We are going to obtain a general
index notion and a general Jones’ tower construction in some specific C∗-cases.
Unfortunately, the index value belongs to the discrete part of A∗∗ only, in general,
and not to the original C∗-algebra A itself.

We consider the conditional expectation E : A → B ⊆ A of finite in-
dex. The C∗-algebra A has the structure of a (right) Hilbert B-module setting
{A,E(〈 · , · 〉A)}, where 〈a, b〉A = a∗b for a, b ∈ A by Theorem 1. The conditional
expectation E acts as a bounded (right-)B-linear mapping on A. Furthermore,
it can be identified with an elementary “compact” operator e = θ1A,1A

on the
Hilbert B-module A by the formula e(x) = θ1A,1A

(x) = 1A · E(1∗Ax)(= E(x)).
The projection e is the first projection to build the Jones’ tower. It always ex-
ists since the Hilbert B-module B is a direct summand of the Hilbert B-module
{A,E(〈 · , · 〉A)}.

The set of “compact” B-linear operators KB(A) on the Hilbert B-module
A is defined as the norm closure of the linear hull of the elementary “compact”
operators

{θa1,a2 : θa1,a2(x) = a2 · E(a∗1x), (x ∈ A)}.
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There is also a (faithful) ∗-representation πE of A in the set of all bounded
adjointable module operators End∗B(A) on A by multiplication operators from the
left

{πE(a) : πE(a)(x) = ax, (x ∈ A)}.

Note that not every bounded B-linear operator on the Hilbert B-module
{A,E(〈 · , · 〉A)} should possess an adjoint bounded B-linear operator on it, cf. [10],
Theorems 5.6, 6.8, for criteria. The unital C∗-algebra End∗B(A) of all bounded
adjointable B-linear operators on the Hilbert B-module A is the multiplier C∗-
algebra of the C∗-algebra KB(A) by [13], Lemma 16 and [17], Theorem 1. Its
center can be identified with the center of B by the formula

b ∈ Z(B) → π′E(b) ∈ Z(End∗B(A)) π′E(b)(x) = xb, (x ∈ A).

Obviously, πE(a2)θ1A,1A
πE(a∗1) = θa1,a2 for a1, a2 ∈ A, i. e. the emphasized opera-

tor e generates all elementary “compact” operators on A by two-sided ideal oper-
ations with respect to the ∗-represented C∗-algebra A inside End∗B(A). The linear
hull of the elementary “compact” module operators on A coincide with the C∗-
algebra KB(A), and the latter coincides with its multiplier C∗-algebra End∗B(A)
if and only if A is a projective finitely generated B-module, which recovers the
algebraic case described by Y. Watatani, cf. [10], Proposition 1.1, [35], [9].

What about a conditional expectation E1 : End∗B(A) → πE(A) ? Unfortu-
nately, we can only obtain a finite faithful operator-valued weight

F1 : KB(A) → πE(A) ⊆ End∗B(A), F1(θa1,a2) = πE(a2a
∗
1).

In the algebraically characterizable case, F1 maps idA ∈ KB(A) to the index
value Ind(E) of E existing and belonging to the center of A. The index value
is greater-equal the identity and hence, invertible. The sought for conditional
expectation E1 arises as E1 = πE(Ind(E)−1) · F1 in that case.

But, this easy construction does not work in the general case if the identity
operator on the Hilbert B-module A is non-“compact”. P. Jolissaint gave a cri-
terion in the W ∗-case showing that the right construction can be obtained if and
only if the number L(E) is finite and, hence, the index value exists for the normal
conditional expectation E, [14], Proposition 1.5 (3). By the results of S. Popa
([28]) or by Theorem 1 this gives the general solution of the problem in the W ∗-
case. To overcome this difficulty in the general C∗-case we make the following
definition for the index value of conditional expectations of finite index and show
its correctness afterwards:
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Definition 3.1. Let A be a C∗-algebra and E : A→ B ⊆ A be a conditional
expectation of finite index leaving B invariant. The index value Ind(E) of E is
the projection of the index value Ind(E∗∗) of the extended conditional expectation
E∗∗ : A∗∗ → B∗∗ ⊆ A∗∗ to the discrete part of A∗∗.

Theorem 3.2. Let A be a C∗-algebra and E : A → B ⊆ A be a con-
ditional expectation of finite index leaving B invariant. Then the index value
Ind(E) is contained in the center of A, and there exists a conditional expectation
E1 : End∗B(A) → πE(A) mapping e to πE(Ind(E)−1) if and only if Ind(E) belongs
to the standardly embedded image of A inside the discrete part of A∗∗.

For normal conditional expectations E : M → N ⊆ M of finite index on
W ∗-algebras M the Jones’ tower always exists.

The Jones’ tower exists in the general C∗-case if Ind(E) is contained in the
center of B.

Proof. First, consider normal conditional expectations E : M → N ⊆ M

of finite index on W ∗-algebras M . Then the normal conditional expectation E1

mapping theW ∗-algebra EndN (M) to πE(M) is faithful, and there exists a number
K(E1) = ‖Ind(E)−1‖ such that the mapping (K(E1) · E1 − idEnd) is positive on
EndN (M), see [6], Theorem 3.5. But, by Theorem 1, E1 turns out to be of
finite index, and the Jones’ tower can be built up repeating the basic construction
countably many times. This shows that the Jones’ tower construction always exists
in the W ∗-case.

Now consider the general case. Suppose, Ind(E) belongs to A. The finite
faithful operator-valued weight F1 on the C∗-algebra KB(A) extends uniquely to
a normal finite faithful operator-valued weight F1,∗∗ on the C∗-algebra KB∗∗(A∗∗)
by the way in which E∗∗ is derived from E. Obviously, KB(A) can be considered
as a C∗-subalgebra of KB∗∗(A∗∗), and F1,∗∗ restricted to KB(A) recovers F1. If
the projection of Ind(E∗∗) to the discrete part of A∗∗ is contained in the standard
injective ∗-representation of A in the discrete part of A∗∗, then the restriction
of E1,∗∗ (which exists as a normal conditional expectation from the W ∗-algebra
EndB∗∗(A∗∗) to πE∗∗(A∗∗)) to the C∗-subalgebra End∗B(A) of EndB∗∗(A∗∗) gives
a conditional expectation E1 from End∗B(A) to πE(A) which equals F1 multiplied
by the inverse of the projection of Ind(E∗∗) to the discrete part of A∗∗, which
belongs to Z(A) by assumption.

Conversely, the extension F ∗∗1 of F1 to the bidual linear space andW ∗-algebra
KB(A)∗∗ yields an image F ∗∗1 (id) of the identity inside the center of πE(A∗∗). If
there exists an extension of F1 to End∗B(A) at all, then the projection of F ∗∗1 (id) ∈
Z(A∗∗) to the discrete part of A∗∗ should equal F1(idA) because of the canonical
embedding of multiplier C∗-algebras into bidual W ∗-algebras. Obviously, F1(idA)
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equals the projection of the index value Ind(E∗∗) ∈ Z(A∗∗) to the discrete part
of A∗∗, i. e. Ind(E). Consequently, F1(idA) belongs to A if and only if Ind(E) is
contained in the standard injective ∗-representation of A in the discrete part of
A∗∗, and F1(idA) equals Ind(E).

If Ind(E) is contained in the center of B, then the basic construction of the
Jones’ tower can be repeated countably many times by [6], Theorem 3.5, 3.10,
since Ind(E1) = Ind(E) and the index value is stabilized throughout the tower.

Let us give an example showing that the index value can be outside A, and
that Ind(E) is very different from Ind(E∗∗), in general.

Example 3.3. Let A = C(S1) be the C∗-algebra of all continuous functions
on the unit circle S1 = {eiϕ : ϕ ∈ [0, 2π)}, where S1 is equipped with the usual
topology. Consider the conditional expectation

E(f)(x) =
f(x) + f(x)

2
, (x ∈ S1),

for f ∈ A, where x denotes the complex conjugate of x ∈ S1. Obviously, the
mapping (2 · E − idA) is positive on A and L(E) = K(E) = 2. There does
not exist any finite quasi-basis in the sense of Y. Watatani. The discrete part of
the bidual linear space and W ∗-algebra A∗∗ of A is isomorphic to l∞(S1) by the
Gel’fand theorem. The formula defining E∗∗ is the same as for E. The index can
be counted by [6], Theorem 3.5 (but not algebraically, anyway). The value is

Ind(E) =
{

2 : x2 6= 1
1 : x2 = 1

∈ l∞(S1),

and Ind(E) 6∈ A. Since A∗∗ is commutative (hence, type I) let us have a look on the
non-discrete part of it. By the decomposition theory of commutative W ∗-algebras
it is a direct sum of W ∗-algebras L∞([0, 1], λ), where λ denotes the Lebesgue
measure, cf. [32]. Consider the canonical embedding A = C(S1) ⊂ L∞(S1, λ) ∼=
L∞([0, 1], λ). Again, the index of E∗∗ reduced to L∞(S1, λ) can be found, it
equals f(x) ≡ 2, which is different from the value obtained for the discrete part of
Ind(E∗∗).

The previous example is closely related to a Stinespring theorem for condi-
tional expectations. We found a more general result in a recent paper of G.J. Mur-
phy ([25], Theorem 2.4), but the construction is rather different and more compli-
cated because of the greater generality grasped there.
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Theorem 3.4. Let E : A → B ⊆ A be a conditional expectation of fi-
nite index. Then there exists a Hilbert B-module {M, 〈 · , · 〉}, a ∗-homomorphism
π : A → EndB(M) and a partial isometry V mapping the Hilbert B-module
{A,E(〈 · , · 〉A)} to M so that E(a) = V ∗ ◦ π(a) ◦ V for every a ∈ A and the
linear hull of the set {π(a1)(V (a2)) : a1, a2 ∈ A} is norm-dense in M.

Proof. First of all we have to construct a suitable right Hilbert B-module
M to represent A on it. We consider A as a right B-module multiplying with
elements of B from the right. Start with the algebraic tensor product A� A and
factorize the resulting linear space by the kernel of the B-valued inner pre-product

〈a⊗ x, b⊗ y〉 = E(x∗E(a∗b)y), a, b, x, y ∈ A.

The completion of the resulting linear factor space with respect to the norm
derived from this B-valued inner product is denoted byM. Define the ∗-homomor-
phism π : A → EndB(M) by the formula π(a)(x ⊗ y) = ax ⊗ y for a, x, y ∈ A.
It is a faithful representation of A. The partial isometry V mapping the Hilbert
B-module {A,E(〈 · , · 〉A)} to M can be obtained by the rule V (x) = 1A ⊗ x for
x ∈ A. Respectively, V ∗(x⊗y) = E(x)y for x, y ∈ A. Consequently, for each a ∈ A
the element V ∗ ◦ π(a) ◦ V acts as the B-linear operator E(a) on A multiplying
elements of A by E(a) from the left.

4. FURTHER RESULTS

We would like to describe the local action of conditional expectations of finite index
in a similar way as we have been able to do it in the discreteW ∗-case in Section one.
But, we cannot give such a description on the elements of the C∗-algebra A where
the conditional expectation E acts, in general. Using a fundamental principle of
non-commutative topology we should switch from the minimal projections of the
bidual Banach space and W ∗-algebra A∗∗ either to the maximal (modular) one-
sided ideals of A or to the maximal (modular) hereditary C∗-subalgebras of A or
to the pure states of A.

Corollary 4.1. Let A be a C∗-algebra and E be a conditional expectation
on it for which there exists a number K > 1 such that the mapping (K · E −
idA) is positive. Then the preimage of every maximal (modular, norm-closed) left
ideal of the image C∗-algebra B = E(A) ⊆ A contains the set union of at most
[K(E)] maximal (modular, norm-closed) left ideals of A with pairwise orthogonal
complements of their w*-carrier projections, where [K(E)] denotes the entire part
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of K(E). The intersection of these maximal left ideals of A with B gives that
maximal left ideal of B back we started with.

Proof. Let p ∈ B∗∗ be minimal. Recall, that the carrier projections of max-
imal (modular, norm-closed) one-sided ideals of the C∗-algebra A (which are con-
tained in the bidual W ∗-algebra A∗∗) correspond to the minimal projections of the
bidual W ∗-algebra A∗∗ one-to-one by taking orthogonal complements. By Corol-
lary 1.4 (i), p is a finite sum of minimal projections {qα} ∈ A, which corresponds
to the relation of w*-closed left ideals⋂

α

qαA
∗∗ ≡ pA∗∗

for every such decomposition. Moreover, E(pA∗∗) = pB∗∗ and E(qαA∗∗) ⊆ pB∗∗

for every index α. Suppose E(rA∗∗) ⊆ pB∗∗ for a minimal projection r ∈ A∗∗.
Then E(r) = µp with µ ∈ (0, 1] since p ∈ B∗∗ is minimal and E is faithful. This
implies r 6 p, and r ∈ pA∗∗p, which is a finite dimensional C∗-algebra of dimension
not greater than [K(E)]2 by Corollary 1.4 (i). Hence, the number of minimal w*-
closed left ideals ofA∗∗ mapped into the minimal w*-closed ideal pB∗∗ ofB∗∗ which
possess pairwise orthogonal carrier projections is limited by the number [K(E)],
as well as the number of pairwise orthogonal minimal projections {qα} ∈ A∗∗

mapped to a multiple of p ∈ B∗∗. Applying again Akemann’s correspondence
and observing that E preserves the maximality and the ideal property of maximal
one-sided ideals of A, we are done.

Because of the interrelation of pure states, maximal (modular, norm-closed)
left ideals and maximal (modular) hereditary C∗-subalgebras for arbitrary C∗-
algebras we derive the following fact, cf. [26], [24] and [12]:

Corollary 4.2. Let A be a C∗-algebra and E be a conditional expectation
on it for which there exists a number K > 1 such that the mapping (K ·E− idA) is
positive. Then the preimage of every maximal (modular) hereditary C∗-subalgebra
of B = E(A) ⊆ A contains the set union of at most [K(E)] maximal (modular)
hereditary C∗-subalgebras pαA

∗∗pα∩A of A with pairwise orthogonal complements
of their w∗-carrier projections pα.

Every pure state on B has at most [K(E)] different extensions to pure states
on A such that their restrictions to B ⊆ A equal the original pure state and that
they possess pairwise orthogonal w∗-carrier projections.

As a by-product of our considerations we reobtain a fact which was observed
in the case of type II1 factors by V.F.R. Jones (16], p. 6) and which was proven for
the general W ∗-case by E. Andruchow and D. Stojanoff ([4], Corollary 2.4) and
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S. Popa ([28]). Moreover, we can estimate the dimension of the relative commutant
N ′ ∩M in terms of the constants K(E) and dim(Z(N)).

Corollary 4.3. Let E : M → N be a normal conditional expectation on
a W ∗-algebra M such that there exists a number K > 1 for which the mapping
(K ·E− idA) is positive. Then the center of M is finite-dimensional if and only if
the center of N is finite-dimensional if and only if the relative commutant N ′ ∩M
is finite-dimensional, and

dim(N ′ ∩M) 6 [K(E)]2 · dim(Z(N)).

(Note that dim(Z(N)) 6 dim(N ′ ∩ M), dim(Z(M)) 6 dim(N ′ ∩ M) because
Z(N) ⊆ (N ′ ∩M), Z(M) ⊆ (N ′ ∩M).)

Proof. The equivalence of the three claimed conditions follows from [6],
Corollary 3.19 and from Theorem 1 immediately. Since the center of the rela-
tive commutant N ′∩M contains Z(N) and since the minimal projections of Z(N)
commute with E, the conditional expectation E is the direct sum of dim(Z(N))
states on N ′ ∩M with non-intersecting areas of definition. But, for states on ma-
trix algebras and conditional expectations of finite index on them the dimension of
the matrix algebra is bounded by [K(E)]2 for K(E) being the structural constant
of E, cf. Examples 1.6 and 1.1. This gives the argument.

Our next result generalizes [4], Corollary 2.3 and gives some estimates of the
dimensions of M and N :

Corollary 4.4. Let M be a C∗-algebra, N be a finite-dimensional C∗-
subalgebra of M and E : M → N ⊆M be a faithful conditional expectation. Then
M is finite-dimensional if and only if E is of finite index, and the estimate

dim(M) 6 [K(E)]2 · dim(N)2

is valid. If M and N are commutative, then we have the estimate

dim(M) 6 [K(E)] · dim(N).

Proof. Obviously, if M is finite-dimensional, then it is finitely generated as a
N -module and hence, E is of finite Watatani index. To show the converse, let B be
a maximal commutative C∗-subalgebra of N . Let A be a maximal commutative
C∗-subalgebra of M containing B. Then E(A) = B since E(a)b = E(ab) =
E(ba) = bE(a) for every b ∈ B, every a ∈ A and B is maximal commutative in N
by assumption. Similar to the proof of Proposition 1.3, every minimal projection
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of B has no more than [K(E)] minimal projection-summands in its decomposition
inside A. This shows the statement for commutative C∗-algebras.

By the general theory of C∗-algebras the estimate dim(M) 6 dim(A)2 is
valid for every C∗-algebra M and for every maximal commutative C∗-subalgebra
A of M .

Applying a result of R.V. Kadison ([16]) we can show the following:

Proposition 4.5. Let E : A→ B ⊆ A be a conditional expectation of finite
index. Then the inequality

0 6 (E(a)− a)2 6 (K(E)− 1) · (E(a2)− E(a)2)

holds for self-adjoint elements a ∈ A. Moreover, if p ∈ A is a projection, then
E(p) is a projection if and only if E(p) = p ∈ B. Otherwise, E(p) has a spectral
value 0 < λ < 1. Beside this, E(a2) = E(a)2 if and only if E(a) = a ∈ B, and
K(E) = 1 if and only if E = idM . Furthermore, K(E) ∈ {1} ∪ [2,∞).

Proof. We apply the theorem on page 29 of [16] to our situation. R.V. Kadi-
son states that for positive mappings ψ between unital C∗-algebras with ψ(1) 6 1,
the inequality ψ(a)2 6 ψ(a2) holds for every self-adjoint element a. In our sit-
uation the equality (K(E) · E − idA)(1A) = (K(E) − 1)1A holds. Dividing by
(K(E)− 1) we obtain the inequality

((K(E) · E − idA)(a))2 6 (K(E)− 1) ·
(
(K(E) · E(a2)− a2

)
which is valid for every self-adjoint a ∈ A. After some obvious transformations we
arrive at

K(E)2 ·E(a)2−K(E) ·aE(a)−K(E) ·E(a)a 6 K(E) ·
(
(K(E)− 1) · E(a2)− a2

)
,

an inequality which can be transformed to the inequality claimed above. Setting
E(p) = E(p)2 for a projection p ∈ A we derive 0 = (E(p) − p)2 and hence,
E(p) = p. Since in general 1A > E(p) = E(p2) > E(p)2 > 0 for every projection
p ∈ A the condition p 6∈ B implies the existence of spectral values of E(p) strongly
between zero and one.

The case K(E) = 1 is obvious. Applying E to the derived above inequality
and investigating the resulting inequality for K(E) ∈ [1, 2) we obtain K(E) ∈ {1}
as the only possibility. Example 1.6 realizes any possible value of K(E) inside
[2,∞).
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