ALMOST MULTIPLICATIVE MORPHISMS
 AND ALMOST COMMUTING MATRICES

GUIHUA GONG and HUAXIN LIN

Communicated by Norberto Salinas

Abstract

We prove that a contractive positive linear map which is approximately multiplicative and approximately injective from $C(X)$ into certain unital simple C^{*}-algebras of real rank zero and stable rank one is close to a homomorphism (with finite dimensional range) if a necessary K-theoretical obstruction vanishes and dimension of X is no more than two. We also show that the above is false it the dimension of X is greater than 2, in general.

Keywords: Almost multiplicative morphisms, almost commuting matrices.
MSC (2000): Primary 46L05; Secondary 46L35, 46L80.

0. INTRODUCTION

Let X be a compact metric space. A contractive positive linear map $\psi: C(X) \rightarrow$ A, where A is a C^{*}-algebra, is said to be δ - \mathcal{F}-multiplicative, if

$$
\|\psi(f g)-\psi(f) \psi(g)\|<\delta
$$

for all $f \in \mathcal{F}$. A homomorphism is certainly δ - \mathcal{F}-multiplicative. The purpose of this article is to study when such a δ - \mathcal{F}-multiplicative contractive positive linear morphism is actually close to a homomorphism. A classical problem is whether, for any $\varepsilon>0$ there is $\delta>0$ such that for any n and any pair of selfadjoint matrices $x, y \in M_{n}(\mathbb{C})$ such that $\|x\|,\|y\| \leqslant 1$ and $\|x y-y x\|<\delta$, there exists a commuting pair of $x^{\prime}, y^{\prime} \in M_{n}(\mathbb{C})$ of selfadjoint matrices with $\left\|x^{\prime}-x\right\|+\left\|y-y^{\prime}\right\|<\varepsilon$. It was an old open problem for decades in linear algebra and operator theory which was solved affirmative recently (see [52]). This result is equivalent to the following: For
any $\varepsilon>0$ and any finite subset $\mathcal{F} \in C(\mathbb{D})$, where \mathbb{D} is the unit disk, there is $\delta>0$ and a finite subset $\mathcal{G} \in C(\mathbb{D})$ satisfying: for any finite-dimensional C^{*}-algebra, A and any δ - \mathcal{G}-multiplicative contractive positive linear morphism $\psi: C(\mathbb{D}) \rightarrow A$, there is a homomorphism $h: C(\mathbb{D}) \rightarrow A$ (with finite-dimensional range) such that

$$
\|\psi(f)-h(f)\|<\varepsilon \quad \text { for all } f \in \mathcal{F}
$$

Perturbation of homomorphisms appear in many area of mathematics. Limited to our knowledge, we encounter almost multiplicative morphisms in operator theory, classification of C^{*}-algebra extensions and more recently, classification of nuclear C^{*}-algebras. In fact, the old problem mentioned above attracted many researchers' attention (see [1], [2], [10], [20], [31], [32], [41], [42], [52], [60], [64], [65], [72], [75] and many more).

In the case that A is a unital purely infinite simple C^{*}-algebra, it is shown ([53]) that a δ - \mathcal{G}-multiplicative contractive positive linear morphism $L: C(X) \rightarrow A$ is close to a homomorphism on a given finite subset $\mathcal{F} \subset C(X)$, provided that δ is small enough and \mathcal{G} is large enough.

In general, however, a δ - \mathcal{G}-multiplicative contractive positive linear morphism, is not close to a homomorphism no matter how small δ is and how large \mathcal{G} is. This was first discovered by D. Voiculescu (see [74]). The K-theoretical obstruction was later explained by T.A. Loring (see [60]). Therefore, what we are hoping for is that a δ - \mathcal{G}-multiplicative contractive positive linear morphism is close to a homomorphism, provided that δ is sufficiently small and \mathcal{G} is sufficiently large, as well as the K-theoretical obstruction vanishes. Since every compact metric space X is a subspace of a contractible space Ω, a contractive positive linear morphism $\psi: C(X) \rightarrow A$ can always be viewed as a contractive positive linear morphism from $C(\Omega)$ into A. Therefore, in general, some injectivity condition has to be imposed so that we know which obstacle has to vanish.

Among other things, the main results are the following.
The Main Theorem. Let X be a compact metric space with dimension no more than 2 and let \mathcal{F} be a finite subset of (the unit ball of) $C(X)$. For any $\varepsilon>0$, there exist a finite subset \mathcal{P} of projections in $\mathbf{P}(C(X)), \delta>0, \sigma>0$ and a finite subset \mathcal{G} of (the unit ball of) $C(X)$ such that, whenever A is a unital simple C^{*} algebra with real rank zero, stable rank one, weakly unperforated $\mathrm{K}_{0}(A)$ and unique normalized quasitrace and whenever $\psi: C(X) \rightarrow A$ is a contractive unital positive linear map which is δ - \mathcal{G}-multiplicative and is σ-injective with respect to δ and \mathcal{F}
and $\psi_{*}(\mathcal{P}) \in \mathcal{N}$ then there exists a unital homomorphism $\varphi: C(X) \rightarrow A$ with finite dimensional range such that

$$
\|\psi(f)-\varphi(f)\|<\varepsilon
$$

for all $f \in \mathcal{F}$.
Here $\psi_{*}(\mathcal{P}) \in \mathcal{N}$ simply means that the KK-obstacle vanishes. $\mathbf{P}(C(X)), \mathcal{N}$ and σ-injectivity will be defined below.

In the following corollaries, \mathbb{A} is the set of all unital simple C^{*}-algebras of real rank zero, stable rank one, with weakly unperforated $\mathrm{K}_{0}(A)$ and with a unique normalized quasitrace.

Sometimes, however, we do not need to worry about injectivity.
Corollary M1. Let X be a compact metric space of dimension no more than 2. For any $\varepsilon>0$ and any finite subset \mathcal{F} of $C(X)$, there exist $\delta>0$ and a finite subset \mathcal{P} of $\mathbf{P}(C(X))$, and a finite subset of $C(X)$ such that whenever $A \in \mathbb{A}, \mathrm{~K}_{1}(A)=0$ and $\mathrm{K}_{0}(A)$ is torsion free and whenever $\psi: C(X) \rightarrow A$ is a contractive unital positive linear map which is δ - \mathcal{G}-multiplicative and $\psi_{*}(\mathcal{P}) \in \mathcal{N}$, then there exists a unital homomorphism $h: C(X) \rightarrow A$ with finite dimensional range such that

$$
\|\psi(f)-h(f)\|<\varepsilon
$$

for all $f \in \mathcal{F}$.
Corollary M2. For any $\varepsilon>0$, there is $\delta>0$ so that, whenever $A \in \mathbb{A}$, if $h_{1}, h_{2} \in A$ are two selfadjoint elements with $\left\|h_{1}\right\|,\left\|h_{2}\right\| \leqslant 1$ and

$$
\left\|h_{1} h_{2}-h_{2} h_{1}\right\|<\delta
$$

then there exists a pair of commuting selfadjoint elements $s_{1}, s_{2} \in A$ such that

$$
\left\|h_{1}-s_{1}\right\|<\varepsilon \quad \text { and } \quad\left\|h_{2}-s_{2}\right\|<\varepsilon .
$$

Corollary M3. For any $\varepsilon>0$, there is $\delta>0$ so that, whenever $A \in \mathbb{A}$, if u and v are two unitaries in A,

$$
\|u v-v u\|<\delta \quad \text { and } \quad \kappa(u, v)=0
$$

then there exist commuting unitaries $u_{1}, v_{1} \in A$ such that

$$
\left\|u-u_{1}\right\|<\varepsilon \quad \text { and } \quad\left\|v-v_{1}\right\|<\varepsilon
$$

(If $\mathrm{K}_{1}(A)=0, u_{1}$ and v_{1} can be required to have finite spectrum.) Further, if $\mathrm{K}_{0}(A)$ is a dimension group, then the condition that $\kappa(u, v)=0$ can be replaced by $\tau(\kappa(u, v))=0$, where τ is the normalized quasitrace.

See [32] for the definition of $\kappa(u, v)$ (also 2.1 in [49]).
It turns out, a little surprise to us, that, even with the injectivity and vanishing KK-obstacle, a δ - \mathcal{G}-multiplicative contractive positive linear morphism ψ from a $C(X)$ into C^{*}-algebra A may not be close to a homomorphism when $\operatorname{dim}(X) \geqslant 3$, no matter how small δ is and how large \mathcal{G} is. Please see Section 4 for higher dimension cases. The main technical lemma is stated in Section 1 which is extracted from the proof in [52]. However, the version in this article is in a much more general form and somewhat complicated because of topological complication. Those readers who care more about matrices than KK-theory could simply ignore anything related to KK-theory or K-theory. One can simply assume that all K-theoretical obstacles vanish at least for the case that X is a compact subset of the plane and algebras has no K_{1}. We prove this lemma in Section 1 without proving three lemmas which are needed for the proof. These three lemmas together with some other related matters will be proved in Section 2. Section 3 contains the proof of the main theorem and its corollaries. In Section 4, we show that, in general, the main theorem does not hold for a space X with dimension greater than 2 .

Here are some conventions which are needed in the rest of this paper.
0.1. Definition. Let A be a C^{*}-algebra, X be a compact metric space and $\varphi: C(X) \rightarrow A$ be a homomorphism. Let B be the weak closure of $\varphi(C(X))$ in $A^{* *}$, the enveloping W^{*}-algebra of A. Let C be the C^{*}-algebra of all bounded Borel functions on X. Then φ induces a homomorphism from C into B. Let S be a Borel subset of X and κ_{S} be the characteristic function of S and p_{S} be the image of κ_{S} in B. We call p_{S} the spectral projection ($\mathrm{of} \varphi$) corresponding to the subset S. Let O be an open subset of X and D be the hereditary C^{*}-subalgebra of A generated by $\varphi(h)$, where $h(\xi)>0$ for all $\xi \in O$ and $h(\xi)=0$ for all $\xi \in X \backslash O$ and $h \in C(X)$. The projection p_{O} is the open projection corresponding to the hereditary C^{*}-subalgebra D.
0.2. Definition. Let $\psi: C(X) \rightarrow C$ be a homomorphism, where C is a C^{*}-algebra. Let Ω be the compact subset such that

$$
\operatorname{ker}(\psi)=\{f \in C(X) \mid f(\xi)=0 \text { for all } \xi \in \Omega\}
$$

We will denote Ω by $\operatorname{sp}(\psi)$.
0.3. Definition. (cf. 1.2 of [58]) Let ψ be a contractive positive linear map from $C(X)$ to C^{*}-algebra A, where X is a compact metric space. Fix a finite
subset \mathcal{F} contained in the unit ball of $C(X)$. For $\varepsilon>0$, we denote by $\Sigma_{\varepsilon}(\psi, \mathcal{F})$ (or simply $\Sigma_{\varepsilon}(\psi)$) the closure of the set of those points $\lambda \in X$ for which there is a nonzero hereditary C^{*}-subalgebra B of A which satisfies

$$
\|(f(\lambda)-\psi(f)) b\|<\varepsilon \quad \text { and } \quad\|b(f(\lambda)-\psi(f))\|<\varepsilon
$$

for $f \in \mathcal{F}$ and $b \in B$ with $\|b\| \leqslant 1$. Note that if $\varepsilon<\sigma$, then $\Sigma_{\varepsilon}(\psi) \subset \Sigma_{\sigma}(\psi)$.
We say ψ is σ-injective with respect to δ and \mathcal{F}, or σ - \mathcal{F}-injective, if $\Sigma_{\delta}(\psi, \mathcal{F})$ is σ-dense in X.

It follows from 1.12 in [53] that, for any $\varepsilon>0$ and \mathcal{F}, for any δ - \mathcal{G}-contractive positive linear map ψ, if δ is sufficiently small and \mathcal{G} is sufficiently large, $\Sigma_{\varepsilon}(\psi, \mathcal{F})$ is not empty.

It is important to know, by 1.17 in [53], that, for any $1>\sigma>0$, with sufficiently small δ and sufficiently large \mathcal{G}, a δ - \mathcal{G}-multiplicative contractive positive linear morphism $\psi: C(X) \rightarrow A$ can be replaced by a ε - $h(\mathcal{G})$-multiplicative contractive positive linear morphism $\varphi: C(F) \rightarrow A$ which is σ-injective with respect to ε and $h(\mathcal{G})$, where F is a compact subset of X and $h: C(X) \rightarrow C(F)$ is the surjective map induced by the inclusion $F \rightarrow X$ (see Lemma 3.15).
0.4. Definition. Let B be a C^{*}-algebra and X be a compact metric space. A homomorphism $\psi: C(X) \rightarrow B$ has finite dimensional range if (and only if) there exist a finite subset $\left\{\xi_{i}\right\}_{i=1}^{l} \subset X$ and a finite subset of mutually orthogonal projections $\left\{p_{i}\right\}_{i=1}^{l} \subset B$ such that

$$
\psi(f)=\sum_{i=1}^{l} f\left(\xi_{i}\right) p_{i} \quad \text { for all } f \in C(X)
$$

0.5. Definition. Let X be a finite CW-complex and let A be a unital C^{*} algebra. Suppose that $\varphi: C(X) \rightarrow A \otimes \mathcal{K}$ (or $\varphi: C_{0}(X) \rightarrow A \otimes \mathcal{K}$ if X is not compact) is a homomorphism and $\xi_{1}, \xi_{2}, \ldots, \xi_{m} \in X$ are points in each (compact) connected component of X. Let $Y=X \backslash\left\{x_{1}, \ldots, x_{m}\right\}$. Let $\varphi_{0}: C_{0}(Y) \rightarrow A \otimes \mathcal{K}$ be the restriction of φ. Let $[\varphi]$ be the element in $\operatorname{KK}(C(X), A)$ and let $\left[\varphi_{0}\right]$ be an element in $\operatorname{KK}\left(C_{0}(Y), A\right)$. We denote by $\mathcal{N}^{\prime}(X, A)$ (or just \mathcal{N}^{\prime} if X and A are understood) the set of those elements in $\operatorname{KK}(C(X), A)$ which are represented by those φ such that $\left[\varphi_{0}\right]=0$. Given m mutually orthogonal projections $p_{1}, p_{2}, \ldots, p_{m} \in A \otimes \mathcal{K}$, define $\varphi^{\prime}(f)=\sum_{i=1}^{m} f\left(\xi_{i}\right) p_{i}$ for $f \in C(X)$. Then $\left[\varphi^{\prime}\right] \in \mathcal{N}^{\prime}$. Conversely, if $[\varphi] \in \mathcal{N}^{\prime}$, let $f_{1}, f_{2}, \ldots, f_{m}$ be projections in $C(X)$ corresponding to each component of X, and let $\varphi\left(f_{i}\right)=p_{i}, i=1,2, \ldots, m$; then $[\varphi]-\left[\varphi^{\prime}\right]=0$ in $\operatorname{KK}(C(X), A)$. In fact, from the six-term exact sequence in KK-theory, the map from $\operatorname{KK}(C(X), A)$ into $\operatorname{KK}\left(C_{0}(Y), A\right)$ maps both $[\varphi]$ and $\left[\varphi^{\prime}\right]$ into zero. So they both are in the image
of the map from $\operatorname{KK}\left(C(X) / C_{0}(Y), A\right)$. Note that $C(X) / C_{0}(Y)$ is m copies of \mathbb{C} corresponding to the m components. From the choice of φ^{\prime}, they are both from the same element in $\operatorname{KK}(C(X), A)$.

Now let X be any compact metric space. Then $C(X)=\lim _{n \rightarrow \infty} C\left(X_{n}\right)$, where X_{n} is a finite CW-complex. There is a surjective map $s: \operatorname{KK}(C(X), A) \rightarrow$ $\lim _{n \rightarrow \infty} \operatorname{KK}\left(C\left(X_{n}\right), A\right)$. We denote by \mathcal{N}^{\prime} the set of those elements x in $\operatorname{KK}(C(X), A)$ such that $s(x) \in \lim _{n \rightarrow \infty} \mathcal{N}^{\prime}\left(X_{n}, A\right)$ for any sequence of finite CW-complexes $\left\{X_{n}\right\}$.

Recall that $\operatorname{KL}(C(X), A)$ is the quotient of $\operatorname{KK}(C(X), A)$ by the subgroup of pure extensions in $\operatorname{Ext}\left(\mathrm{K}_{*}(C(X)), \mathrm{K}_{*-1}(A)\right)$ (see [70]).

We denote by \mathcal{N} the image of \mathcal{N}^{\prime} in $\operatorname{KL}(C(X), A)$.
We will write $\Gamma(\varphi)=0$, if φ induces an element in \mathcal{N}. If Y is an open subset of X, and $\varphi: C_{0}(Y) \rightarrow A$ is a homomorphism, then we write $\Gamma(\varphi)=0$, if $\Gamma(\widetilde{\varphi})=0$, where $\widetilde{\varphi}$ is the unital homomorphism from $C(\widetilde{Y}) \rightarrow A$ and \widetilde{Y} is the one-point compactification of Y.
0.6. Definition. The standard definition of mod-p K-theory for C^{*}-algebras as given by Schochet in [73], is

$$
\mathrm{K}_{i}(A ; \mathbb{Z} / n)=\mathrm{K}_{i}\left(A \otimes C_{0}\left(C_{n}\right)\right)
$$

where C_{n} is the 2-dimensional CW-complex obtained by attaching a 2 -cell to \mathbb{S}^{1} via the degree n map from \mathbb{S}^{1} to $\mathbb{S}^{1}\left(\right.$ notice that $\mathrm{K}_{0}\left(C_{0}\left(C_{n}\right)\right)=\mathbb{Z} / n \mathbb{Z}$ and $\left.\mathrm{K}_{1}\left(C_{0}\left(C_{n}\right)\right)=\{0\}\right)$. Let A be a C^{*}-algebra; following [18], we denote

$$
\underline{\mathrm{K}}(A)=\bigoplus_{\substack{i=0,1 \\ n \geqslant 0}} \mathrm{~K}_{i}(A ; \mathbb{Z} / n)
$$

By [18], there is an isomorphism from $\operatorname{KL}(C(X), A)$ onto $\operatorname{Hom}_{\Lambda}(\underline{\mathrm{K}}(C(X)), \underline{\mathrm{K}}(A))$. Note that

$$
\mathrm{K}_{0}\left(A \otimes C\left(C_{m} \times S^{1}\right)\right) \cong \mathrm{K}_{0}(A) \oplus \mathrm{K}_{1}(A) \oplus \mathrm{K}_{0}(A ; \mathbb{Z} / m) \oplus \mathrm{K}_{1}(A ; \mathbb{Z} / m)
$$

We define $\underline{\mathrm{K}}(A)_{+}$to be the semigroup of $\underline{\mathrm{K}}(A)$ generated by $\mathrm{K}_{0}\left(A \otimes C\left(C_{m} \times \mathbb{S}^{1}\right)\right)_{+}$, $m \geqslant 2$. There is an obvious surjective map from $\bigcup_{m>0} \mathrm{~K}_{0}\left(A \otimes C\left(C_{m} \times \mathbb{S}^{1}\right)\right.$ onto $\underline{\mathrm{K}}(A)$.
0.7. Let A be a C^{*}-algebra. Denote by $\mathbf{P}(A)$ the set of projections in $\bigcup_{m \geqslant 0} M_{\infty}\left(A \otimes C\left(C_{m} \times \mathbb{S}^{1}\right)\right)$. Let \mathcal{P} be a finite subset in $\mathbf{P}(A)$. There exist a finite subset $\mathcal{G}(\mathcal{P}) \subset A$ and $\delta(\mathcal{P})>0$ such that if B is any C^{*}-algebra and $\varphi: A \rightarrow B$ is a $*$-preserving linear map which is $\delta(\mathcal{P})-\mathcal{G}(\mathcal{P})$-multiplicative, then

$$
\left\|((\varphi \otimes \mathrm{id})(p))^{2}-(\varphi \otimes \mathrm{id})(p)\right\|<\frac{1}{4}
$$

for all $p \in \mathcal{P}$. Hence, for each $p \in \mathcal{P}$, there is a projection $q \in \mathbf{P}(B)$ such that

$$
\|(\varphi \otimes \mathrm{id})(p)-q\|<\frac{1}{2}
$$

Furthermore, if q^{\prime} is another projection satisfying the same condition, then $\left\|q-q^{\prime}\right\|<1$, hence q is unitarily equivalent to q^{\prime}. Let $\overline{\mathcal{P}}$ be the image of \mathcal{P} in $\underline{K}(A)$. For each $p \in \mathcal{P}$, we set $\varphi_{*}([p])=[q]$. This defines a map $\varphi_{*}: \overline{\mathcal{P}} \rightarrow \underline{\mathrm{K}}(B)$.

Let $\alpha: \overline{\mathcal{P}} \rightarrow \underline{\mathrm{K}}(B)$. Suppose that there is a homomorphism $\psi: C(X) \rightarrow$ $M_{k}(B)$ for some integer k with finite dimensional range such that $\psi_{*}=\alpha: \overline{\mathcal{P}} \rightarrow$ $\underline{\mathrm{K}}(B)$. Then we write $\alpha(\overline{\mathcal{P}}) \in \mathcal{N}$.

The results of this paper were reported by the first named author at the 1995 West Coast Operator Algebra Seminar held at Eugene, Oregon. When this paper was being finalized, there have been some related development. First, Friis and Rørdam obtained a short proof of the result in [52] (see [33]) and then, Terry Loring gave further interesting generalizations ([63]). We consider only those simple C^{*} algebra of real rank zero with unique normalized quasitrace. The case when the C^{*}-algebras are purely infinite and simple is considered in [53]. For more general finite simple C^{*}-algebras, similar results will appear in [57].

1. A TECHNICAL LEMMA

1.1. For any $\varepsilon>0$, and a fixed finite subset $\mathcal{F} \subset C(X)$, let $\delta_{\mathrm{c}}(\varepsilon, \mathcal{F})>0$ such that

$$
|f(x)-f(y)|<\varepsilon
$$

for all $f \in \mathcal{F}$ and for all $x, y \in X$ with dist $(x, y)<\delta_{c}(\varepsilon, \mathcal{F})$.
Suppose that $\varphi: C(X) \rightarrow A$ is a monomorphism, where A is a C^{*}-algebra of real rank zero and stable rank one and X is a compact metric space.

Suppose that there are ideals

$$
A=I_{0} \supset I_{1} \supset \cdots \supset I_{n} \supset I_{n+1}=0,
$$

where I_{i+1} is an ideal of I_{i}. We denote by $\pi_{i}: A \rightarrow A / I_{i}$ the quotient map.
We will also use π_{i} for the quotient map from $M_{L}(A)$ onto $M_{L}\left(A / I_{i}\right)$ for any integer $L>0$.

By [77], if $q \in A / I_{i}$ is a projection, there is a projection $p \in A$ such that $\pi_{i}(p)=q$. We will use this fact repeatedly without further explanation.

For each i, there is a monomorphism $\varphi_{i}: C\left(X_{i}\right) \rightarrow A / I_{i}$ induced by $\varphi, i=$ $1,2, \ldots, n+1$, where X_{i} are compact subsets of X. (Note $X_{n+1}=X$.)

Let $Y_{1}=X_{1}, Y_{i+1}=X_{i+1} \backslash X_{i}$ and $Z_{i+1}=X \backslash X_{i}$. Let $s_{i}: C_{0}\left(Z_{i}\right) \rightarrow C_{0}\left(Y_{i}\right)$ be the natural surjection.

There are also monomorphisms $\psi_{i}: C_{0}\left(Y_{i}\right) \rightarrow I_{i-1} / I_{i}$ induced by φ. Note that $C_{0}\left(Y_{i}\right)$ is an ideal of $C\left(X_{i}\right)$ and $C_{0}\left(Z_{i}\right)$ is an ideal of $C(X)$. To simplify the notation, we will sometime use ψ_{i} for $\psi_{i} \circ s_{i}$.

We also denote by $C(X)_{1}$ the unit ball of $C(X)$.
Condition (A). A map $\psi_{i}: C_{0}\left(Y_{i}\right) \rightarrow I_{i-1} / I_{i}$ is said to satisfy condition (A), if, for any finite subset $\mathcal{F} \subset C_{0}\left(Y_{i}\right)$, for any $\varepsilon>0$, there is a homomorphism $h: C_{0}\left(Y_{i}\right) \rightarrow I_{i-1} / I_{i}$ such that

$$
\|\psi(f)-h(f)\|<\varepsilon
$$

for all $f \in \mathcal{F}$, where $h(f)=\sum_{k=1}^{m(i)} f\left(\xi_{k}^{(i)}\right) e_{k}^{(i)}$, where ξ_{k} are points in Y_{i}.
(So far are just notations).
1.2. Technical Lemma. Let X be a compact metric space with covering dimension no more than 2. Fix $\varepsilon>0$ and a finite subset $\mathcal{F} \subset C(X)$. Suppose that, for each i, there are projections $e \in I_{i-1}$ such that

$$
p \oplus p \oplus \cdots \oplus p \lesssim e
$$

for any number of copies of any projection $p \in I_{i}$. We also assume the following:
(a) For any $\lambda \in X_{i}$, any neighborhood $O(\lambda)$ and any k, there are mutually orthogonal projections $e_{1}, e_{2}, \ldots, e_{k} \in H_{O(\lambda)}$ such that

$$
p \oplus p \oplus \cdots \oplus p \lesssim e_{m}, \quad m=1,2, \ldots, k
$$

for any number of copies of any projection $p \in I_{i}$, where $H_{O(\lambda)}$ is the hereditary C^{*}-subalgebra generated by $\varphi(h)$, where $h \in C(X)$ with $h>0$ in $O(\lambda)$ and zero outside $O(\lambda)$.
(b) (no KK-obstacle) $\Gamma\left(\varphi_{i}\right)=0$ for all i.
(c) The map $\varphi_{1}: C\left(Y_{1}\right) \rightarrow A / I_{1}$ satisfies Condition (A).
(d) The maps $\psi_{i}: C_{0}\left(Y_{i}\right) \rightarrow I_{i-1} / I_{i}$ satisfy Condition (A);
or
(d') $\Gamma\left(\psi_{i}\right)=0$ and

$$
\operatorname{dist}\left(X_{i}, \xi\right)<\frac{\delta_{\mathrm{c}}\left(\frac{\varepsilon}{4}, \mathcal{F}\right)}{2} \quad \text { for all } \xi \in X_{i+1}
$$

(either (d) or $\left.\left(\mathrm{d}^{\prime}\right)\right)$.
(e) $\mathrm{K}_{1}(J / I)=0$ and $\mathrm{K}_{0}(J / I)$ is torsion free for any pair of ideals $J \supset I \supset$ I_{n}, and ψ_{n+1} satisfies $\left(\mathrm{d}^{\prime}\right)$.

Then there are mutually orthogonal projections $p_{1}, p_{2}, \ldots, p_{m} \in A$ such that

$$
\left\|\varphi(f)-\sum_{k=1}^{m} f\left(\lambda_{k}\right) p_{k}\right\|<\varepsilon
$$

for all $f \in \mathcal{F}$, where λ_{k} are (fixed) points in X.
To prove this we need three lemmas.
1.3. Lemma (Dig). (Lemma 2.5 plus Lemma 2.6 in [52]) For any $\varepsilon>0$, any $\eta>0$, any positive numbers a_{2}, \ldots, a_{n}, and any finite subset \mathcal{F} of $C(X)_{1}$, there are $\delta=\delta_{\mathrm{dig}}(\varepsilon, \eta, \mathcal{F})>0$, a finite subset $\mathcal{G}=\mathcal{G}_{\mathrm{dig}}(\varepsilon, \eta, \mathcal{F}) \subset C(X)_{1}$, a finite subset $\left\{\lambda_{k}^{(i)}\right\} \subset Y_{i}$ which is η-dense in Y_{i} and finitely many mutually orthogonal projections $e_{k}^{(i)} \in I_{i-1}\left(I_{0}=A\right)$ such that
(i)

$$
\left\|\varphi(f)-\sum_{i=1}^{n} \psi_{1}^{(i)}(f)-\left(1-\sum_{i=1}^{n} e_{i}\right) \varphi(f)\left(1-\sum_{i=1}^{n} e_{i}\right)\right\|<\varepsilon .
$$

(ii)

$$
\left\|\left(1-\pi_{i}\left(\sum_{j=1}^{n} e_{j}\right)\right) \varphi_{i}\left(f g_{i}\right)-\varphi_{i}\left(f g_{i}\right)\left(1-\pi_{i}\left(\sum_{j=1}^{n} e_{j}\right)\right)\right\|<\varepsilon
$$

for all $f \in \mathcal{G}$, where $\sum_{k} e_{k}^{(i)}=e_{i}$ and $\psi_{1}^{(i)}(f)=\sum_{k} f\left(\lambda_{k}^{(i)}\right) e_{k}^{(i)}$, and where $0 \leqslant g_{i} \leqslant 1$, $g_{i}(t)=0$ if dist $\left(t, X_{i-1}\right)<a_{i} / 4$ and $g_{i}(t)=1$ if dist $\left(t, X_{i-1}\right) \geqslant a_{i} / 2, i=2, \ldots, n$;
(iii) there is $b>0$ such that, for any $0<\beta<b, \Lambda_{i}\left(g_{\beta}^{(i)} f\right)=\Lambda_{i}\left(g_{\beta}^{(i)}\right) \Lambda_{i}(f)$ for all $f \in C(X)$, where $0 \leqslant g_{\beta} \leqslant 1, g_{\beta}^{(i)}(t)=0$ if dist $\left(t, X_{i-1}\right)<\beta / 2$ and $g_{\beta}^{(i)}(t)=1$ if $\operatorname{dist}\left(t, X_{i-1}\right) \geqslant \beta, i=1,2, \ldots, n$, and $\Lambda_{i}=\left(1-\pi_{i}\left(e_{i}\right)\right) \varphi_{i}\left(1-\pi_{i}\left(e_{i}\right)\right)$; and
(iv) $p \oplus p \oplus \cdots \oplus p \lesssim e_{k}^{(i)}$ for any copies of any projection $p \in I_{i}$.

If ψ_{i} satisfies Condition (A), we can require
(v)

$$
\left.\|\left(1-\pi_{i}\left(e_{i}\right)\right) \varphi_{i}\left(f g_{i}\right)\left(1-\pi\left(e_{i}\right)\right)-\sum_{k=1}^{m(i)} f g_{i}\left(\lambda_{k}^{(i)}\right) d_{k}^{(i)}\right) \|<\varepsilon
$$

for all $f \in \mathcal{F},\left\{\lambda_{k}^{(i)}\right\}$ is η-dense in Y_{i}, and

$$
p \oplus p \oplus \cdots \oplus p \lesssim d_{k}^{(i)}
$$

for any copies of any projection $p \in I_{i}$.
(vi) Furthermore, if

$$
\left\|\left(1-\pi_{i}\left(\sum_{j=1}^{n} e_{j}\right)\right) \varphi_{i}(f)\left(1-\pi_{i}\left(\sum_{j=1}^{n} e_{j}\right)\right) \oplus H_{1}(f)-H_{2}(f)\right\|<\delta
$$

for all $f \in \mathcal{G}$, where $H_{1}: C\left(X_{i}\right) \rightarrow M_{L_{i}}\left(A / I_{i}\right)$ and $H_{2}: C\left(X_{i}\right) \rightarrow M_{L_{i}+1}\left(A / I_{i}\right)$ are homomorphisms with finite dimensional range, then there are finitely many mutually orthogonal projections $\left\{p_{k}\right\}$ in $M_{L_{i}+1}\left(A / I_{i}\right)$ with

$$
p \oplus p \oplus \cdots \oplus p \lesssim p_{k}
$$

for any copies of any projection $p \in I_{i}$, and a finite subset $\left\{\xi_{k}\right\}$ in X_{i} which is η-dense in X_{i} such that

$$
\left\|\left(1-\pi_{i}\left(\sum_{j=1}^{n} e_{j}\right)\right) \varphi_{i}(f)\left(1-\pi_{i}\left(\sum_{j=1}^{n} e_{j}\right)\right) \oplus H_{1}(f)-\sum_{k} f\left(\xi_{k}\right) \pi_{i}\left(p_{k}\right)\right\|<\varepsilon
$$

for all $f \in \mathcal{F}$.
1.4. Lemma (Ap). (cf. 2.4 and 2.6 in [52]) For any $\varepsilon>0, \sigma>0$, a finite subset $\mathcal{F} \subset C(X)_{1}$, and a_{2}, \ldots, a_{n} positive numbers there are $\delta=\delta_{\text {ap }}\left(\varepsilon, \sigma,\left\{a_{i}\right\}, \mathcal{F}\right)>$ 0 , a finite subset $\mathcal{G}=\mathcal{G}_{\text {ap }}\left(\varepsilon, \sigma,\left\{a_{i}\right\}, \mathcal{F}\right) \subset C(X)_{1}$ and positive numbers b_{2}, \ldots, b_{n} satisfying the following:
(i) $0 \leqslant g_{j}, g_{j}^{\prime} \leqslant 1$ in $C(X), g_{j}(t)=0$ if dist $\left(t, X_{j-1}\right)<a_{j} / 4, g_{j}(t)=1$ if $\operatorname{dist}\left(t, X_{j-1}\right) \geqslant a_{j} / 2$;
(ii) $g_{j}^{\prime}(t)=0$ if $\operatorname{dist}\left(t, X_{j-1}\right)<b_{j} / 4, g_{j}^{\prime}(t)=1$ if $\operatorname{dist}\left(t, X_{j-1}\right) \geqslant b_{j} / 2$, $j=2, \ldots, n$, and $g_{1}=g_{1}^{\prime}=1$;
(iii) if E is a projection in A and

$$
\left\|\varphi_{j}\left(f g_{j}^{\prime}\right)-\left(1-\pi_{j}(E)\right) \varphi_{j}\left(f g_{j}^{\prime}\right)\left(1-\pi_{j}(E)\right)-h^{\prime}\left(f g_{j}^{\prime}\right)\right\|<\delta
$$

for all $f \in \mathcal{G}$, where $h^{\prime}: C(X) \rightarrow \pi_{j}(E)\left(I_{j-1} / I_{j}\right) \pi_{j}(E)$ is a homomorphism with finite dimensional range, then there are homomorphisms $\psi_{2}^{(j)}: C_{0}\left(Y_{j}\right) \rightarrow$ $Q M_{L_{j}+1}\left(I_{j-1}\right) Q$ and $\psi_{3}^{(j)}: C(X) \rightarrow M_{L_{j}}\left(I_{j-1}\right)$ with finite dimensional range such that

$$
\left\|\left(1-\pi_{j}(E)\right) \varphi_{j}\left(f g_{j}\right)\left(1-\pi_{j}(E)\right) \oplus \pi_{j} \circ \psi_{3}^{(j)}\left(f g_{j}\right)-\pi_{j} \circ \psi_{2}^{(j)}\left(f g_{j}\right)\right\|<\varepsilon
$$

for all $f \in \mathcal{F}$,

$$
\psi_{2}^{(j)}\left(f g_{i}\right)=\sum_{k=1}^{m(j)} f\left(\zeta_{k}^{(j)}\right) q_{k}^{(j)} \quad \text { and } \quad \psi_{3}^{(j)}(f)=\sum_{k} f\left(\xi_{k}\right) d_{k}^{\prime}
$$

where $\left\{\zeta_{k}^{(j)}\right\}$ is σ-dense in $Y_{j}, q_{k}^{(j)}$ are mutually orthogonal projections in $Q M_{L_{j}+1}\left(I_{j-1}\right) Q$ with

$$
p \oplus p \oplus \cdots \oplus p \lesssim q_{k}^{(j)}
$$

for any copies of projections p in $I_{j}, Q=\operatorname{diag}((1-E), 1,1, \ldots, 1)$, and $\xi_{k} \in Y_{j}$ and $g_{j}\left(\xi_{k}\right)=1\left(\right.$ so $\psi_{3}^{(j)}\left(f g_{j}\right)=\psi_{3}^{(j)}(f)$, that is that ξ_{k} is at least $a_{j} / 2$ distance from X_{j-1}).
1.5. Lemma (Ab). (Lemma 2.7 and 2.9 in [52]) Let A be a unital C^{*}-algebra of real rank zero and I be an ideal of A with $\mathrm{K}_{1}(I)=0$ and torsion free $\mathrm{K}_{0}(I)$, $\psi: C(X) \rightarrow A$ be a unital positive linear map and $\pi \circ \psi$ be a unital positive map from $C(Y) \rightarrow A / I$, where $\pi: A \rightarrow A / I$ is the quotient map and Y is a compact subset of X. For any $\varepsilon>0$ and a finite subset $\mathcal{F} \subset C(X)_{1}$, there exists $\delta=\delta_{\mathrm{ab}}(\varepsilon, \mathcal{F})>0, \mathcal{G}=\mathcal{G}_{\mathrm{ab}}(\varepsilon, \mathcal{F}) \subset C(X)_{1}$, a finite subset $\mathcal{P}=\mathcal{P}_{\mathrm{ab}}(Y, \varepsilon, \mathcal{F}) \subset$ $\mathbf{P}(C(Y))$ and $a=a_{\mathrm{ab}}(\varepsilon, \mathcal{F})>0$ satisfying the following: if
(i) $\left\|\pi \circ \psi(f)-h_{1}(f)\right\|<\delta$ for all $f \in \mathcal{G}$, where $h_{1}(f)=\sum_{k=1}^{m} f\left(\lambda_{k}^{\prime}\right) \pi\left(d_{k}\right)$, $\left\{\lambda_{k}^{\prime}\right\}$ is $\delta_{\mathrm{c}}(\varepsilon / 8, \mathcal{F})$-dense in Y and $\left\{d_{k}\right\}$ are mutually orthogonal projections in A with $p \oplus p \oplus \cdots \oplus p \lesssim d_{k}$ for any copies of any projections $p \in I$;
(ii) $\psi\left(g_{\beta} f\right)=\psi\left(g_{\beta}\right) \psi(f)$ for all $f \in C(X)$ and $0<\beta<a$; and
(iii) $\left\|\psi\left(f g_{a / 4}\right)-h^{\prime}\left(f g_{a / 4}\right)\right\|<\delta\left(0 \leqslant g_{d} \leqslant 1, g_{d}(t)=0\right.$, if dist $(t, Y)<d / 4$ and $g_{d}(t)=1$, if dist $\left.(t, Y) \geqslant d / 2\right)$ for all $f \in \mathcal{G}$, where $h^{\prime}: C_{0}(X \backslash Y)$ is a homomorphism with finite dimensional range;
(iv) $\|\psi(f g)-\psi(f) \psi(g)\|<\delta$ for all $f \in \mathcal{G}$; and
(v) (no KK-obstacle) $\psi_{*}(\mathcal{P}) \in \mathcal{N}$.

Then there exists a homomorphism $h_{2}: C(X) \rightarrow A$ with finite dimensional range such that

$$
\left\|\psi(f)-h_{2}(f)\right\|<\varepsilon
$$

for all $f \in \mathcal{F}$.
We will prove these lemmas in the next section.
1.6. Proof of Technical Lemma. We may assume that $\mathcal{F} \subset C(X)_{1}$. We will apply Lemma 1.3 and repeatedly apply Lemma 1.5 and Lemma 1.4.

To apply these lemmas repeatedly, we let X be the same as in Lemma 1.5. We note that, in Lemma 1.5, δ and \mathcal{G} do not depend on Y (but \mathcal{P} does). We first let $\delta_{1}=\delta_{\mathrm{ab}}(\varepsilon / 4, \mathcal{F}) / 4, \mathcal{G}_{1}^{\prime}=\mathcal{G}_{\mathrm{ab}}(\varepsilon / 4, \mathcal{F})$ in Lemma 1.5 , let $\delta_{1}^{\prime}=\delta_{\mathrm{c}}(\varepsilon / 8, \mathcal{F})$, let $\delta_{1}^{\prime \prime}=\delta_{\mathrm{dig}}\left(\delta_{1}^{\prime}, \delta_{1}, \mathcal{G}_{1}^{\prime}\right) / 4$ and let $\mathcal{G}_{1}^{\prime \prime}=\mathcal{G}_{\mathrm{dig}}\left(\delta_{1}^{\prime}, \delta_{1}, \mathcal{G}_{1}^{\prime}\right)$ in Lemma 1.4. Then let $\delta_{i+1}=\delta_{\mathrm{ab}}\left(\delta_{i}^{\prime \prime}, \mathcal{G}_{i}^{\prime \prime}\right) / 4, \mathcal{G}_{i+1}^{\prime}=\mathcal{G}_{\text {ab }}\left(\delta_{i+1}^{\prime \prime}, \mathcal{G}_{i}^{\prime \prime}\right), \delta_{i+1}^{\prime}=\delta_{\mathrm{c}}\left(\delta_{i}^{\prime \prime} / 8, \mathcal{G}^{\prime \prime}\right)$ and $\delta_{i+1}^{\prime \prime}=$ $\delta_{\mathrm{dig}}\left(\delta_{i}^{\prime}, \delta_{i}, \mathcal{G}_{i}^{\prime}\right) / 4, \mathcal{G}_{i+1}^{\prime \prime}=\mathcal{G}_{\mathrm{dig}}\left(\delta_{i}^{\prime}, \delta_{i}, \mathcal{G}_{i}^{\prime}\right) i=1,2, \ldots, n$. We may assume that $\delta_{i+1} \leqslant$ δ_{i} and $\delta_{1} \leqslant \varepsilon / 4$. Set $d_{1}=\min \left\{\delta_{i}^{\prime}, \delta_{i}^{\prime}, \delta_{i}^{\prime \prime} \mid i=1,2, \ldots, n\right\}$ and $a_{i}=a_{\mathrm{ab}}\left(\delta_{i}, \mathcal{G}_{i}^{\prime}\right) / 4$,
$i=2, \ldots, n$ and $a_{1}=0$. Further, denote $\mathcal{P}_{i}=\mathcal{P}_{\mathrm{ab}}\left(X_{i}, d_{1}, \mathcal{F}\right), i=1,2, \ldots, n$. Let $\mathcal{G}_{1}=\bigcup_{i}^{n} \mathcal{G}_{i}^{\prime} \cup \mathcal{F}$.

To apply Lemma 1.4 later, we let $d_{2}=\min \left(d_{1}, \delta_{(\text {ap })}\left(d_{1}, d_{1}, a_{i}, \mathcal{G}_{1}\right)\right), \mathcal{G}_{2}=$ $\mathcal{G}_{(\mathrm{ap})}\left(d_{1}, d_{1}, a_{i}, \mathcal{G}_{1}\right) \cup \mathcal{G}_{1} \cup \mathcal{G}_{\mathrm{dig}}\left(d_{1}, d_{2}, \mathcal{G}_{1}\right)$ and $b_{1}, b_{2}, \ldots, b_{n}$ be as in Lemma 1.4.

Let $g_{i} \in C(X)$ be defined as follows: $g_{i}(t)=0$ if dist $\left(t, X_{i}\right)<b_{i} / 4, g_{i}(t)=1$, if $\operatorname{dist}\left(t, X_{i}\right) \geqslant b_{i} / 2$.
(Now we dig a projection E.)
By Lemma 1.3, there are finite subsets $\left\{\lambda_{k}^{(i)}\right\} \subset Y_{i}$ which are $\delta_{\mathrm{c}}(\varepsilon / 4, \mathcal{F})$-dense in Y_{i} and finitely many mutually orthogonal projections $e_{k}^{(i)} \in I_{i-1}$ (here $I_{0}=A$) such that

$$
\begin{gathered}
\left\|\varphi(f)-\sum_{i=1}^{n} \psi_{1}^{(i)}(f)-\left(1-\sum_{i=1}^{n} e_{i}\right) \varphi(f)\left(1-\sum_{i=1}^{n} e_{i}\right)\right\|<\frac{\varepsilon}{4} \\
\|\left(1-\pi_{i}\left(\sum_{i=1}^{n} e_{i}\right) \varphi_{i}\left(f g_{i}\right)-\varphi_{i}\left(f g_{i}\right)\left(1-\pi_{i}\left(\sum_{i=1}^{n} e_{i}\right)\right) \|<\frac{\varepsilon}{4}\right.
\end{gathered}
$$

for all $f \in \mathcal{G}_{2}$, where $\sum_{k, i} e_{k}^{(i)}=E, \psi_{1}^{(i)}(g)=\sum_{k=1} g\left(\lambda_{k}^{(i)}\right) e_{k}^{(i)}$, and

$$
p \oplus p \oplus \cdots \oplus p \lesssim e_{k}^{(i)}
$$

for any copies of any projection $p \in I_{i}, \varphi_{i}\left(g_{\beta}^{(i)} f\right)=\varphi_{i}\left(g_{\beta}^{(i)}\right) \varphi_{i}(f)$ for all $f \in C(X)$ and $0<\beta<\min _{i}\left\{a_{i}\right\}$, where $g_{\beta}^{(i)}$ are as in Lemma 1.3, and if ψ_{i} satisfies Condition (A), then

$$
\left\|\left(1-\pi_{i}(E)\right) \psi_{i}\left(f g_{i}\right)\left(1-\pi_{i}(E)\right)-\sum_{k=1}^{n(i)} f g_{i}\left(\zeta_{k}^{(i)}\right) \pi_{i}\left(q_{k}^{(i)}\right)\right\|<d_{2}
$$

for all $f \in \mathcal{G}_{1}$, where $\left\{\zeta_{k}^{(i)}\right\}$ is d_{1}-dense in Y_{i}, and $q_{k}^{(i)}$ are mutually orthogonal projections in I_{i-1} and

$$
p \oplus p \oplus \cdots \oplus p \lesssim q_{k}^{(i)}
$$

for any copies of any projection $p \in I_{i}$. Further, if

$$
\left\|\left(1-\pi_{i}\left(\sum_{i=1}^{n} e_{i}\right)\right) \varphi_{i}(f)\left(1-\pi_{i}\left(\sum_{i=1}^{n} e_{i}\right)\right) \oplus H_{1}(f)-H_{2}(f)\right\|<\varepsilon_{\operatorname{dig}}\left(d_{1}, d_{2}, \mathcal{G}_{1}\right)
$$

for all $f \in \mathcal{G}_{2}$, and for some homomorphisms $H_{1}: C\left(X_{i}\right) \rightarrow M_{L_{i}}\left(A / I_{i}\right)$ and $H_{2}: C\left(X_{i}\right) \rightarrow M_{L_{i}+1}\left(A / I_{i}\right)$ with finite dimensional range, then there are some
finitely many mutually orthogonal projections $\left\{p_{k}\right\}$ in $M_{L_{i}+1}\left(A / I_{i}\right)$ with and $\left\{\xi_{k}\right\}$ is d_{1}-dense in X_{i} and

$$
p \oplus p \oplus \cdots \oplus p \lesssim p_{k}
$$

for any copies of any projection $p \in I_{i}$, and $\left\{\xi_{k}\right\}$ is d_{1}-dense in X_{i} such that

$$
\left\|\left(1-\pi_{i}\left(\sum_{i=1}^{n} e_{i}\right)\right) \varphi_{i}(f)\left(1-\pi_{i}\left(\sum_{i=1}^{n} e_{i}\right)\right) \oplus H_{1}(f)-\sum_{k} f\left(\xi_{k}\right) p_{k}\right\|<d_{2}
$$

for all $f \in \mathcal{G}_{1}$. Furthermore, with possibly smaller d_{1}, since $\Gamma\left(\varphi_{k}\right)=0$, we may assume that $\left(1-\pi_{k}(E)\right) \varphi_{i}\left(1-\pi_{k}(E)\right)\left(\mathcal{P}_{k}\right) \in \mathcal{N}$ for $k=1,2, \ldots, n$.

To distinguish the cases (d) and (d^{\prime}), we use i for the case (d) and j for the case (d').

By Lemma 1.4, for each j, there is a homomorphism $\psi_{2}^{(j)}: C_{0}\left(Y_{j}\right) \rightarrow$ $Q M_{L_{j}+1}\left(I_{j}\right) Q$ with finite dimensional range and $\psi_{3}^{(j)}: C(X) \rightarrow M_{L_{j}}\left(I_{j}\right)$ with finite dimensional range $(Q=\operatorname{diag}((1-E, 1,1, \ldots, 1))$ such that

$$
\left\|\left(1-\pi_{j}(E)\right) \varphi_{j}\left(f g_{i}\right)\left(1-\pi_{j}(E)\right) \oplus \pi_{i} \circ \psi_{3}^{(j)}\left(f g_{j}\right)-\pi_{i} \circ \psi_{2}^{(j)}\left(f g_{j}\right)\right\|<\delta_{2}
$$

for all $f \in \mathcal{G}_{2}$ and

$$
\psi_{2}^{(j)}(g)=\sum_{k=1}^{m(j)} g\left(\zeta_{k}^{(j)}\right) \pi_{j}\left(q_{k}^{(j)}\right)
$$

for all $g \in C_{0}\left(Y_{j}\right)$ with $\left\{\zeta_{k}^{(j)}\right\} d_{1}$-dense in Y_{j}, and

$$
\psi_{3}^{(j)}(f)=\sum_{k=1}^{n(j)} f\left(\xi_{k}^{(j)}\right) d_{k}^{(j)}
$$

with $\xi_{k}^{(j)} \in Y_{j}$ and $g_{j}\left(\xi_{k}^{(j)}\right)=1$, where $\left\{d_{k}^{(j)}\right\}$ and $\left\{q_{k}^{(j)}\right\}$ are mutually orthogonal projections in $M_{L_{j}+1}\left(I_{j-1}\right)$ such that

$$
p \oplus p \oplus \cdots \oplus p \lesssim q_{k}^{(j)}
$$

for any number of copies of projection $p \in I_{j}$.
Let $\Phi(g)=\varphi(g) \oplus \sum_{j} \psi_{3}^{(j)}(g)$ for $g \in C(X)$. We would remind to the reader that $\pi_{k}\left(e_{i}\right)=0$ if $i>k$ and $\pi_{k} \circ \psi_{3}^{(j)}=0$ if $k<j$.

Now we will apply Lemma 1.5 repeatedly.
Note that since $\left(1-\pi_{m}(E)\right) \varphi_{m}\left(1-\pi_{m}(E)\right)\left(\mathcal{P}_{m}\right) \in \mathcal{N}$, we have $\left(1-\pi_{m}(E)\right) \pi_{m}$ $\bigcirc \Phi\left(1-\pi_{m}(E)\right)\left(\mathcal{P}_{m}\right) \in \mathcal{N}$.

We also note that

$$
\left(1-\pi_{i}(E)\right) \pi_{i} \circ \Phi\left(\left(1-\pi_{i}(E)\right)\left(f g_{i}\right)=\left(1-\pi_{i}(E)\right) \psi_{i}\left(f g_{i}\right)\left(1-\pi_{i}(E)\right)\right.
$$

and
$\left(1-\pi_{j}(E)\right) \pi_{j} \circ \Phi\left(\left(1-\pi_{j}(E)\right)\left(f g_{j}\right)=\left(1-\pi_{j}(E)\right) \psi_{j}\left(f g_{j}\right)\left(1-\pi_{j}(E)\right) \oplus \pi_{j} \circ \psi_{3}^{(j)}\left(f g_{j}\right)\right.$
for all $f \in \mathcal{G}_{2}$.
Suppose that ψ_{2} satisfies Condition (A), i.e., 2 is one of i.
Working in the A / I_{2}, applying Lemma 1.5 to $\left(1-\pi_{2}(E)\right) \pi_{2} \circ \Phi\left(1-\pi_{2}(E)\right)$ (with the ideal $I=I_{1} / I_{2}$), we obtain a homomorphism $h_{1}^{\prime}: C\left(X_{2}\right) \rightarrow(1-$ $\left.\pi_{2}(E)\right) A / I_{2}\left(1-\pi_{2}(E)\right)$ with finite dimensional range such that

$$
\left\|\left(1-\pi_{2}(E)\right) \varphi_{2}(f)\left(1-\pi_{2}(E)\right)-h_{1}^{\prime}(f)\right\|<\delta_{n-1}^{\prime \prime}
$$

for all $f \in \mathcal{G}_{n-1}^{\prime \prime}$. By the way we dig, we can find h_{1} so that

$$
\left\|\left(1-\pi_{2}(E)\right) \varphi_{2}(f)\left(1-\pi_{2}(E)\right)-h_{1}(f)\right\|<\delta_{n-1}
$$

for all $f \in \mathcal{G}_{n-1}^{\prime}$, where $h_{1}(f)$ has the form $\sum_{k} f\left(\xi_{k}\right) \pi_{2}\left(p_{k}\right)$, where the finite subset $\left\{\xi_{k}\right\}$ is d_{1}-dense in X_{i} and $\left\{p_{k}\right\}$ are finite many mutually orthogonal projections such that

$$
p \oplus p \oplus \cdots \oplus p \lesssim p_{k}
$$

for any copies of any projections in I_{2}.
Suppose that 2 is one of j (the case $\left.\left(\mathrm{d}^{\prime}\right)\right)$.
Still working in A / I_{2} and applying Lemma 1.5 to $\left(1-\pi_{2}(E)\right) \circ \Phi\left(1-\pi_{2}(E)\right)$, we obtain a homomorphism $h_{1}^{\prime}: C\left(X_{2}\right) \rightarrow Q_{2} M_{L_{1}}\left(A / I_{2}\right) Q_{2}$, where $Q_{2} \in M_{L_{1}}\left(A / I_{2}\right)$ with $Q_{2}=\operatorname{diag}(1-E, 1,1, \ldots, 1)$, with finite dimensional range such that

$$
\left\|\left(1-\pi_{2}(E)\right) \pi_{2} \circ \Phi(f)\left(1-\pi_{2}(E)\right)-h_{1}^{\prime}(f)\right\|<\delta_{n-1}^{\prime \prime}
$$

for all $f \in \mathcal{G}_{n-1}^{\prime \prime}$.
By the way we dig, we can further assume that

$$
\left\|\left(1-\pi_{2}(E)\right) \pi_{2} \circ \Phi(f)\left(1-\pi_{2}(E)\right)-h(f)\right\|<\delta_{n-1}^{\prime}
$$

for all $f \in \mathcal{G}_{n-1}^{\prime}$, where $h_{1}(f)$ has the form $\sum_{k} f\left(\xi_{k}\right) \pi_{2}\left(p_{k}\right)$, where the finite subset $\left\{\xi_{k}\right\}$ is d_{1}-dense in X_{i} and $\left\{p_{k}\right\}$ are finite many mutually orthogonal projections such that

$$
p \oplus p \oplus \cdots \oplus p \lesssim p_{k}
$$

for any copies of any projections in I_{2}.
We then apply Lemma 1.5 to $\left(1-\pi_{3}(E) \pi_{3} \circ \Phi\left(1-\pi_{3}(E)\right.\right.$. If 3 is one of i, we obtain a homomorphism $h_{2}: C\left(X_{3}\right) \rightarrow Q_{3} M_{L_{1}+1}\left(A / I_{3}\right) Q(Q=\operatorname{diag}(1-$ $\left.\left.\pi_{3}(E), 1, \ldots, 1\right) \in M_{L_{1}+1}\left(A / I_{3}\right)\right)$ with finite dimensional range such that

$$
\left\|\left(1-\pi_{3}(E)\right) \pi_{3} \circ \Phi(f)\left(1-\pi_{3}(E)\right)-h_{2}(f)\right\|<\delta_{n-2}^{\prime}
$$

for all $f \in \mathcal{G}_{n-2}^{\prime}$ (here L_{1} could be just zero if 2 is also one of i). If 3 is one of j, we obtain a homomorphism $h_{2}: C\left(X_{3}\right) \rightarrow Q_{3} M_{L_{1}+L_{2}+2}\left(A / I_{3}\right) Q_{3}\left(Q_{3}=\right.$ $\left.\operatorname{diag}\left(1-\pi_{3}(E), 1,1, \ldots, 1\right) \in M_{L_{1}+L_{2}+2}\right)$ with finite dimensional range such that

$$
\left\|\left(1-\pi_{3}(E)\right) \pi_{3} \circ \Phi(f)\left(1-\pi_{3}(E)\right)-h_{2}(f)\right\|<\frac{\delta_{n-2}}{2}
$$

for all $f \in \mathcal{G}_{n-2}$. Furthermore, in both cases (d) and (d') (by the way we dig), $h_{2}(f)$ has the form $\sum_{k} f\left(\xi_{k}\right) p_{k}$, where finite subset $\left\{\xi_{k}\right\}$ is d_{1}-dense in X_{i} and $\left\{p_{k}\right\}$ are finite many mutually orthogonal projections such that

$$
p \oplus p \oplus \cdots \oplus p \lesssim p_{k}
$$

for any copies of any projections in I_{3}.
We will repeat this argument. Note that for $j=n$, we apply Corollary 2.15 (which is simpler than Lemma 1.5).

By repeating this argument, we obtain a homomorphism $h: C(X) \rightarrow$ $Q M_{L}(A) Q$ with finite dimensional range such that

$$
\|(1-E) \Phi(f)(1-E)-h(f)\|<\frac{\varepsilon}{4}
$$

for all $f \in \mathcal{G}_{4}$, or

$$
\left\|(1-E) \varphi(f)(1-E) \oplus \sum_{j} \psi_{3}^{(j)}(f)-h(f)\right\|<\frac{\varepsilon}{4}
$$

for all $f \in \mathcal{F}$.
Since $\left\{\lambda_{k}^{(i)}\right\}$ are $\delta_{\mathrm{c}}(\varepsilon / 4, \mathcal{F})$-dense in Y_{i}, if we replace $\xi_{k}^{(j)}$ by nearest points in $\left\{\lambda_{k}^{(j)}\right\}$ in the definition of $\psi_{3}^{(j)}$ and denote it by $\psi_{3}^{(j)^{\prime}}$, we have

$$
\left\|(1-E) \varphi(f)(1-E) \oplus \sum_{j} \psi_{3}^{(j)^{\prime}}(f)-h(f)\right\|<\frac{\varepsilon}{2}
$$

for all $f \in \mathcal{F}$. To save the notation, we may write

$$
\psi_{3}^{(j)^{\prime}}(f)=\sum_{k} f\left(\lambda_{k}^{(j)}\right) d_{k}^{(j)}
$$

with the possibility that some of $d_{k}^{(j)}$ being zero. By our construction, $d_{k}^{(j)} \lesssim e_{k}^{(j)}$ for all k and j. There is a unitary U such that

$$
U^{*} d_{k}^{(i)} U \leqslant e_{k}^{(i)}
$$

We have

$$
\left\|(1-E) \varphi(f)(1-E) \oplus \sum_{k} f\left(\lambda_{k}^{(i)}\right) U^{*} d_{k}^{(i)} U-U^{*} h(f) U\right\|<\frac{\varepsilon}{4}+\frac{\varepsilon}{4}
$$

for all $f \in \mathcal{F}$.
Since

$$
\left\|\varphi(f)-\sum_{i, k} f\left(\lambda_{k}^{(i)}\right) e_{k}^{(i)}-(1-E) \varphi(f)(1-E)\right\|<\frac{\varepsilon}{4}
$$

we obtain

$$
\begin{aligned}
& \left\|\varphi(f)-\sum_{i, k} f\left(\lambda_{k}^{(i)}\right)\left(e_{k}^{(i)}-U^{*} d_{k}^{(i)} U\right)-U^{*} h(f) U\right\| \\
& \leqslant\left\|\varphi(f)-\sum_{i, k} f\left(\lambda_{k}^{(i)}\right) e_{k}^{(i)}-(1-E) \varphi(f)(1-E)\right\| \\
& +\| \sum_{i, k} f\left(\lambda_{k}^{(i)}\right)\left(e_{k}^{(i)}-U^{*} d_{k}^{(i)} U\right) \oplus(1-E) \varphi(f)(1-E) \oplus \sum_{k} f\left(\lambda_{k}^{(i)}\right) U^{*} d_{k}^{(i)} U \\
& -\sum_{i, k} f\left(\lambda_{k}^{(i)}\right)\left(e_{k}^{(i)}-U^{*} d_{k}^{(i)} U\right) \oplus U^{*} h(f) U \| \\
& <\frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}<\varepsilon \\
& \text { for all } f \in \mathcal{F} \text {. }
\end{aligned}
$$

2. LEMMAS
2.1. Let X be a compact metric space. There is a dimension map d : $\mathrm{K}_{0}(C(X)) \rightarrow C(X, \mathbb{Z})$. We denote by ker d_{X} the kernel of d.
2.2. Lemma. Let X be a compact metric space with $\operatorname{dim}(X) \leqslant 2, Y \subset X$ be a compact subset and let $s: C(X) \rightarrow C(Y)$ be the canonical surjective map. Then s_{*} maps $\operatorname{ker} d_{X}$ onto $\operatorname{ker} d_{Y}$.

Proof. There are finite CW-complexes $\left\{X_{n}\right\}$ such that $C(X)=\lim _{n \rightarrow \infty} C\left(X_{n}\right)$ and $\operatorname{ker} d_{X}=\lim _{n \rightarrow \infty} \operatorname{ker} d_{X_{n}}$. Write ker $d_{X_{n}}=\widetilde{\mathrm{K}}_{0}\left(C\left(X_{n}\right)\right.$. Let $B U=\lim _{n \rightarrow \infty} B U(n)$,
where each $B U(n)$ is a classifying space of the complex orthogonal unitaries. Then, we have ker $d_{X}=\lim _{n \rightarrow \infty} \widetilde{\mathrm{~K}}_{0}\left(C\left(X_{n}\right)\right)=[X, B U]$, the homotopy equivalent classes of continuous functions to $B U$. It follows from [4] that for any compact subset Y of X, where X is a compact subspace of \mathbb{R}^{n}, every continuous map $f: Y \rightarrow B U$ can be extended to a continuous map $\tilde{f}: X \rightarrow B U$ if and only if $H^{q}(X, \mathbb{Z})=0$ when $q \geqslant 3$. Since $\operatorname{dim}(X) \leqslant 2, H^{q}(X, \mathbb{Z})=0$ when $q \geqslant 3$. Therefore a continuous map $f: Y \rightarrow B U$ can be extended to a continuous map $\tilde{f}: X \rightarrow B U$. This implies that s_{*} maps ker d_{X} onto $\operatorname{ker} d_{Y}$.
2.3. Lemma. Let $\operatorname{dim}(X) \leqslant 2, Y$ a compact subset of X, A has real rank zero and stable rank one and I be an ideal of A such that $\mathrm{K}_{1}(A)=\mathrm{K}_{1}(I)=0$, $\mathrm{K}_{0}(A)$ and $\mathrm{K}_{0}(I)$ are torsion free. For any finite subset $\mathcal{P} \subset \mathbf{P}(C(Y))$, there are $\delta>0$, a finite subset $\mathcal{G} \subset C(X)$ and a finite subset $\mathcal{P}_{1} \subset \mathbf{P}(C(X)$) (none of them depend on A) satisfying: if $\psi=\psi^{\prime} \circ s \oplus h: C(X) \rightarrow A$ is a δ - \mathcal{G}-multiplicative contractive positive linear morphism with h being a homomorphism with finite dimensional range, $s: C(X) \rightarrow C(Y)$ the surjective map and $\psi^{\prime}: C(Y) \rightarrow e I e$ being a δ-G-multiplicative contractive positive linear morphism such that

$$
\psi_{*}\left(\mathcal{P}_{1}\right) \in \mathcal{N}
$$

then $\left(\psi^{\prime}\right)_{*}(\mathcal{P}) \in \mathcal{N}$.
Proof. Since $\mathrm{K}_{1}(A)=\mathrm{K}_{1}(I)=0, \mathrm{~K}_{0}(A)$ and $\mathrm{K}_{0}(I)$ are torsion free, and $\mathrm{K}_{1}(C(Y))$ is torsion free, we compute that $\mathrm{K} L(C(Y), e I e)=\operatorname{Hom}\left(\mathrm{K}_{0}(C(Y))\right.$, $\left.\mathrm{K}_{0}(e I e)\right)$. Therefore it is sufficient to show that, for any finite set \mathcal{P} of projections in $M_{\infty}(C(Y))$, there is a finite subset $\mathcal{P}_{1} \in M_{\infty}(C(X))$, and there are \mathcal{G} and δ such that if $\psi=\psi^{\prime} \circ s \oplus h^{\prime}: C(X) \rightarrow A$ is a δ - \mathcal{G}-multiplicative contractive positive linear morphism with h^{\prime} being a homomorphism with finite dimensional range, such that

$$
\psi_{*}\left(\overline{\mathcal{P}}_{1}\right) \in \mathcal{N}
$$

(see 0.7 for notation). Then

$$
\left(\psi^{\prime}\right)_{*}=h_{*}: \overline{\mathcal{P}} \rightarrow \mathrm{K}_{0}(e I e)
$$

where $h: C(Y) \rightarrow e I e$ is a homomorphism with finite dimensional range.
Now write $C(Y)=\lim _{n \rightarrow \infty} C\left(Y_{n}\right)$, where Y_{n} are finite CW-complexes and the maps from $C\left(Y_{n}\right)$ to $C(Y)$ are surjective. So we may assume that Y is a compact subset of Y_{n} for each n.

Suppose that F is a finite CW-complex and that $f_{1}, f_{2}, \ldots, f_{l}$ are mutually orthogonal projections in $C(F)$ which represent all connected components of F. We
claim that if $\alpha: \mathrm{K}_{0}(F) \rightarrow \mathrm{K}_{0}(e I e)$ maps ker d_{Y} into zero and $\alpha\left(\left[f_{i}\right]\right)$ can be represented by l mutually orthogonal projections in $e I e$, then there is a homomorphism $h_{1}: C(F) \rightarrow e I e$ such that

$$
\alpha=\left(h_{1} \otimes \mathrm{id}\right)_{*} .
$$

Since $\mathrm{K}_{0}(C(F))$ is finitely generated, we may write $\mathrm{K}_{0}(C(F))=C(F, \mathbb{Z}) \oplus \operatorname{ker} d_{F}$. Let g_{i} be mutually orthogonal projections in eIe such that $\left[g_{i}\right]=\alpha\left(f_{i}\right), i=$ $1,2, \ldots, l$ and ξ_{i} be a point in the i th component corresponding to f_{i}. Define

$$
h_{1}(f)=\sum_{i=1}^{l} f\left(\xi_{i}\right) g_{i} \quad \text { for all } f \in C(F)
$$

Then $\left(h_{1}\right)_{*} \mid \operatorname{ker} d_{F}=0$ and $\left(h_{1}\right)_{*}=\alpha$. This proves the claim. (Note that the requirement that $\alpha\left(\left[f_{i}\right]\right)$ can be represented by l mutually orthogonal projections in $e I e$ is guaranteed by choosing large enough set \mathcal{G} and small enough δ.)

Given any finite subset $\mathcal{P} \subset M_{\infty}(C(Y))$, without loss of generality, by replacing projections by equivalent ones, we may assume that $\mathcal{P} \subset M_{k}\left(C\left(Y_{n}\right)\right)$ for some n and k. Let $f_{1}, f_{2}, \ldots, f_{l}$ be mutually orthogonal projections in $C\left(Y_{n}\right)$ which represent all connected components of Y_{n}. We further assume that each of these component intersects with Y. With smaller δ and larger \mathcal{G}, we may assume that $\left(\psi^{\prime}\right)_{*}\left(f_{i}\right), i=1,2, \ldots$, defines l elements in $\mathrm{K}_{0}(e I e)$ which can be represented by l mutually orthogonal projections. We may further assume that, since $\mathrm{K}_{0}\left(C\left(Y_{n}\right)\right)$ is finitely generated, $\left(\psi^{\prime}\right)_{*}$ gives a homomorphism $\alpha: \mathrm{K}_{0}\left(C\left(Y_{n}\right)\right) \rightarrow \mathrm{K}_{0}(e I e)$.

Let $j: C\left(Y_{n}\right) \rightarrow C(Y)$ be the map in the direct limit. Then $j_{*}\left(\operatorname{ker} d_{Y_{n}}\right) \subset$ $\operatorname{ker} d_{Y}$. Choose a finite subset $\mathcal{P}_{1} \in M_{\infty}(C(X))$ such that $s_{*}\left(\mathcal{P}_{1}\right)$ generates a subgroup which contains $j_{*}\left(\operatorname{ker} d_{Y_{n}}\right)$. This is possible because of Lemma 2.2 and because that ker $d_{Y_{n}}$ is finitely generated. With a sufficiently large \mathcal{P}_{1}, sufficiently large \mathcal{G} and sufficiently small $\delta, \psi_{*}\left(\overline{\mathcal{P}}_{1}\right) \in \mathcal{N}$ (notation as in 0.7) implies that

$$
(\psi)_{*}\left(s_{*}^{-1}\left(j_{*}\left(\operatorname{ker} d_{Y_{n}}\right)\right)=0\right.
$$

Thus $\left(\psi^{\prime} \circ j\right)_{*}\left(\operatorname{ker} d_{Y_{n}}\right)=0$ (we use the injectivity of the map $\mathrm{K}_{0}(e I e) \rightarrow \mathrm{K}_{0}(A)$). So, by the claim, there is a homomorphism $h_{1}: C\left(Y_{n}\right) \rightarrow e I e$ with finite dimensional range such that

$$
\left(\psi^{\prime} \circ j\right)_{*}=\left(h_{1}\right)_{*}: \mathcal{P} \rightarrow \mathrm{K}_{0}(e I e)
$$

Write $h_{1}(f)=\sum_{i=1}^{l} f\left(\xi_{i}\right) g_{i}$ for $f \in C\left(Y_{n}\right)$. Note that we may assume that there are $\xi_{i} \in Y$ since each component intersects with Y. So $h(f)=\sum_{i=1}^{l} f\left(\xi_{i}\right) g_{i}$ for $f \in C(Y)$ defines a homomorphism from $C(Y)$ into $e I e$ and

$$
\left(\psi^{\prime}\right)_{*}\left|\mathcal{P}=h_{*}\right| \mathcal{P}
$$

From the reduction of the beginning of the proof, this ends the proof.
2.4. Lemma. Let X be a compact metric space with dimension no more than two, A be a (unital) C^{*}-algebra and I be an ideal of A with $\mathrm{K}_{1}(A / I)=0$ and torsion free $\mathrm{K}_{0}(A / I)$, and let $\varphi: C(X) \rightarrow A$ be a homomorphism. Suppose that $Y=\operatorname{sp}(\pi \circ \varphi)$, where $\pi: A \rightarrow A / I$ is the quotient map. Denote $\psi: C(Y) \rightarrow A / I$ be the monomorphism induced by φ. If $\Gamma(\varphi) \in \mathrm{K} L(C(X), A) \cap \mathcal{N}$ then $\Gamma(\psi) \in$ $\mathrm{K} L(C(Y), A / I) \cap \mathcal{N}$.

Proof. We have the following commutative diagram:

Since $\Gamma(\varphi) \in \mathrm{K} L(C(X)) \cap \mathcal{N},(\pi \circ \varphi)_{*}\left(\operatorname{ker} d_{X}\right)=0$. Thus, by Lemma 2.2, $(\pi \circ \varphi)_{*}\left(\operatorname{ker} d_{Y}\right)=0$. We note that, since $\mathrm{K}_{1}(A / I)=0$ and $\mathrm{K}_{0}(A / I)$ is torsion free, $\mathrm{K} L(C(Y), A / I)=\operatorname{Hom}\left(\mathrm{K}_{0}\left(C(Y), \mathrm{K}_{0}(A / I)\right)\right.$. Now the argument used in Lemma 2.3 shows that

$$
\Gamma(\psi) \in \mathrm{K} L(C(Y), A / I) \cap \mathcal{N}
$$

2.5. Lemma. Let A be a C^{*}-algebra of real rank zero and stable rank one and H be a hereditary C^{*}-subalgebra of A. Suppose that $\mathrm{K}_{i}(A / I(H))$ is torsion free, where $I(H)$ is the ideal generated by H and $i=0,1$. Let $B=C\left(C_{n} \times \mathbb{S}^{1}\right)$. Then the map from $\mathrm{K}_{0}(H \otimes B) \rightarrow \mathrm{K}_{0}(A \otimes B)$ is injective.

Proof. We first assume that $H=I$ is an ideal of A. Since A and I have real rank zero and stable rank one, the map from $\mathrm{K}_{0}(I) \rightarrow \mathrm{K}_{0}(A)$ is injective. It follows from 2.1 in [51] that the map from $\mathrm{K}_{1}(I) \rightarrow \mathrm{K}_{1}(A)$ is also injective. Therefore we have a long exact sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{Tor}\left(\mathrm{~K}_{i}(I), \mathrm{K}_{j}(B)\right) \rightarrow \operatorname{Tor}\left(\mathrm{K}_{i}(A), \mathrm{K}_{i}(B)\right) \rightarrow \operatorname{Tor}\left(\mathrm{K}_{i}(A / I), \mathrm{K}_{j}(B)\right) \\
& \rightarrow \mathrm{K}_{i}(I) \otimes \mathrm{K}_{j}(B) \rightarrow \mathrm{K}_{i}(A) \otimes \mathrm{K}_{j}(B) \rightarrow \mathrm{K}_{i}(A / I) \otimes \mathrm{K}_{j}(B) \rightarrow 0
\end{aligned}
$$

which gives two short exact sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Tor}\left(\mathrm{~K}_{i}(I), \mathrm{K}_{j}(B)\right) \rightarrow \operatorname{Tor}\left(\mathrm{K}_{i}(A), \mathrm{K}_{j}(B)\right) \rightarrow 0 \\
& 0 \rightarrow \mathrm{~K}_{i}(I) \otimes \mathrm{K}_{j}(B) \rightarrow \mathrm{K}_{i}(A) \otimes \mathrm{K}_{j}(B) \rightarrow \mathrm{K}_{i}(A / I) \otimes \mathrm{K}_{j}(B) \rightarrow 0
\end{aligned}
$$

Using Kunneth formula, we obtain

$$
\begin{array}{llccccc}
0 & \rightarrow & \bigoplus_{i=0}^{1} \mathrm{~K}_{i}(I) \otimes \mathrm{K}_{i}(B) & \rightarrow & \mathrm{K}_{0}(I \otimes B) & \rightarrow & \bigoplus_{i=0}^{1} \operatorname{Tor}\left(\mathrm{~K}_{i}(I), \mathrm{K}_{i+1}(B)\right) \\
\downarrow & & \rightarrow & 0 \\
0 & \rightarrow \bigoplus_{i=0}^{1} \mathrm{~K}_{i}(A) \otimes \mathrm{K}_{i}(B) & \rightarrow & \downarrow & & \mathrm{K}_{0}(A \otimes B) & \rightarrow \\
\bigoplus_{i=0}^{1} \operatorname{Tor}\left(\mathrm{~K}_{i}(A), \mathrm{K}_{i+1}(B)\right) & \rightarrow & & \\
& & & &
\end{array}
$$

Since the left and the right arrows are injective, as we have proved, by Lemma 2.5, the middle one is injective.

Now let e be a projection in A. We will show that the map $\mathrm{K}_{0}(e A e \otimes B) \rightarrow$ $\mathrm{K}_{0}(A \otimes B)$ is injective. Let I_{e} be the ideal of A generated by e. From what has been proved, it suffices to show that the map $\mathrm{K}_{0}(e A e \otimes B) \rightarrow \mathrm{K}_{0}\left(I_{e} \otimes B\right)$ is injective. Note that the ideal of $I_{e} \otimes B$ generated by $e A e \otimes B$ is $I_{e} \otimes B$. So the injectivity follows from 5.3 in [30]. This shows that Lemma 2.5 holds for unital hereditary C^{*}-subalgebras. To get the general case, we note, since any hereditary C^{*}-subalgebra H of A has an approximate identity consisting of projections, that $H \otimes B$ has an approximate identity consisting of projections.
2.6. Lemma. Let A be a unital C^{*}-algebra of real rank zero and stable rank one, and I be an ideal. Suppose that $d \in A$ is a projection such that

$$
p \oplus p \oplus \cdots \oplus p \lesssim d
$$

for any number of copies of any projection $p \in I$ and $e \in A$ is another projection with $e-d \in I$. Then

$$
p \oplus p \oplus \cdots \oplus p \lesssim e
$$

for any number of copies of any projection $p \in I$.
Proof. Note that I has the real rank zero. Let $\left\{q_{n}^{(1)}\right\}$ and $\left\{q_{n}^{(2)}\right\}$ be approximate identities of $d I d$ and $(1-d) I(1-d)$ consisting of projections, respectively. Set $q_{n}=q_{n}^{(1)}+q_{n}^{(2)}$. Then $\left\{q_{n}\right\}$ is an approximate identity for A consisting of projections and $q_{n} d=d q_{n}$ for all n. Since $e-d \in I$, there is n such that

$$
\left\|(e-d)\left(1-q_{n}\right)\right\|<\frac{1}{4}
$$

Note that $d_{1}=\left(1-q_{n}\right) d\left(1-q_{n}\right)$ is a projection, $d_{1} \leqslant d$ and $d-d_{1} \in I$. Thus

$$
p \oplus p \oplus \cdots \oplus p \oplus\left(d-d_{1}\right) \lesssim d
$$

for any number of copies of any projection $p \in I$. Since A has real rank zero and stable rank one,

$$
p \oplus p \oplus \cdots \oplus p \lesssim d_{1}
$$

for any number of copies of any projection $p \in I$. Since

$$
\left\|e\left(1-q_{n}\right) e-d_{1}\right\|<\frac{1}{2}
$$

there is a projection $e_{1} \leqslant e A e$ such that

$$
\left\|e_{1}-d_{1}\right\|<1
$$

This implies that $d_{1} \lesssim e$.
2.7. Lemma. Let A be a C^{*}-algebra of real rank zero and stable rank one, I be an ideal of $A, \varphi: C(X) \rightarrow A$ be a homomorphism, and $\pi: A \rightarrow A / I$ be the quotient map. Let $X_{1}=\mathrm{sp}(\pi \circ \varphi)$. Suppose that, for any $\lambda \in X_{1}$, any neighborhood $O(\lambda)$ and k, there are mutually orthogonal projection $e_{1}, e_{2}, \ldots, e_{k} \leqslant H_{O(\lambda)}$ such that

$$
p \oplus p \oplus \cdots \oplus p \lesssim e_{m}, \quad m=1,2, \ldots, k
$$

for any number of copies of any projection $p \in I_{i}$, where $H_{O(\lambda)}$ is the hereditary C^{*} subalgebra $\varphi(h)$, where $h \in C(X)$ with $h>0$ in $O(\lambda)$ and zero outside $O(\lambda)$. Then, for any $\varepsilon>0, \sigma>0$ and a finite subset $\mathcal{F} \in C(X)$, there is $\eta=\eta(\varepsilon, \sigma, \mathcal{F})>0$ and a finite subset $\mathcal{G}=\mathcal{G}(\varepsilon, \sigma, \mathcal{F})$ of $C(X)$ such that, if

$$
\left\|\pi \circ \varphi(f)-h^{\prime}(f)\right\|<\eta
$$

for all $f \in \mathcal{G}$ for some homomorphism $h: C\left(X_{1}\right) \rightarrow A / I$ with finite dimensional range, then there is a homomorphism $h(f)=\sum_{k=1}^{m} f\left(\xi_{k}\right) \pi\left(p_{k}\right)$, where $\left\{\xi_{k}\right\}$ is σ dense in X_{1} and $\left\{p_{k}\right\}$ are m mutually orthogonal projections in A with $\pi\left(p_{k}\right) \neq 0$ and

$$
p \oplus p \oplus \cdots \oplus p \lesssim p_{k}
$$

for any copies of any projections in I such that

$$
\|\pi \circ \varphi(f)-h(f)\|<\varepsilon
$$

for all $f \in \mathcal{F}$.
Proof. Let $a, b>0$ be positive numbers with $a<b / 4$ and a finite subset $\left\{\zeta_{i}\right\}_{i=1}^{n} \subset X_{1}$ be a b-dense set such that $\operatorname{dist}\left(\zeta_{i}, \zeta_{j}\right) \geqslant a$ if $i \neq j$. Let $f_{i} \in C(X)$ such that $0 \leqslant f_{i} \leqslant 1, f_{i}(t)=1$ if $\operatorname{dist}\left(t, \zeta_{i}\right)<a / 2$ and $f_{i}(t)=0$ if $\operatorname{dist}\left(t, \zeta_{i}\right) \geqslant a$. Let $\mathcal{G}=\mathcal{F} \cup\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$. Suppose that

$$
\left\|\pi \circ \varphi(f)-h^{\prime}(f)\right\|<\eta
$$

for all $f \in \mathcal{G}$, where $h^{\prime}: C\left(X_{1}\right) \rightarrow A / I$ is a homomorphism with finite dimensional range and $\eta>0$ (to be determined later). Suppose that $q_{l}^{(1)}, q_{l}^{(2)}$ are two mutually orthogonal projections in $H_{O\left(\zeta_{l}\right)}$, where

$$
O_{\zeta_{l}}=\left\{x \in X \left\lvert\, \operatorname{dist}\left(x, \zeta_{l}\right)<\frac{a}{4}\right.\right\} .
$$

(The only reason that we take two projections is to be used in the proof of Lemma 1.3.) We have

$$
\left\|\pi\left(q_{l}^{(j)}\right)(\pi \circ \varphi)\left(f_{l}\right)-\pi\left(q_{l}^{(j)}\right) h^{\prime}\left(f_{l}\right)\right\|<\eta, \quad j=1,2 .
$$

Note that $\pi\left(q_{l}^{(j)}\right)(\pi \circ \varphi)\left(f_{l}\right)=\pi\left(q_{l}^{(j)}\right)$. Write $h^{\prime}(f)=\sum_{k=1}^{m} f\left(\lambda_{k}\right) d_{k}$, where $\left\{\lambda_{k}\right\}$ is a subset of X_{1} and d_{k} are mutually orthogonal projections in A / I. Let d_{l}^{\prime} be a sum of some $\left\{d_{k}\right\}$ with the property that $\operatorname{dist}\left(\lambda_{k}, \zeta_{l}\right) \leqslant b$ and $\sum_{l=1}^{n} d_{l}^{\prime}=\sum_{k=1}^{m} d_{k}$. (Note that $\left\{\zeta_{l}\right\}$ is b-dense in X_{1}.) The above inequality implies that

$$
\left\|\pi\left(q_{l}^{(j)}\right)-\pi\left(q_{l}^{(j)}\right) d_{l}^{\prime}\right\|<\eta
$$

whence

$$
\left\|\pi\left(q_{l}^{(j)}\right)-d_{l}^{\prime} \pi\left(q_{l}^{(j)}\right) d_{l}^{\prime}\right\|<2 \eta
$$

A standard argument, with $\eta<1 / 16$, shows that there are mutually orthogonal projections $c_{l}^{(1)}, c_{l}^{(2)} \leqslant d_{l}^{\prime}$ such that

$$
\left\|\pi\left(q_{l}^{(j)}\right)-c_{l}^{(j)}\right\|<4 \eta, \quad j=1,2
$$

This also implies that $\pi\left(q_{l}^{(j)}\right)$ is equivalent to $c_{l}^{(j)}, j=1,2$.
Let

$$
h(f)=\sum_{l=1}^{n} f\left(\zeta_{l}\right) d_{l}^{\prime}
$$

Now if a, b and η are small enough,

$$
\left\|h^{\prime}(f)-h(f)\right\|<\frac{\varepsilon}{2}
$$

for all $f \in \mathcal{F}$. Then, (if η is also less than $\varepsilon / 2$),

$$
\|\pi \circ \varphi(f)-h(f)\|<\varepsilon
$$

for all $f \in \mathcal{F}$. From assumptions, we may assume that

$$
p \oplus p \oplus \cdots \oplus p \lesssim q_{l}^{(j)}
$$

Suppose that $p_{1}, p_{2}, \ldots, p_{n}$ are mutually orthogonal projections in A such that $\pi\left(p_{l}\right)=d_{l}^{\prime}$. Then, by applying Lemma 2.6 with $b \leqslant \sigma, h$ meets the requirements in the lemma.

Note that both Lemma 1.3 and Lemma 1.4 assume the conditions in Lemma 1.2.
2.8. Proof of Lemma 1.3. If we just want to obtain (i) and (ii) in Lemma 1.3, then it follows from [27] (in fact, (iii) follows too - we will explain later).

We now use Lemma 2.7 to obtain (v) and (vi).

Let $a, b>0$ be as in the proof of Lemma 2.7. Let $\left\{\zeta_{k}^{(i)}\right\}$ be finite subsets of Y_{i} which are b-dense in Y_{i} and dist $\left(\zeta_{k}^{(i)}, \zeta_{k^{\prime}}^{(j)}\right) \geqslant a$, if $i \neq j$ or $k \neq k^{\prime}$. We may also assume that

$$
\operatorname{dist}\left(\zeta_{k}^{(i+1)}, X_{i}\right) \geqslant a, \quad i=1,2, \ldots, n
$$

Let $H_{O\left(\zeta_{k}^{(i)}\right)}$ be as in the proof of Lemma 2.7. So, $H_{O\left(\zeta_{k}^{(i)}\right)} \subset I_{i}$. As in [27], if $e_{k}^{(i)} \in H_{O\left(\zeta_{k}^{(i)}\right)}$, with small b, (i) and (ii) are satisfied. We can choose those $e_{k}^{(i)}$ so that (iv) are satisfied.

Suppose that ψ_{i} satisfies Condition (A), then the argument in the proof of Lemma 2.7 applies. Suppose that

$$
\left\|\psi_{i}(f)-h_{i}(f)\right\|<\varepsilon_{1}
$$

for all $f \in \mathcal{G}_{i}$ for some finite subset $\mathcal{G}_{i} \in C_{0}\left(Y_{i}\right)$ and for some small ε_{1}. We may assume that $h_{i}(f)=\sum_{k=1}^{n(i)} f\left(\xi_{k}^{(i)}\right) d_{k}^{(i)}$ with $\xi_{k}^{(i)} \in Y_{i}$. It is clear that, with larger \mathcal{G}_{i} and small η, we may assume that $\left\{\xi_{k}^{(i)}\right\}$ is σ-dense in Y_{i}.

Now fix i (and forget it so that we save some notation) and denote φ_{i} by F. In the proof of Lemma 2.7, we have

$$
\left\|\pi\left(q_{l}^{(j)}\right)-c_{l}^{(j)}\right\|<4 \eta, \quad j=1,2
$$

So, as in the proof of Lemma 2.7, we have that (with $\left.\pi\left(e_{l}\right)=\pi\left(q_{l}^{(1)}\right)\right)$

$$
\left\|\left(1-\sum_{l} \pi\left(e_{l}\right)\right) \pi \circ F(f)\left(1-\sum_{i} \pi\left(e_{l}\right)\right)-\sum_{i} f\left(\zeta_{l}\right)\left(d_{l}^{\prime}-c_{l}^{(1)}\right)\right\|
$$

is small, provided that η is small enough and \mathcal{G}_{i} is large enough. Furthermore, the presence of the second projection $q_{l}^{(2)}$ and $c_{l}^{(2)} \leqslant d_{l}^{\prime}$ in the proof of Lemma 2.7 implies that

$$
p \oplus p \oplus \cdots \oplus p \lesssim d_{l}^{\prime}-c_{l}^{(1)}
$$

Remember that we can do this for each i. This proves (vi). To prove (v), we can apply a similar argument to the homomorphism $\psi_{i} \oplus H$.

Now, to get (iii), let $\beta_{1}>0$ such that

$$
\operatorname{dist}\left(X_{i}, \zeta_{k}^{(i+1)}\right)>\beta_{1}
$$

for all k and i. Then let b in the lemma be $\beta_{1} / 2$. We note that, in the above, $e_{k}^{(i)} \in H_{O\left(\zeta_{k}^{(i)}\right)}$. Thus, if $\beta>0$ and $\beta<\beta_{1} / 2$,

$$
\varphi_{i}\left(g_{\beta}^{(i)}\right) e_{k}^{(i)}=e_{k}^{(i)} \varphi_{i}\left(g_{\beta}^{(i)}\right)=e_{k}^{(i)}
$$

for all k and i. So

$$
\begin{aligned}
\Lambda_{i}\left(g_{\beta}^{(i)} f\right) & =\left(1-\pi_{i}\left(e_{i}\right)\right) \varphi_{i}\left(g_{\beta}^{(i)} f\right)\left(\left(1-\pi_{i}\left(e_{i}\right)\right)\right. \\
& =\left(1-\pi_{i}\left(e_{i}\right)\right) \varphi_{i}\left(g_{\beta}^{(i)}\right) \varphi_{i}(f)\left(1-\pi_{i}\left(e_{i}\right)\right) \\
& =\left(1-\pi_{i}\left(e_{i}\right)\right) \varphi_{i}\left(g_{\beta}^{(i)}\right)\left(1-\pi_{i}\left(e_{i}\right)\right) \varphi_{i}(f)\left(1-\pi_{i}\left(e_{i}\right)\right) \\
& =\Lambda_{i}\left(g_{\beta}^{(i)}\right) \Lambda_{i}(f)
\end{aligned}
$$

for all $f \in C(X)\left(\Lambda_{i}(f)=\left(1-\pi_{i}\left(e_{i}\right)\right) \varphi_{i}(f)\left(1-\pi_{i}\left(e_{i}\right)\right)\right)$.
In what follows we will use 1.6 in [53]. However, when $K_{i}(C(X))$ has torsion, the proof needs to be modified. We include a brief modification here.

Let $C_{n}=B_{n} \otimes \mathcal{K}$ and $D=\prod B_{n} \otimes \mathcal{K}$, where each B_{n} is unital.
We have the following lemma:
2.9. Lemma. For the above D,

$$
K_{i}(D, \mathbb{Z} / k \mathbb{Z})=\prod K_{i}\left(B_{n}, \mathbb{Z} / k \mathbb{Z}\right)
$$

and

$$
K_{i}\left(D / \oplus C_{n}, \mathbb{Z} / k \mathbb{Z}\right)=\prod K_{i}\left(B_{n}, \mathbb{Z} / k \mathbb{Z}\right) / \oplus K_{i}\left(B_{n}, \mathbb{Z} / k \mathbb{Z}\right)
$$

$i=0,1$.
Proof. It is easy to check (since each $C_{n}=B_{n} \otimes \mathcal{K}$) that

$$
K_{0}(D)=\prod K_{0}\left(B_{n}\right)
$$

To show that $K_{1}(D)=\prod K_{1}\left(B_{n}\right)$, we will show that $\left\{u_{n}\right\} \in \widetilde{D}$ connects to the identity if each $u_{n} \in U_{0}\left(\left(B_{n} \otimes \mathcal{K}\right)^{\sim}\right.$. This requires that there are equi-continuous paths of unitaries which connecting u_{n} to $\mathrm{id}_{\left(B_{n} \otimes \mathcal{K}\right)} \sim$. This follows form the proof (not the statement) of 3.7 in [67]. The proof implies that any unitary in $U_{0}\left(\left(B_{n} \otimes\right.\right.$ $\left.\mathcal{K})^{\Upsilon}\right)$ is close to a product of two unitaries connecting to the identity each of which has an exponential length no more than 2π. This implies that the equi-continuous path exists. This proves that $K_{1}(D)=\prod K_{1}\left(B_{n}\right)$. The other two identities follow easily, using the facts that projections and normal partial isometries in $\prod C_{n} / \oplus C_{n}$ lift to projections and normal partial isometries in $\prod C_{n}$.

Now, for $k>0$, we follow an argument in Section 5 of [38]. We have the following long exact sequences (see 23.15.7 (c) in [3] also [73]), for any C^{*}-algebras A,

$$
K_{1}(A) \xrightarrow{k} K_{1}(A) \longrightarrow K_{1}(A, \mathbb{Z} / k \mathbb{Z}) \longrightarrow K_{0}(A) \xrightarrow{k} K_{0}(A)
$$

and

$$
K_{0}(A) \xrightarrow{k} K_{0}(A) \longrightarrow K_{0}(A, \mathbb{Z} / k \mathbb{Z}) \longrightarrow K_{1}(A) \xrightarrow{k} K_{1}(A),
$$

where k is the multiplication by k. We also have the same long exact sequences for each B_{n}. Now since we have shown that $K_{i}(D)=\prod K_{i}\left(B_{n}\right), i=0$, 1 , it follows that

$$
K_{i}(D, \mathbb{Z} / k \mathbb{Z})=\prod K_{i}\left(B_{n}, \mathbb{Z} / k \mathbb{Z}\right), \quad i=0,1
$$

The other two identities for $k>0$ follow.
2.10. Now in the proof of 1.6 in [53], we replace B by $\oplus C_{n}$ and $M(B)$ by D and consider maps $\bar{\Psi}, \bar{\Phi}: C(X) \rightarrow\left(C / \oplus C_{n}\right)^{\text {. }}$. One should verify

$$
\bar{\Psi}_{*}([p])=\bar{\Phi}_{*}([p])
$$

as follows. Assume that $[p]$ is an element in $K_{i}(C(X), \mathbb{Z} / k \mathbb{Z})(i=0$ or $i=1)$ with $k \geqslant 0$, or $[p] \in K_{1}(C(X))$. We identify $\bar{\Psi}_{*}([p])$ and $\bar{\Phi}_{*}([p])$ with elements \bar{z}^{\prime} and $\bar{z}^{\prime \prime}$ in $\prod K_{i}\left(B_{n}, \mathbb{Z} / k \mathbb{Z}\right) / \oplus K_{i}\left(B_{n}, \mathbb{Z} / k \mathbb{Z}\right)$, respectively. Let $\pi_{* i}: \prod K_{i}\left(B_{n}, \mathbb{Z} / k \mathbb{Z}\right) \rightarrow$ $\prod K_{i}\left(B_{n}, \mathbb{Z} / k \mathbb{Z}\right) / \oplus K_{i}\left(B_{n}, \mathbb{Z} / k \mathbb{Z}\right)$. Let $z^{\prime}=\left\{z_{n}^{\prime}\right\}, z^{\prime \prime}=\left\{z_{n}^{\prime \prime}\right\} \in \prod K_{i}\left(B_{n}, \mathbb{Z} / k \mathbb{Z}\right)$ such that $\pi_{* i}\left(z^{\prime}\right)=\bar{z}^{\prime}$ and $\pi_{* i}\left(z^{\prime}\right)=\bar{z}^{\prime \prime}$. On the other hand, we know that

$$
y_{n}=\left(\psi_{n}\right)_{*}(p)=\left(\varphi_{n}\right)_{*}(p) \text { in } K_{i}\left(B_{n}, \mathbb{Z} / k \mathbb{Z}\right) \quad(\text { for } n \geqslant s)
$$

However, $\pi_{* i}\left(\left\{\left(\psi_{n}\right)_{*}(p)\right\}=\bar{z}^{\prime}\right.$ and $\pi_{* i}\left(\left\{\left(\varphi_{n}\right)_{*}(p)\right\}=\bar{z}^{\prime \prime}\right.$. Therefore $\bar{z}^{\prime}=\pi_{* i}\left(\left\{y_{n}\right\}\right)=$ $\bar{z}^{\prime \prime}$. This implies that

$$
\left.\left(\bar{\Psi}_{*}\right)\right|_{K_{i}(C(X), \mathbb{Z} / k \mathbb{Z})}=\left.\left(\bar{\Phi}_{*}\right)\right|_{K_{i}(C(X), \mathbb{Z} / k \mathbb{Z})}
$$

Therefore $\bar{\Psi}_{*}=\bar{\Phi}_{*}: \underline{K}(C(X)) \rightarrow \underline{K}\left(D / \oplus C_{n}\right)$. The rest of the proof of 1.6 in [55] remains the same (but replace $M(B)$ by \widetilde{D}, B by $\oplus C_{n}$ and $M(B) / B$ by $\left(D / \oplus C_{n}\right)^{\sim}$, respectively. It is important to note that a unitary u_{n} in \widetilde{C}_{n} is (arbitrarily) close to a unitary with the form $\lambda\left(1-e_{m}\right)+u_{n}^{\prime}$, where u_{n}^{\prime} is a unitary in $M_{m}\left(B_{n}\right)$, $e_{m}=1_{M_{m}\left(B_{n}\right)}$. Furthermore, for a finite set of projections $d_{1}, d_{2}, \ldots, d_{k}$ and a unitary $u_{n} \in \widetilde{C}_{n}$, one can find large $k(n)$ such that $1_{M_{k(n)}\left(B_{n}\right)}$ approximately commutes with each d_{i} and u. So a standard perturbation shows that we can assume that u_{n} is in $M_{k(n)}\left(B_{n}\right)$ and $\varphi_{n}^{(1)}: C(X) \rightarrow M_{k(n)}\left(B_{n}\right)$.

One should note that, in the statement of 1.6 in [53], from the modification above, we do not need to assume that $A \in \mathbb{A}_{r}$. However, if we want to have the integer L independent of A, φ and ψ, one needs to assume that $A \in \mathbb{A}_{r}, A$ has real rank zero and $K_{0}(A)$ is weakly unperforated.
2.11. Proof of Lemma 1.4. We would like to remind to the reader that the conditions in the Lemma 1.2 are assumed.

Suppose that

$$
\left\|\varphi_{j}\left(f g_{j}^{\prime}\right)-\left(1-\pi_{j}(E)\right) \varphi_{j}\left(f g_{j}^{\prime}\right)\left(1-\pi_{j}(E)\right)-h^{\prime}\left(f g_{j}^{\prime}\right)\right\|<\delta
$$

for all $f \in \mathcal{G}$. For any finite subset $\mathcal{G}_{j} \subset C_{0}\left(Y_{j}\right)$, and $\delta_{1}>0$, with small enough $b_{1}, b_{2}, \ldots, b_{n}$, small enough δ and large enough \mathcal{G},

$$
\left\|\psi_{j}(f)-\left(1-\pi_{j}(E)\right) \psi_{j}(f)\left(1-\pi_{j}(E)\right)-h^{\prime}(f)\right\|<\delta_{1}
$$

for all $f \in \mathcal{G}_{i}$. Let $\Lambda_{j}=\left(1-\pi_{j}(E)\right) \psi_{i}\left(1-\pi_{j}(E)\right)$. To save the notation, let us fix j. For any $\delta_{1}>0$, since I_{j-1} / I_{j} has real rank zero, there is a projection $e \in\left(1-\pi_{j}(E)\right) I_{j-1} / I_{j}\left(1-\pi_{j}(E)\right)$ such that

$$
\left\|e \Lambda_{j}(f) e-\Lambda_{j}(f)\right\|<\delta_{1}
$$

for all $f \in \mathcal{G}_{i}$. Thus, we have

$$
\left\|\psi_{j}(f)-e \Lambda_{j}(f) e-h^{\prime}(f)\right\|<\delta_{1}
$$

for all $f \in \mathcal{G}_{j}$. Note that $e \Lambda_{j} e$ is a contractive positive linear morphism which is $2 \delta_{1}-\mathcal{G}_{j}$-multiplicative.

Since $\Gamma\left(\psi_{i}\right)=0$ and $\mathrm{K}_{0}\left(e\left(I_{j-1} / I_{j}\right) e \otimes B\right) \rightarrow \mathrm{K}_{0}\left(I_{j-1} / I_{j} \otimes B\right)$ is injective for each $B=C\left(C_{n} \times \mathbb{S}^{1}\right)$ by (e) and by 2.5 , we conclude that, for any given finite subset $\mathcal{P}_{j} \in \mathbf{P}\left(C_{0}\left(Y_{j}\right)^{\sim}\right)$, if δ_{1} is small enough and \mathcal{G}_{j}^{\prime} is large enough,

$$
\left(\Lambda_{j}^{\prime}\right)_{*}: \mathcal{P}_{j} \rightarrow \underline{\mathrm{~K}}\left(e\left(I_{j-1} / I_{j}\right) e\right)
$$

is in \mathcal{N}, where $\Lambda_{j}^{\prime}: C_{0}\left(Y_{j}\right)^{\sim} \rightarrow e\left(I_{j-1} / I_{j}\right) e$ is the unital contractive positive linear morphism induced by $e \Lambda_{j} e$.

Now we apply 1.6 in [53] (see 2.12 and also [15]). Note that δ and \mathcal{G} in 1.6 in [53] do not depend on the C^{*}-algebra A. So, for any $\varepsilon_{1}>0$, with small enough δ_{1} and large enough \mathcal{G}_{j} (this require to have small enough δ, small enough $b_{1}, b_{2}, \ldots, b_{n}$, and large enough $\left.\mathcal{G}\right)$, there are homomorphisms $H_{j}: C_{0}\left(Y_{j}\right)^{\sim} \rightarrow$ $M_{L}\left(e\left(I_{j-1} / I_{j}\right) e\right)$ and $h_{j}: C_{0}\left(Y_{j}\right)^{\sim} \rightarrow M_{L+1}\left(e\left(I_{j-1} / I_{j}\right) e\right)$ both with finite dimensional range such that

$$
\left\|\Lambda_{j}^{\prime}(f) \oplus H_{j}(f)-h_{j}(f)\right\|<\frac{\varepsilon_{1}}{2}
$$

for all $f \in \mathcal{G}_{j}$. Thus

$$
\left\|\Lambda_{j}(f) \oplus H_{j}(f)-h_{j}(f)\right\|<\varepsilon_{1}
$$

for all $f \in \mathcal{G}_{j}$, if δ_{1} is small enough, where L is some positive integer. For any $a>0$, let the finite subset $\left\{x_{i}^{(j)}\right\}_{i=1}^{k(j)}$ be a-dense in Y_{j}. There are nonzero projections $q_{1}, q_{2}, \ldots, q_{k(j)}$ mutually orthogonal projections in $M_{N}\left(I_{j-1}\right)$ (for some large N) such that

$$
p \oplus p \oplus \cdots \oplus p \lesssim q_{i}
$$

for any number of copies of any projection $p \in I_{j}$ for each i. Set $H_{j}^{\prime}(f)=$ $\sum_{i} f\left(x_{i}\right) \pi_{j}\left(q_{i}\right)$ for all $f \in C_{0}\left(Y_{j}\right)$. Then

$$
\left\|\Lambda_{j}(f) \oplus H_{j}(f) \oplus \pi_{j} \circ H_{j}^{\prime}(f)-h_{j}(f) \oplus \pi \circ H_{j}^{\prime}(f)\right\|<\varepsilon_{1}
$$

for all $f \in \mathcal{G}_{j}$. Suppose that $H_{j}(f) \oplus H_{j}^{\prime}(f)=\sum_{k=1}^{m(j)} f\left(\zeta_{k}^{(j)}\right) \pi_{j}\left(q_{k}^{(j)}\right)$ and $h_{j}(f) \oplus$ $H_{j}^{\prime}(f)=\sum_{k} f\left(\xi_{k}\right) \pi_{j}\left(d_{k}^{\prime}\right)$ for all $f \in C_{0}\left(Y_{j}\right)$, where $\left\{\zeta_{k}^{(j)}\right\}$ and the finite subset $\left\{\xi_{k}\right\}$ are in $Y_{j},\left\{q_{k}^{(j)}\right\}$ and $\left\{d_{k}^{\prime}\right\}$ are both mutually orthogonal projections in $M_{L+N}\left(I_{j-1}\right)$ and $M_{L+1+N}\left(I_{j-1}\right)$, respectively. We now define $\psi_{2}^{(j)}(f)=\sum_{k=1}^{m(j)} f\left(\zeta_{k}^{(j)}\right) q_{k}^{(j)}$ and $\psi_{3}^{(j)}(f)=\sum_{k} f\left(\xi_{k}\right) d_{k}^{\prime}$ for all $f \in C(X)$. Thus, with small enough ε_{1} and $a>0$, we see that $\psi_{2}^{(j)}$ and $\psi_{3}^{(j)}$ satisfy the requirements.
2.12. Lemma. (L.G. Brown, [6]) Let A be a C^{*}-algebra of real rank zero, q and p be two projections in $A^{* *}$. Suppose that p is an open projection and there is a positive element $a \in A$ such that $q \leqslant e \leqslant p$. Then there exists a projection $e \in A$ such that $q \leqslant e \leqslant p$.

Proof. This follows from [6] $(1 \Rightarrow 2)$.
2.13. Lemma (Cut). (cf Lemma 2.1 in [52]) Let X be a locally compact metric space, $G \subset X$ be an open subset,

$$
I=\left\{f \in C_{0}(X) \mid f(x)=0 \text { if } x \notin G\right\} .
$$

For any $\varepsilon>0, \sigma>0$ and a finite subset $\mathcal{F} \in C_{0}(X)$, there exist $\delta>0, a>0$ and a finite subset $\mathcal{G} \subset C(X)$ satisfying the following: if A is a C^{*}-algebra of real rank zero and $\varphi: C_{0}(X) \rightarrow A$ is a contractive positive linear map, if $\varphi\left(g_{\beta} f\right)=$ $\varphi\left(g_{\beta}\right) \varphi(f)$ for all $f \in C(X)$ and all $0<\beta<a<\sigma$ for some $\sigma>\beta>0$, and if

$$
\left\|\varphi\left(g_{a / 16} f\right)-\sum_{k=1}^{m} g_{a / 16} f\left(\xi_{k}\right) p_{k}\right\|<\delta
$$

for all $f \in \mathcal{G}$, where $\xi_{k} \in G,\left\{p_{k}\right\}$ are mutually orthogonal projections in A and where $g_{d} \in C(X), 0 \leqslant g_{d} \leqslant 1, g_{d}(t)=0$ if dist $(t, X \backslash G)<d / 2$ and $g_{d}(t)=1$ if $\operatorname{dist}(t, X \backslash G) \geqslant d(d>0)$, then there exists a projection $p \in A$ such that

$$
\varphi\left(g_{\sigma}\right) \leqslant p, \quad\|p \varphi(f)-\varphi(f) p\|<\varepsilon
$$

and

$$
\left\|p \varphi(f) p-\sum_{k=1}^{m} f\left(\xi_{k}\right) p_{k}\right\|<\varepsilon
$$

for all $f \in \mathcal{F}$, where $\xi_{k} \in \Omega_{r}$,

$$
\Omega_{r}=\{\xi \in G \mid \operatorname{dist}(\xi, X \backslash G)>r\}
$$

for some $r<a / 2$ and $\left\{p_{k}\right\}$ are mutually orthogonal projections in $p A p$.
Proof. Let $F=X \backslash G$. Fix $\varepsilon>0$ and $\sigma>0$. For any positive number $d>0$, denote by Ω_{d} the set

$$
\{\xi \in G \mid \operatorname{dist}(\xi, F) \geqslant d\}
$$

Let $\mathcal{G}=\mathcal{F} \cup\left\{g_{d} \mid d=a / 2^{i}, 0 \leqslant i \leqslant 4\right\} \cup\left\{g_{d} f \mid f \in \mathcal{F}, d=a / 2^{i}, 0 \leqslant i \leqslant 4\right\}$. Suppose that there are

$$
\xi_{1}, \xi_{2}, \ldots, \xi_{m} \in G
$$

and mutually orthogonal projections $p_{1}, p_{2}, \ldots, p_{m} \in A$ such that

$$
\left\|\varphi\left(g_{d}\right)-\sum_{j=1}^{m} g_{d}\left(\xi_{j}\right) p_{j}\right\|<\eta
$$

and

$$
\left\|\varphi\left(g_{d} f\right)-\sum_{j=1}^{m} g_{d} f\left(\xi_{j}\right) p_{j}\right\|<\eta, \quad d=a / 2^{i}, 0 \leqslant i \leqslant 4
$$

for all $f \in \mathcal{F}$ and for some small $\eta<1 / 16$. Let

$$
p_{a / 8}=\sum_{\xi_{j} \in \Omega_{a / 8}} p_{j}
$$

From the above inequalities,

$$
\left\|\varphi\left(g_{a / 4}\right)-\varphi\left(g_{a / 4}\right) p_{a / 8}\right\|<2 \eta \quad \text { and } \quad\left\|\varphi\left(g_{a / 8}\right) p_{a / 8}-p_{a / 8}\right\|<2 \eta
$$

Since $\varphi\left(g_{a}^{k}\right)=\varphi\left(g_{a}\right)^{k} \leqslant \varphi\left(g_{a / 2}\right)$ for all k,

$$
\varphi\left(g_{\sigma}\right) \leqslant \varphi\left(g_{a}\right) \leqslant q_{a} \leqslant \varphi\left(g_{a / 2}\right) \leqslant q_{a / 2} \leqslant \varphi\left(g_{a / 4}\right)
$$

where q_{d} is the open projection corresponding to the hereditary C^{*}-subalgebra generated by $\varphi\left(g_{d}\right)$.

By Lemma 2.12, there is a projection $p^{\prime} \in A$ such that

$$
\varphi\left(g_{\sigma}\right) \leqslant \varphi\left(g_{a}\right) \leqslant q_{a} \leqslant p^{\prime} \leqslant q_{a / 2}
$$

We have $\left\|p^{\prime} p_{a / 8}-p^{\prime}\right\|<2 \eta$. This implies that

$$
\left\|p_{a / 8} p^{\prime} p_{a / 8}-p^{\prime}\right\|<4 \eta
$$

By 2.1 in [21], there is a unitary $v \in A$ such that

$$
\|v-1\|<8 \eta \quad \text { and } \quad v^{*} p_{a / 8} v \geqslant p^{\prime} \geqslant q_{a} .
$$

We also have

$$
\left\|p_{a / 8} \varphi\left(g_{a / 16} f\right)-\varphi\left(g_{a / 16} f\right) p_{a / 8}\right\|<2 \eta
$$

for all $f \in \mathcal{F}$ and

$$
\left\|p_{a / 8} \varphi(f) p_{a / 8}-\sum_{\xi_{j} \in \Omega_{a / 8}} g_{a / 16} f\left(\xi_{j}\right) p_{j}\right\|<\eta
$$

for all $f \in \mathcal{F}$. From $\left\|\varphi\left(g_{a / 8}\right) p_{a / 8}-p_{a / 8}\right\|<2 \eta$, we obtain

$$
\left\|p_{a / 8}-p_{a / 8} q_{a / 8}\right\|<2 \eta
$$

Thus

$$
\left\|p_{a / 8} \varphi(f)-p_{a / 8} q_{a / 8} \varphi(f)\right\|<2 \eta
$$

for all $f \in \mathcal{F}$. Since $\varphi\left(g_{a / 8} g_{a / 16}\right)=\varphi\left(g_{a / 8}\right) \varphi\left(g_{a / 16}\right)$ and $\varphi\left(g_{a / 16} f\right)=\varphi\left(\left(g_{a / 16}\right) \varphi(f)\right.$ for all $f \in C(X)$, we have $q_{a / 8} \varphi(f)=q_{a / 8} \varphi\left(g_{a / 16} f\right)$. Then

$$
\left\|p_{a / 8} \varphi(f)-p_{a / 8} \varphi\left(g_{a / 16} f\right)\right\|<4 \eta
$$

for all $f \in \mathcal{F}$. Similarly,

$$
\left\|\varphi(f) p_{a / 8}-\varphi\left(g_{a / 16} f\right) p_{a / 8}\right\|<4 \eta
$$

for all $f \in \mathcal{F}$. Therefore

$$
\left\|p_{a / 8} \varphi(f)-\varphi(f) p_{a / 8}\right\|<10 \eta
$$

for all $f \in \mathcal{F}$ and

$$
\left\|p_{a / 8} \varphi(f) p_{a / 8}-\sum_{\xi_{j} \in \Omega_{a / 8}} f\left(\xi_{j}\right) p_{j}\right\|<10 \eta .
$$

Notice that

$$
\left\|v^{*} p_{a / 8} v-p_{a / 8}\right\|<16 \eta
$$

We take $p=v^{*} p_{a / 8} v$ and $\delta=\eta<\varepsilon / 64$.
2.14. Proof of Lemma 1.5. Let $F=Y \subset X$ and $G=X \backslash F$. Fix $\varepsilon>0$ and a finite subset $\mathcal{F} \subset C(X)_{1}$. Let $\sigma=(1 / 2) \delta_{\mathrm{c}}(\varepsilon / 8, \mathcal{F})$ and let $\mathcal{P}_{1}=P(X, \varepsilon, \mathcal{F})$ and $\delta_{0}=\delta(X, \varepsilon, \mathcal{F})$ be as in Theorem 1.6 in [53]. Suppose that $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ is $\sigma / 16$ dense in X. Denote $Y_{i}=\left\{\xi \in X \mid \operatorname{dist}\left(\xi, x_{i}\right) \leqslant \sigma / 8\right\}$ and denote $X_{1}, X_{2}, \ldots, X_{2^{N}}$ all possible finite union of Y_{i}^{\prime} 's. Let $\mathcal{P}_{i}^{\prime}=\mathcal{P}\left(X_{i}, \varepsilon / 8, s_{i}(\mathcal{F})\right)$ be as in Theorem 1.6 in [53], where $s_{i}: C(X) \rightarrow C\left(X_{i}\right)$ is the natural surjective map. Among $\left\{X_{i}\right\}$, there is one, which we denote by X_{σ}, satisfying the following

$$
\{\xi \in X \mid \operatorname{dist}(\xi, F) \leqslant \sigma\} \subset X_{\sigma} \subset\{\xi \in X \mid \operatorname{dist}(\xi, F) \leqslant 2 \sigma\}
$$

Let $\mathcal{G}_{1}=\mathcal{G}(\varepsilon / 8, \mathcal{F}) \in C(X)_{1}$ and $\mathcal{G}_{2}=\bigcup_{i=1}^{2^{n}} \mathcal{G}\left(\varepsilon / 8, s_{i}(\mathcal{F})\right) \in C\left(X_{i}\right)_{1}$ be as in Theorem 1.6 in [53]. Note that \mathcal{G}_{2} does not depend on F but on X, ε and \mathcal{F}. Let $\delta_{1}=\delta(\varepsilon / 8, s(\mathcal{F}))$ be as in Theorem 1.6 in [53]. Every function in $C\left(X_{\sigma}\right)_{1}$ can be extended to a function in $C(X)_{1}$. Let \mathcal{G}_{2}^{\prime} be the set of such extensions of functions in \mathcal{G}_{2}. Let $P_{3}=\mathcal{P}_{\mathrm{KK}}\left(\varepsilon / 8, \mathcal{F}, \mathcal{P}_{2}\right), \mathcal{G}_{3}=\mathcal{G}_{\mathrm{KK}}\left(\varepsilon / 8, \mathcal{F}, \mathcal{P}_{2}\right)$ and $\delta_{2}=\delta_{\mathrm{KK}}\left(\varepsilon / 8, \mathcal{F}, \mathcal{P}_{2}\right)$ be as in Lemma 2.3. Let $\mathcal{G}_{4}=\mathcal{F} \cup \mathcal{G}_{1} \cup \mathcal{G}_{2}^{\prime} \cup \mathcal{G}_{3}$ and let $G_{5}=\mathcal{G}_{\text {cut }}\left(\varepsilon / 8, \sigma, \mathcal{G}_{4}\right)$ be as in Lemma 2.13 (with $G=X \backslash F$). We then set $\mathcal{G}_{6}=\mathcal{G}_{4} \cup \mathcal{G}_{5}$. Let $\mathcal{P}_{3}=\mathcal{P}_{1} \cup \mathcal{P}_{2}$ and let $\delta_{3}=(1 / 8) \min \left\{\delta_{0}, \delta_{1}, \delta_{2}, \varepsilon / 2\right\}$.

Now suppose that the conditions of Lemma 1.5 hold with $\delta<\min$ $\left\{\delta_{\text {cut }}\left(\delta_{3} / 4, \sigma, \mathcal{G}\right), \delta_{3} / 4\right\}, \mathcal{G}=\mathcal{G}_{6}, \mathcal{P}=\mathcal{P}_{3}$ and $a<\sigma$. By Lemma 2.13, there are $\xi_{i} \in \Omega_{\sigma / 16}=\{\xi \in G \mid \operatorname{dist}(\xi, F) \geqslant \sigma / 16\}$, and nonzero mutually orthogonal projections $p_{i} \in I$ such that

$$
\psi\left(g_{\sigma}\right) \leqslant p_{\sigma}, \quad\left\|p_{\sigma} \psi(f)-\psi(f) p_{\sigma}\right\|<\delta_{3}
$$

where g_{σ} is as in Lemma 2.13, and

$$
\left\|p_{\sigma} \psi p_{\sigma}-\sum_{i=1}^{n} f\left(\xi_{i}\right) p_{i}\right\|<\delta_{3}
$$

where $p_{\sigma}=\sum_{i=1}^{n} p_{i}\left(\right.$ when $G=\emptyset$, we let $\left.p_{i}=0\right)$ for all $f \in \mathcal{G}_{4}$. Set $p=1-\sum_{i=1}^{n} p_{i}$. Then $\pi(p \psi p)=\pi \circ \psi$. Since $p A p$ has real rank zero, by 2.4 in [79], every projection in $p A p / p I p$ lifts to a projection in $p A p$. In fact, there are mutually orthogonal projections $\left\{q_{j}\right\} \in p A p$ such that $\pi\left(q_{j}\right)=\pi\left(d_{j}\right)$. Therefore there are $a_{f} \in p I p$ such that

$$
\left\|p \psi(f) p-\sum_{j=1}^{m} f\left(\lambda_{j}\right) q_{j}-a_{f}\right\|<\delta
$$

for all $f \in \mathcal{G}$. We may assume that $\sum_{j=1}^{m} q_{j}=p$. Since $e I e$ has real rank zero, there are projections $e_{j} \in q_{j} I q_{j}$ such that

$$
\left\|e a_{f} e-a_{f}\right\|<\frac{\delta_{3}}{4}
$$

for all $f \in \mathcal{G}$, where $e=\sum_{j=1}^{m} e_{j}$. Then it is easy to see that

$$
\|e \psi(f)-\psi(f) e\|<\frac{\delta_{3}}{2} \quad \text { and } \quad\left\|e \psi(f) e-\sum_{j=1}^{m} f\left(\lambda_{j}\right) e_{j}-e a_{f} e\right\|<\frac{\delta_{3}}{2}
$$

for all $f \in \mathcal{G}_{4}$.
For any $g \in C\left(X_{\sigma}\right)$, there is $g^{\prime} \in C(X)$ such that $g^{\prime}(\xi)=g(\xi)$ for all $\xi \in X_{\sigma}$. Define $\psi^{\prime}(g)=e \psi\left(g^{\prime}\right) e$. We have to check that this is well defined. Since $g^{\prime}(\xi)=g^{\prime \prime}(\xi)$ for all $\xi \in X_{\sigma}$, we have $\left(g^{\prime}-g^{\prime \prime}\right) g_{\sigma}=g^{\prime}-g^{\prime \prime}$. Since $p_{\sigma} \geqslant \psi\left(g_{\sigma}\right)$, $\psi^{\prime}\left(g_{\sigma}\right)=0$. Since ψ^{\prime} is positive, this implies that $\psi^{\prime}\left(g^{\prime}-g^{\prime \prime}\right)=0$. This checks that ψ^{\prime} is a well defined contractive positive linear map which is $\delta_{2}-\mathcal{G}_{4}$-multiplicative.

Since $\mathrm{K}_{1}(A)=\{0\}, \operatorname{dim}(X) \leqslant 2$ and

$$
\left\|\psi^{\prime}(f) \oplus \sum_{j=1}^{m} f\left(\xi_{j}\right)\left(q_{j}-e_{j}\right)-p \varphi(f) p\right\|<3 \delta_{3}
$$

and

$$
\left\|\varphi(f)-\sum_{i=1}^{n} f\left(\xi_{i}\right) p_{i}+p \varphi(f) p\right\|<6 \delta_{3}
$$

for all $f \in \mathcal{G}_{4}$, by Lemma 2.3,

$$
\left(\psi^{\prime}\right)_{*}: \overline{\mathcal{P}}\left(X_{\sigma}\right) \rightarrow \underline{\mathrm{K}}(e I e) \text { is in } \mathcal{N} .
$$

It follows from 1.6 in [53] (cf. Theorem 6.2 in [15] and 1.6 in [58]) that there are homomorphisms $h_{1}: C\left(X_{\sigma}\right) \rightarrow M_{L}(e I e)$ and $h_{2}: C\left(X_{\sigma}\right) \rightarrow M_{L+1}(e I e)$ with finite dimensional range such that

$$
\left\|\psi^{\prime}(f) \oplus h_{1}(f)-h_{2}(f)\right\|<\frac{\varepsilon}{8}
$$

for some integer L and all $f \in \mathcal{F}$. Without loss of generality, since $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\}$ is $\delta_{\mathrm{c}}(\varepsilon / 8, \mathcal{F})$-dense in F, we may assume that $h(g)=\sum_{i=1}^{m} g\left(\lambda_{i}\right) d_{i}$ for all $g \in C(X)$,
where d_{i} are mutually orthogonal projections in $M_{L}(e I e)$ such that $\sum_{i=1}^{k} d_{i}$ is the identity of $M_{L}(e I e)$, and

$$
\left\|\psi^{\prime}(f) \oplus \sum_{i=1}^{m} f\left(\lambda_{i}\right) d_{i}-h_{2}(f)\right\|<\frac{\varepsilon}{4}
$$

Now we will use the part $\sum_{i=1}^{k} f\left(\xi_{i}\right)\left(q_{i}-e_{i}\right)$ in $p \varphi(f) p$ to "absorb" h_{1}. By Lemma 2.6, for any integer $N>L$ and any projection $e \in I$,

$$
e \oplus e \oplus \cdots \oplus e \lesssim\left(q_{j}-e_{j}\right)
$$

(there are N copies of e). There is a partial isometry

$$
v \in(p \oplus e \oplus \cdots \oplus e) M_{L+1}(M(A) / A)(p \oplus e \oplus \cdots \oplus e)
$$

(there are L copies of e) such that $v^{*} d_{i} v \leqslant q_{i}-e_{i}, i=1,2, \ldots, m$,

$$
v^{*} v=\sum_{i=1}^{m} v^{*} d_{i} v \quad \text { and } \quad v v^{*}=e \oplus e \oplus \cdots \oplus e
$$

(there are L copies of e). There is then a partial isometry u such that

$$
u^{*}\left[\psi^{\prime}(f) \oplus h_{1}(f)\right] u=\psi^{\prime}(f) \oplus \sum_{i=1}^{m} f\left(\lambda_{i}\right) d_{i}^{\prime}
$$

and $u^{*} h_{2} u$ has finite dimensional range, where $d_{i}^{\prime}=v^{*} d_{i} v$. So

$$
\left\|\left[\psi^{\prime}(f) \oplus \sum_{i=1}^{m} f\left(\lambda_{i}\right)\left(q_{i}-e_{i}\right)\right]-\left[u^{*} h_{2}(f) u \oplus \sum_{i=1}^{m} f\left(\lambda_{i}\right)\left(\left(q_{i}-e_{i}\right)-d_{i}^{\prime}\right)\right]\right\|<\frac{\varepsilon}{2}
$$

Therefore,

$$
\left\|p \psi(f) p-\left[u^{*} h_{2}(f) u \oplus \sum_{i=1}^{m} f\left(\lambda_{i}\right)\left(\left(q_{i}-e_{i}\right)-d_{i}^{\prime}\right)\right]\right\|<\frac{\varepsilon}{2}
$$

Thus

$$
\left\|\varphi(f)-\left[u^{*} h_{2}(f) u \oplus \sum_{i=1}^{m} f\left(\lambda_{i}\right)\left(\left(q_{i}-e_{i}\right)-d_{i}^{\prime}\right)\right]+\sum_{i=1}^{n} f\left(\xi_{i}\right) p_{i}\right\|<\frac{\varepsilon}{2}
$$

for all $f \in \mathcal{F}$.
2.15. Corollary. Let A be a unital C^{*}-algebra of real rank zero and I be an ideal of $A, \psi: C(X) \rightarrow A$ be a unital positive linear map and $\pi \circ \psi$ be a unital positive map from $C(Y) \rightarrow A / I$, where $\pi: A \rightarrow A / I$ is the quotient map and Y is a compact subset of X. For any $\varepsilon>0$ and a finite subset $\mathcal{F} \subset C(X)_{1}$, there exists $\delta=\delta_{\mathrm{ab}}(\varepsilon, \mathcal{F})>0, \mathcal{G}=\mathcal{G}_{\mathrm{ab}}(\varepsilon, \mathcal{F}) \subset C(X)_{1}$ and a finite subset $\mathcal{P}=\mathcal{P}_{\mathrm{ab}}(\varepsilon, \mathcal{F}) \subset$ $\mathbf{P}(C(X))$ satisfying the following: if
(i) $\left\|\pi \circ \psi(f)-h_{1}(f)\right\|<\delta$ for all $f \in \mathcal{G}$, where $h_{1}(f)=\sum_{k=1}^{m} f\left(\lambda_{k}^{\prime}\right) \pi\left(d_{k}\right)$, $\left\{\lambda_{k}^{\prime}\right\}$ is $\delta_{\mathrm{c}}(\varepsilon / 8, \mathcal{F})$-dense in Y and $\left\{d_{k}\right\}$ are mutually orthogonal projections in A with

$$
p \oplus p \oplus \cdots \oplus p \lesssim d_{k}
$$

for any copies of any projections $p \in I$,
(ii) $\sup _{\xi \in X}\{\operatorname{dist}(\xi, Y)\}<\delta_{\mathrm{c}}(\varepsilon / 2, \mathcal{F})$,
(iii) $\|\psi(f g)-\psi(f) \psi(g)\|<\delta$ for all $f \in \mathcal{G}$ and
(iv) (no KK-obstacle) $\psi_{*}(\mathcal{P}) \in \mathcal{N}$;
then there exists a homomorphism $h_{2}: C(X) \rightarrow A$ with finite dimensional range such that

$$
\left\|\psi(f)-h_{2}(f)\right\|<\varepsilon
$$

for all $f \in \mathcal{F}$.
Proof. The proof is much easier than that of Lemma 1.5 (see the proof of 1.12 in [39]). Here we do not need Lemma 2.13. In the proof of Lemma 1.5, we let $p=1$ (i.e., $p_{\sigma}=0$). So $e \psi e$ is a positive linear map from $C(X)$ into eIe. From (iv), we check that $e \psi e$ has no KK-obstacle.

3. THE MAIN THEOREM AND ITS COROLLARIES

3.1. Theorem. Let X be a compact metric space with dimension no more than two and let \mathcal{F} be a finite subset of (the unit ball of) $C(X)$. For any $\varepsilon>0$, there exist a finite subset \mathcal{P} of projections in $\mathbf{P}(C(X)), \delta>0, \sigma>0$ and a finite subset \mathcal{G} of (the unit ball of) $C(X)$ such that whenever $A \in \mathbb{A}$ and whenever ψ : $C(X) \rightarrow A$ is a contractive unital positive linear map which is δ - \mathcal{G}-multiplicative and is σ-injective with respect to δ and \mathcal{G} and $\psi_{*}(\mathcal{P}) \in \mathcal{N}$, then there exists a unital homomorphisms $\varphi: C(X) \rightarrow A$ with finite dimensional range such that

$$
\|\psi(f)-\varphi(f)\|<\varepsilon
$$

for all $f \in \mathcal{F}$.

We will prove Theorem 3.1 in several steps.
Step 1 of the proof. There is an increasing sequence of finite subsets $\mathcal{P}(n)$ of projections in $\bigcup_{m=1}^{\infty} M_{\infty}\left(C(X) \otimes C\left(C_{m} \times \mathbb{S}^{1}\right)\right)$ such that $\bigcup_{m=1}^{\infty} \overline{\mathcal{P}}(n)$ forms a generating set of the semigroup $\underline{K}(C(X))_{+}$. Suppose that the theorem is false. Let $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{n}, \ldots$ be a sequence of finite subsets of the unit ball of $C(X)$ such that $\mathcal{F}_{n} \subset \mathcal{F}_{n+1}$ and the union $\bigcup_{n=1}^{\infty} \mathcal{F}_{n}$ is dense in the unit ball of $C(X)$, and $\mathcal{G}(\mathcal{P}(n)) \subset \mathcal{F}_{n}$, where $\mathcal{G}(\mathcal{P})$ is defined in 0.7 . Then there are a positive number $\varepsilon>0$, a finite subset \mathcal{F}, a sequence of positive numbers $\delta_{n} \rightarrow 0$ with $\delta_{n} \leqslant \delta(\mathcal{P}(n))$, a sequence of positive numbers $\sigma_{n} \rightarrow 0$, the unital simple C^{*}-algebras B_{n} of real rank zero, stable rank one, weakly unperforated $\mathrm{K}_{0}\left(B_{n}\right)$ and unique quasitrace, and unital contractive positive linear maps $\psi_{n}: C(X) \rightarrow B_{n}$ which are $\delta_{n}-\mathcal{F}_{n^{-}}$ multiplicative, $\sigma_{n}-\delta-\mathcal{F}_{n}$-injective and $\left(\psi_{n}\right)_{*}(\mathcal{P}(n)) \in \mathcal{N}$, and for all n,

$$
\inf _{k, \varphi, u}\left\{\sup _{f \in \mathcal{F}}\left\{\left\|\psi_{n}(f)-\varphi(f)\right\|\right\}\right\} \geqslant \varepsilon
$$

Here the infimum is taken for all $k \in \mathbb{N}$, all $\varphi: C(X) \rightarrow M_{k}\left(B_{n}\right)$ homomorphisms with finite dimensional range.

Now let

$$
A=\bigoplus_{n=1}^{\infty} B_{n}
$$

the set of all sequences b with $b_{n} \in B_{n}$ and $\left\|b_{n}\right\| \rightarrow 0$. Then A is a σ-unital C^{*}-algebra of real rank zero. The multiplier algebra $M(A)$ of B is

$$
M(A)=\prod_{n=1}^{\infty} B_{n}
$$

the set of all sequences b with $b_{n} \in B_{n}$ and $\sup _{n}\left\|b_{n}\right\|<\infty$. Let $\pi: M(A) \rightarrow$ $M(A) / A$ be the quotient map. We note that both $M(A)$ and $M(A) / A$ has real rank zero and stable rank one. Let $\varphi^{\prime}=\left\{\psi_{n}\right\}: C(X) \rightarrow M(A)$ be the contractive positive linear map defined by the sequences $\left\{\psi_{n}\right\}$. Since $\bigcup_{n=1}^{\infty} \mathcal{F}_{n}$ is dense in the unital ball of $C(X)$ and $\delta_{n} \rightarrow 0$, it follows that $\varphi=\pi \circ \varphi^{\prime}$ is a homomorphism from $C(X) \rightarrow M(A) / A$. Since ψ_{n} are $\sigma_{n}-\delta_{n}-\mathcal{F}_{n}$-injective, $F_{n}=\sum_{\delta_{n}}\left(\psi_{n}, \mathcal{F}_{n}\right)$ converges to X. As in the proof of 1.12 in [53], this implies that φ is a monomorphism.

Let $h_{n}: C(X) \rightarrow B_{n}$ be homomorphisms with finite dimensional range such that

$$
\left(h_{n}\right)_{*}(\mathcal{P}(n))=\left(\psi_{n}\right)_{*}(\mathcal{P}(n))
$$

Denote $H=\left\{h_{n}\right\}$. As in the proof of 1.6 in [53], since $M(A) / A$ has stable rank one,

$$
\Gamma(\varphi)=\Gamma(\pi \circ H) \in \mathcal{N}
$$

The proof will be completed if we show that φ is approximated by homomorphisms with finite dimensional range. In fact, if there is a homomorphism $h: C(X) \rightarrow M(A) / A$ with finite dimensional range such that

$$
\|\varphi(f)-h(f)\|<\frac{\varepsilon}{2}
$$

for all $f \in \mathcal{F}$. Then, by expressing $h(f)=\sum_{k=1}^{m} f\left(\xi_{k}\right) p_{k}$, where $\left\{\xi_{k}\right\} \subset X$ is a fixed finite subset and $\left\{p_{k}\right\}$ is a set of mutually orthogonal projections in $M(A) / A$, we have the following:

$$
\left\|\psi_{n}(f)-\sum_{k=1}^{m} f\left(\xi_{k}\right) q_{k}^{(n)}\right\|<\varepsilon
$$

for all $f \in \mathcal{F}$, provided that n is large enough, where $\left\{q_{k}^{(n)}\right\}$ are mutually orthogonal projections (for each n) in B_{n}. Note that both A and $M(A)$ have real rank zero, whence orthogonal projections can be lifted (by a result of Zhang ([76])). This leads to a contradiction.

To show that such homomorphism h exists, we will apply the Lemma 1.2. But before we do that, we will introduce some notation, state some easy facts and one key lemma.
3.2. Let $\mathbb{N}^{\prime} \subset \mathbb{N}$ be an infinite subset, let $Q_{\mathbb{N}^{\prime}}=\left\{b_{n}\right\}$, where $b_{n}=1$ if $n \in \mathbb{N}^{\prime}$ and $b_{n}=0$ if $n \notin \mathbb{N}^{\prime}$. We see that $Q_{\mathbb{N}^{\prime}}$ is a projection in $M(A)$. It is clear that $\operatorname{sp}(\varphi)=\operatorname{sp}\left(\pi\left(Q_{\mathbb{N}^{\prime}}\right) \cdot \varphi\right)=X$. We also note that it suffices to show that $\pi\left(Q_{\mathbb{N}^{\prime}}\right) \cdot \varphi$ can be approximated by a homomorphism $h: C(X) \rightarrow \pi\left(\mathbb{N}^{\prime}\right)(M(A) / A) \pi\left(Q_{\mathbb{N}^{\prime}}\right)$ with finite dimensional range. In other words, we are free to pass to subsequences.
3.3. Let τ_{n} be the normalized quasitrace on B_{n}. Fix a nonzero projection $p \in M(A) / A$. Suppose that $\pi\left(\left\{p_{m}\right\}\right)=p$ and $p_{m} \neq 0$. Define

$$
\tau_{n}^{p}=\tau_{n} / \tau_{n}\left(p_{m}\right) .
$$

Let J be the ideal generated by those projections $e \in M(A) / A$ such that $\sup _{n}\left\{\tau_{n}^{p}\left(e_{n}\right)\right\}<\infty$, where $\pi\left(\left\{e_{n}\right\}\right)=e$ and I be the ideal generated by those projections $e \in M(A) / A$ such that $\lim \tau_{n}^{p}\left(e_{m}\right)=0$. By 1.8 in [52], this definition does not depend on the choice of $\left\{p_{n}\right\}$ or the choice of $\left\{e_{n}\right\}$. Moreover, J is the
ideal generated by the projection p. Clearly, $p \in J$. Suppose that $e=\pi\left(\left\{e_{n}\right\}\right)$ and that for some integer $K>0, \sup _{n}\left\{\tau_{n}^{p}\left(e_{n}\right)\right\}<K$. Then

$$
K \cdot \tau_{n}\left(p_{n}\right)>\tau_{n}\left(e_{n}\right)
$$

for n large. This implies that

$$
e \lesssim p \oplus p \oplus \cdots \oplus p \quad \text { in } M_{K}(M(A) / A)
$$

(there are K copies of p). Therefore e is in the ideal generated by p. On the other hand, if $e \in J$, by 1.13 in [58], there is an integer $K>0$ such that

$$
e \lesssim p \oplus p \oplus \cdots \oplus p \quad \text { in } M_{K}(M(A) / A)
$$

(there are K copies of p). Thus, if $e \in J, \sup _{n}\left\{\tau_{n}^{p}\left(e_{n}\right)\right\}<\infty$, where $\pi\left(\left\{e_{m}\right\}\right)=e$.
Now we show that, for any projection $e \in I, \lim \tau_{m}^{p}\left(e_{m}\right)=0$, if $\pi\left(\left\{e_{m}\right\}\right)=e$. In fact, if $e \in I$, then by 1.13 in [52], there are $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k} \in I$ such that $\lim \tau_{m}^{p}\left(\varepsilon_{i}^{m}\right)=0$, where $\pi\left(\left\{\varepsilon_{i}^{m}\right\}\right)=\varepsilon_{i}, i=1,2, \ldots, k$, and $e \lesssim d_{1} \oplus d_{2} \oplus \cdots \oplus d_{k}$, where $d_{i}=\varepsilon_{i} \oplus \varepsilon_{i} \oplus \cdots \oplus \varepsilon_{i}$ (there are K copies of ε_{i}), $i=1,2, \ldots, k$ and K is some positive integer. This implies that $\lim \tau_{m}^{p}\left(e_{m}\right)=0$, where $\pi\left(\left\{e_{m}\right\}\right)=e$.
3.4. Consider a homomorphism $\psi: C_{0}(Y) \rightarrow M(A) / A$, where Y is a locallly compact metric space (if Y is compact, then φ is a homomorphism from $C(Y)$ into $M(A) / A)$. Let $\left\{\xi_{m}\right\}$ be a dense sequence in $\operatorname{sp}(\varphi)$. Let $\left\{S_{k}\right\}$ be the sequence of all finite subset of $\left\{\xi_{m}\right\}$. Fix this $\left\{S_{k}\right\}$. Set

$$
O_{k, n}=\left\{\xi \in \operatorname{sp}(\varphi) \mid \operatorname{dist}\left(\xi, S_{k}\right)<r_{n}\right\}
$$

where $\left\{r_{n}\right\}$ is dense in $(0,1)$. By [6] (see also 1.4 in [52]), there exists a projection $p_{k, n} \in M(A) / A$ such that

$$
p_{O_{k, n}} \leqslant p_{k, n} \leqslant p_{\bar{O}_{k, n}}
$$

where $p_{O_{k, n}}, p_{\bar{O}_{k, n}} \in(M(A) / A)^{* *}$ are the spectral projections of ψ corresponding to the sets $O_{k, n}$ and $\bar{O}_{k, n}$. We will use this notation later.

The following is an easy fact which is proved in 1.18 in [52].
3.5. Lemma. Let $\bar{G} \subset O \subset \mathrm{sp}(\varphi)$, where G and O are (relative) open subsets of $\operatorname{sp}(\varphi)$. Suppose that $p \in M(A) / A$ is a projection such that

$$
p_{G} \leqslant p \leqslant p_{\bar{G}}
$$

Suppose also that the sequence $\left(\tau_{m}^{p}\left(p_{k, n}^{m}\right)\right)_{m}$ converges (to a finite number or to infinity) for every $p_{k, n}$. Let J be the ideal generated by $p, \pi_{J}: M(A) / A \rightarrow$ $(M(A) / A) / J$ be the quotient map, I be the ideal generated by those projections $e \in M(A) / A$ such that

$$
\lim \tau_{m}^{p}\left(e_{m}\right)=0
$$

where $\pi\left(\left\{e_{m}\right\}\right)=e$ and $\pi_{I}: M(A) / A \rightarrow(M(A) / A) / I$ be the quotient map. If

$$
\left.\operatorname{sp}\left(\pi_{J} \circ \varphi\right) \cap O=\operatorname{sp}\left(\pi_{I} \circ \varphi\right)\right) \cap O
$$

then the following hold:
(1) if $\bar{G} \subset O_{k, n} \subset \bar{O}_{k, n} \subset O$, then $\lim \tau_{m}^{p}\left(p_{k, n}^{m}\right)=\infty$;
(2) if $\bar{O}_{k, n} \subset G$, then $\lim \tau_{m}^{p}\left(p_{k, n}^{m}\right)=0$;
(3) if $\bar{O}_{k, n} \subset O \backslash \bar{G}$, then $\lim \tau_{m}^{p}\left(p_{k, n}^{m}\right)=0$, or ∞;
(4) there exists $\xi \in \bar{G} \backslash G$ such that $\xi \in \operatorname{sp}\left(\pi_{J} \circ \varphi\right)$;
(5) if $\xi \in G, \xi \notin \operatorname{sp}\left(\pi_{I} \circ \varphi\right)$.
(Notice that, for the case (1), the condition $\left.\operatorname{sp}\left(\pi_{J} \circ \varphi\right) \cap O=\operatorname{sp}\left(\pi_{I} \circ \varphi\right)\right) \cap O$ implies that $\operatorname{sp}\left(\pi_{J} \circ \varphi\right) \cap O \neq 0$. For other cases, the proof is similar, see 1.18 in [52] for details.)

Let I_{1} be the (closed) ideal generated by those projections $e \in M(A) / A$ such that

$$
\lim _{m \rightarrow \infty} \tau_{m}\left(e_{m}\right)=0
$$

and $\pi_{1}: M(A) \rightarrow M(A) / I_{1}$ is the quotient map.
3.6. Lemma. Let I_{1} be as above. Suppose that $J_{1} \supset J_{2}$ are two ideals of $M(A) / A$ such that J_{2} is generated by a projection $p \notin I_{1}$ and I_{1}. Then $\mathrm{K}_{1}\left(J_{1} / J_{2}\right)=$ 0 and $\mathrm{K}_{0}\left(J_{1} / J_{2}\right)$ is torsion free.

Proof. Since J_{1} is an ideal of $M(A) / A$, it has real rank zero and stable rank one. It suffices to show that, for any projection $q \in J_{1}, \mathrm{~K}_{1}\left(q J_{1} q / J_{2}\right)=0$ and $\mathrm{K}_{0}\left(q J_{1} q / J_{2}\right)$ is torsion free.

Suppose that $Q=\left\{q^{(m)}\right\}$ is a projection in $M(A)$ such that $\pi(Q)=q$. Since $J_{2} \supset I_{1}$, we may assume that $q^{(m)} \neq 0$ for all but finitely many of m. Replacing B_{m} by $q^{(m)} B_{m} q^{(m)}$, we may assume that $q J_{1} q=M(A) / A$, without loss of generality. It follows from 1.10 in [39] that $\mathrm{K}_{1}\left(M(A) / I_{1}\right)=0$. Therefore $\mathrm{K}_{1}\left(M(A) / J_{2}\right)=0$. This shows that $\mathrm{K}_{1}\left(J_{1} / J_{2}\right)=0$.

Let $P=\left\{p^{(m)}\right\}$ be a projection in $M(A)$ such that $\pi\left(\left\{p^{(m)}\right\}\right)=p$. Let $T=\left\{\left\{a_{m}\right\} \mid a_{m}=\tau_{m}\left(d^{(m)}\right)-\tau_{m}\left(g^{(m)}\right)\right.$ for some projections $\left.\left\{d^{(m)}\right\},\left\{g^{(m)}\right\} \in M(A)\right\}$
and

$$
\begin{aligned}
N=\left\{\left\{b_{m}\right\} \in T\right. & \left|\left|b_{m}\right| \leqslant K\right| \tau_{m}\left(p^{(m)}\right) \mid+c_{m} \\
& \text { where } \left.K \text { is a positive number and } c_{m} \rightarrow 0\right\}
\end{aligned}
$$

Similar to 1.11 in [39], one easily computes that

$$
\mathrm{K}_{0}\left(M(A) / J_{2}\right)=T / N
$$

It is clear that T / N is torsion free. Therefore $\mathrm{K}_{0}\left(J_{1} / J_{2}\right)$ is torsion free.
The following is a key lemma which is a generalized form of Lemma 2.14 in [52]. A proof is also given in [39].
3.7. Lemma. (We keep the notation in 3.5) Let Y be a compact metric space. Suppose that $\psi: C(Y) \rightarrow(M(A) / A)$ is a homomorphism and $p_{k, n}$ is as in 3.4. If $\left(\tau_{m}\left(p_{k, n}^{m}\right)\right)_{m}$ converges for every (k, n), where $\pi\left(\left\{p_{k, n}^{m}\right\}\right)=p_{k, n}\left(\tau_{m}\right.$ as in 3.3), then $\pi_{1} \circ \psi$ can be approximated by homomorphism from $C(Y)$ into $(M(A) / A) / I_{1}$ with finite dimensional range.
3.8. Corollary. Let p, I, J, π_{I} and π_{J} be as in 3.5. Let $\psi: C_{0}(Y) \rightarrow J(\subset$ $M(A) / A)$ and $p_{k, n}$ be as in 3.4. If $\left(\tau_{m}\left(p_{k, n}^{m}\right)\right)_{m}$ converges for every (k, n), where $\pi\left(\left\{p_{k, n}^{m}\right\}\right)=p_{k, n}\left(\tau_{m}\right.$ as in $\left.T\right)$, then $\pi_{I} \circ \psi$ is approximated by homomorphisms from $C_{0}(Y) \rightarrow J / I$ with finite dimensional range.

Proof. Consider a finite subset \mathcal{F} of $C_{0}(Y)$ and $\varepsilon>0$. There is a compact subset $Y_{1} \subset Y$ and a function g with support in Y_{1} such that

$$
\|g f-f\|<\frac{\varepsilon}{2}
$$

for all $f \in \mathcal{F}$. So, without loss of generality, we may assume that every $f \in \mathcal{F}$ has support in Y_{1}. Let Ω be an open subsets of Y such that

$$
Y_{1} \subset \Omega
$$

and $\bar{\Omega}$ is compact. By $[6]$, there is a projection $q \in M(A) / A$ such that

$$
p_{\Omega} \leqslant q \leqslant p_{\bar{\Omega}}
$$

Suppose that $\pi\left(\left\{q^{(m)}\right\}\right)=q$, where $q^{(m)}$ are projections in B_{m}. Since $q \in J$, from 3.3, $q I q$ is generated by projections e with

$$
\lim _{m \rightarrow \infty} \tau_{m}^{q}\left(e_{m}\right)=0
$$

where $\pi\left(\left\{e_{m}\right\}\right)=e$. Set $B=\bigoplus_{m=1}^{\infty} q^{(m)} B_{m} q^{(m)}$. Let D be the C^{*}-subalgebra of $C_{0}(Y)$ generated by functions with support in Y_{1}. Then $\mathcal{F} \subset D$. Define $\psi^{\prime}: \widetilde{D} \rightarrow$ $M(B) / q I q$ be the unital homomorphism induced by ψ, where \widetilde{D} is the unitization of D. Then by Lemma $3.7, \psi^{\prime}$ is approximated by homomorphisms with finite dimensional range. So the corollary follows.

Now we are ready to complete the proof of the main theorem.
3.9. Proof of Theorem 3.1. We now construct a finite tower of ideals which satisfy the conditions in Lemma 1.2.

Step 2. Let τ_{m} be the normalized quasitrace on A_{m}. There exists a subset $\mathbb{N}_{1} \subset \mathbb{N}$ such that $\tau_{m}\left(p_{k, n}^{m}\right)$ converges $\left(m \in \mathbb{N}_{1}\right)$ for each k and n, where $\pi\left(\left\{p_{k, n}^{j}\right\}\right)=$ $p_{k, n}$. For the sake of notation, we may assume, without loss of generality, that $\mathbb{N}_{1}=\mathbb{N}$. Let I_{1} be the ideal generated by those projections $e \in M(A) / A$ which satisfy

$$
\lim \tau_{m}\left(e_{m}\right)=0,
$$

where $\pi\left(\left\{e_{m}\right\}\right)=e$. So there are projection $e \in A$ such that

$$
p \oplus p \oplus \cdots \oplus p \lesssim e
$$

for any number of copies of any projections $p \in I_{1}$.
Let $\pi_{1}: M(A) / A \rightarrow(M(A) / A) / I_{1}$ and φ_{1} be the monomorphism from $C\left(X_{1}\right) \rightarrow M(A) / I_{1}$ induced by φ, where $X_{1}=\operatorname{sp}(\pi \circ \varphi)$ is a compact subset of X. Suppose that $O_{k, n} \cap X_{1} \neq \emptyset$. Then

$$
\lim \tau_{m}\left(p_{k, n}^{m}\right)>0
$$

Therefore, by 3.3 ,

$$
e \oplus e \oplus \cdots \oplus e \lesssim p_{k, n}
$$

for any number of copies of $e \in I_{1}$. It then follows that condition (a) in Lemma 1.2 is satisfied for $i=1$. By Lemma 3.7, φ_{1} satisfies Condition (A).

Let $\alpha=\delta_{\mathrm{c}}(\varepsilon / 4, \mathcal{F}) / 2$. For each $a>0$, let

$$
O_{a}^{1}=\left\{\xi \in X \mid \operatorname{dist}\left(\xi, X_{1}\right)>a\right\} .
$$

For any (Borel) subset S, we denote by p_{S} the spectral projection of φ in $(M(A) / A)^{* *}$ corresponding to S.

If $O_{\alpha}^{1}=\emptyset$, we will stop the construction and let $I_{2}=0$. Note by Lemma 2.4 that $\Gamma\left(\varphi_{1}\right)=0$ and $\Gamma\left(\psi_{1}\right)=0$, where $\psi_{1}: C_{0}\left(Y_{2}\right) \rightarrow I_{1}$ is the monomorphism induced by φ, where $Y_{2}=X \backslash X_{1}$. (Here $X=X_{2}$. We also let $Y_{1}=X_{1}$.)

So we may assume that $O_{\alpha}^{1} \neq \emptyset$.
Step 3. Let F be a closed subset such that $O_{\alpha}^{1} \subset F \subset O_{3 \alpha / 4}^{1}$. Suppose that there exists a projection $p_{2} \in I_{1}$ such that

$$
p_{O_{\alpha}^{1}} \leqslant p_{2} \leqslant p_{F}
$$

and p_{2} satisfies the following:
(3a) There is an infinite subset of $\mathbb{N}_{2} \subset \mathbb{N}$ such that the sequence $\left(\tau_{m}^{(2)}\left(p_{k, n}^{m}\right)\right)_{m}$ converges $\left(m \in \mathbb{N}_{2}\right)$ (to a finite number, or infinity) for each (k, n), where $\tau_{m}^{(2)}=$ $\tau_{m} / \tau_{m}\left(p_{2}^{m}\right)$ and $\pi\left(\left\{p_{2}^{m}\right\}\right)=p_{2}$.
(3b) $\operatorname{sp}\left(\pi_{2}\left(\bar{Q}_{\mathbb{N}_{2}}\right) \cdot \pi_{2} \circ \varphi\right) \cap O_{3 \alpha / 4}^{1} \neq \operatorname{sp}\left(\pi_{3}\left(\bar{Q}_{\mathbb{N}_{2}}\right) \cdot \pi_{3} \circ \varphi\right) \cap O_{3 \alpha / 4}^{1}$, where I_{2} is the ideal generated by p_{2} and I_{3} is the ideal of $M(A) / A$ generated by those projections $e \in M(A) / A$ such that

$$
\lim \tau_{m}^{(2)}\left(e_{m}\right)=0, \quad m \in \mathbb{N}_{2}
$$

where $\pi\left(\left\{e_{m}\right\}\right)=e$, and $\pi_{2}: M(A) / A \rightarrow(M(A) / A) / I_{2}$ and $\pi_{3}: M(A) / A \rightarrow$ $(M(A) / A) / I_{3}$ are the quotient maps. Denote $X_{2}=\mathrm{sp}\left(\pi_{2} \circ \varphi\right), X_{3}=\mathrm{sp}\left(\pi_{3} \circ \varphi\right)$, and let $\varphi_{2}: C\left(X_{2}\right) \rightarrow M(A) / I_{2}$ and $\varphi_{3}: C\left(X_{3}\right) \rightarrow M(A) / I_{3}$ be the monomorphisms induced by φ.

One should note that, by [6], there always exists a projection $p_{2} \in I_{1}$ such that $p_{O_{\alpha}^{1}} \leqslant p_{2} \leqslant p_{F}$ and also condition (3a) is always satisfied.

To save notation, without loss of generality, we may assume that $\mathbb{N}_{2}=\mathbb{N}$.
If $\xi \in \operatorname{sp}\left(\varphi_{2}\right)$ and $\xi \in O_{k, n}$, then by 3.3,

$$
\lim \tau_{m}^{(2)}\left(p_{k, n}^{m}\right)=\infty
$$

Thus

$$
e \oplus e \oplus \cdots \oplus e \lesssim p_{k, n}
$$

for any number of copies of $e \in I_{2}$. Similarly, if $\xi \in \operatorname{sp}\left(\varphi_{3}\right)$ and $\xi \in O_{k, n}$, then,

$$
e \oplus e \oplus \cdots \oplus e \lesssim p_{k, n}
$$

for any number of copies of $e \in I_{3}$.
Since $p_{2} \in I_{2}$,

$$
X_{2} \subset\left\{\xi \mid \operatorname{dist}\left(\xi, X_{1}\right) \leqslant \alpha\right\}
$$

Let $Y_{2}=X_{2} \backslash X_{1}, Y_{3}=X_{3} \backslash X_{2}, \psi_{2}=\varphi_{2} \mid C_{0}\left(Y_{2}\right)$ and $\psi_{3}=\varphi_{3} \mid C_{0}\left(Y_{3}\right)$. It follows from Lemma 2.4 that $\Gamma\left(\varphi_{2}\right)=\Gamma\left(\varphi_{3}\right)=0$ and $\Gamma\left(\psi_{2}\right)=0$, and it follows from Corollary 3.8 that ψ_{3} satisfies Condition (A).

So, in this case, we constructed I_{2} and I_{3}. Both satisfy (a) and (b) in Lemma 1.2. I_{2} satisfies $\left(\mathrm{d}^{\prime}\right)$ and I_{3} satisfies (d).

Moreover, since $\left(X_{3} \backslash X_{2}\right) \cap O_{3 \alpha / 4}^{1} \neq \emptyset$,

$$
\sup _{\xi \in X_{3}} \operatorname{dist}\left(X_{1}, \xi\right) \geqslant \frac{3 \alpha}{4}
$$

Step 4. Suppose that, for any projection $e \in M(A) / A$ with

$$
p_{O_{a}}^{1} \leqslant e \leqslant p_{F}
$$

e does not satisfy (3a) and (3b) at the same time, where $O_{a}^{1} \subset F \subset O_{3 \alpha / 4}^{1}$ and F is closed.

By [6] (see also 1.4 in [52]), there is a projection $p_{2} \in M(A) / A$ such that

$$
p_{O_{7 \alpha / 8}} \leqslant p_{2} \leqslant p_{\bar{O}_{7 \alpha / 8}}
$$

Notice that $p_{2} \in I_{1}$. By the assumption on projections e, since (3a) always holds, by passing to a subsequence, if necessary, we may assume that
(3a) The sequence $\left(\tau_{m}^{(2)}\left(p_{k, n}^{m}\right)\right)_{m}$ converges (to a finite number, or to infinity), where $\tau_{m}^{(2)}=\tau_{m} / \tau_{m}\left(p_{2}^{m}\right)$ and $\pi\left(\left\{p_{2}^{m}\right\}\right)=p_{2}$.
(4b) $\operatorname{sp}\left(\pi_{2}^{\prime} \circ \varphi\right) \cap O_{3 \alpha / 4}^{1}=\operatorname{sp}\left(\pi_{2} \circ \varphi\right) \cap O_{3 \alpha / 4}^{1}$, where J_{2} is the ideal generated by $p_{2}, \pi_{2}^{\prime}: M(A) / A \rightarrow(M(A) / A) / J_{2}$ is the quotient map, I_{2} is the ideal generated by those projections $p \in M(A) / A$ such that

$$
\lim \tau_{m}^{(2)}\left(p_{m}\right)=0
$$

where $\pi\left(\left\{p_{m}\right\}\right)=p$, and $\pi_{2}: M(A) / A \rightarrow(M(A) / A) / I_{2}$ is the quotient map. Let $X_{2}^{\prime}=\operatorname{sp}\left(\pi_{2}^{\prime} \circ \varphi\right), X_{2}=\operatorname{sp}\left(\pi_{2} \circ \varphi\right)$ and $\varphi_{2}: C\left(X_{2}\right) \rightarrow M(A) / I_{2}$ be the monomorphism induced by φ. It follows from Lemma 2.4 that $\Gamma\left(\varphi_{2}\right)=0$ and $\Gamma\left(\psi_{2}\right)=0$.

For any $\xi \in X_{2}$, if $\xi \in O_{k, n}$

$$
e \oplus e \oplus \cdots \oplus e \lesssim p_{k, n}
$$

for any number of copies of $e \in I_{2}$.
We also have (by (5) of 3.5)

$$
X_{2}^{\prime} \subset\left\{\xi \left\lvert\, \operatorname{dist}\left(\xi, X_{1}\right) \leqslant \frac{7 \alpha}{8}\right.\right\}
$$

and

$$
X_{2} \subset\left\{\xi \left\lvert\, \operatorname{dist}\left(\xi, X_{1}\right) \leqslant \frac{7 \alpha}{8}\right.\right\}
$$

So

$$
\operatorname{dist}\left(X_{1}, \xi\right)<\frac{\delta_{\mathrm{c}}\left(\frac{\varepsilon}{4}, \mathcal{F}\right)}{2}
$$

for all $\xi \in X_{2}$.

In other words, in this case, we constructed I_{2} which satisfies (a), (b) and (d^{\prime}).

Furthermore, by (4) of 3.5,

$$
\left[X_{2} \backslash X_{1}\right] \cap O_{7 \alpha / 8}^{1} \neq \emptyset \quad \text { and } \quad \operatorname{dist}\left(X_{1}, X_{2}\right) \geqslant \frac{3 \alpha}{4}
$$

Step 5. Let $i=3$ if I_{2} and I_{3} have constructed as in Step 3, and let $i=2$ if I_{2} has been constructed as in Step 4.

For any $a>0$, set

$$
\left.O_{a}^{2}=\left\{\xi \in X \mid \operatorname{dist}\left(\xi, X_{i}\right)\right)>a\right\}
$$

If $O_{\alpha}^{2}=\emptyset$, then we stop the construction and let $I_{i+1}=0$. Note that $\Gamma\left(\varphi_{i+1}\right)=0$ and $\Gamma\left(\psi_{i+1}\right)=0$. Otherwise, we continue to construct I_{i+1} (and I_{i+2}) as in Step 3 and Step 4. Denote $\pi_{i}: M(A) \rightarrow M(A) / I_{i}$ the quotient map.

Step 6. Let F be a closed subset such that $O_{\alpha}^{2} \subset F \subset O_{3 \alpha / 4}^{2}$. Suppose that there exists a projection $p_{3} \in I_{i}$ such that

$$
p_{O_{\alpha}^{2}} \leqslant p_{3} \leqslant p_{F}
$$

and p_{3} satisfies the following: Let $\tau_{m}^{(3)}=\tau_{m} / \tau_{m}\left(p_{3}^{m}\right)$ and $\pi\left(\left\{p_{3}^{m}\right\}\right)=p_{3}$.
(3a) there is a subsequence \mathbb{N}^{\prime} of \mathbb{N} such that the sequence $\left(\tau_{m}^{(3)}\left(p_{k, n}^{m}\right)\right)_{m}$ converges $\left(m \in \mathbb{N}^{\prime}\right)$ (to a finite number, or infinity) for each (k, n), where $\tau_{m}^{(3)}=$ $\tau_{m} / \tau_{m}\left(p_{3}^{m}\right)$ and $\pi\left(\left\{p_{3}^{m}\right\}\right)=p_{3}$ and
(3b) $\operatorname{sp}\left(\pi_{i+2}\left(\bar{Q}_{\mathbb{N}^{\prime}}\right) \cdot \pi_{i+2} \circ \varphi\right) \cap O_{3 \alpha / 4}^{2} \neq \operatorname{sp}\left(\pi_{i+1}\left(\bar{Q}_{\mathbb{N}^{\prime}}\right) \cdot \pi_{i+1} \circ \varphi\right) \cap O_{3 \alpha / 4}^{2}$, where I_{i+1} is the ideal generated by p_{3} and I_{i+2} is the ideal of $M(A) / A$ generated by those projections $e \in M(A) / A$ such that

$$
\lim \tau_{m}^{(2)}\left(e_{m}\right)=0
$$

and $\pi_{i+1}: M(A) / A \rightarrow(M(A) / A) / I_{i+1}, \pi_{i+2}: M(A) / A \rightarrow(M(A) / A) / I_{i+2}$ are the quotient maps.

To save notation, without loss of generality, we may assume that $\mathbb{N}^{\prime}=\mathbb{N}$. Denote $X_{i+1}=\operatorname{sp}\left(\pi_{i+1} \circ \varphi\right)$ and $X_{i+2}=\operatorname{sp}\left(\pi_{i+2} \circ \varphi\right)$, and let $\varphi_{i+1}: C\left(X_{i+1}\right) \rightarrow$ $M(A) / I_{i+1}$ and $\varphi_{i+2}: C\left(X_{i+2}\right) \rightarrow M(A) / I_{i+2}$ be monomorphisms induced by φ. If $\xi \in X_{i+1}$ and $\xi \in O_{k, n}$, then

$$
e \oplus e \oplus \cdots \oplus e \lesssim p_{k, n}
$$

for any number of copies of $e \in I_{i+1}$ and, if $\xi \in X_{i+2}$ and $\xi \in O_{k, n}$, then

$$
e \oplus e \oplus \cdots \oplus e \lesssim p_{k, n}
$$

for any number of copies of $e \in I_{i+2}$.
Let $Y_{i+1}=X_{i+1} \backslash X_{i}, Y_{i+2}=X_{i+2} \backslash X_{i+1}, \psi_{i+1}=\varphi_{i+1} \mid C_{0}\left(Y_{i+1}\right)$ and $\psi_{i+2}=\varphi_{i+2} \mid C_{0}\left(Y_{i+2}\right)$. It follows from Lemma 2.4 that $\Gamma\left(\varphi_{i+1}\right)=\Gamma\left(\varphi_{i+2}\right)=0$ and $\Gamma\left(\psi_{i+1}\right)=0$, and it follows from Corollary 3.8 that ψ_{i+2} satisfies Condition (A).

Since $p_{3} \in I_{i}$,

$$
X_{i+1} \subset\left\{\xi \mid \operatorname{dist}\left(\xi, X_{i}\right)<\alpha\right\}
$$

So in this case, we constructed I_{i+1} and I_{i+2} which satisfy (a) and (b) in Lemma 1.2. I_{i+1} satisfies ($\left.\mathrm{d}^{\prime}\right)$ and I_{i+2} satisfies (d). Furthermore

$$
\left(X_{i+2} \backslash X_{i}\right) \cap O_{3 \alpha / 4}^{2} \neq \emptyset \quad \text { and } \quad \sup _{\xi \in X_{i+2}} \operatorname{dist}\left(X_{i}, \xi\right) \geqslant \frac{3 \alpha}{4}
$$

Step 7. Suppose that, for any projection $e \in M(A) / A$ with

$$
p_{O_{a}{ }^{1}} \leqslant e \leqslant p_{F}
$$

e does not satisfy (3a) and (3b) at the same time, where $O_{a}^{2} \subset F \subset O_{3 \alpha / 4}^{1}$ and F is closed.

By [6] (see also 1.4 in [48]), there is a projection $p_{3} \in M(A) / A$ such that

$$
p_{O_{7 \alpha / 8}^{2}} \leqslant p_{3} \leqslant p_{\bar{O}_{7 \alpha / 8}^{2}}
$$

Notice that $p_{3} \in I_{i}$. By the assumption on projections e, since (3a) always holds, by passing to a subsequence, if necessary, we may assume that:
(3a) the sequence $\left(\tau_{m}^{(3)}\left(p_{k, n}^{m}\right)\right)_{m}$ converges (to a finite number, or to infinity), where $\tau_{m}^{(3)}=\tau_{m} / \tau_{m}\left(p_{3}^{m}\right)$ and $\pi\left(\left\{p_{3}^{m}\right\}\right)=p_{3}$;
(4b) $\operatorname{sp}\left(\pi_{3}^{\prime} \circ \varphi\right) \cap O_{3 \alpha / 4}^{2}=\operatorname{sp}\left(\pi_{3} \circ \varphi\right) \cap O_{3 \alpha / 4}^{3}$, where J_{i+1} is the ideal generated by $p_{3}, \pi_{i+1}^{\prime}: M(A) / A \rightarrow(M(A) / A) / J_{i+1}$ is the quotient map, I_{i+1} is the ideal generated by those projections $p \in M(A) / A$ such that

$$
\lim \tau_{m}^{(3)}\left(p_{m}\right)=0
$$

where $\pi\left(\left\{p_{m}\right\}\right)=p$, and $\pi_{i+1}: M(A) / A \rightarrow(M(A) / A) / I_{i+1}$ is the quotient map. Let $X_{i+1}^{\prime}=\operatorname{sp}\left(\pi_{i+1}^{\prime} \circ \varphi\right), X_{i+1}=\operatorname{sp}\left(\pi_{i+1} \circ \varphi\right)$ and $\varphi_{i+1}: C\left(X_{i+1}\right) \rightarrow M(A) / I_{i+1}$ be the monomorphism induced by φ. It follows from Lemma 2.4 that $\Gamma\left(\varphi_{i+1}\right)=0$ and $\Gamma\left(\psi_{i+1}\right)=0$.

For any $\xi \in X_{i+1}$, if $\xi \in O_{k, n}$

$$
e \oplus e \oplus \cdots \oplus e \lesssim p_{k, n}
$$

for any number of copies of $e \in I_{i+1}$.
We also have (by (5) of 3.5)

$$
X_{i+1}^{\prime} \subset\left\{\xi \left\lvert\, \operatorname{dist}\left(\xi, X_{i}\right) \leqslant \frac{7 \alpha}{8}\right.\right\}
$$

and

$$
X_{i+1} \subset\left\{\xi \left\lvert\, \operatorname{dist}\left(\xi, X_{i}\right) \leqslant \frac{7 / \alpha}{8}\right.\right\}
$$

So

$$
\operatorname{dist}\left(X_{i}, \xi\right)<\frac{\delta_{\mathrm{c}}\left(\frac{\varepsilon}{4}, \mathcal{F}\right)}{2}
$$

for all $\xi \in X_{i+1}$.
In other words, in this case, we constructed I_{i+1} which satisfies (a), (b) and (d^{\prime}).

Furthermore, by (4) of 3.5,

$$
\left[X_{i+1} \backslash X_{i}\right] \cap O_{7 \alpha / 8}^{1} \neq \emptyset \quad \text { and } \quad \sup _{\xi \in X_{i+1}} \operatorname{dist}\left(X_{i}, \xi\right) \geqslant \frac{3 \alpha}{4}
$$

Step 8. If we continue, we obtain a sequence of ideals

$$
M(A)=I_{0} \subset I_{1} \subset I_{2} \subset \cdots \subset I_{k} \cdots
$$

where each I_{i} satisfies (a), (b), and either (d) or (d^{\prime}). We also note that there are projections $e \in I_{i-1}$ such that

$$
p \oplus p \oplus \cdots \oplus p \lesssim e
$$

for any number of copies of any projection $p \in I_{i}$. Since we also have

$$
\sup _{\xi \in X_{i+2}} \operatorname{dist}\left(X_{i}, \xi\right) \geqslant \frac{3 \alpha}{4}
$$

and X is compact, this construction has to stop after a finite number of steps, say n. We note that if I_{i} is not generated by a projection p_{i}, then by the first part of Lemma 3.6, $\mathrm{K}_{1}\left(I_{i-1} / I_{i}\right)=0$, and $\mathrm{K}_{0}\left(I_{i-1} / I_{i}\right)$ is torsion free. Suppose that I_{j} is generated by a projection p_{j} and I_{i} is also generated by a projection p_{i} and $i>j$. Then, from our construction, $p_{i} \leqslant p_{j}$. Choose the smallest of those projections, say p_{k}. Suppose that $\pi\left(\left\{p_{k}^{(m)}\right\}\right)=p_{k}$ and $p_{k}^{(m)} \in B_{m}$ are not zero if $m \in \mathbb{N}^{\prime}$. So,
by passing to another subsequence (the last one, we promise!), we may assume that $p_{i}^{(m)} \neq 0$ for all m and all those i 's. Thus, by Lemma 3.6, $\mathrm{K}_{1}\left(I_{i} / I_{i+1}\right)=0$ for $0 \leqslant i \leqslant n-1$. Similarly, by applying Lemma 3.6, $\mathrm{K}_{0}\left(I_{i} / I_{i+1}\right)$ are torsion free for $0 \leqslant i \leqslant n-1$.

Note also that

$$
\sup _{\xi \in X}\left\{\operatorname{dist}\left(\xi, X_{n}\right)\right\}<\alpha .
$$

Thus Lemma 1.2 applies.
3.12. Proof of Corollary M1. Note that, without σ-injective condition, in the proof of Theorem 3.1, the homomorphism φ may not be injective. Denote by ψ the induced monomorphism from $C(Y) \rightarrow M(A) / A$, where Y is a compact subset of $X(\varphi=\psi \circ s$, where $s: C(X) \rightarrow C(Y)$ is surjective $)$. As in the proof of Theorem 3.1, we need to show that ψ can be approximated by homomorphisms with finite dimensional ranges. To do this, with the proof of Theorem 3.1, we only need to verify that

$$
\Gamma(\psi) \in \mathcal{N}
$$

Note that (in the proof of the main theorem)

$$
\mathrm{K}_{0}(M(A) / A)=\prod_{n} \mathrm{~K}_{0}\left(B_{n}\right) / \oplus \mathrm{K}_{0}\left(B_{n}\right)
$$

We see that, if each $\mathrm{K}_{0}\left(B_{n}\right)$ is torsion free, so is $\mathrm{K}_{0}(M(A) / A)$. Furthermore, since $\mathrm{K}_{1}\left(B_{n}\right)=0$ for all $n, \mathrm{~K}_{1}(M(A) / A)=0$. We then compute that $\mathrm{K} L(C(Y)$, $M(A) / A)=\operatorname{Hom}\left(\mathrm{K}_{0}(C(Y)), \mathrm{K}_{0}(M(A) / A)\right.$. By Lemma 2.2 and the following commutative diagram

we conclude that $\Gamma(\psi) \in \mathcal{N}$.
3.13. Proof of the Main Theorem. The only difference between 3.1 and the Main Theorem is about σ-injective. It is quite clear that the Main Theorem follows from 3.1 easily. The following proof gives us a choice of σ. Please see Remark 3.14.

Let $\sigma=1 / 2 \delta_{\mathrm{c}}(\varepsilon / 3, \mathcal{F})$ be as in 1.1. By the proof of Corollary M1, we may assume that A is not elementary.

Suppose that ψ is σ-injective with respect to δ and \mathcal{F}. Given any $\varepsilon_{1}>0$, and \mathcal{G}_{1}, with sufficiently small δ and sufficiently large \mathcal{G}, by Lemma 1.5 in [58], without loss of generality, we may write that

$$
\psi(f)=\sum_{i=1}^{m} f\left(\zeta_{i}\right) p_{i} \oplus \psi_{1}(f)
$$

for all $f \in C(X)$, where $\left\{\zeta_{i}\right\}$ is σ-dense in X and ψ_{1} is δ_{1} - \mathcal{G}_{1}-multiplicative contractive positive linear morphism. Since we now assume that A is not elementary and simple, there exists a nonzero projection $e \in A$ such that $e \lesssim p_{i}$ for each i. Again, for any $\sigma_{1}>0$, since $e A e$ is nonelementary and simple, there exists a homomorphism $h_{0}: C(X) \rightarrow e A e$ which is $\sigma_{1}-\mathcal{G}_{1}$-injective. Now we apply Theorem 3.1 to the map $\psi_{1} \oplus h_{0}$ (with sufficiently small δ_{1} and sufficiently large \mathcal{G}_{1}). We obtain a homomorphism $h_{1}: C(X) \rightarrow Q M_{2}(A) Q\left(\right.$ with $Q=\operatorname{diag}\left(1-\sum_{i=1}^{m} p_{i}, e\right)$) with finite spectrum such that

$$
\left\|\psi_{1}(f) \oplus h_{0}(f)-h_{1}(f)\right\|<\frac{\varepsilon}{3}
$$

for all $f \in \mathcal{F}$. Since $\left\{\zeta_{i}\right\}$ is σ-dense in X, by changing h_{0} slightly, we obtain a homomorphism $h_{2}(f)=\sum_{i=1}^{m} f\left(\zeta_{i}\right) q_{i}$, where $\left\{q_{i}\right\}$ are mutually orthogonal projections in $e A e$ such that

$$
\left\|\psi_{1}(f) \oplus h_{2}(f)-h_{1}(f)\right\|<\frac{2 \varepsilon}{3}
$$

for all $f \in \mathcal{F}$. Note that $q_{i} \lesssim p_{i}$ for each i. The absorption argument that we use several times in this paper shows that

$$
\left\|\psi(f)-h_{3}(f)\right\|<\varepsilon
$$

for all $f \in \mathcal{F}$ for some homomorphism $h_{3}: C(X) \rightarrow A$ with finite dimensional range.
3.14. Remark. The proof in 3.13 actually shows that in the Main Theorem σ can be chosen to be $\delta_{\mathrm{c}}(\varepsilon / 3, \mathcal{F})$ as in 1.1. Note that, from the proof in 3.13, we see that if $Y \subset X$, the same σ works for the subset $s(\mathcal{F})$, where $s: C(X) \rightarrow C(F)$ is the quotient map. If we assume that all compact metric spaces of dimension no more than two in this paper are compact subsets of the unit ball B^{5} of \mathbb{R}^{5}, then σ does not depend on X. It certainly does depend on ε and \mathcal{F}. But \mathcal{F} can be thought an image of a finite set of $C\left(B^{5}\right)$.

The reader might wonder what we can say when φ is not σ-injective. The point is that if φ is not sufficiently injective, the condition on \mathcal{P} might be meaningless, in general. For example, a compact subset X of the plane is always a
compact subset of a disk \mathbb{D}. A positive linear map $\varphi: C(X) \rightarrow A$ can always be viewed as a positive linear map from $C(\mathbb{D}) \rightarrow A$ by mapping $C(\mathbb{D})$ into $C(X)$ then mapping to A. Then, of course, $\varphi_{*}(\mathcal{P})$ is always in \mathcal{N} since \mathbb{D} is contractive. On the other hand, one can always use the following lemma to replace it by a σ-injective morphism first. However, if we do not require the homomorphism to have finite dimensional range, σ-injectivity may be removed, for many cases at least. The proof of 3.19 probably explains more about this.

However sometime, we do not need to worry about this problem as we see in Corollary M1.
3.15. Lemma. (Lemma 1.17 in [53]) Let X be a compact metric space. For any $\varepsilon>0, \sigma>0, \eta>0$ and any finite subset $\mathcal{F} \subset C(X)$, there exist $\delta>0$ and a finite subset $\mathcal{G} \subset C(X)$ such that whenever A is a unital C^{*}-algebra and whenever $\psi: C(X) \rightarrow A$ is a unital contractive positive δ - \mathcal{G}-multiplicative linear map, then there is an $\varepsilon-h(\mathcal{F})$-multiplicative contractive positive linear map $\psi: C(F) \rightarrow A$ which is σ-injective with respect to ε and $h(\mathcal{F})$ such that

$$
\|\varphi(f)-\psi \circ h(f)\|<\eta
$$

for all $f \in \mathcal{F}$, where F is a compact subset of X and $h: C(X) \rightarrow C(F)$ is the quotient map $($ from $C(X) \rightarrow C(X) / I \cong C(F), I=\{f \in C(X) \mid f(x)=0$ for $x \in$ $F\}$).
3.16. Definition. Let A be a simple C^{*}-algebra of real rank zero, X be a compact metric space and $\alpha \in \mathrm{K} L(C(X), A)$ such that $\gamma(\alpha)$ in $\operatorname{Hom}\left(\mathrm{K}_{*}(C(X))\right.$, $\left.\mathrm{K}_{*}(A)\right)$ preserves the order of $\mathrm{K}_{0}(C(X)) . A$ is said to satisfy condition $B(X, \alpha)$, if for any nonzero projection $e \in A$, there is a homomorphism $h: C(X) \rightarrow e A e$ such that

$$
\alpha-[h] \in \mathcal{N}
$$

3.17. Theorem. Let X be a compact metric space with dimension no more than two. For any $\varepsilon>0$ and finite subset $\mathcal{F} \subset C(X)$ there is $\delta>0, \sigma>0$, a finite subset $\mathcal{G} \subset C(X)$ and finite subset $\mathcal{P} \subset \mathbf{P}(C(X))$ satisfying the following:

Let $A \in \mathbb{A}$ and a contractive positive linear morphism $\psi: C(X) \rightarrow A$ which is δ - \mathcal{G}-multiplicative and σ - \mathcal{F}-injective with

$$
\psi_{*}(\overline{\mathcal{P}})=\alpha(\overline{\mathcal{P}})
$$

for some $\alpha \in \mathrm{K} L(C(X), A)$ such that $\gamma(\alpha)$ preserves the order of $\mathrm{K}_{0}(C(X))$. If A satisfies the condition ($B_{X, \alpha}$), then there exists a homomorphism $h: C(X) \rightarrow A$ such that

$$
\|\psi(f)-h(f)\|<\varepsilon
$$

for all $f \in C(X)$.
Proof. We first would like to point out that, in the case that A is an elementary C^{*}-algebra, then Theorem 3.17 follows from the Main Theorem directly. This is because $\mathrm{K}_{1}(A)=0, \mathrm{~K}_{0}(A)$ has no infinitesimal element and free, and $\mathrm{K}_{1}(C(X))$ is torsion free. Thus $\mathrm{K} L(C(X), A)=\operatorname{Hom}\left(\mathrm{K}_{0}(C(X)), \mathrm{K}_{0}(A)\right)$. It is clear that if $\gamma(\alpha)$ preserves order, and A satisfies the condition $B(X, \alpha)$, then $\alpha \in \mathcal{N}$.

So now we assume that A is a nonelementary C^{*}-algebra among other conditions.

Suppose that ψ is a contractive positive linear morphism from $C(X)$ into A which is δ - \mathcal{G}-multiplicative and σ - \mathcal{G}-injective with

$$
\psi_{*}(\mathcal{P})=\alpha(\overline{\mathcal{P}})
$$

for some $\alpha \in \mathrm{K} L(C(X), A)$ such that $\gamma(\alpha)$ preserves the order on K_{0}, where \mathcal{P} is a finite subset in $\mathbf{P}(C(X))$.

For any $\sigma>0$, by Lemma 1.5 in [58], without loss of generality, we may write that

$$
\psi(f)=\sum_{i=1}^{m} f\left(\zeta_{i}\right) p_{i} \oplus \psi_{1}(f)
$$

for all $f \in C(X)$, where $\left\{\zeta_{i}\right\}$ is σ-dense in X and $\psi_{1}(f)$ is δ - \mathcal{G}-multiplicative. Since A is a nonelementary simple C^{*}-algebra of real rank zero, there is a projection $e \in A$ such that

$$
e \oplus e \oplus e \oplus e \oplus e \lesssim p_{i}
$$

for each i. By the assumption, for any given \mathcal{P}, with small enough δ and large enough \mathcal{G}, there is a homomorphism $\varphi: C(X) \rightarrow e A e$, such that

$$
\left(\psi_{1}\right)_{*}-\varphi_{*}: \mathcal{P} \rightarrow \underline{\mathrm{K}}(A) \in \mathcal{N} .
$$

By 2.9 in [26] (note that $\operatorname{dim}(X) \leqslant 2$), there is a homomorphism $\bar{\varphi}: C(X) \rightarrow$ $M_{4}(e A e)$ such that

$$
(\varphi \oplus \bar{\varphi})_{*} \in \mathcal{N}
$$

Note that, since A is a non-elementary simple C^{*}-algebra, $\bar{\varphi}$ can always be chosen so that it is σ-injective. Applying the Main Theorem, with sufficiently small δ and sufficiently large \mathcal{G}, there are homomorphisms $h_{1}: C(X) \rightarrow Q M_{5}(A) Q$ (with $\left.Q=\operatorname{diag}\left(1-\sum_{i} p_{i}, e, e, e, e\right)\right)$ and $h_{2}: C(X) \rightarrow M_{5}(e A e)$ both with finite dimensional range such that

$$
\left\|\psi_{1}(f) \oplus \bar{\varphi}(f)-h_{1}(f)\right\|<\frac{\varepsilon}{4} \quad \text { and } \quad\left\|\varphi(f) \oplus \bar{\varphi}(f)-h_{2}(f)\right\|<\frac{\varepsilon}{4}
$$

for all $f \in \mathcal{F}$. Without loss of generality (with sufficiently small σ), we may write $h_{2}(f)=\sum_{i=1}^{n} f\left(\zeta_{i}\right) d_{i}$, where $\left\{d_{i}\right\}$ are mutually orthogonal projections in $M_{5}(e A e)$. There is a unitary $U \in M_{6}(A)$ such that

$$
U^{*} d_{i} U \leqslant p_{i} \quad \text { and } \quad U\left(1-\sum_{i=1}^{n} p_{i}\right)=\left(1-\sum_{i=1}^{n} p_{i}\right) U=\left(1-\sum_{i=1}^{n} p_{i}\right)
$$

for $i=1,2, \ldots, n$. We estimate that

$$
\begin{aligned}
\| \psi(f)- & {\left[\sum_{i=1}^{n} f\left(\zeta_{i}\right)\left(p_{i}-U^{*} d_{i} U\right) \oplus U^{*}\left(h_{1}(f) \oplus \varphi(f)\right) U\right] \| } \\
\leqslant & \left\|\psi(f)-\left[\sum_{i=1}^{n} f\left(\zeta_{i}\right)\left(p_{i}-U^{*} d_{i} U\right) \oplus \varphi_{1}(f) \oplus U^{*} h_{2}(f) U\right]\right\| \\
& +\left\|\sum_{i=1}^{n} f\left(\zeta_{i}\right)\left(p_{i}-U^{*} d_{i} U\right) \oplus \varphi_{1}(f) \oplus U^{*} h_{2}(f) U-U^{*}\left(h_{1} \oplus \varphi(f)\right) U\right\| \\
< & \frac{\varepsilon}{4}+\frac{\varepsilon}{4}<\varepsilon
\end{aligned}
$$

for all $f \in \mathcal{F}$.
3.18. Remark. We see that in 3.17σ can be chosen to be $1 / 2 \sigma_{\mathrm{c}}(\varepsilon / 6, \mathcal{F})$ as remarked in Remark 3.14 and the same σ works for compact subset $Y \subset X$ which also satisfies the required conditions in the theorem if the finite subset is $s(\mathcal{F})$, where $s: C(X) \rightarrow C(Y)$ is the quotient map.

For many $X, A \in \mathbb{A}$, and many order preserving α, A satisfies the condition $(B(X, \alpha))$. These are two examples.
3.19. Theorem. Let X be a finite CW-complex of dimension no more than two, and let $A \in \mathbb{A}$ such that $\mathrm{K}_{0}(A)$ is a dimension group and $\mathrm{K}_{1}(A)=0$. Then, for any $\alpha \in \mathrm{K} L(C(X), A)$ which preserves the order of K_{0}, A satisfies the condition $B(X, \alpha)$.

Proof. By 2.9 in [44], there is a C^{*}-subalgebra $B \subset A$ which is isomorphic to a simple AF-algebra and the inclusion induces an isomorphism from $\mathrm{K}_{0}(B)$ onto $\mathrm{K}_{0}(A)$.

A result in [43] says that any element in $\alpha \in \mathrm{K} L(C(X), C)$ which preserves the order of K_{0}, and satisfies that $\alpha_{*}\left(\left[1_{C(X)}\right]\right)=\left[1_{C}\right]$, where C is any unital simple AF-algebra, can be realized by a unital homomorphism from $C(X)$ into C. Then the theorem follows.
3.20. If X is a finite CW-complex in the plane, then for any $A \in \mathbb{A}$ and any $\alpha \in \mathrm{K} L(C(X), A), A$ satisfies the condition $B(X, \alpha)$. It is clear, since X is a finite CW-complex, that when δ is sufficiently small and \mathcal{G} is sufficiently large, ψ_{*} induces a homomorphism $\alpha: \mathrm{K}_{1}(C(X)) \rightarrow \mathrm{K}_{1}(A)$. Thus it is sufficient to show that there is homomorphism $h: C(X) \rightarrow e A e$ such that $h_{*}=\alpha$ on $\mathrm{K}_{1}(C(X))$. Let $g_{1}, g_{2}, \ldots, g_{n}$ be the generators of $\mathrm{K}_{1}(C(X))$ corresponding to the bounded connected components

$$
\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n} \quad \text { of } \mathbb{C} \backslash X
$$

Suppose that $z_{i}=\alpha\left(g_{i}\right), i=1,2, \ldots, n$. Let $p_{1}, p_{2}, \ldots, p_{n}$ be nonzero mutually orthogonal projections in $e A e$ (they exist because A is assumed to be a nonelementary simple C^{*}-algebra of real rank zero). There are unitaries $v_{i} \in p_{i} A p_{i}$ such that $\left[v_{i}\right]=z_{i}$ in $\mathrm{K}_{i}(A)$. There is a continuous function $f_{i}: \mathbb{S}^{1} \rightarrow \partial \Delta_{i}$, the boundary of Δ_{i}, for each i. Set

$$
x=\sum_{i=1}^{n} f_{i}\left(v_{i}\right)
$$

It is easy to see now that the homomorphism from $C(X)$ into $e A e$ induced by the normal element x satisfies the requirement.

Now suppose that F is a proper compact subset of a compact connected manifold X of dimension no more than two and F itself is a finite simplicial complex. There is a compact subset $Y \subset F$ which is a retraction of F and is homeomorphic to an one-dimensional finite simplicial complex. So Y is homeomorphic to a compact subset of the plane. Thus, for such F, and for any $A \in \mathbb{A}$ and any $\alpha \in \mathrm{K} L(C(X), A)$, from above, A satisfies the condition $B(F, \alpha)$.
3.21. Corollary. Let X be a compact manifold with dimension no more than two and let \mathcal{F} be a finite subset of (the unit ball of) $C(X)$. For any $\varepsilon>0$, there exist a finite subset \mathcal{P} of projections in $\mathbf{P}(C(X)), \delta>0$, and a finite subset \mathcal{G} of (the unit ball of) $C(X)$ satisfying the following: for any $A \in \mathbb{A}$ and any ψ : $C(X) \rightarrow A$ which is a contractive unital positive linear map and δ - \mathcal{G}-multiplicative, if $\psi_{*}(\overline{\mathcal{P}}) \in \mathcal{N}$ then there exists a unital homomorphism $\varphi: C(X) \rightarrow A$ such that

$$
\|\psi(f)-\varphi(f)\|<\varepsilon
$$

for all $f \in \mathcal{F}$.
Proof. Let $\sigma=1 / 2 \delta_{\mathrm{c}}(\varepsilon / 6, \mathcal{F})$ (see the above remark). We may assume that X is connected. There are finitely many subsets $F_{1}, F_{2}, \ldots, F_{l}$ of X which are
finite simplicial complexes and, for any compact subset $F \subset X$, there is an F_{j} such that $F \subset F_{j}$ and

$$
\sup \left\{\operatorname{dist}\left(x, F_{j}\right)+\operatorname{dist}(F, y) \mid x \in F, y \in F_{j}\right\}<\frac{\sigma}{2}
$$

Note that F_{i} satisfies the condition that we discussed in the third part of Remark 3.18. Let $\delta_{i}=\delta(\varepsilon / 3, \mathcal{F})$ and $\mathcal{G}_{i}=\mathcal{G}(\varepsilon / 3, \mathcal{F})$ be as in 3.17 for $X=F_{i}$, $i=1,2, \ldots, l$, if F_{i} is a proper subset, or $\delta_{i}=\delta(\varepsilon / 3, \mathcal{F})$ and $\mathcal{G}_{i}=\mathcal{G}(\varepsilon / 3, \mathcal{F})$ be as in the Main Theorem. Set $\delta^{\prime}=\min \left\{\delta_{i} \mid i=1,2, \ldots, l\right\}$ and $\mathcal{G}^{\prime}=\bigcup_{i} H_{i}, H_{i}$ is a finite subset of $C(X)$ such that $s_{i}\left(H_{i}\right)=\mathcal{G}_{i}$, where $s_{i}: C(X) \rightarrow C\left(F_{i}\right)$ is the quotient map. By Lemma 3.15, with sufficiently small δ and sufficiently small \mathcal{G}, there is a compact subset $F \subset X$ and a contractive positive linear morphism $L^{\prime}: C(F) \rightarrow A$ which is $\delta^{\prime} / 2-\mathcal{G}^{\prime}$-multiplicative and $\sigma / 2-s^{\prime}\left(\mathcal{G}^{\prime}\right)$-injective, where $s^{\prime}: C(X) \rightarrow C(F)$ is the quotient map, such that

$$
\left\|\psi(f)-L^{\prime} \circ s^{\prime}(f)\right\|<\frac{\varepsilon}{2}
$$

for all $f \in \mathcal{G}^{\prime}$. Choose F_{j} above so that $F \subset F_{j}$ and

$$
\sup \left\{\operatorname{dist}\left(x, F_{j}\right)+\operatorname{dist}(F, y) \mid x \in F, y \in F_{j}\right\}<\frac{\sigma}{2}
$$

Let $s_{0}: C\left(F_{j}\right) \rightarrow C(F)$ be the quotient map and $L=L^{\prime} \circ s_{0}: C\left(F_{j}\right) \rightarrow A$. Then L is $\delta / 2-s_{j}\left(\mathcal{G}^{\prime}\right)$-multiplicative and $\sigma-s_{j}\left(\mathcal{G}^{\prime}\right)$-injective. By applying 3.17 and the second part of 3.20 , there is a homomorphism $h_{1}: C\left(F_{j}\right) \rightarrow A$ such that

$$
\left\|L(f)-h_{1}(f)\right\|<\varepsilon / 2
$$

for all $f \in s_{j}(\mathcal{F})$. Note that $L^{\prime} \circ s_{0} \circ s_{j}=L \circ s^{\prime}$. We have

$$
\left\|\varphi(f)-h_{1} \circ s_{j}(f)\right\|<\varepsilon
$$

for all $f \in \mathcal{F}$. Take $\varphi=h_{1} \circ s_{j}$.
3.22. Proof of Corollary M2. We consider a δ - \mathcal{G}-multiplicative contractive positive linear morphism $\varphi: C(\mathbb{D}) \rightarrow A$, where \mathbb{D} is the unit disk. It suffices to show that such a contractive positive linear morphism is close to a homomorphism, provided that δ is small enough. But this now follows from Corollary 3.21 immediately.
3.23. Proof of Corollary M3. Define two homomorphisms $h_{1}, h_{2}: C\left(\mathbb{S}^{1}\right) \rightarrow$ A by the unitaries u and v in A. It follows from Lemma 2.1 in [58] that, for any $\varepsilon_{1}>0$ and any finite subset $\mathcal{F}_{1} \in C\left(\mathbb{T}^{2}\right)$ there exists a contractive positive linear map $L: C\left(\mathbb{T}^{2}\right) \rightarrow A$ which is $\varepsilon_{1}-\mathcal{F}_{1}$-multiplicative such that

$$
\left\|L\left(z_{1}\right)-u\right\|<\varepsilon \quad \text { and } \quad\left\|L\left(z_{2}\right)-v\right\|<\varepsilon
$$

where z_{1} and z_{2} are standard unitaries generators of $C\left(\mathbb{T}^{2}\right)$. So, without loss of generality, we may assume that $L\left(z_{1}\right)=u$ and $L\left(z_{2}\right)=v$. Therefore the first part of M3 follows from 3.19.

To obtain the second part, we apply 3.17. Note, if $\alpha \in \mathrm{K} L(C(X), A)$ such that $L_{*}(\mathcal{P})=\alpha(\mathcal{P})$, then, since $\tau(\kappa(u, v))=0, \gamma(\alpha)$ preserves the order on K_{0}. It is proved in [28] that, if B is a unital simple AF-algebra, then for any order preserving homomorphism, $\beta \in \operatorname{Hom}\left(\mathrm{K}_{0}\left(C\left(\mathbb{T}^{2}\right)\right), B\right)$ which also preserves the identity, there exists a homomorphism $h^{\prime}: C\left(\mathbb{T}^{2}\right) \rightarrow B$ such that $h_{*}^{\prime}=\beta$. By the additional assumption that $\mathrm{K}_{0}(A)$ is a dimension group, for any nonzero projection $e \in A$, it follows from 2.9 in [44] that there is a unital simple AF-algebra B which can be injectively mapped into $e A e$.

4. HIGHER DIMENSION CASES

4.1. Theorem. Let \mathbb{D}^{3} be the three-dimensional unit solid ball. There are contractive positive linear maps $\Lambda_{n}: C\left(\mathbb{D}^{3}\right) \rightarrow M_{n^{3}}$ which are σ_{n}-injective with $\sigma_{n} \rightarrow 0$ and which satisfy

$$
\left\|\Lambda_{n}(f g)-\Lambda_{n}(f) \Lambda_{n}(g)\right\| \rightarrow 0
$$

for all $f, g \in C\left(\mathbb{D}^{3}\right)$, as $n \rightarrow \infty$ and $a>0$ such that

$$
\inf _{\psi_{n}}\left\{\sup \left\{\left\|\Lambda_{n}(f)-\psi_{n}(f)\right\| \mid f \in \mathcal{F}\right\}\right\} \geqslant a
$$

where \mathcal{F} is a given set of finite generators and the infimum is taken from all homomorphisms $\psi_{n}: C\left(\mathbb{D}^{3}\right) \rightarrow M_{n^{3}}$ for each n.

Proof. We start with a known example ([60], [31], [32] and [75]). There are two sequences of unitaries $u_{n}, v_{n} \in M_{n}$ with

$$
\left\|u_{n} v_{n}-v_{n} u_{n}\right\| \rightarrow 0
$$

but $\operatorname{dim}\left[e\left(u_{n}, v_{n}\right)\right]=n-1$. Denote $p_{n}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $q_{n}=e\left(u_{n}, v_{n}\right)$ in $M_{2}\left(M_{n}\right)$ (see [60] for $e\left(u_{n}, v_{n}\right)$). There are partial isometries $w_{n} \in M_{2}\left(M_{n}\right)$ such that $p_{n}-w_{n}^{*} q_{n} w_{n}$ is a rank one projection in M_{n}.

Let $B^{\prime}=\bigoplus_{n} M_{n}$ be as a C^{*}-algebra. Then $M\left(B^{\prime}\right)=\prod_{n} M_{n}$. Let $U=\left\{u_{n}\right\}$ and $V=\left\{v_{n}\right\} \stackrel{n}{\text { and }} \pi^{\prime}: M\left(B^{\prime}\right) \rightarrow M\left(B^{\prime}\right) / B^{\prime}$ be the quotient map. Then $\pi^{\prime}(U)$ commutes with $\pi(V)$. Thus we obtain a homomorphism $\bar{\Psi}: C\left(\mathbb{T}^{2}\right) \rightarrow M\left(B^{\prime}\right) / B^{\prime}$. By [11], there is a contractive positive linear map $\Psi: C\left(\mathbb{T}^{2}\right) \rightarrow M\left(B^{\prime}\right)$ such that $\pi^{\prime} \circ \Psi=\bar{\Psi}$. Write $\Psi=\left\{\varphi_{n}\right\}$; then

$$
\left\|\varphi_{n}(u)-u_{n}\right\| \rightarrow 0 \quad \text { and } \quad\left\|\varphi_{n}(v)-v_{n}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$, where u and v are standard unitaries generators of $C\left(\mathbb{T}^{2}\right)$. Since $\bar{\Psi}$ is a homomorphism,

$$
\left\|\varphi_{n}(f g)-\varphi_{n}(f) \varphi_{n}(g)\right\| \rightarrow 0
$$

as $n \rightarrow \infty$ for all $f \in C\left(\mathbb{T}^{2}\right)$.
Now let $h_{n}: C\left(\mathbb{D}^{3}\right) \rightarrow M_{n}$ be $4 / n^{1 / 3}$-injective homomorphisms. Such a homomorphism is found easily. Now define a contractive positive linear map Λ_{n} : $C\left(\mathbb{D}^{3}\right) \rightarrow M_{n^{3}}$ as follows:

$$
\Lambda_{n}(f)=\operatorname{diag}\left(h_{n}, \varphi_{n}\left(f \mid C\left(\mathbb{T}^{2}\right)\right), \varphi_{n}\left(f \mid C\left(\mathbb{T}^{2}\right)\right), \ldots, \varphi_{n}\left(f \mid C\left(\mathbb{T}^{2}\right)\right)\right)
$$

for $f \in C\left(\mathbb{D}^{3}\right)$, where we view \mathbb{T}^{2} as a compact subset of \mathbb{D}^{3} and there are $n^{2}-1$ copies of $\varphi_{n}\left(f \mid C\left(\mathbb{T}^{2}\right)\right)$. Clearly $\Lambda_{n} \mid C\left(\mathbb{D}^{3}\right)$ is a contractive positive linear map. We also have

$$
\left\|\Lambda_{n}(f g)-\Lambda_{n}(f) \Lambda_{n}(g)\right\| \rightarrow 0
$$

for all $f \in C\left(\mathbb{D}^{3}\right)$ as $n \rightarrow \infty$. Furthermore, for any (finite) subset $\mathcal{F}_{n} \in C\left(\mathbb{D}^{3}\right), \Lambda_{n}$ is $4 / n^{1 / 3}$-injective.

Consider $B=\bigoplus_{n} M_{n^{3}}$ be as a C^{*}-algebra. Then $M(B)=\prod_{n} M_{n^{3}}$. Let $\pi: M(B) \rightarrow M(B) / B^{n}$ be the quotient map. Denote by d_{n} a projection in $M_{n^{3}}$ with rank $n, d=\left\{d_{n}\right\}$ and let I_{d} be the ideal of $M(B)$ generated by d. Let $\pi_{I}: M(B) \rightarrow M(B) / I_{d}$ be the quotient map. Set

$$
p=\operatorname{diag}\left(0,\left\{p_{n}\right\},\left\{p_{n}\right\}, \ldots,\left\{p_{n}\right\}\right), \quad q=\operatorname{diag}\left(0,\left\{q_{n}\right\},\left\{q_{n}\right\}, \ldots,\left\{q_{n}\right\}\right)
$$

and

$$
w=\operatorname{diag}\left(0,\left\{w_{n}\right\},\left\{w_{n}\right\}, \ldots,\left\{w_{n}\right\}\right)
$$

(in $M(B)$). Since

$$
\operatorname{diag}\left(0, p_{n}-w_{n}^{*} q_{n} w_{n}, p_{n}-w_{n}^{*} q_{n} w_{n}, \ldots, p_{n}-w_{n}^{*} q_{n} w_{n}\right)
$$

has rank $n^{2}-1$, by $3.3, p-w^{*} q w \notin I_{d}$. Let $\Lambda=\left\{\Lambda_{n}\right\}$. Then $\Lambda: C\left(\mathbb{D}^{3}\right) \rightarrow M(B)$ is a contractive positive linear map and $\pi \circ \Lambda: C\left(\mathbb{D}^{3}\right) \rightarrow M(B) / B$ is a monomorphism. However, $\operatorname{sp}\left(\pi_{I} \circ \Lambda\right)=\mathbb{T}^{2}$ and $\pi_{I} \circ \Lambda$ induces a homomorphism $C\left(\mathbb{T}^{2}\right)$ from into $M(B) / I_{d}$. Furthermore this homomorphism is the same as

$$
H=\operatorname{diag}(\bar{\Phi}, \bar{\Phi}, \ldots, \bar{\Phi})
$$

(there are $n^{2}-1$ many copies). Since $\pi_{I}\left(p-v^{*} q v\right)$ is a nonzero projection in $M(B) / I_{d}, H$ can not be approximated by homomorphisms from $C\left(\mathbb{T}^{2}\right)$ into $M(B) / I_{d}$ with finite dimensional range. This implies that $\pi \circ \Lambda$ can not be approximated by homomorphisms from $C\left(\mathbb{D}^{3}\right)$ into $M(B) / B$ with finite dimensional range. This, in turn, implies that Λ can not be approximated by homomorphisms with finite dimensional range. Since every homomorphism from $C\left(\mathbb{D}^{3}\right)$ into $M(B)$ $\left(M(B)\right.$ is a W^{*}-algebra) can be approximated by homomorphisms with finite dimensional range, we conclude that Λ is bounded away from homomorphisms, whence, $\left\{\Lambda_{n}\right\}$ is bounded away from homomorphisms.
4.2. Theorem. Let X be a finite CW-complex with $\operatorname{dim}(X) \geqslant 3$ and $A \in \mathbb{A}$ be nonelementary. There are contractive positive linear maps $\Lambda_{n}: C(X) \rightarrow A$ which are σ_{n}-injective with $\sigma_{n} \rightarrow 0$ and which satisfy

$$
\left\|\Lambda_{n}(f g)-\Lambda_{n}(f) \Lambda_{n}(g)\right\| \rightarrow 0
$$

for all $f, g \in C(X)$, as $n \rightarrow \infty$,

$$
\left(\Lambda_{n}\right)_{*}(\overline{\mathcal{P}}) \in \mathcal{N}
$$

for any finite subset $\mathcal{P} \in \bar{P}(C(X))$ when n is sufficiently large, and $a>0$ such that

$$
\inf _{\psi_{n}}\left\{\sup \left\{\left\|\Lambda_{n}(f)-\psi_{n}(f)\right\| \mid\|f\| \leqslant 1\right\}\right\} \geqslant a
$$

where the infimum is taken from all homomorphisms $\psi_{n}: C(X) \rightarrow A$ for each n.
Proof. Let τ be the unique normalized quasitrace. By [78], there are projections $e_{n} \in A$ such that $\tau\left(e_{n}\right) \leqslant 1 / n^{3}$ and $\left(1-e_{n}\right) A\left(1-e_{n}\right)=M_{n^{3}}\left(B_{n}\right)$, where B_{n} is a unital hereditary C^{*}-subalgebra of A. Let C_{n} be the C^{*}-subalgebra of A which is isomorphic to $M_{n^{3}}$. We may further assume that $1-1_{C_{n}} \neq 0$. With p and
q being as in Theorem 4.1; as in the proof of Theorem 4.1, we obtain a sequence of unital contractive positive linear morphisms $\psi_{n}: C\left(\mathbb{T}^{2}\right) \rightarrow C_{n}$ with

$$
\left\|\psi_{n}(f g)-\psi_{n}(f) \psi_{n}(g)\right\| \rightarrow 0
$$

for all $f, g \in C\left(\mathbb{T}^{2}\right)$ and

$$
n\left[\tau\left(\psi_{n}(p)\right)-\tau\left(\psi_{n}(q)\right)\right] \rightarrow 1
$$

as $n \rightarrow \infty$. Since $\operatorname{dim}(X) \geqslant 3$, there is a subset $Y \subset X$ such that Y is homeomorphic to \mathbb{D}^{3}. Thus there is a compact subset $Y_{1} \subset Y$ such that Y_{1} is homeomorphic to \mathbb{T}^{2}. Without loss of generality, we may assume that $Y_{1}=\mathbb{T}^{2}$. Since $e_{n} A e_{n}$ is a nonelementary simple C^{*}-algebra, there is a unital monomorphism $h_{n}: C(X) \rightarrow e_{n} A e_{n}$. Now define

$$
\Lambda_{n}(f)=h_{n}(f) \oplus \psi_{n}\left(f \mid Y_{1}\right)
$$

Clearly $\left(\Lambda_{n}\right)_{*}(\mathcal{P}) \in \mathcal{N}$ when n is large enough. Moreover,

$$
\frac{\tau\left(e_{n}\right)}{\tau\left(\psi_{n}(p)-\psi_{n}(q)\right)}=\mathrm{O}\left(\frac{1}{n^{2}}\right)
$$

Note that, by 4.5 in [27], every monomorphism from $C\left(\mathbb{D}^{3}\right)$ into A can be approximated by homomorphisms with finite dimensional range. The proof of Theorem 4.1 shows that Λ_{n} is bounded away from homomorphisms (choose $\left\{d_{n}\right\} \in \prod A$ with each $d_{n} \in A$ and $\left.1 / n^{2}-1 / n^{4} \leqslant \tau\left(d_{n}\right) \leqslant 1 / n^{2}+1 / n^{4}\right)$.
4.3. Let A be a unital separable simple C^{*}-algebra of real rank zero, stable rank one with weakly unperforated $\mathrm{K}_{0}(A)$ and unique (normalized) quasi-trace τ, and let X be a compact metric space. Suppose that $\psi: C(X) \rightarrow A$ is a unital positive linear map. Then $\tau \circ \psi$ is a state for $C(X)$. Fix a Borel measure m on X with the property that every open ball O of X with positive radius has positive measure. Such a measure will be called strictly positive. Let m_{ψ} be the (Borel) measure on X induced by $\tau \circ \psi$. For any $\varepsilon>0$ and $\sigma>0$, a positive linear map ψ is said to be m - ε - σ-injective if there is an ε-net $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \subset X$ (i.e. for any $x \in X$ there is $x_{i} \in\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ such that dist $\left.\left(x, x_{i}\right)<\varepsilon\right)$ such that

$$
m_{\psi}\left(O_{i}\right) \geqslant \sigma m\left(O_{i}\right), \quad i=1,2, \ldots, m
$$

where $O_{i}=\left\{x \in X \mid \operatorname{dist}\left(x, x_{i}\right)<\eta\right\}$ for any $\eta>0$.
For a general space X, we have proved (see [39]) the following positive result:
4.4. Theorem. Let X be a compact metric space. For any $\varepsilon>0, \sigma>0, a$ strictly positive Borel measure m on X and a finite subset $\mathcal{F} \subset C(X)$ there exist a finite subset \mathcal{P} of projections in $\bigcup_{m=1}^{\infty} M_{\infty}\left(C(X) \otimes C\left(C_{m} \times \mathbb{S}^{1}\right)\right), \delta>0$ and a finite subset $\mathcal{G} \subset C(X)$ satisfying the following:

If $A \in \mathbb{A}$ and $\psi: C(X) \rightarrow A$ is a δ-G-multiplicative contractive positive linear map which is m- $\delta-\sigma$-injective and which satisfies that $\psi_{*}: \overline{\mathcal{P}} \rightarrow \underline{\mathrm{K}}(B)$ lies in \mathcal{N}, then there exist a homomorphism $\varphi: C(X) \rightarrow A$ with finite dimensional range such that

$$
\|\psi(f)-\varphi(f)\|<\varepsilon
$$

for all $f \in \mathcal{F}$.

Acknowledgements. Most of this work was done when the first named author was visiting the University of Oregon in the summer of 1995 . He would like to thank the Mathematics Department for their support during the visit. The second named author would like to express his gratitude to Boris Botvinnik for bringing his very useful result in [4] to the author.

Research partially supported by National Scince Foundation grants DMS-93-01082 (H.L) and DMS-9401515 (G.G).

REFERENCES

1. I.D. Berg, K. Davidson, Almost commuting matrices and a quantitative version of Brown-Douglas-Fillmore theorem, Acta Math. 166(1991), 121-161.
2. I.D. Berg, C.L. Olsen, A note on almost commuting operators, Proc. Roy. Irish Acad. Sect. A 81(1981), 43-47.
3. B. Blackadar, K-Theory for Operator Algebras, Springer-Verlag, New York - Berlin - London - Paris - Tokyo 1986.
4. B.I. Botvinnik, Characterization of the softness of a sheaf of mappings into a CW-complex, Sibirsk. Mat. Zh. 21(2) (1980), 14-18; English transl. Siberian Math. J. 21(1980), 156-159.
5. L.G. Brown, Stable isomorphism of hereditary subalgebras of C^{*}-algebras, Pacific J. Math. 71(1977), 335-348.
6. L.G. Brown, Interpolation by projections in C^{*}-algebras of real rank zero, J. Operator Theory 26(1991), 383-387.
7. L.G. Brown, R. Douglas, P. Fillmore, Unitary equivalence modulo the compact operators and extensions of C^{*}-algebras, in Proc. Conf. on Operator Theory, Lecture Notes in Math., vol 345, Springer-Verlag, Berlin - New York 1973, pp. 56-128.
8. L.G. Brown, R. Douglas, P. Fillmore, Extensions of C^{*}-algebras and K-homology, Ann. of Math. 105(1977), 265-324.
9. L.G. Brown, G.K. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal. $99(1991), 131-149$.
10. M.D. Choi, Almost commuting matrices need not be nearly commuting, Proc. Amer. Math. Soc. 102(1988), 529-609.
11. M.D. Choi, E. Effros, The completely positive lifting problem for C^{*}-algebras, Ann. of Math. 104(1976), 585-609.
12. J. Cuntz, K-theory for certain C^{*}-algebras, Ann. of Math. 113(1981), 181-197.
13. M. Dadarlat, Approximately unitarily equivalent morphisms and inductive limit C^{*}-algebras, preprint.
14. M. Dadarlat, Reduction to dimension three of local spectra of real rank zero C^{*} algebras, preprint.
15. M. Dadarlat, G. Gong, A classification result for approximately homogeneous C^{*}-algebras of real rank zero, Geom. Funct. Anal. 7(1997), 646-711.
16. M. Dadarlat, T.A. Loring, The K-theory of abelian subalgebras of $A F$-algebras, J. Reine Angew. Math. 432(1992), 39-55.
17. M. Dadarlat, T.A. Loring, K-homology, asymptotic representations, and unsuspended E-theory, J. Funct. Anal. 129(1994), 367-384.
18. M. Dadarlat, T.A. Loring, A universal multi-coefficient theorem for the Kasparov groups, preprint.
19. M. Dadarlat, A. Némethi, Shape theory and connected K-theory, J. Operator Theory 23(1990), 207-291.
20. K. Davidson, Almost commuting hermitian matrices, Math. Scand. 56(1985), 222240.
21. G.A. Elliott, Derivations of matroid C^{*}-algebras. II, Ann. of Math. 100(1974), 407-422.
22. G.A. Elliott, A classification of certain simple C^{*}-algebras, in Quantum and NonCommutative Analysis, Kluwer, Dordrecht 1993, pp. 373-385.
23. G.A. Elliott, Are amenable C^{*}-algebras classifiable?, in Representation Theory of Groups and Algebras, Contemporary Math., vol 145, Amer. Math. Soc., Providence, RI 1993, pp. 423-426.
24. G.A. Elliott, On the classification of C^{*}-algebras of real rank zero, J. Reine Angew. Math. 443(1993), 179-219.
25. G.A. Elliott, The classification problem for amenable C^{*}-algebras, Proc. ICM 1994, to appear.
26. G.A. Elliott, G. Gong, On the classification of C^{*}-algebras of real rank zero. II, Ann. Math. 144(1996), 497-610.
27. G.A. Elliott, G. Gong, H. Lin, C. Pasnicu, Abelian C^{*}-subalgebras of C^{*} algebras of real rank zero and inductive limit C^{*}-algebras, Duke Math. J. 86(1996), 511-554.
28. G.A. Elliott, T.A. Loring, $A F$ embeddings of $C\left(T^{2}\right)$ with prescribed K-theory, J. Funct. Anal. 103(1992), 1-25.
29. G.A. Elliott, M. RøRDAm, Classification of certain infinite simple C^{*}-algebras. II, preprint.
30. R. Exel, A Fredholm operator approach to Morita equivalence, K-Theory $\mathbf{7}$ (1993), 285-308.
31. R. Exel, T.A. Loring, Almost commuting unitary matrices, Proc. Amer. Math. Soc. 106(1989), 913-915.
32. R. Exel, T.A. Loring, Invariants of almost commuting unitaries, J. Funct. Anal. 95(1991), 364-376.
33. P. Friis, M. Rørdam, Almost commuting self-adjoint matrices - a short proof of Huaxin Lin's theorem, J. Reine. Angew. Math. 479(1996), 121-131.
34. G. Gong, Approximation by dimension drop algebras and classification, C.R. Math. Rep. Acad. Sci. Canada 16(1994), 40-44.
35. G. Gong, On inductive limits of matrix algebras over higher dimensional spaces. I, Math. Scand. 80(1997), 46-60.
36. G. Gong, On inductive limits of matrix algebras over higher dimensional spaces. II, Math. Scand. 80(1997), 61-100.
37. G. Gong, Classification of C^{*}-algebras of real rank zero and unsuspended E-equivalent types, J. Funct. Anal., to appear.
38. G. Gong, On the classification of simple inductive limit C^{*}-algebras, I: The Reduction Theorem, manuscript.
39. G. Gong, H. Lin, Classification of homomorphisms from $C(X)$ into a simple C^{*} algebra of real rank zero, preprint.
40. K.R. Goodearl, Notes on a class of simple C^{*}-algebras with real rank zero, Publ. Mat. 36(1992), 637-654.
41. P.R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76(1970), 887-931.
42. P.R. Halmos, Some unsolved problems of unknown depth about operators on Hilbert space, Proc. Roy. Soc. Edinburgh Sect. A 76(1976), 67-76.
43. L. Li, C^{*}-algebra homomorphisms and KK-theory, preprint.
44. H. Lin, Skeleton C^{*}-subalgebras, Canad. J. Math. 44(1992), 324-341.
45. H. Lin, Extensions by C^{*}-algebras with real rank zero, Internat. J. Math. 4(1993), 231-252.
46. H. Lin Exponential rank of C^{*}-algebras with real rank zero and the Brown-Pedersen Conjectures, J. Funct. Anal. 114 (1993), 1-11.
47. H. Lin, Almost normal elements, Internat. J. Math. 5(1994), 765-778.
48. H. Lin, C^{*}-algebra Extensions of $C(X)$, Mem. Amer. Math. Soc. 115(1995), no. 550.
49. H. Lin, Almost commuting unitaries in purely infinite simple C^{*}-algebras, Math. Ann. 303(1995), 599-616.
50. H. Lin, Extensions by C^{*}-algebras with real rank zero. II, Proc. London Math. Soc. 71(1995), 641-674.
51. H. Lin, Approximation by normal elements with finite spectra in C^{*}-algebras of real rank zero, Pacific. J. Math. 173(1996), 443-489.
52. H. Lin, Almost commuting selfadjoint matrices and applications, in Fields Inst. Comm., vol 13, Amer. Math. Soc., Providence, RI 1997, pp. 193-233.
53. H. Lin, Almost multiplicative morphisms and some applications, J. Operator Theory 37(1997), 121-154.
54. H. Lin, Almost commuting unitaries and classification of purely infinite simple C^{*} algebras, J. Funct. Anal., 155(1998), 1-24.
55. H. Lin, Extensions of $C(X)$ by simple C^{*}-algebras of real rank zero, Amer. J. Math. 119(1997), 1263-1289.
56. H. Lin, Homomorphisms from $C(X)$ into C^{*}-algebras, Canad. J. Math. 49(1997), 963-1009.
57. H. Lin, When almost multiplicative morphisms close to homomorphisms, Trans. Amer. Math. Soc., to appear.
58. H. Lin, N.C. Phillips, Almost multiplicative morphisms and Cuntz-algebra \mathcal{O}_{2}, Internat. J. Math. 6(1995), 625-643.
59. H. Lin, N.C. Phillips, Approximate unitary equivalence of homomorphisms from \mathcal{O}_{∞}, J. Reine Angew. Math. 464(1995), 173-186.
60. T.A. Loring, K-theory and asymptotically commuting matrices, Canad. J. Math. 40(1988), 197-216.
61. T.A. Loring, C^{*}-algebras generated by stable relations, J. Funct. Anal. 112(1993), 159-203.
62. T.A. Loring, Normal elements of C^{*}-algebras of real rank zero without finitespectrum approximants, Proc. London Math. Soc. 51(1995), 353-364.
63. T.A. Loring, When matrices commute, preprint.
64. W.A.J. Luxembourg, F.R. Taylor, Almost commuting matrices are near commuting matrices, Indag. Math. 32(1970), 96-98.
65. C. Pearcy, A. Shields, Almost commuting matrices, J. Funct. Anal. 33(1979), 332-338.
66. G.K. Pedersen, $S A W^{*}$-algebras and corona C^{*}-algebras, contribution to non-commutative topology, J. Operator Theory 15(1986), 1-15.
67. N.C. Phillips, A survey of exponential rank, Contemporay Math. Amer. Math. Soc. 167 (1995).
68. M. Rieffel, Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. 46(1983), 301-333.
69. M. Rørdam, Classification of certain infinite simple C^{*}-algebra, J. Funct. Anal. 131(1995), 415-458.
70. M. RøRDAM, Classification of certain infinite simple C^{*}-algebras. III, preprint.
71. J. Rosenberg, C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov' generalized K-functor, Duke Math. J. 55(1987), 431-474.
72. P.R. Rosenthal, Are almost commuting matrices near commuting pairs?, Amer. Math. Monthly 76(1969), 925-926.
73. C. Schochet, Topological methods for C^{*}-algebras IV: $\bmod p$ homology, Pacific J. Math. 114(1984), 447-468.
74. D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21(1976), 97-113.
75. D. Voiculescu, Asymptotically commuting finite rank unitaries without commuting approximants, Acta Sci. Math. (Szeged) 451(1983), 429-431.
76. S. Zhang, C^{*}-algebras with real rank zero and the internal structure of their Corona and multiplier algebras. III, Canad. J. Math. 42(1990), 159-190.
77. S. ZHANG, K_{1}-groups, quasidiagonality, and interpolation by multiplier projections, Trans. Amer. Math. Soc. 325(1991), 793-818.
78. S. Zhang, Matricial structure and homotopy type of simple C^{*}-algebras with real rank zero, J. Operator Theory 26(1991), 283-312.
79. S. Zhang, C^{*}-algebras with real rank zero and the internal structure of their Corona and multiplier algebras. I, Pacific J. Math. 155(1992), 169-197.
80. S. Zhang, Certain C^{*}-algebras with real rank zero and their Corona and multiplier algebras. II, K-Theory $\mathbf{6 (1 9 9 2) , ~ 1 - 2 7 . ~}$

GUIHUA GONG
Department of Mathematics
University of Puerto Rico, Rio Piedras
San Juan, PR 00931
U.S.A.

HUAXIN LIN
Department of Mathematics
University of Oregon
Eugene, Oregon 97403-1222
U.S.A.

Received September 7, 1996.

