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Abstract. We explicitly construct functions in H2(T2)
⊥

which determine
bounded (big) Hankel operators on H2(T2) but are not of the form P⊥ψ for
any ψ ∈ L∞(T2). We use this construction to show that the norm of a Hankel
operator with bounded symbol is not, in general, comparable to the distance
the symbol is from H∞(T2). We also characterize the vector space quotient
of symbols of bounded Hankel operators modulo those which lift to L∞(T2)
in terms of a Toeplitz completion problem on vector-valued Hardy space in
one-variable.
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1. INTRODUCTION

Let L2(T2) denote the space of Lebesgue measurable, square-integrable functions
on the torus, T2. The Hardy space, H2(T2), is the closed subspace of L2(T2)
consisting of those functions whose Fourier coefficients vanish off Z+ × Z+. For
φ ∈ H2(T2)⊥, the big Hankel operator with symbol φ is densely defined by Γφf =
P⊥(φf) where f ∈ H2(T2) is a polynomial and P⊥ : L2(T2) → H2(T2)⊥ is the
orthogonal projection onto H2(T2)⊥. Note that Γφ = ΓP⊥φ on polynomials and
the correspondence between the operator Γφ and the function P⊥φ is one-to-one.
Let Hank(T2) denote the space of functions φ ∈ H2(T2)⊥ for which Γφ extends to
a bounded operator from H2(T2) into L2(T2) equipped with the operator norm,
‖φ‖Hank(T2) = ‖Γφ‖.
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If ψ ∈ L∞(T2) then P⊥ψ ∈ Hank(T2) and ‖P⊥ψ‖Hank(T2) 6 ‖ψ‖∞. It follows

that ‖P⊥ψ‖Hank(T2) 6 ‖ψ + h‖∞ for all h ∈ H∞(T2) and thus ‖P⊥ψ‖Hank(T2) 6

dist∞(ψ,H∞(T2)). Identifying P⊥(L∞(T2)) with the quotient L∞(T2)/H∞(T2),

we have that P⊥(L∞(T2)) is contained contractively in Hank(T2). This, of course,

holds in the one variable case and Nehari’s Theorem says that P⊥(L∞(T)) =

Hank(T) and the norms are the same. However in [6], Cotlar and Sadosky proved

that the analogue of Nehari’s Theorem does not hold for Hank(T2) by showing

that P⊥(L∞(T2)) was strictly smaller than Hank(T2). Using duality and a repre-

sentation theorem for functions in Hank(T2), the authors proved only the existence

of a function in Hank(T2) which does not lift to L∞(T2).

In this note we exhibit such functions and characterize the vector space

quotient Hank(T2)/P⊥(L∞(T2)) in terms of a certain Toeplitz completion prob-

lem. The paper is divided into two parts. In Section 2 we study the subspace

of Hank(T2) consisting of those functions which lie in the second quadrant of

L2(T2). This allows us to transfer the Nehari problem for this subclass to a

Toeplitz completion problem on vector-valued Hardy space. The Toeplitz com-

pletion problem is then used to produce functions in this class which are not in

P⊥(L∞(T2)). The following result from Section 2 implies, in particular, that the

function φ(ζ1, ζ2) = log(1−ζ̄1ζ2) is in Hank(T2) but φ 6= P⊥ψ for any ψ ∈ L∞(T2).

Theorem. Let f ∈ H2(T), f(0) = 0, and let φ(ζ1, ζ2) = f(ζ̄1ζ2) ∈ H2(T)⊥⊗
H2(T). Then φ ∈ Hank(T2) if and only if f̄ ∈ Hank(T) and in this case,

‖φ‖Hank(T2) = ‖f̄‖Hank(T). Furthermore, φ ∈ P⊥(L∞(T2)) if and only if f ∈
H∞(T) and in this case 1

2‖f‖∞ 6 dist∞(φ,H∞(T2)) 6 ‖f‖∞.

It will follow easily from the theorem above that the quotient norm and

the Hankel norm on the space P⊥(L∞(T2)) are not equivalent, Corollary 2.4. This

question was posed in [6]. In Section 3 we prove the following lifting theorem which

says that as a vector space the quotient Hank(T2)/P⊥(L∞(T2)) can be identified

with the Hankel operators whose symbols lie in the second quadrant of L2(T2)

and are not of the form P⊥ψ for any ψ ∈ L∞(T2). In other words, the Nehari

problem for H2(T2) is equivalent to the Toeplitz completion problem discussed in

Section 2.

Theorem. Let φ ∈ Hank(T2). Then there exists φ0 ∈ H2(T)⊥⊗H2(T) such

that φ− φ0 ∈ P⊥(L∞(T2)).
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Definitions and Notation. Recall that the space L2(T2) is isomorphic
to L2(T)⊗ L2(T). If en(z) = zn, |z| = 1, denotes the standard orthonormal basis
for L2(T) then via the Fourier transform every function f ∈ L2(T2) corresponds
to an element of the form

f ∼
∞∑

m,n=−∞
amnem ⊗ en where ‖f‖2 =

∞∑
m,n=−∞

|amn|2.

The first sum can be split into four direct summands according to the iden-
tification Z×Z = (Z+×Z+)⊕ (Z−×Z+)⊕ (Z−×Z−)⊕ (Z+×Z−). In this way,
L2(T2) can be identified as a four quadrant space where the quadrants are labeled
as follows.

H2(T)⊥ ⊗H2(T) H2(T)⊗H2(T)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ζ1

H2(T)⊥ ⊗H2(T)⊥ H2(T)⊗H2(T)⊥

x

ζ2

In particular, H2(T2) ∼= H2(T) ⊗ H2(T) and every function f ∈ H2(T2)

corresponds to a sum of the form
∞∑
n=0

en ⊗ fn where fn ∈ H2(T) and ‖f‖2 =
∞∑
n=0

‖fn‖2. Similarly, every φ ∈ L2(T2) which lies in the quadrant H2(T)⊥⊗H2(T)

can be identified with an element of the form
∞∑
n=1

e−n⊗ an where an ∈ H2(T) and

‖φ‖2 =
∞∑
n=1

‖an‖2.

For ψ ∈ L∞(T) let Tψ denote the Toeplitz operator on H2(T) defined
by Tψf = P+(ψf) where P+ : L2(T) → H2(T) is the orthogonal projection
onto H2(T). If a ∈ H∞(T) then Ta is just multiplication by a and referred
to as the analytic Toeplitz operator with symbol a. The notation P(D2) de-
notes the space of polymonials in two variables equipped with the sup norm,
‖p‖∞ = sup

|ζ1|=1, |ζ2|=1

‖p(ζ1, ζ2)‖.
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2. FUNCTIONS IN Hank(T2) \ P⊥(L∞(T2))

In this section we focus on the subclass of Hank(T2) consisting of those symbols
in H2(T)⊥⊗H2(T). Recall that the operator-valued version of Nehari’s Theorem
states that the Hankel matrix with operator entries, (Ai+j+1), is bounded on the

infinite direct sum
∞⊕
1
H2(T) if and only if there exist operators Xn ∈ B(`2) such

that

sup
|ζ|=1

∥∥∥ ∞∑
n=0

ζnXn +
∞∑
n=1

ζ̄nAn

∥∥∥
B(`2)

<∞.

Furthermore, in this case, there exists (see [9]) a sequence Xn for which

‖(Ai+j+1)‖ = sup
|ζ|=1

∥∥∥ ∞∑
n=0

ζnXn +
∞∑
n=1

ζ̄nAn

∥∥∥
B(`2)

.

If we take the operators An to be analytic Toeplitz operators, say An = Tan
,

then there is no reason to assume that we can find a solution of the form Xn = Tbn
,

where bn ∈ H∞(T). However, by using the projection onto the Toeplitz subspace
{Tψ | ψ ∈ L∞(T)}, see [1], we do have that

‖(Tai+j+1)‖ = inf
{ψn}⊆L∞(T)

∥∥∥ ∞∑
n=0

ζnTψn
+

∞∑
n=1

ζ̄nTan

∥∥∥
∞
.

The next result shows that we can find analytic functions bn such that

‖(Tai+j+1)‖ =
∥∥∥ ∞∑
n=0

ζnTbn +
∞∑
n=1

ζ̄nTan

∥∥∥
∞

if and only if φ ∼
∞∑
n=1

e−n ⊗ an is in P⊥(L∞(T2)).

Proposition 2.1. Let φ ∼
∞∑
n=1

e−n ⊗ an be in H2(T)⊥ ⊗ H2(T). Then

‖Γφ‖ = sup
|λ|=1

‖(ai+j+1(λ))‖B(`2). The function φ is in P⊥(L∞(T2)) if and only if

there exist functions bn ∈ H∞(T) such that

sup
|λ|=1

∥∥∥∥∥∥∥∥∥


b0(λ) a1(λ) a2(λ) . . .

b1(λ) b0(λ) a1(λ) . . .

b2(λ) b1(λ) b0(λ) . . .
...

...
...

. . .


∥∥∥∥∥∥∥∥∥
B(`2)

<∞.
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Proof. Let f ∼
∞∑
n=0

en ⊗ fn be in H2(T2). Then

(2.1) Γφf ∼
∞∑
m=1

e−m ⊗
∞∑
n=0

am+nfn.

Hence ‖Γφf‖2 =
∞∑
k=1

∥∥∥ ∞∑
n=0

Tan+k
fn

∥∥∥2

. It follows that ‖Γφ‖ = ‖(Tai+j+1)‖. Iden-

tifying
∞⊕
1
H2(T2) with the Hardy space of `2-valued functions on T, the oper-

ator (Tai+j+1) corresponds to the analytic multiplier z 7→ (ai+j+1(z)) and thus
‖(Tai+j+1)‖ = sup

|λ|=1

‖(ai+j+1(λ))‖B(`2). The function φ is in P⊥(L∞(T2)) if and

only if there exists a function b ∈ H2(T2) such that φ + b ∈ L∞(T2). If b ∼
∞∑
n=0

en ⊗ bn then

‖φ+b‖∞ = sup
|λ|=1

‖φ( · , λ)+b( · , λ)‖∞ = sup
|λ|=1

∥∥∥∥∥∥∥∥∥


b0(λ) a1(λ) a2(λ) . . .

b1(λ) b0(λ) a1(λ) . . .

b2(λ) b1(λ) b0(λ) . . .
...

...
...

. . .


∥∥∥∥∥∥∥∥∥
B(`2)

.

The proof is now complete.

Now if an, bn ∈ H∞(T2) then

sup
|λ|=1

∥∥∥∥∥∥∥∥∥


b0(λ) a1(λ) a2(λ) . . .

b1(λ) b0(λ) a1(λ) . . .

b2(λ) b1(λ) b0(λ) . . .
...

...
...

. . .


∥∥∥∥∥∥∥∥∥
B(`2)

=

∥∥∥∥∥∥∥∥∥


Tb0 Ta1 Ta2 . . .

Tb1 Tb0 Ta1 . . .

Tb2 Tb1 Tb0 . . .
...

...
...

. . .


∥∥∥∥∥∥∥∥∥ .

Identifying the Toeplitz operator matrix on the right with the operator-valued

function defined on the circle by Φ(ζ) =
∞∑
n=0

ζnTbn
+

∞∑
n=1

ζ̄nTan
, it follows that

∥∥∥∥∥∥∥∥∥


Tb0 Ta1 Ta2 . . .

Tb1 Tb0 Ta1 . . .

Tb2 Tb1 Tb0 . . .
...

...
...

. . .


∥∥∥∥∥∥∥∥∥ = sup

|ζ|=1

∥∥∥ ∞∑
n=0

ζnTbn +
∞∑
n=1

ζ̄nTan

∥∥∥.

Thus, by Proposition 2.1, a function φ ∼
∞∑
n=1

e−n⊗an ∈ Hank(T2) lifts to L∞(T2)

if and only if there is an analytic solution to the Toeplitz completion problem for
the operators An = Tan

.
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Therefore, to find a function φ ∈ Hank(T2) which lies in the second quadrant
and which is not in P⊥(L∞(T2)) we need to construct a sequence an ∈ H∞(T)
such that

sup
|λ|=1

∥∥∥∥∥∥∥∥∥


a1(λ) a2(λ) a3(λ) . . .

a2(λ) a3(λ) a4(λ) . . .

a3(λ) a4(λ) a5(λ) . . .
...

...
...

. . .


∥∥∥∥∥∥∥∥∥
B(`2)

<∞

but

sup
|λ|=1

∥∥∥∥∥∥∥∥∥


b0(λ) a1(λ) a2(λ) . . .

b1(λ) b0(λ) a1(λ) . . .

b2(λ) b1(λ) b0(λ) . . .
...

...
...

. . .


∥∥∥∥∥∥∥∥∥
B(`2)

= ∞

for all sequences {bn} ⊂ H∞(T). The following lemma will be used in the proof
of Theorem 2.3.

Lemma 2.2. (i) If {αn} ∈ `2 then for all |λ| = 1, ‖(αi+jλi+j)‖B(`2) =
‖(αi+j)‖B(`2).

(ii) If {αn} ∈ `2(Z) then for all |λ| = 1,∥∥∥∥∥∥∥∥∥


α0 α−1λ̄ α−2λ̄

2 . . .

α1λ α0 α−1λ̄ . . .

α2λ
2 α1λ α0 . . .

...
...

...
. . .


∥∥∥∥∥∥∥∥∥
B(`2)

=

∥∥∥∥∥∥∥∥∥


α0 α−1 α−2 . . .

α1 α0 α−1 . . .

α2 α1 α0 . . .
...

...
...

. . .


∥∥∥∥∥∥∥∥∥
B(`2)

.

Proof. To prove (i) let Hλ = (αi+jλi+j), |λ| = 1. Then Hλ is the Schur
product of the Hankel matrices (λi+j) and H1 = (αi+j). Since |α| = 1, it is
easy to see that the Schur multiplier (λi+j) acts isometrically on B(`2). Hence
‖Hλ‖ = ‖H1‖.

To prove (ii) let ψ ∼
∞∑

n=−∞
αnen ∈ L2(T). For |λ| = 1 let ψλ(ζ) = ψ(λζ).

Then
‖ψλ‖∞ = sup

|ζ|=1

|ψ(λζ)| = ‖ψ‖∞ for all |λ| = 1.

Since ψλ ∼
∞∑

n=−∞
αnλ

nen, (ii) now follows.

Theorem 2.3. Let f ∈ H2(T), f(0) = 0, and let φ(ζ1, ζ2) = f(ζ̄1ζ2) ∈
H2(T)⊥ ⊗ H2(T). Then φ ∈ Hank(T2) if and only if f̄ ∈ Hank(T) and in this
case, ‖φ‖Hank(T2) = ‖f̄‖Hank(T). Furthermore, φ ∈ P⊥(L∞(T2)) if and only if
f ∈ H∞(T) and in this case 1

2‖f‖∞ 6 dist∞(φ,H∞(T2)) 6 ‖f‖∞.
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Proof. Let f ∼
∞∑
n=1

αnen. Then φ ∼
∞∑
n=1

e−n ⊗ an where an(λ) = αnλ
n ∈

H∞(T). By Proposition 2.1, ‖Γφ‖ = sup
|λ|=1

‖(αi+j+1λ
i+j+1)‖. Thus by Lemma 2.2

and Nehari’s theorem, ‖Γφ‖ = ‖(αi+j+1)‖ = ‖(αi+j+1)‖ = ‖f̄‖Hank(T). Note that
if f ∈ H∞(T) then φ ∈ L∞(T2) and ‖φ‖∞ = ‖f‖∞. Since φ = P⊥φ we have that

(2.2) f ∈ H∞(T) ⇒ φ ∈ L∞(T2) and dist∞(φ,H∞(T2)) 6 ‖f‖∞.

Now suppose that φ ∈ P⊥(L∞(T2)) and let b ∼
∞∑
n=0

en⊗bn be a function in H2(T2)

such that φ+ b ∈ L∞(T2). Then

‖φ+ b‖∞ = sup
|λ|=1

∥∥∥∥∥∥∥∥∥


b0(λ) α1λ α2λ

2 . . .

b1(λ) b0(λ) α1λ . . .

b2(λ) b1(λ) b0(λ) . . .
...

...
...

. . .


∥∥∥∥∥∥∥∥∥
B(`2)

<∞.

By Lemma 2.2,

sup
|λ|=1

∥∥∥∥∥∥∥∥∥


b0(λ) α1λ α2λ

2 . . .

b1(λ) b0(λ) α1λ . . .

b2(λ) b1(λ) b0(λ) . . .
...

...
...

. . .


∥∥∥∥∥∥∥∥∥
B(`2)

= sup
|λ|=1

∥∥∥∥∥∥∥∥∥


b0(λ) α1 α2 . . .

λb1(λ) b0(λ) α1 . . .

λ2b2(λ) λb1(λ) b0(λ) . . .
...

...
...

. . .


∥∥∥∥∥∥∥∥∥
B(`2)

.

Now the function

B(z) =


b0(z) α1 α2 . . .

zb1(z) b0(z) α1 . . .

z2b2(z) zb1(z) b0(z) . . .
...

...
...

. . .


is an analytic B(`2)-valued function on the unit disc with constant term equal to

B(0) =


b(0, 0) α1 α2 . . .

0 b(0, 0) α1 . . .

0 0 b(0, 0) . . .
...

...
...

. . .

 .

Hence ‖B(0)‖ = ‖b(0, 0) + f‖∞ 6 sup
|λ|<1

‖B(λ)‖ = ‖φ+ b‖∞. Thus f ∈ H∞(T) and

‖φ+ b‖∞ > inf{‖w + f‖∞ | w ∈ C} = dist∞(f,C). Since f(0) = 0, dist∞(f,C) >
1
2‖f‖∞. The result now follows from (2.2) above.
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Corollary 2.4. For any ε > 0 there exists φ ∈ L∞(T2) which lies in the
quadrant H2(T)⊥ ⊗H2(T) and such that ‖Γφ‖ < ε but dist∞(φ,H∞(T2)) > 1

2 .

Proof. Let f ∈ H∞(T), f(0) = 0, such that ‖f‖∞ = 1 but ‖f̄‖Hank(T) < ε.

We know that such a function exists since the Hank(T) norm and the sup norm are

not equivalent for bounded functions. Let φ(ζ, λ) = f(ζ̄λ). Then φ ∈ L∞(T2) and

by Theorem 2.3, ‖Γφ‖ = ‖f̄‖Hank(T) < ε and dist∞(φ,H∞(T2)) > 1
2‖f‖∞ = 1

2 .

It follows by Corollary 2.4 that there does not exist a uniform constant C > 0

such that dist∞(φ,H∞(T2)) 6 C‖Γφ‖ for every φ ∈ L∞(T2).

3. THE QUOTIENT SPACE Hank(T2)/P⊥(L∞(T2))

In [5], Cotlar and Sadosky characterized the symbols of bounded Hankel opera-

tors as those functions in the so called restricted BMO class and prove that the

restricted BMO norm and the Hankel norm are equivalent. In this section we

prove an alternative lifting result which turns out to be equivalent to the lifting

part of Cotlar and Sadosky’s result. In other words, a proof of Theorem 3.1 below

can be based on the result in [5]. On the other hand, with the exception of the

statement on norms, Theorem 3.1 can in turn be used to prove the lifting part of

the result in [5]. In this sense, the two lifting results are equivalent.

Theorem 3.1. Let φ ∈ Hank(T2). Then there exists φ0 ∈ H2(T)⊥ ⊗H2(T)

such that φ− φ0 ∈ P⊥(L∞(T2)).

The proof given here is algebraic and motivated by known results on first

order Ext groups over the disk algebra. Several facts of independent interest

will be used in the proof and presented first. Throughout the operators Ui ∈
B(L2(T2)) denote the bilateral shifts defined by Uiϕ(ζ1, ζ2) = ζiϕ(ζ1, ζ2), i =

1, 2. The space H2(T2) is invariant under both U1 and U2 and the restriction

operators Si = Ui|H2(T2), i = 1, 2, are the unilateral shifts on H2(T2). Note

that Hankel operators are completely characterized by the intertwining relations

ΓψSi = P⊥UiΓψ, i = 1, 2. Furthermore, if ψ ∈ L∞(T2) then the Toeplitz operator

Tψ = P+Mψ|H2(T2) is bounded on H2(T2) and satisfies P+UiΓψ = TψSi − SiTψ,

i = 1, 2. The next lemma gives the converse of this and so we have an algebraic

characterization of the functions in P⊥(L∞(T2)).
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Lemma 3.2. Let φ ∈ Hank(T2). Then φ ∈ P⊥(L∞(T2)) if and only if there

exists an operator Y ∈ B(H2(T2)) such that P+UiΓφ = SiY − Y Si, i = 1, 2.

Proof. Suppose that P+UiΓφ = SiY − Y Si, i = 1, 2, for some operator

Y ∈ B(H2(T2)). Define A : H2(T2) → L2(T2) by Af = Γφf+Y f . Then A satisfies

ASi = UiA, i = 1, 2. Let ψ = A(1) ∈ L2(T2) where 1 denotes the constant function

1. Then for any polynomial p ∈ P(D2), Ap = Ap(S1, S2)1 = p(U1, U2)A(1) = pψ.

Since P(D2) is dense in H2(T2), Af = ψf for all f ∈ H2(T2). One way to see

that ψ ∈ L∞(T2) is by using the result in [3] that says that L2(T2) is injective as

a module over the bidisc algebra. This implies that the operator A = Mϕ|H2(T2)

where Mϕ ∈ B(L2(T2)) is multiplication by the function ϕ ∈ L∞(T2). Hence

ψ = A(1) = Mϕ(1) = ϕ and so ψ ∈ L∞(T2). By definition, Γφ = P⊥A and thus

φ = Γφ(1) = P⊥A(1) = P⊥ψ.

A proof of the following theorem appears in [7] and so will be ommitted

here. This theorem cast in a homological context is essentially a one-variable

lifting result. We are actually interested in the two-variable case in determining

when a Hankel operator Γφ lifts to L2(T2). It is Theorem 3.3 that we will use

to find a function φ0 in the second quadrant of L2(T2) for which φ − φ0 is in

P⊥(L∞(T2)).

Theorem 3.3. Let S and T be isometries on Hilbert spaces H and K, re-

spectively. Let X ∈ B(K,H). If the operator
(
S X

0 T

)
is polynomially bounded

on H ⊕K then there exists Y ∈ B(K,H) such that X = SY − Y T .

Let T1 and T2 be a pair of commuting isometries on a Hilbert space H and

let A ∈ B(H) satisfying AT2 = T2A. If the operator
(
T1 A

0 T1

)
is polynomially

bounded on H⊕H then, by Theorem 3.3, there exists an operator B ∈ B(H) such

that A = T1B−BT1. One question is when can we find a solution B ∈ {T2}′? The

answer is not always and in fact this problem for the operators Ti = Si is essentially

the Nehari problem forH2(T2). In fact, it will follow from the proof of Theorem 3.1

together with Theorem 2.3, that there exists an operator A ∈ {S2}′ such that

the operators
(
S1 A

0 S1

)
and

(
S2 0
0 S2

)
are jointly polynomially bounded but

A 6= S1B −BS1 for any B ∈ {S2}′.
The next lemma which is a slight refinement of a result found in [8] gives us

a significant reduction in the two-variable problem.
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Lemma 3.4. Let T1 and T2 be a pair of doubly commuting isometries on
a Hilbert space H and let A ∈ B(H) which commutes with T2. If the operator(
T1 A

0 T1

)
is polynomially bounded on H ⊕H then there exist operators A0, B ∈

{T2}′ such that
(i) A = T1B −BT1 +A0 and
(ii) T ∗1A0 = 0.

Proof. If the operator
(
T1 A

0 T1

)
is polynomially bounded then the opera-

tors AN =
N−1∑
j=0

TN−1−j
1 AT j1 , N > 1 are uniformly bounded since

(
T1 A

0 T1

)N
=

(
T1
N AN

0 T1
N

)
for all N > 1. As in the proof of Lemma 1 in [8], see also [4], we define an operator
B ∈ B(H) weakly by the formula, 〈Bh, k〉 = glim{〈T ∗1

NANh, k〉}∞N=1 where glim is
a fixed generalized Banach limit on `∞. A direct computation using the translation
invariance of glim shows that A = T1B − BT1 − (I − T1T

∗
1 )T ∗1B. Furthermore,

since T1 and T2 commute and T ∗1 T2 = T2T
∗
1 , we have that BT2 = T2B. The result

now follows with A0 = −(I − T1T
∗
1 )T ∗1B.

Proof. (Theorem 3.1) Let φ ∈ Hank(T2). By Lemma 3.2, we need to find a
φ0 ∈ H2(T)⊥ ⊗ H2(T) such that Γφ0 is bounded and P+UiΓφ−φ0 = SiY − Y Si

i = 1, 2 for some operator Y ∈ B(H2(T2)). Let Xi = P+UiΓφ ∈ B(H2(T2)),
i = 1, 2. We claim that the operators

Ri =
(
Si Xi

0 Si

)
, i = 1, 2

commute and are jointly polynomially bounded. To see this let Aφ : H2(T2) ⊕
H2(T2) → L2(T2) be the operator defined by Aφ(f, g) = f + Γφg. Then

(3.1) AφRi = UiAφ, i = 1, 2.

Since U1U2 = U2U1, AφR1R2 = AφR2R1. It follows by comparing the (1,2)
corners that S1X2 +X1S2 = S2X1 +X2S1 which is the condition we need for R1

and R2 to commute.
To show that R1 and R2 are jointly polynomially bounded, note that for

p ∈ P(D2),

p(R1, R2) =
(
p(S1, S2) δφ(p)

0 p(S1, S2)

)



The Nehari problem for the Hardy space on the torus 319

where δφ : P(D2) → B(H2(T2)) is a linear map (in fact, a derivation). By (3.1),
Aφp(R1, R2) = p(U1, U2)Aφ for all polynomials p ∈ P(D2). It follows by comparing
the (1,2) corners, that δφ(p) = P+p(U1, U2)Γφ and thus ‖δφ(p)‖ 6 ‖Γφ‖ ‖p‖∞ for
all p ∈ P(D2). Hence, ‖p(R1, R2)‖ 6 C‖p‖∞ where C =

√
2 max{1, ‖Γφ‖}.

By Theorem 3.3, there exists an operator Y ∈ B(H2(T2)) such that X2 =
S2Y −Y S2. Substituting this into the equation S1X2+X1S2 = S2X1+X2S1 yields
X1 − (S1Y − Y S1) ∈ {S2}′. Thus, X1 = S1Y − Y S1 + A where A is a bounded

operator which commutes with S2. It follows that the operator
(
S1 A

0 S1

)
is

polynomially bounded on H2(T2)⊕H2(T2). In fact,(
I Y

0 I

) (
S1 X1

0 S1

)
=

(
S1 A

0 S1

) (
I Y

0 I

)
and hence, the two operators are similar. By Lemma 3.4, there exists operators
A0, B ∈ {S2}′ satisfying A = S1B −BS1 +A0 and S∗1A0 = 0. Therefore,

(3.2) X1 = S1(Y +B)− (Y +B)S1 +A0, X2 = S2(Y +B)− (Y +B)S2.

Now S∗1A0 = 0 and A0S2 = S2A0 implies that there exists functions an ∈ H∞(T),

n > 1 such that A0f = e0⊗
∞∑
n=0

an+1fn for all f ∼
∞∑
n=0

en⊗fn in H2(T2). In other

words, A0 can be identified with the operatorTa1 Ta2 Ta3 . . .

0 0 0 . . .
...

...
...

. . .


acting on

∞⊕
1
H2(T). By (3.2), the operator

(
S1 A0

0 S1

)
is polynomially bounded

on H2(T2)⊕H2(T2) and thus by Theorem 3.3, A0 = S1L−LS1 for some bounded
operator L. It follows that L = S∗1LS1 so that L is unitarily equivalent to an

operator on
∞⊕
1
H2(T) of the form

L0 Ta1 Ta2 . . .

L1 L0 Ta1 . . .

L2 L1 L0 . . .
...

...
...

. . .

 .

By Page’s theorem ([9]), the operator (Tai+j+1) is bounded on
∞⊕
1
H2(T). Now

let φ0 ∼
∞∑
n=1

e−n ⊗ an. Then Γφ0 is bounded by Proposition 2.1 and since

P+U1Γφ0 = A0 and P+U2Γφ0 = 0, we have by (3.2), P+U1Γφ−φ0 = S1Y0 − Y0S1

and P+U2Γφ−φ0 = S2Y0 − Y0S2 where Y0 = Y +B.
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By Theorem 3.1, the quotient vector space Hank(T2)/P⊥(L∞(T2)) can be

identified with the space of all φ ∈ Hank(T2) which are analytic in the second vari-

able modulo those which lift to L∞(T2). The fact that this quotient is nontrivial

means that a certain map is not onto. More precisely, let L∞(T)⊗H∞(T) denote

the subspace of L∞(T2) consisting of those functions which are analytic in the

second variable. The projection P⊥⊗I maps L∞(T)⊗H∞(T) into the spatial ten-

sor product P⊥(L∞(T))⊗minH
∞(T) and has kernel equal to H∞(T)⊗H∞(T) =

H∞(T2). By Theorem 3.1 and Theorem 2.3, this map is not onto P⊥(L∞(T))⊗min

H∞(T). To see this, note that every element in P⊥(L∞(T))⊗minH
∞(T) can be

identified with a function in H2(T)⊥ ⊗H2(T) of the form φ(ζ, λ) =
∞∑
n=1

ζ
n
an(λ),

where ‖φ‖min = sup
|λ|=1

‖φ( · , λ)‖Hank(T) = sup
|λ|=1

‖(ai+j+1(λ))‖B(`2). Hence, by Propo-

sition 2.1, ‖φ‖min = ‖Γφ‖. Moreover, the function φ lifts to L∞(T2) if and only if

there exist functions bn ∈ H∞(T) such that the function ψ(ζ, λ) =
∞∑
n=0

ζnbn(λ) +
∞∑
n=1

ζnan(λ) is in L∞(T)⊗H∞(T). In other words, if and only if there is a

ψ ∈ L∞(T)⊗H∞(T) such that φ = (P⊥ ⊗ I)ψ.
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Note added in proof. Recently and independently, M. Bakonyi and D. Timotin
([2]), gave an alternative proof of Corollary 2.4 by showing that the quotient norms of

the functions
NP

n=1

1
n
ζ̄nλn grow like Log(N). The authors then deduced that the function

φ(ζ, λ) = log(1−ζλ) is in Hank(T2) but does not lift to L∞(T2). It should be pointed out
that both the Log(N) estimate and the non-lifting of φ follow from our results by applying

Theorem 2.3 to the polynomials
NP

n=1

1
n
zn, as well as, the function f(z) = log(1− z).
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