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INTRODUCTION

A Banach space X is called weakly compactly generated (WCG) if there exists
a weakly compact subset C of X such that the linear span of C is dense in X.
Much of the work on the geometry of Banach spaces was related to WCG spaces,
and there are various applications to operator theory, renorming theorems, the
structure of weakly compact sets in general Banach spaces and the theory of vector
valued measures (see [8], [9] and [10]).

The most obvious examples of WCG Banach spaces are the reflexive and the
separable Banach spaces. For any set Γ, c0(Γ) is WCG, whereas l1(Γ) is WCG
precisely when Γ is countable. If Ω is a compact Hausdorff space, then C(Ω) is
WCG if and only if Ω is homeomorphic to a weakly compact subset of some Banach
space.

In this note we investigate weakly compactly generatedness of certain Banach
algebras associated to a locally compact group G, such as the group C∗-algebra
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C∗(G), the Fourier and Fourier-Stieltjes algebras A(G) and B(G), and C0(G).
The main results are as follows. In Theorem 2.3 we prove that for a C∗-algebra A,
the dual Banach space A∗ is WCG if and only if A is separable and Â, the set of
equivalence classes of irreducible ∗-representations of A, is countable. This applies
to B(G) and other coefficient function spaces determined by unitary representa-
tions of G. The group C∗-algebra C∗(G) turns out to be WCG exactly when G

is σ-compact (Theorem 3.1), and A(G) and C0(G) are WCG if and only if G is
first countable (Theorem 3.2). We also comment on how σ-compactness and first
countability of G are related to topological properties of the dual space Ĝ of G.

Several other geometric properties, like the Dunford-Pettis property, the
Schur property, the Radon-Nikodym property and flatness, for the Banach spaces
B(G) and A(G) have been investigated in [19] (and also [4] and [21]).

1. NOTATIONS AND PRELIMINARIES

Throughout this paper, G denotes a locally compact group with fixed left Haar
measure, L1(G) the convolution algebra of integrable functions on G and C∗(G)
the group C∗-algebra of G. Let P (G) be the set of all continuous positive definite
functions on G, and set P 1(G) = {ϕ ∈ P (G) : ϕ(e) = 1}. The linear span B(G) of
P (G) is an algebra, the Fourier-Stieltjes algebra of G, and can be identified with
the Banach space dual of C∗(G). Under this identification, the functions in P (G)
correspond to the positive linear functionals on C∗(G).

Let λ denote the left regular representation of G, that is, λ(x)f(y) = f(x−1y)
for f ∈ L2(G) and x, y ∈ G. Let VN(G) be the von Neumann algebra in B(L2(G))
generated by the operators λ(x), x ∈ G. The Fourier algebra of G,A(G), consists
of all functions ϕ ∈ C0(G) of the form ϕ(x) = 〈λ(x)f, g 〉, f, g ∈ L2(G). A(G) can
be identified with the predual of VN(G). Concerning the basic properties of A(G)
and B(G), we refer the reader to Eymard’s fundamental paper ([12]).

More generally, for an arbitrary unitary representation π of G in the Hilbert
space Hπ, let Aπ(G) be the closed linear span in B(G) of all coefficient functions of
π, that is, functions x → 〈π(x)ξ, η〉, ξ, η ∈ Hπ. These Fourier spaces Aπ(G) have
been introduced and studied by Arsac ([2]). Bπ(G) will denote the weak∗ closure
of Aπ(G) in B(G). Then Bπ(G) is the dual of π(C∗(G)) and can be realized as
the space of all coefficient functions determined by representations that are weakly
contained in π ([2]).
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2. DUALS OF C∗-ALGEBRAS

Let A be a C∗-algebra, A∗ its dual and A∗∗ the bidual of A, which is a W ∗-
algebra. By duality, both A and A∗∗ operate on A∗ from the left and from the
right. The norm closed two-sided A-invariant linear subspaces of A∗ correspond
to the σ(A∗∗, A∗)-closed ideals of A∗∗, and these ideals are generated by central
projections (see Chapter III.2 of [20]).

For a representation π of A let A∗π denote the norm closed, two-sided A-
invariant subspace of A∗ generated by the positive linear functionals on A associ-
ated to π, that is, functionals of the form a → 〈π(a)ξ, ξ〉, ξ ∈ Hπ. Â will denote
the set of equivalence classes of irreducible ∗-representations of A.

Lemma 2.1. If A∗ is weakly compactly generated, then A∗π is weakly com-
pactly generated for every representation π of A.

Proof. By [20], Theorem III. 2.7 there exists a central projection eπ in A∗∗

such that A∗π = eπA
∗. Thus A∗π is a complemented subspace of A∗. In particular,

there is a continuous linear mapping from A∗ onto A∗π. Since A∗ is WCG it follows
that A∗π is WCG.

The following lemma is the main step towards establishing Theorem 2.3
below.

Lemma 2.2. Suppose that A∗ is weakly compactly generated. Then A is
separable and Â is countable.

Proof. We first show that if π is an irreducible representation of A, then Hπ,
the Hilbert space of π, is separable. To that end let TC(Hπ)denote the space of
trace class operators in Hπ. Each T ∈ TC(Hπ) defines an element ϕT of A∗π by
ϕT (x) = tr(π(x)T ), x ∈ A. The mapping

φ : TC(Hπ) → A∗π, T → ϕT

is linear and onto, and φ is isometric because π is irreducible. Indeed,

(A∗π)∗ = π(G)′′ = B(Hπ) = TC(Hπ)∗.

Now fix an orthonormal basis (ξi)i∈I of Hπ. This basis defines a continuous linear
mapping

T → (〈Tξi, ξi〉)i∈I

from TC(Hπ) onto l1(I). Since A∗π is WCG (Lemma 2.1), we conclude that
TC(Hπ) is WCG and hence so is l1(I). However, this implies that I is count-
able.
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Next we apply Lemma 2.1 to the direct sum of all σ ∈ Â. Note that A∗σ = A∗τ

and eσ = eτ if σ and τ are equivalent. Let eσ be the central projection in A∗∗

such that A∗σ = eσA
∗. The projections eσ, σ ∈ Â, are pairwise orthogonal, their

sum is σ(A∗∗, A∗)-convergent and

∑
σ∈Â

eσ = eπ,

where π is the direct sum of all σ ∈ Â. This gives rise to a decomposition of A∗π
into the subspaces A∗σ, σ ∈ Â. Indeed, for ϕ ∈ A∗π,

ϕ = eπϕ =
∑
σ∈Â

eσϕ and ‖ϕ‖ =
∑
σ∈Â

‖eσϕ‖,

and conversely, if ϕσ ∈ A∗σ are such that
∑

σ∈Â

‖ϕσ‖ <∞, then

ϕ =
∑
σ∈Â

ϕσ ∈ Aπ and ‖ϕ‖ =
∑
σ∈Â

‖ϕσ‖.

If A is non-unital we adjoin a unit e to A and extend functionals on A in the usual

way to functionals on A⊕Ce. Then, since ‖ϕ‖ = ϕ(e) for every positive functional

ϕ ∈ A∗, it follows that

ϕ→ (eσϕ(e))
σ∈Â

is a continuous linear mapping from A∗π onto l1(Â). Thus l1(Â) is WCG, and

hence Â must be countable.

We have seen that A is a C∗-algebra with countable dual and that Hπ is

separable for every irreducible representation π of A. Lemma 1.5 of [22] now

shows A is separable.

In passing we remind the reader that there are several equivalent formula-

tions of the Radon-Nikodym property for Banach spaces, which is of particular

importance in the theory of vector valued integration. However, we refrain from

presenting any of these formulations because in the following theorem the Radon-

Nikodym property is only required for dual Banach spaces. For further information

we refer the reader to [5] and [10].
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Theorem 2.3. For a C∗-algebra A the following conditions are equivalent:
(i) A∗ is weakly compactly generated;
(ii) A is separable and Â is countable;
(iii) A is separable and A∗ has the Radon-Nikodym property;
(iv) A∗ is separable.

Proof. (i) ⇒ (ii) is the preceding lemma. Assume that (ii) holds. Then A is
a scattered C∗-algebra (see [21], Theorem 4.5), that is, every positive functional
on A is the sum of a sequence of pure functionals. By Theorem 3 of [6], A∗ has
the Radon-Nikodym property if (and only if) A is scattered. Thus (ii) ⇒ (iii).

Next, by a theorem of Stegall (see [5], Corollary 4.1.7 and [9], Chapter VI,
Section 6, Corollary 1) a dual Banach space X∗ has the Radon-Nikodym property
(if and) only if every separable subspace of X has a separable dual. Hence (iii) ⇒
(iv).

Finally, (iv) implies (i) since every separable Banach space is WCG.

Before applying Theorem 2.3 to dual Banach spaces of C∗-algebras arising
from unitary representations of locally compact groups, we have to introduce some
more notation and recall a few basics from representation theory. We shall always
use the same letter, say π, for a unitary representation of the locally compact group
G and the corresponding ∗-representation of C∗(G). Recall that Bπ(G) ⊆ B(G) is
identified with the Banach space dual of π(C∗(G)). If S and T are sets of unitary
representations of G, then S is weakly contained in T (S ≺ T ) if⋂

σ∈S

kerσ ⊇
⋂
τ∈T

ker τ,

where kerπ denotes the C∗-kernel of π. Equivalently, every coefficient function
of any σ ∈ S can be approximated uniformly on compact subsets of G by sums
of coefficient functions associated to representations from T . S and T are called
weakly equivalent (S ∼ T ) if S ≺ T and T ≺ S. For all this see [11] and [13].

The dual space Ĝ of G consists of all equivalence classes of irreducible unitary
representations of G and is topologized so that τ ∈ Ĝ belongs to the closure of
a subset S of Ĝ if and only if τ ≺ S. For an arbitrary representation π of G,
the support of π, suppπ, is the closed subset of all τ ∈ Ĝ such that τ ≺ π. In
particular, the support of the regular representation is the so-called reduced dual
Ĝr. Of course, Ĝ is identified with ̂C∗(G) and Ĝr with the dual space of λ(C∗(G)).
Finally, if N is a closed normal subgroup of G, then Ĝ/N is considered as a closed
subset of Ĝ in the obvious way.
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Corollary 2.4. For an arbitrary unitary representation π of G the follow-
ing conditions are equivalent:

(i) Bπ(G) is weakly compactly generated;
(ii) suppπ is countable and π(C∗(G)) is separable;
(iii) Bπ(G) is separable.

We now specialize to π the left regular representation λ and the universal
representation ω. Note that Bω(G) = B(G) and that separability of either B(G)
or Bλ(G) implies that A(G) is separable, which in turn implies that G is second
countable ([15], Corollary 6.9). From Corollary 2.4 we then conclude the next two
corollaries.

Corollary 2.5. For any locally compact group G the following are equiva-
lent:

(i) B(G) is weakly compactly generated;
(ii) G is second countable and Ĝ is countable;
(iii) B(G) is separable.

Corollary 2.6. The following conditions are equivalent:
(i) Bλ(G) is weakly compactly generated;
(ii) G is second countable and the reduced dual Ĝr is countable;
(iii) Bλ(G) is separable.

Clearly, ifG is a second countable compact group, then Ĝ is countable (equiv-
alently, B(G) = Bλ(G) is WCG). As to the converse, however, for general second
countable locally compact groups G countability of Ĝ does not force G to be com-
pact. The first such counterexample was Fell’s group, presented in [3]. For a fixed
prime p, Fell’s group is the natural semi-direct product of the compact group of
p-adic units with the p-adic numbers. Nevertheless, the next corollary, which is an
application of results from [3], shows that under a certain mild structural condition
on G, countability of Ĝ indeed implies that G is compact.

Corollary 2.7. Suppose that G contains an almost connected open normal
subgroup. Then the following are equivalent:

(i) B(G) is weakly compactly generated;
(ii) Bλ(G) is weakly compactly generated;
(iii) G is compact and second countable.

Proof. In view of Corollaries 2.5 and 2.6 it only remains to verify that a
second countable locally compact group G must be compact provided that Ĝr is
countable and G has an almost connected open normal subgroup N .
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By Theorem 2.7 of [3] there exists a compact open subgroup of G. Therefore

the connected component of the identity of G has to be compact, and hence N

is compact. In particular, (Ĝ/N)r ⊂ Ĝr since N is amenable. Thus G/N is a

countable discrete group with countable reduced dual, and as such G/N has to be

finite ([3], Proposition 1.5). This proves that G is compact.

Besides the regular representation, one of the most interesting representa-

tions of a locally compact group G is the conjugation representation γ. Denoting

by ∆ the modular function of G, γ is the representation on L2(G) defined by

γ(x)f(y) = ∆(x)
1
2 f(x−1yx),

f ∈ L2(G), x, y ∈ G. We finish this section by applying Corollaries 2.4 and 2.5

and a result from [18] to the C∗-algebra generated by γ. Notice, however, that in

contrast to Bλ(G), in general Bγ(G) fails to be a subalgebra of B(G).

Corollary 2.8. For a connected group G the following two conditions are

equivalent:

(i) Bγ(G) = γ(C∗(G))∗ is weakly compactly generated;

(ii) G is a direct product of a vector group and a compact group K such that

the quotient group of K by its centre is second countable.

Proof. By Corollary 2.4, (i) implies that γ has a countable support. Since G

is connected, Theorem 3 of [18] shows that G has the structure stated in (ii).

Conversely, suppose G is as in (ii) and let Z(G) and Z(K) denote the centre

of G and K, respectively. Then G/Z(G) = K/Z(K) is second countable. Hence

C∗(G/Z(G)) is separable and, since γ is trivial on Z(G), it follows that γ(C∗(G))
is separable. Moreover supp γ ⊆ (K/Z(K))̂ , which is countable. Corollary 2.4

now shows that Bγ(G) is WCG.

3. C∗(G), A(G) AND C0(G)

The purpose of this section is to characterize, for a locally compact group G,

weakly compactly generatedness of C∗(G), A(G) and C0(G) in terms of topological

properties of G. We are going to establish the following two theorems which show

that rarely any of these Banach spaces fails to be weakly compactly generated.
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Theorem 3.1. C∗(G) is weakly compactly generated if and only if G is σ-

compact.

Theorem 3.2. For a locally compact group G the following conditions are

equivalent:

(i) A(G) is weakly compactly generated;

(ii) C0(G) is weakly compactly generated;

(iii) G is first countable.

In the sequel we shall several times use the following simple fact. Let E

and F be Banach spaces, and suppose that E is WCG and that there exists a

continuous linear mapping from E into F with dense range. Then F is WCG.

There are some comments in order before we proceed to prove Theorems 3.1

and 3.2. Firstly, recall that a compact Hausdorff space Ω is said to be Eberlein

compact whenever Ω is homeomorphic to a weakly compact subset of some Banach

space. By a theorem of Amir and Lindenstrauss (see [1], Theorem 2 and [9],

Chapter V, Section 2, Theorem 4), C(Ω) is WCG if and only if Ω is Eberlein

compact. Although there is an intrinsic, purely topological characterization of

Eberlein compacts ([9], Chapter V, Section 3, Theorem 1), this does not seem to

yield a result like the equivalence of (ii) and (iii) of Theorem 3.2.

Secondly, suppose that G is a locally compact abelian group. Then the

equivalence of (ii) and (iii) in Theorem 3.2 follows from Theorem 3.1, and vice

versa. Indeed, C0(G) is then isomorphic to C∗(Ĝ) and Ĝ is σ-compact if and

only if G is first countable, as can easily be shown by using Pontrjagin’s duality

theory for locally compact abelian groups. Moreover, the equivalence of (i) and

(iii) follows from the three facts that (i) A(G) is isomorphic to L1(Ĝ), (ii) L1(X,µ)

is WCG exactly when the measure µ is σ-finite ([9], p. 143), and (iii) Haar measure

on a locally compact group H is σ-finite if and only if H is σ-compact.

For general locally compact groups, however, due to the lack of duality theory,

Theorems 3.1 and 3.2 appear to be not related at all. Incidentically, the proofs

require the application of quite different deep theorems from the theory of WCG

Banach spaces.

In what follows H will denote the set of all open subgroups of G, and for

H ∈ H let χH denote the characteristic function of H.
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Lemma 3.3. The set A = {cχH : H ∈ H, 0 6 c 6 1} is w∗-closed in B(G).

Proof. Let (cαχHα
)α be a net in A which is w∗-convergent to some ψ ∈ B(G).

We can assume that ψ 6= 0 and, after passing to a subnet if necessary, that cα → c

for some c ∈ [0, 1]. Then c 6= 0 since ψ 6= 0, and

χHα
→ ϕ =

1
c
ψ

in the w∗-topology of B(G). Clearly, ϕ is positive definite.
Let S(G) denote the set of all closed subgroups of G, endowed with Fell’s

topology (see Section 2 of [13]) which makes S(G) a compact (Hausdorff) space.
By passing to a further subnet if necessary, we can assume that Hα → H in S(G).
By a theorem of Glimm ([14]) there exists a continuous choice of Haar measures
on S(G), that is, a mapping K → mK assigning to each K ∈ S(G) a left Haar
measure of K such that

K →
∫
K

f(x) dmK(x)

is a continuous function on S(G) for every f ∈ Cc(G). Obviously, for K ∈ H,mK

is a positive multiple of the restriction of mG to K, i.e. c(K)mK = mG|K for
some c(K) > 0. It follows that for every f ∈ Cc(G),

(3.1)
∫

Hα

f(x) dmHα(x) →
∫
H

f(x) dmH(x)

and

(3.2) c(Hα)
∫

Hα

f(x) dmHα
(x) = 〈f, χHα

〉 → 〈f, ϕ〉 =
∫
G

f(x)ϕ(x) dmG(x).

Now, take any f ∈ Cc(G) such that H ∩ suppf = ∅. Then Hα ∩ suppf = ∅
eventually, and hence (3.2) implies that 〈f, ϕ〉 = 0. Thus ϕ vanishes outside of H.
As ϕ is a non-zero continuous function, H must be open in G.

We are going to show that ϕ = cχH for some c > 0. To that end, notice first
that c(Hα) → d for some d > 0. Indeed, this follows by choosing f ∈ C+

c (H), f 6=
0, and combining (3.1) and (3.2). Finally, applying (3.1) and (3.2) again and using
that ϕ|G \H = 0 and c(Hα) → d, we obtain

d

∫
H

f(x) dmH(x) = lim
α
c(Hα)

∫
Hα

f(x) dmHα
(x) = lim

α
〈f, χHα

〉

= 〈f, ϕ〉 =
∫
H

f(x)ϕ(x) dmG(x) = c(H)
∫
H

f(x)ϕ(x) dmH(x)

for all f ∈ Cc(G). This implies that ϕ(x) = c(H)−1d for all x ∈ H, as required.
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Lemma 3.4. Retain the previous notations and let ϕ = cχH ∈ A, c 6= 0. If
ϕ has a countable neighbourhood basis in A in the w∗-topology of B(G), then H is
σ-compact.

Proof. For a finite subset F of L1(G) and ε > 0, let

U(F, ε) = {ψ ∈ B(G) : |〈f, ψ〉 − 〈f, ϕ〉 | < ε for all f ∈ F}.

Since L1(G) is dense in C∗(G), these sets U(F, ε) form a neighbourhood basis of
ϕ in A. Thus, by hypothesis, there exist fn ∈ L1(G), n ∈ N, such that if ψ ∈ A

satisfies 〈fn, ψ〉 = 〈fn, ϕ〉 for all n, then ψ = ϕ.

There exists an open, σ-compact subgroupK ofG such that, for every n, fn =
0 almost everywhere outside of K. Since, for each n, we have

〈fn, cχH〉 = c

∫
H

fn(x) dmG(x) = c

∫
K∩H

fn(x) dmG(x) = 〈fn, cχK∩H〉,

it follows that cχH = cχK∩H . Because c 6= 0, we then have H = K ∩H, whence
H is σ-compact.

Proof of Theorem 3.1. Of course, if G is σ-compact then the Haar measure of
G is σ-finite and hence L1(G) is WCG. Since L1(G) is dense in C∗(G), it follows
that C∗(G) is WCG.

Conversely, suppose that C∗(G) is WCG. By a theorem of Amir and Linden-
strauss ([1], Proposition 2; see also [9], Chapter V, Section 2, Theorem 2) there
exist a Banach space E and an injective linear mapping φ : B(G) → E which is
continuous for the w∗-topology on B(G) and the weak topology on E (in fact, E
can be chosen to be c0(Γ) for a certain set Γ).

Let A be as in the preceding lemmas. By Lemma 3.3, A is a w∗-closed
subset of B(G)1, the unit ball of B(G). Let B = φ(A) and K = co(B), the norm
closure (equivalently, the weak closure) of the convex hull co(B) of B. Recall
that if D is a bounded subset of a Banach space X, then an element x0 ∈ D is
called exposed point of D if there exists x∗ ∈ X∗ such that x∗(x0) > x∗(x) for all
x ∈ D,x 6= x0. Now, by another result of Amir and Lindenstrauss ([1], Theorem
4; [9], Chapter V, Section 6, Theorem 2), K is the closed convex hull of its set
expK of exposed points, i.e. K = co(expK). By definition, each such exposed
point has a countable neighbourhood basis for the weak topology of K. Moreover,
by the converse to the Krein-Milman theorem, expK ⊆ B. Thus every point in
K is the norm limit of convex combinations of exposed points.
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It follows that for every n ∈ N, we find bn,j ∈ expK and λn,j > 0, 1 6 j 6

mn, such that
mn∑
j=1

λn,j = 1 and

∥∥∥φ(χG)−
mn∑
j=1

λn,jbn,j

∥∥∥ 6
1
n
,

and every bn,j has a countable neighbourhood basis in K.

Now, let an,j = φ−1(bn,j) ∈ A, and set an =
mn∑
j=1

λn,jan,j . Since φ is linear

and a homeomorphism between φ−1(K), the w∗-closed convex hull of A, and K,
it follows that an → χG in the weak∗-topology on B(G).

Each an,j has a countable neighbourhood basis in φ−1(K) and an,j ∈ A.
It follows from Lemma 3.4 that every an is supported on some σ-compact open
subgroup of G. Hence there exists a σ-compact open subgroup H of G such that
an = 0 on G \H for all n. Finally, since an|H → χH in B(H) and hence

an = anχH → χH in B(G),

we get that χH = χG. This proves that G = H, which is σ-compact.

Proof of Theorem 3.2. (i) implies (ii) since A(G) is norm dense in C0(G).
Suppose that (ii) holds, and let G∞ denote the one point compactification

of G. Then C(G∞) is WCG since C(G∞) = C0(G) ⊕ C. This implies, by the
theorem of Amir and Lindenstrauss alluded to above, thatG∞ is Eberlein compact.
Thus there exist a Banach space E, a weakly compact subset K of E and a
homeomorphism φ : G∞ → K.

Let C denote the closed convex hull of K in E. Then C is the closed convex
hull of its set of exposed points, and all these exposed points are contained in K.
Hence there exists x ∈ G such that φ(x) is exposed. Now, taking g ∈ E∗ that
peaks at φ(x), f = g ◦φ is a continuous function on G∞ such that f(y) 6= f(x) for
all y ∈ G∞, y 6= x. This proves that x has a countable neighbourhood basis, and
hence G is first countable.

Finally, suppose that G is first countable. Then by Theorem 2.6 of [16],
the left regular representation λ is cyclic. Since λ is unitarily equivalent to the
right regular representation ρ, there is a cyclic vector for ρ. Now, every cyclic
vector for a von Neumann algebra is a separating vector for its commutant. Since
VN(G) = λ(G)′′ is the commutant of ρ(G)′′, there is a separating vector for VN(G)
in L2(G). It follows that VN(G) is σ-finite (see [20], Proposition 3.19), and Chu’s
theorem ([7]) shows that A(G), the predual of VN(G), is WCG.
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4. COMPLEMENTS

As mentioned earlier, a locally compact abelian group G is σ-compact if and only
if Ĝ is first countable, and by duality G is first countable if and only if Ĝ is
σ-compact. We shall now prove that essentially the same results hold true for
general locally compact groups, thus showing that the topological conditions on
G in Theorems 3.1 and 3.2 can be replaced by topological conditions on the dual
spaces.

Lemma 4.1. G is σ-compact if and only if Ĝ is first countable.

Proof. Suppose first that G is σ-compact. Let π be an irreducible represen-
tation of G, choose a unit vector ξ in Hπ and consider the coefficient function
ϕ(x) = 〈π(x)ξ, ξ〉. By a theorem of Kakutani and Kodaira (see [17], Satz 6) there
exists a compact normal subgroup K of G such that G/K is second countable and
ϕ is constant on cosets of K. Thus π is the pullback of an irreducible represen-
tation of G/K. Now Ĝ/K is second countable ([11], Proposition 3.3.4), and also
open in Ĝ since K is compact. It follows that π has a countable neighbourhood
basis in Ĝ.

Conversely, let (Un)n∈N be a countable neighbourhood basis of 1G, the trivial
representation of G, in Ĝ. Let

φ : exP 1(G) → Ĝ, ϕ→ πϕ

denote the mapping given by the GNS-construction. Since the w∗-topology on
exP 1(G) agrees with the topology of uniform convergence on compact subsets of
G ([11], Theorem 13.5.2) and since φ is continuous ([11], Theorem 3.4.11), for
each n ∈ N there exists a compact subset Kn of G with the following property: If
ϕ ∈ exP 1(G) satisfies |ϕ(x)− 1| < 1/n for all x ∈ Kn, then πϕ ∈ Un. Let H be a
σ-compact open subgroup of G containing Kn for all n. Now, if ϕ ∈ exP 1(G) is
such that ϕ|H = 1, then

πϕ ∈
∞⋂

n=1

Un = {1G}.

We claim that H = G. To verify this let C denote the set of all ψ ∈ P 1(G) such
that ψ|H = 1. C is convex and w∗-compact, and hence the w∗-closed convex hull
of ex C. Now it is easy to check that every ψ ∈ ex C actually belongs to ex P 1(G).
It follows that ex C = {χG}, and this implies that G = H, which is σ-compact.
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Lemma 4.2. (i) If G is first countable, then Ĝ is σ-compact.
(ii) If G is σ-compact and Ĝ is σ-compact, then G is first countable.

Proof. (i) Let (Vn)n∈N be a neighbourhood basis of e in G, and for n ∈ N let
fn = |Vn|−1χVn

. Then (fn)n∈N is an approximate identity for L1(G) and hence
for C∗(G). For n,m ∈ N let

Cn,m =
{
π ∈ Ĝ : ‖π(fn)‖ >

1
m

}
.

Then Cn,m is compact by the analogue of the Riemann-Lebesgue lemma ([11],
Proposition 3.3.7), and

Ĝ =
⋃
{Cn,m : n,m ∈ N}.

Indeed, if π ∈ Ĝ does not belong to Cn,m for all n and m, then ‖π(fn)‖ < 1/m
for all m, so that π(fn) = 0 and hence

π(f) = lim
n→∞

π(f)π(fn) = 0

for every f ∈ C∗(G), a contradiction.
(ii) By the theorem of Kakutani and Kodaira referred to earlier, there exists

a compact normal subgroup K of G such that G/K is second countable. For
γ ∈ K̂, the G-orbit G(γ) of γ in K̂ is countable since G is σ-compact and K̂ is
discrete. Now, for any G-orbit Γ in K̂, let

ĜΓ = {π ∈ Ĝ : π|K ∼ Γ}.

The compactness of K implies that each ĜΓ is open in Ĝ. Moreover, Ĝ is the
disjoint union of all subsets ĜΓ, where Γ runs through the G-orbits in K̂. In fact,
if π is an irreducible representation of G, then π|K ∼ G(γ) for every irreducible
subrepresentation γ of π|K, and conversely every γ ∈ K̂ occurs in some π|K.
Since Ĝ is σ-compact, every open cover of Ĝ contains a countable subcover. Thus
there are only countably many Γ. Hence K̂ is countable, and this implies that
K is second countable. Since G/K is first countable, we conclude that G is first
countable.

Corollary 4.3. For a locally compact group G the following conditions are
equivalent:

(i) Every closed subgroup H of G has a σ-compact dual Ĥ;
(ii) There exists an open compactly generated subgroup H of G such that Ĥ

is σ-compact;
(iii) G is first countable.

Proof. (i) ⇒ (ii) is trivial, and (ii) ⇒ (iii) and (iii) ⇒ (i) follow from parts
(ii) and (i) of Lemma 4.2, respectively.
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