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Abstract. Let M be a von Neumann algebra equipped with a finite, nor-
malised, normal faithful trace τ and let H∞ be a finite maximal subdiagonal
subalgebra of M. For 1 6 p < ∞ let Hp be the closure of H∞ in the non-
commutative Lebesgue space Lp(M). Then Hp is shown to possess many
of the properties of the classical Hardy space Hp(T) of the circle, such as
various factorisation results including a Riesz factorisation theorem, a Riesz-
Bochner theorem on the existence and boundedness of harmonic conjugates,
direct sum decompositions, and duality.
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1. INTRODUCTION

The classical Hardy spaces Hp(D) , 1 6 p < ∞, are Banach spaces of analytic
functions on the unit disk which satisfy the growth condition

sup
0<r<1

2π∫
0

|f(reiθ)|p dθ < ∞.

The Banach algebra H∞ consists of the bounded analytic functions on the
unit disk. By taking radial limits, Hp(D) can be identified with Hp(T), the space
of functions on the unit circle which are in Lp(T) with respect to Lebesgue measure
and whose negative Fourier coefficients vanish. These spaces have played an im-
portant role in modern analysis and prediction theory. One of the central results in
the functional analytic approach to Hardy spaces is Szegö’s Theorem ([38]), which
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is a formula for the weighted L2(T) distance from 1 to the analytic polynomials
which vanish at the origin. Kolmogorov ([22]) and Wiener ([39]) independently
adapted Szegö’s work to solve the prediction problem for certain stochastic pro-
cesses. Beurling ([2]), unaware of the connection with Szegö’s work, used Hardy
space theory to characterize the invariant subspaces of the unilateral shift, i.e.
multiplication by z acting on H2(D). Beurling’s work was generalized to shifts of
higher multiplicity by Halmos ([16]) and Lax ([25]).

In the fifties, the theory of Hardy spaces was generalized in two directions.
Masani and Wiener ([28], [29]) extended Szegö’s theorem to the theory of multi-
variate stochastic processes by studying matrix valued functions. Concurrently,
Helson and Lowdenslager ([17]) introduced techniques from functional analysis to
extend the theory to the setting of a compact group with ordered dual, thus laying
the foundation for the theory of function algebras. This eventually led to the defi-
nition of a weak* Dirichlet algebra of functions by Srinivasan and Wang ([37]). In
this setting Srinivasan and Wang were able to prove a version of Beurling’s theo-
rem, Szegö’s theorem, and several other important results in the theory of function
algebras. In seemingly unrelated work, Kadison and Singer ([20]) introduced the
notion of a triangular operator algebra, thus inaugurating the systematic study of
nonselfadjoint operator algebras.

In 1967 Arveson ([1]) introduced the concept of a subdiagonal algebra in or-
der to unify the perspectives of [17], [20] and [28]. Roughly, a subdiagonal algebra
A is a subalgebra of a von Neumann algebra M which has many of the structural
properties of the Hardy space H∞(T). In effect, subdiagonal algebras are the
noncommutative analogue of weak* Dirichlet algebras. Subsequently, several au-
thors studied the invariant subspaces of A acting on the noncommutative Lebesgue
space Lp(M) ([21], [26], [30], [33]). There has also been considerable investigation
of analytic crossed products, which are a type of subdiagonal algebra introduced
by McAsey, Muhly and Saito, including their invariant subspace structure ([30],
[33]), maximality among weak* closed subalgebras ofM ([30]), associated Toeplitz
operators ([34], [35]) and Hankel operators ([18]). We shall study Hp, the closure
of A in the noncommutative Lebesgue space Lp(M), as an analogue of the clas-
sical Hardy space Hp(T), and so obtain generalizations of several classical results
including a Riesz factorization theorem for H1, a Riesz-Bochner theorem on the
existence and Lp boundedness of harmonic conjugates, a projection from Lp to
Hp, and the duality of Hp and Hq.
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2. PRELIMINARIES

Throughout M is a von Neumann algebra equipped with a finite, normalised,
normal faithful trace τ . The set of orthogonal projections in M is denoted by
Mp. A closed densely defined operator x is said to be affiliated to M if u∗xu = x

for every unitary operator u belonging to the commutant M′ of M. The set of
all closed densely defined operators affiliated with M will be denoted M̃, this
is a ∗-algebra of operators on the underlying Hilbert space where the sum and
product operation is the closure of the ordinary sum and product. For x ∈ M̃ the
generalised singular function

(2.1) µt(x) = inf{‖xp‖ : p ∈Mp, τ(1− p) 6 t}

is finite valued and decreasing on (0, 1]. For further information on the generalised
singular function we refer the reader to [13]. For 1 6 p 6 ∞ we define the set
Lp(M) to be all those x ∈ M̃ for which µt(x) ∈ Lp(0, 1], and set ‖x‖p = ‖µt(x)‖p.
In fact ‖x‖p = p

√
τ(|x|p) for 1 6 p < ∞ and ‖x‖∞ = ‖x‖ and so this formulation

coincides with other traditional formulations of the Lp spaces, as seen in [36] and
[32], for example.

It is shown in [6] and [9] that Lp(M) is a Banach space under ‖·‖p satisfying
hoped for properties. In particular, for 1 6 p < ∞, the dual of Lp(M) is Lq(M)
(where 1

p + 1
q = 1) under the pairing 〈x, y〉 = τ(xy). Furthermore, the ultraweak

topology on M is just the weak* topology on L∞(M) when it is regarded as the
dual of L1(M).

One of the key ideas to emerge in the recent theory, initiated in [6], is that
of submajorisation of operators. This is a generalisation of the notion of subma-
jorisation of functions introduced by Hardy, Littlewood and Polya (see [23] for
example). If f and g are measurable positive decreasing functions on (0,∞), then
we say that g is submajorised by f and write g ≺≺ f if

θ∫
0

g(t) dt 6

θ∫
0

f(t) dt

for all θ > 0. Given y and x in M̃, we say that y is submajorised by x and
write y ≺≺ x if µ(y) ≺≺ µ(x). The importance of this notion of submajorisation
in M̃ lies in that it serves as a tool for establishing norm inequalities in a wide
variety of settings. Firstly, it has been established that µ(x + y) ≺≺ µ(x) + µ(y)
and µ(xy) ≺≺ µ(x)µ(y) for all x, y ∈ M̃. Secondly, a large class of rearrangement
invariant (fully) symmetric Banach operator spaces have been identified. A normed
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space E ⊂ M̃ is rearrangement invariant fully symmetric if whenever y ∈ M̃ and
x ∈ E with y ≺≺ x then y ∈ E and ‖y‖E 6 ‖x‖E . The spaces Lp(M), for
1 6 p 6 ∞, are such. For more details the reader is referred to [5].

For a comprehensive survey on the history and theory of non-commutative
Banach function spaces, the reader may consult [5]. The general setting is that
of a semifinite von Neumann algebra equipped with a faithful semifinite normal
trace, in that case, the generalised singular function is defined on (0,∞).

The following lemma about submajorisation will provide the bridge from the
classical to the noncommutative Riesz-Bochner Theorem.

Lemma 2.1. Suppose x1, x2, . . . , xn ∈ M̃. Then

µ(x1x2 · · ·xn) ≺≺ µ(x1)µ(x2) · · ·µ(xn).

Proof. The case n = 2 has become well known with different proofs appearing
in [13], [3] and [31]. The proof of the general case follows from a simple inductive
argument based on a Hardy-type inequality: if 0 6 f, g, h are decreasing measur-
able functions on (0,∞), and f ≺≺ g, then fh ≺≺ gh. This Hardy inequality is
easily deduced from [23], II (2.36).

For t ∈ M, x ∈ L2(M), let Lt(x) = tx and Rt(x) = xt. Then L = {Lt : t ∈
M} andR = {Rt : t ∈M} are von Neumann algebras on the Hilbert space L2(M)
which are each other’s commutants. Furthermore, the map t → Lt (respectively
t → Rt) is a normal, ∗-isomorphism (respectively ∗-anti-isomorphism) of M onto
L (respectively R), and the identity 1 is a cyclic and separating vector for L and
R. The map x → x∗ on M extends to a conjugate linear isometry on Lp(M) for
1 6 p < ∞.

M1 denotes the unit ball of M. Given S ⊂ M̃, S1 denotes the intersection
of S with M1, S+ denotes the positive members of S, and Ssa the self adjoint
members of S.

3. EXPECTATIONS, DEFINITIONS, AND EXAMPLES

Given a von Neumann algebra M and a von Neumann subalgebra N , an expec-
tation Φ : M → N is defined to be a positive linear map which preserves the
identity and satisfies Φ(xy) = xΦ(y) for all x ∈ N and y ∈M.

Note that since Φ is positive, it is hermitian i.e. Φ(x)∗ = Φ(x∗) for all x ∈M.
As a consequence, Φ(yx) = Φ(y)x for all x ∈ N and y ∈ M. For a compre-

hensive survey on expectations, see [1], Section 6. In the following proposition we
summarize the properties of Φ that we will need in our work.
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Proposition 3.1. Suppose Φ : M→N is an expectation.
(i) N is the set of fixed points of Φ;
(ii) Φ ◦ Φ = Φ;
(iii) Φ(x)∗Φ(x) 6 Φ(x∗x) for all x ∈M (generalized Schwarz inequality);
(iv)

∥∥Φ(x)
∥∥
∞ 6 ‖x‖∞ for all x ∈M.

Proof. (i) and (ii) are clear. (iii) follows by expanding
(
x − Φ(x)

)∗(
x −

Φ(x)
)

> 0 and then applying Φ throughout, as seen in [1], Proposition 6.1.1. (iv)
then follows from (iii) as follows:∥∥Φ(x)

∥∥2 =
∥∥Φ(x)∗Φ(x)

∥∥ 6
∥∥Φ(x∗x)

∥∥ 6
∥∥Φ

(
‖x∗x‖

)∥∥ = ‖x∗x‖ = ‖x‖2;

or from [20], Lemma 8.2.2.

We now introduce the noncommutative analogue of H∞(T) (cf. [1], [30]).

Definition 3.2. Let A be a weak* closed unital subalgebra of M, and let Φ
be a faithful, normal expectation from M onto the diagonal von Neumann algebra
D = A∩A∗. Then A is a finite, maximal subdiagonal subalgebra of M with respect
to Φ if:

(i) A+A∗ is weak* dense in M;
(ii) Φ(xy) = Φ(x)Φ(y) for all x, y ∈ A;
(iii) τ ◦ Φ = τ .

It has been typical in the recent literature to require in addition that A
be maximal among those subalgebras satisfying (i) and (ii). In fact Arveson did
not require in [1] that subdiagonal algebras be weak* closed, and he asked ([1],
Remark 2.2.3) if the weak* closure was the largest subdiagonal algebra containing
a given one. R. Exel ([12]) has shown that this is the case when the subdiagonal
algebra is finite. As a consequence the requirement that A be maximal among
those subalgebras satisfying (i) and (ii) is redundant.

We give four examples of finite maximal subdiagonal algebras in order to
indicate the scope of the definition. Additional illuminating examples are in [1],
[26] and [30].

Example 3.3. Let (X, µ) be a probability space. Let A be a subalgebra
of L∞(µ) such that 1 ∈ A, A + A is weak* dense in L∞(µ), and

∫
abdµ =

(
∫

adµ)(
∫

b dµ) for all a, b ∈ A. Let Φ(a) = (
∫

adµ)1 and τ(a) = (
∫

adµ). Then
A is a finite subdiagonal algebra in M = L∞(µ), and A is maximal if it is weak*
closed. In particular, H∞(T) is a subdiagonal algebra. These examples are the
weak* Dirichlet algebras of Srinivasan and Wang.
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Example 3.4. Let M = Mn(L∞(T)) be the algebra of n× n matrices with

entries from L∞(T) and A = Mn(H∞(T)) be the algebra of n × n matrices with

entries from H∞(T). For x ∈ M with entries xi,j , define Φ(x) to be the matrix

with entries
∫

xi,j dm and τ(x) = 1
n

n∑
i=1

∫
xi,i dm. Then A is a finite maximal

subdiagonal algebra. These examples provide the setting for the work of Masani

and Wiener.

Example 3.5. Let G be a countable, discrete, ordered group. Let `2(G) ={
f : G → C :

∑
g∈G

|f(g)|2 < ∞
}

. For each g ∈ G, define Ug : `2(G) → `2(G) by

(Ugf)(h) = f(g−1h), h ∈ G, f ∈ `2(G). The map g → Ug is a unitary representa-

tion of G on `2(G). Let M be the von Neumann algebra generated by {Ug}g∈G.

Each x ∈ M has a matrix (xk,h) relative to the standard basis for `2(G). Let

A = {x ∈ M : xh,k = 0 for k < h}. Let τ(x) = xe,e, where e is the identity of

G, and Φ(x) = τ(x)1. Then A is a finite maximal subdiagonal algebra. These

examples encompass much of the work of Helson and Lowdenslager.

Example 3.6. Let M = Mn(C) be the algebra of n × n matrices with

complex entries equipped with the trace τ(x) = 1
n

n∑
i=1

xi,i. Let A be the subalgebra

of upper triangular matrices, then D is the diagonal matrices and Φ is the natural

projection onto the diagonal. Then A is a finite maximal subdiagonal algebra.

Example 3.7. As a generalisation of the above example, let M be a finite

von Neumann algebra with trace τ and fix P, a totally ordered set of projections

in M which contains 0 and 1. Let A = {a ∈ M : ap = pap for all p ∈ P}. By a

theorem of Dye ([11]) there is a trace preserving expectation Φ onto D = {x ∈M :

xp = px for all p ∈ P}. Then A is a finite maximal subdiagonal algebra called the

nest subalgebra of M relative to the nest P. These examples encompass some of

the work of Kadison and Singer. But not all triangular algebras are subdiagonal

algebras.

Having established the analogue of finite maximal subdiagonal algebras with

the classical Hardy spaces, we will henceforth denote a given such algebra by H∞.

Also let H∞
0 = {x ∈ H∞ : Φ(x) = 0}. From the multiplicative condition on Φ we

get that H∞
0 is an ideal in H∞.
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For S ⊂ Lp(M), 1 6 p < ∞, let [S]p denote the closure of S in Lp(M). Let
Hp = [H∞]p and Hp

0 = [H∞
0 ]p. As shown in [30], L2(M) may be decomposed into

the orthogonal direct sum H2 ⊕ (H2
0 )∗ = H2

0 ⊕ L2(D)⊕ (H2
0 )∗. In [33], Section 3

it is shown that for 1 6 p 6 ∞,

(3.1) Hp = H1 ∩ Lp(M) = {x ∈ Lp(M) : τ(xy) = 0 for all y ∈ H∞
0 }

(3.2) Hp
0 = H1

0 ∩ Lp(M) = {x ∈ Lp(M) : τ(xy) = 0 for all y ∈ H∞} .

Proposition 3.8. τ
(
Φ(x)y

)
= τ

(
xΦ(y)

)
for all x, y ∈M.

Proof.

τ
(
Φ(x)y

)
= τ

(
Φ(Φ(x)y)

)
= τ

(
Φ(x)Φ(y)

)
= τ

(
Φ(xΦ(y))

)
= τ

(
xΦ(y)

)
.

Proposition 3.9. Φ(x) ≺≺ x for all x ∈ L1(M). Furthermore, Φ extends
to a continuous linear operator on Lp(M) for 1 6 p 6 ∞, with

∥∥Φ(x)
∥∥

p
6 ‖x‖p

for all x ∈ Lp(M).

Proof. The case p = ∞ is Proposition 3.1 (iv). For the case p = 1, we use
the same proposition and also Proposition 3.8 to calculate:∥∥Φ(x)

∥∥
1

= sup
y∈M1

∣∣τ(
Φ(x)y

)∣∣ = sup
y∈M1

∣∣τ(
xΦ(y)

)∣∣ 6 sup
y∈M1

∣∣τ(xy)
∣∣ = ‖x‖1.

As a consequence, Φ extends uniquely to a norm decreasing map from L1(M)
to L1(D), which we will continue to denote by Φ. Hence Φ can be considered to
be a continuous map from M to D and from L1(M) to L1(D); in the terminology
of [23], Chapter 1, Φ is a continuous linear operator from the Banach couple(
L1(M),M

)
to the Banach couple

(
L1(D),D

)
, and Φ has norm 1. It now follows

from [9], Proposition 4.1, that Φ(x) ≺≺ x for all x ∈ L1(M). It follows, via the
fact that Lp(0,∞) is a rearrangement invariant fully symmetric Banach space,
that Φ extends to a continuous linear operator on Lp(M) for 1 6 p 6 ∞, with∥∥Φ(x)

∥∥
p

6 ‖x‖p for all x ∈ Lp(M).

Proposition 3.10. The adjoint of the map Φ : Lp(M) → Lp(M) (1 6 p 6

∞) is the map Φ : Lq(M) → Lq(M).

Proof. This is an immediate consequence of the fact that τ
(
Φ(x)y

)
= τ

(
xΦ(y)

)
for all x, y ∈ M and so by continuity (of Φ and of τ) for all x ∈ Lp(M), y ∈
Lq(M).
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4. FACTORISATION THEOREMS

Lemma 4.1. Suppose 1 6 r, p, q 6 ∞ with 1
r = 1

p + 1
q . If x ∈ Hp and

y ∈ Hq then xy ∈ Hr and ‖xy‖r 6 ‖x‖p‖y‖q. If in addition x ∈ Hp
0 or y ∈ Hq

0 ,
then xy ∈ Hr

0 .

Proof. First suppose x ∈ Hp and y ∈ Hq. That xy ∈ Lr(M), and the norm
estimate, is a consequence of the Hölder inequality, [13], Theorem 4.2. It suffices
to show that xy ∈ Hr, and for this it suffices by (3.1) to show that τ(xyz) = 0 for
all z ∈ H∞

0 . Suppose then z ∈ H∞
0 .

Since x ∈ Hp, we can choose a sequence (xn) ⊂ H∞ such that xn
‖·‖p−→ x.

Via the Hölder inequality we get that xny
‖·‖r−→ xy, and hence xny

‖·‖1−→ xy. Thus

xnyz
‖·‖1−→ xyz; and τ(xyz) = lim

n
τ(xnyz) = lim

n
τ(yzxn).

For all n ∈ N we have zxn ∈ H∞
0 since H∞

0 is an ideal in H∞. Hence
τ(yzxn) = 0 for all n ∈ N by (3.1). Thus τ(xyz) = 0, and xy ∈ Hr.

A similar argument shows that if x ∈ Hp
0 or y ∈ Hq

0 then xy ∈ Hr
0 .

Theorem 4.2. [Left and right factorisations] Suppose 1 6 p 6 ∞. For all
ε > 0 and z ∈ Lp(M) there exist hi ∈ Hp and vi ∈M(i = 1, 2) such that

(i) z = h1v1 = v2h2;
(ii) ‖vi‖∞ 6 1;
(iii) ‖hi‖p < (1 + ε)‖z‖p;
(iv) hi is invertible, and h−1

i ∈ H∞.

Proof. Suppose ε > 0 and z ∈ Lp(M) are given. Choose 0 < δ <
√

ε‖z‖p.
First suppose 2 6 p 6 ∞. Since τ is finite we have z ∈ L2(M). We now

consider the positive weak* continuous linear form ωδI + ωz on the von Neumann
algebra R. Now I ∈ L2(M) is a separating vector for R, so by [19], Theorem 7.2.3
there exists y ∈ L2(M) such that ωy = ωδI + ωz on R.

Thus τ(y∗yx) = τ(δ2x)+τ(z∗zx) for all x ∈M, or τ
(
(y∗y−δ2I−z∗z)x

)
= 0

for all x ∈ M. Hence y∗y − δ2I − z∗z = 0 from the tracial duality, that is,
y∗y = δ2I + z∗z.

Now z ∈ Lp(M) implies that z∗z ∈ Lp/2(M). Hence y∗y = δ2I + z∗z ∈
Lp/2(M), and so y ∈ Lp(M). Furthermore ‖y‖2p = ‖y∗y‖p/2 = ‖δ2I + z∗z‖p/2 6

‖δ2I‖p/2 + ‖z∗z‖p/2 = δ2 + ‖z‖2p.
Now since ωy > ωδI we can find r ∈ M1 such that δI = ry. Likewise since

ωy > ωz we can find s ∈M1 such that z = sy.
Since r

δ is right invertible in M̃, with right inverse y, it is in fact invertible
(because of the finiteness of M) and y is that inverse. Thus

(
r
δ

)−1 ∈ L2(M),
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and so by [33], Proposition 1 there are unitary operators ui ∈ M and invertible
operators ai ∈ H∞ such that r

δ = u1a1 = a2u2 and a−1
i ∈ H2.

It follows that I = u1a1y = a2u2y, and so y = a−1
1 u∗1 = u∗2a

−1
2 . In particular

a−1
i has the same singular function as y, and so a−1

i ∈ Lp(M). By applying (3.1)
we get that a−1

i ∈ Hp.
Thus z = sy = (su∗2)a

−1
2 := v2h2 where v2 ∈ M1, h2 ∈ Hp and h−1

2 ∈ H∞

as required. Finally

‖h2‖p = ‖y‖p 6
√

δ2 + ‖z‖2p <
√

1 + ε‖z‖p < (1 + ε)‖z‖p.

Now suppose 1 6 p < 2. Consider the polar decomposition z = v|z| =
v|z|1/2|z|1/2. Then v|z|1/2 and |z|1/2 both belong to L2p(M).

Since 2p > 2 we have from what has already been proved that |z|1/2 = w2g2

where w2 ∈M1, g2 ∈ H2p, g−1
2 ∈ H∞, and

‖g2‖2p <
√

1 + ε
∥∥|z|1/2

∥∥
2p

=
√

1 + ε
√
‖z‖p.

Now we have z = v|z|1/2w2g2. Again v|z|1/2w2 ∈ L2p(M), and so again
v|z|1/2w2 = w1g1 where w1 ∈M1, g1 ∈ H2p, g−1

1 ∈ H∞ and

‖g1‖2p <
√

1 + ε
∥∥v|z|1/2w2

∥∥
2p

6
√

1 + ε
∥∥|z|1/2

∥∥
2p

=
√

1 + ε
√
‖z‖p.

Thus z = w1(g1g2) := v2h2. Since gi ∈ H2p we have from Lemma 4.1 that
h2 ∈ Hp. Furthermore, h−1

2 = g−1
2 g−1

1 ∈ H∞. Finally

‖h2‖p 6 ‖g1‖2p‖g2‖2p < (1 + ε)‖z‖p.

Thus we have completed the proof for 1 6 p 6 ∞ of the one decomposition
z = v2h2. By considering the von Neumann algebra L instead of R one likewise
derives the other decomposition z = h1v1.

Subsequently we shall refer to the factorisation z = h1v1 of the above theorem
as the left factorisation, and z = v2h2 as the right factorisation.

Theorem 4.3. [Riesz Factorisation Theorem] Suppose f ∈ H1, 1 6 p 6 ∞,
and ε > 0. Then there exist g ∈ Hp and h ∈ Hq such that f = gh and ‖f‖1 6

‖g‖p‖h‖q < (1 + ε)‖f‖1. If f ∈ H1
0 then we can arrange that g ∈ Hp

0 . If f ∈ H1
0

and 1 < p 6 ∞ then we can arrange that either g ∈ Hp
0 or h ∈ Hq

0 .

Proof. If p = 1 then of course we put g = f , h = I. So we suppose that
1 < p < ∞. Since f ∈ H1 ⊂ L1(M), we can easily write f = xy where x ∈ Lp(M),
y ∈ Lq(M) and ‖f‖1 = ‖x‖p‖y‖q.



348 Michael Marsalli and Graeme West

By the right factorisation of Theorem 4.2 we can write y = vh where v ∈M1,
h ∈ Hq, h−1 ∈ H∞ and ‖h‖q < (1 + ε)‖y‖q. Then f = xy = (xv)h := gh.
Certainly g ∈ Lp(M) and ‖g‖p 6 ‖x‖p. Thus ‖f‖1 6 ‖g‖p‖h‖q 6 ‖x‖p · (1 +
ε)‖y‖q = (1 + ε)‖f‖1.

To complete the proof of the first statement it suffices to show that g ∈ Hp.
Since f ∈ H1 we have that τ(gha) = τ(fa) = 0 for all a ∈ H∞

0 . However, by
virtue of the fact that h−1 ∈ H∞, we get that τ(ga) = τ

(
gh(h−1a)

)
= 0 for all

a ∈ H∞
0 . Here we use the fact that H∞

0 is an ideal in H∞. Hence g ∈ Hp.
Now suppose f ∈ H1

0 . Then as above τ(ga) = τ(ghh−1a) = τ
(
f(h−1a)

)
= 0

for all a ∈ H∞. Thus g ∈ Hp
0 .

If instead we implement the left factorisation (applied to x) in the argument
above we will be able to deduce that if f ∈ H1

0 then we can arrange that h ∈ Hq
0 .

The arguments parallel those already given, and so are omitted.

5. THE CONJUGATION AND HERGLOTZ MAPS

Given an operator x, we let Re x = x+x∗

2 and Im x = x−x∗

2i . Furthermore, given a
set S of operators, Re S and Im S are defined in the obvious manner.

In this section we will concern ourselves with the question of recovering H∞

from Re H∞. The first author has shown in [27], Section 4, that if x ∈ Re H∞

then there exists a uniquely determined x̃ ∈ Re H∞ such that x + i x̃ ∈ H∞ and
Φ(x̃) = 0. The map ∼ : Re H∞ → Re H∞ : x → x̃ is called the conjugation map,
while h : Re H∞ → H∞ : x → x + i x̃ is called the Herglotz transform. Both ∼
and h are linear maps over the real scalar field.

The main aim of this section is an exact generalization of the Riesz theorem
which guarantees that the conjugation map is bounded in the Lp(M)-norm for
1 < p < ∞. The basic procedure is to prove the result for even numbers and then
use interpolation for the interval [2,∞) and then adjoints for the interval (1, 2).
This technique is similar to that of Gohberg and Krĕın for the classic Schatten-p-
class case — see [15], Theorem III 6.2 and the interesting discussion there and is
motivated by the ‘Bootstrap’ method due to Cotlar ([4]).

After the work on this paper was completed we learned that Narcisse Ran-
drianantoanina has independently obtained this result using similar methods.

Lemma 5.1. Suppose x, y ∈ Re H∞.
(i) If x ∈ Re H∞

0 then x + i x̃ ∈ H∞
0 ;

(ii) x− Φ(x) ∈ Re H∞
0 , and x̃ =

(
x− Φ(x)

)∼;

(iii)
≈
x= Φ(x)− x;
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(iv) τ(x̃y) = −τ(xỹ).

Proof. (i) Immediate from the fact that Φ(Re a) = Re (Φ(a)).
(ii) Clearly x + i x̃− Φ(x) ∈ H∞

0 , and therefore

x− Φ(x) =

[
x + i x̃− Φ(x)

]
+

[
x + i x̃− Φ(x)

]∗
2

∈ Re H∞
0 .

Thus x̃ =
(
x− Φ(x)

)∼ by uniqueness of conjugates.
(iii) Since x + i x̃ ∈ H∞, multiplying by −i we get x̃ − ix ∈ H∞. Therefore

x̃ + i
(
Φ(x) − x

)
∈ H∞, and certainly Φ

(
Φ(x) − x

)
= 0. Once again the desired

result follows by means of the uniqueness of conjugates.
(iv) First note that if a, b ∈M+ then

τ(ab) = τ(a
1
2 a

1
2 b) = τ(a

1
2 ba

1
2 ) > 0.

It is now immediate that if a, b ∈Msa then τ(ab) ∈ R. Now

τ(Φ(x)Φ(y)) = τ(Φ(h(x))Φ(h(y))) = τ(Φ(h(x)h(y))) = τ(h(x)h(y))

= τ((x + i x̃)(y + i ỹ)) = τ(xy)− τ(x̃ỹ) + i[τ(x̃y) + τ(xỹ)].

We have that x, y, x̃, ỹ, Φ(x), Φ(y) ∈ Msa. Via our initial remarks we deduce
that τ(x̃y) + τ(xỹ) = 0.

What follows is the larger part of the argument for a non-commutative gener-
alization of the Riesz theorem. The argument which we are able to imitate closely
is that of Bochner. This appears in [14], Chapter IV, Theorem 1.3, although we
have repeated most of the details for the convenience of the reader.

The bridging of the gap between the commutative and non-commutative
setting is provided by Lemma 2.1.

Theorem 5.2. [Generalised Riesz theorem] Suppose p is even. Then ‖x̃‖p 6
2p
ln 2‖x‖p for all x ∈ Re H∞.

Proof. For convenience we denote x̃ by y.
Firstly we suppose that x ∈ Re H∞

0 . Then x+i y ∈ H∞
0 and hence (x+iy)p ∈

H∞
0 since H∞

0 is an ideal. Thus

0 = τ
(
(x + iy)p

)
=

p∑
k=0

ip−k
∑

u∈Q(k,p)

τ(u)

where Q(k, p) is the set{
xα1yβ1xα2yβ2 · · ·xαnyβn : n ∈ N, αi, βi > 0,

∑
αi = k,

∑
βi = p− k

}
.
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Now yp = Q(0, p) and thus

−ipτ(yp) =
p∑

k=1

ip−k
∑

u∈Q(k,p)

τ(u)

and so

‖y‖p
p = τ(yp) 6

p∑
k=1

∑
u∈Q(k,p)

∣∣τ(u)
∣∣.

If u is a typical member of Q(k, p), then via Lemma 2.1 we have that

∣∣τ(u)
∣∣ 6 ‖u‖1 =

1∫
0

µt

(
xα1yβ1xα2yβ2 · · ·xαnyβn

)
dt

6

1∫
0

µt(x)α1µt(y)β1 · · ·µt(x)αnµt(y)βndt =

1∫
0

µt(x)kµt(y)p−kdt

6

[ 1∫
0

µt(x)p dt

] k
p
[ 1∫

0

µt(y)p dt

] p−k
p

= ‖x‖k
p ‖y‖p−k

p .

Here we use Hölder’s inequality, with the indices p
k and p

p−k . Since Q(k, p) has(
p
k

)
elements, we thus have ‖y‖p

p 6
p∑

k=1

(
p
k

)
‖x‖k

p ‖y‖p−k
p . Let ξ = ‖y‖p

‖x‖p
. Then

ξp 6
p∑

k=1

(
p
k

)
ξp−k = (1 + ξ)p − ξp. Hence 2ξp 6 (1 + ξ)p and so ξ 6 1

21/p−1
6 p

ln 2 .

Thus ‖x̃‖p 6 p
ln 2‖x‖p.

Now suppose x ∈ Re H∞. Then by making use of Lemma 5.1 (ii), and what
has already been shown, we see that

‖x̃‖p 6
p

ln 2

∥∥x− Φ(x)
∥∥

p
6

p

ln 2
[
‖x‖p +

∥∥Φ(x)
∥∥

p

]
6

2p

ln 2
‖x‖p

since
∥∥Φ(x)

∥∥
p

6 ‖x‖p.

It follows that for every even natural number p, ∼ extends to a real linear
map from [Re H∞]p to itself which has norm of order p. We now make a more
convenient identification of [Re H∞]p.

Proposition 5.3. [Re H∞]p = [Msa]p = Lp(M)sa for all 1 6 p < ∞.

Proof. The second equality is apparent, we concern ourselves only with the
first. Since Re H∞ ⊂Msa, we have [Re H∞]p ⊂ [Msa]p.
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Conversely, suppose x ∈ Msa. Since H∞ + H∞∗
is weak* dense in M, we

can find nets (xα), (yα) ⊂ H∞ such that xα + y∗α
w∗−→ x. Then Re H∞ ⊃ zα :=

xα+x∗α
2 + y∗α+yα

2

w∗−→ x. Here we make use of the weak* continuity of adjunction.
Recall that the weak* topology is just the σ(L∞(M), L1(M)) topology.

Since Lq(M) ⊂ L1(M), we thus get that the convergence also takes place in
the σ(Lp(M), Lq(M)) topology, so x belongs to the σ(Lp(M), Lq(M))-closure of
Re H∞. Since Re H∞ is convex, we may use Mazur’s theorem to conclude that x

belongs to [Re H∞]p.

Combining Theorem 5.2 with the above proposition we conclude that for
an even natural number p the map ∼: Lp(M)sa → Lp(M)sa is real linear and
has norm of order p. Now consider the standard complexification ∼ : Lp(M) →
Lp(M), then given x, y ∈ Lp(M)sa we have

∥∥∼(x + i y)
∥∥

p
= ‖x̃ + i ỹ‖p 6 ‖x̃‖p + ‖ỹ‖p 6

2p

ln 2
[‖x‖p + ‖y‖p] 6

4p

ln 2
‖x + i y‖p.

Here we use the fact that x, y ≺≺ x + iy. [This follows from the statements
that a+a∗

2 ≺≺ a, a−a∗

2i ≺≺ a which are immediate consequences of the triangle
‘inequality’ µ(a + b) ≺≺ µ(a) + µ(b).]

We conclude that ∼ has norm of order p.
Having constructed linear (as opposed to merely real linear) operators, we

can now use the noncommutative Riesz-Thorin interpolation theorem first proved
by Kunze ([24], [7], Theorem 3.1, [8]), to conclude that ∼ : Lp(M) → Lp(M) is
defined and has norm of order p for all p ∈ [2,∞).

From Lemma 5.1 (iv) we deduce that for p ∈ [2,∞) the adjoint of ∼ :
Lp(M) → Lp(M) is −∼ : Lq(M) → Lq(M). Therefore ∼ : Lp(M) → Lp(M) is
defined for p ∈ (1, 2) and has norm of order 1

p−1 .
By restriction we get that ∼ : Lp(M)sa → Lp(M)sa is defined and has norm

of the appropriate orders for p ∈ (1,∞).
Summarizing the above discussion, we have the most general version of the

Riesz-Bochner theorem.

Theorem 5.4. [Generalised Riesz theorem] Suppose 1 < p < ∞. The real
linear maps

∼ : Re H∞ → Re H∞, h : Re H∞ → H∞

extend to real linear maps

∼ : Lp(M)sa → Lp(M)sa, h : Lp(M)sa → Hp.
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If x ∈ Lp(M)sa then h(x) = x + i x̃ ∈ Hp, and Φ(x̃) = 0. Both ∼ and h have
norms of order p for p ∈ [2,∞) and order 1

p−1 for p ∈ (1, 2).

Corollary 5.5. Re Hp = [Re H∞]p = Lp(M)sa for all 1 < p < ∞.

Proof. The second equality has already been established.

If f ∈ Hp then we can choose (fn) ⊂ H∞ such that fn
‖·‖p−→ f . Then

Re fn
‖·‖p−→ Re f , showing that Re Hp ⊂ [Re H∞]p.
For the converse, it suffices to show that Re Hp is closed. So suppose (fn) ⊂

Hp and Re fn
‖·‖p−→ z. By continuity of adjunction we have that z ∈ Lp(M)sa.

Then by Theorem 5.4, Hp ⊃ h(Re fn)
‖·‖p−→ h(z) ∈ Hp. Now z = Re (z + i z̃) =

Re h(z) ∈ Re Hp.

We should remark that the existence of an abstract Riesz projection in a
noncommutative setting (namely, relative to a flow on the von Neumann algebra)
was first established by Zsidó ([40], Theorem 4.2). Recently an extension of this
result has been made to spaces having non-trivial Boyd indices. The interested
reader is referred to [10], in particular Section 4, and the further references there.

6. DIRECT SUM DECOMPOSITIONS

As previously noted, it has been shown in [30] that L2(M) admits the direct sum
decomposition H2

0 ⊕ L2(D)⊕ (H2
0 )∗. In this section we aim at a similar result for

the Lp(M) case (1 < p < ∞).
Given 1 < p < ∞, ∼ denotes the map Lp(M)sa → Lp(M)sa from the Riesz-

Bochner theorem of the previous section; ∼ denotes its complexification.

Lemma 6.1. Suppose x ∈ Hp.
(i) Im x = Φ(Im x) + R̃e x;
(ii) Re x = Φ(Re x)− Ĩm x;
(iii) x = Φ(x) + i x̃.

Proof. (i) and (ii) follow in a manner similar to Lemma 5.1 (ii) and (iii),
exploiting the uniqueness property of ∼, and so the proofs are omitted. (iii)
follows from combining (i) and (ii).

Theorem 6.2. Suppose 1 < p < ∞. Then Lp(M) = Hp
0 ⊕ Lp(D)⊕ (Hp

0 )∗.
The relevant projections are x → 1

2

[
x + i x̃− Φ(x)

]
which has norm of the same

order as ∼; x → Φ(x) which is of norm 1; and x → 1
2

[
x− i x̃− Φ(x)

]
which has

norm of the same order as ∼.



Noncommutative Hp spaces 353

Proof. First observe that Hp = Hp
0 ⊕ Lp(D); the relevant projections are

x → x − Φ(x), x → Φ(x). Also, if we assume for the moment that we have
1
2

[
x + i x̃ + Φ(x)

]
∈ Hp, then it is easy to verify using the basic properties of Φ

that the above decomposition splits this into 1
2

[
x + i x̃− Φ(x)

]
∈ Hp

0 and Φ(x) ∈
Lp(D). To complete the proof it thus suffices to show that Q : Lp(M) → Lp(M) :
x → 1

2

[
x + i x̃ + Φ(x)

]
is a projection along (Hp

0 )∗ onto Hp.
Suppose x ∈ Lp(M). Then Re x + i R̃e x, Im x + i Ĩm x ∈ Hp and hence

x + i x̃ + Φ(x) = Re x + i R̃e x + i
[
Im x + i Ĩm x

]
+ Φ(x) ∈ Hp.

Taking into account the previous lemma we see that Q is a projection onto
Hp with norm of the appropriate order.

To finish we need to show that Q has null space (Hp
0 )∗. So suppose x ∈

Lp(M) and Qx = 0. Thus x + i x̃ + Φ(x) = 0; applying Φ throughout we see
that Φ(x) = 0. Hence x + i x̃ = 0. Comparing real and imaginary parts we see
that Re x = Ĩm x and Imx = −R̃e x. Hence x = Re x + i Imx = Re x − i R̃e x =
(Re x + i R̃e x)∗ ∈ (Hp

0 )∗.
Conversely, if x∗ ∈ Hp

0 then Φ(x∗) = 0 = Φ(x) and hence Φ(Re x) =
Φ(Im x) = 0. It is then immediate that R̃e x = −Im x and Ĩm x = Re x. Thus
x = −i x̃, and so Qx = 0.

Corollary 6.3. Let 1 < p < ∞. The dual space of Hp is conjugate iso-
morphic to Hq via the canonical pairing.

Proof. This follows easily from the decompostion of Theorem 6.2 and general
duality theory. More specifically: since Lq(M) = Hq

0 ⊕ (Hq)∗, we have an isomor-
phism between (Hq)∗ and Lq(M)/Hq

0 . But the latter is isometrically isomorphic
to the dual of Hp, because Hq

0 is the annihilator of Hp in Lq(M).
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