
J. OPERATOR THEORY

40(1998), 357–372

c© Copyright by Theta, 1998

CHARACTERISTIC MATRIX OF

THE TENSOR PRODUCT OF OPERATORS

HIDEKI KOSAKI

Communicated by William B. Arveson

Abstract. The characteristic matrix of the tensor product of two Hilbert
space operators is analyzed. The case where operators are not necessarily
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1. INTRODUCTION

For a densely defined closed operator T on a Hilbert space H, let P be the orthog-
onal projection from the direct sum H⊕H onto the closed subspace

Γ(T ) = {(ξ, T ξ) : ξ ∈ D(T ), the domain of T},

the graph of T . Note

P =

(
p11 p12

p21 p22

)
which is a 2×2-matrix with operator entries, and it is known as the characteristic
matrix of T . The notion of a characteristic matrix was introduced by M. Stone
and J. von Neumann, and it is a standard tool to deal with unbounded operators.

The purpose of the present article is to determine the characteristic matrix
of the tensor product (see Subsection 2.1) of two operators (Theorem 4.1). We
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will also investigate the case when involved operators are not necessarily closable.
Let T1, T2 be densely defined operators (not necessarily closable) on H. The in-
tersection of Γ(Ti) and the “y-axis” 0 ⊕ H could be large, but nevertheless the
algebraic tensor product T1 ⊗alg T2 makes sense on the algebraic tensor product
D(T1) ⊗alg D(T2). By making use of characteristic matrices, we will be able to
describe the closure of the graph Γ(T1⊗algT2) (Theorem 4.7). Of course T1⊗algT2

could be far from being closable, but by removing the intersection of Γ(T1 ⊗alg T2)
and the “y-axis” (i.e., the obstruction for closability) one obtains a certain maxi-
mal closable part. In fact, the general theory on such a procedure was thoroughly
studied by P. Jørgensen ([1]) as a certain Lebesgue type decomposition for an
operator (see Subsection 2.4 for a quick introduction). Our graph analysis will
enable us to determine the maximal closable part of T1 ⊗alg T2 in the sense of [1],
and we will indeed show the multiplicativity for the maximal closable part under
the algebraic tensor product (Theorem 4.8).

2. CHARACTERISTIC MATRIX

Here we summarize basic facts on characteristic matrices, and full details can be
found for example in [1], [2], [4].

2.1. Tensor Product. (see Section 8.10 in [3] for details) Assume that T1, T2

are densely defined operators on a Hilbert space H. Let D(T1) ⊗alg D(T2) be
the algebraic tensor product of the two domains. The algebraic tensor product
T1⊗algT2 of operators is the one with the domain D(T1⊗algT2) = D(T1)⊗algD(T2)
defined by

(T1 ⊗alg T2)
( n∑

i=1

ξi ⊗ ηi

)
=

n∑
i=1

T1ξi ⊗ T2ηi (ξi ∈ D(T1), ηi ∈ D(T2)),

which is well defined. It is plain to see T ∗1 ⊗algT
∗
2 ⊆ (T1⊗algT2)∗. When T1 and T2

are closable, both of D(T ∗1 ) and D(T ∗2 ) (hence their algebraic tensor product) are
dense. Thus, so is D((T1⊗alg T2)∗), that is, the algebraic tensor product T1⊗alg T2

is closable. The closure T1 ⊗alg T2 is defined as the tensor product T1 ⊗ T2 in this
case.

2.2. Characteristic matrix. Let T1 be a densely defined closed operator on a
Hilbert space H with the characteristic matrix

P1 =

(
p11 p∗21

p21 p22

)
.
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Therefore, the operator T1 is described by

p11ξ1 + p∗21ξ2 → p21ξ1 + p22ξ2.

We can explicitly write down pij ’s as follows (see [4]):

P1 =

(
(1 + T ∗1 T1)−1 (1 + T ∗1 T1)−1T ∗1

T1(1 + T ∗1 T1)−1 T1T
∗
1 (1 + T1T

∗
1 )−1

)
.

However, we will not use this expression, and we cannot actually use it because a
more general situation is to be considered. Since P1 is a projection, we have

0 6 p11 6 1, 0 6 p22 6 1,

p2
11 + p∗21p21 = p11,

p21p
∗
21 + p2

22 = p22,

p21p11 + p22p21 = p21.

Furthermore, we have

ker p11 = 0 and ker(1− p22) = 0,

and these two conditions correspond to the density of D(T1) and the closability of
T1 (i.e., the density of D(T ∗1 )) respectively. Conversely, if a projection P satisfies
these conditions, then P is a characteristic matrix and the corresponding operator
T1 is given by T1 = (1− p22)−1p21.

2.3. Adjoint operator. It is well-known that the graph of the adjoint oper-

ator T ∗1 is given by Γ(T ∗1 ) = UΓ(T1)⊥ with the unitary U defined by U
(
ξ1
ξ2

)
=(

−ξ2
ξ1

)
. The characteristic matrix of T ∗1 is thus given by

(
0 −1

1 0

)(
1−

(
p11 p∗21

p21 p22

))(
0 1

−1 0

)
=

(
1− p22 p21

p∗21 1− p11

)
.

2.4. Maximal closable part. (see [1] for details) We assume that a densely
defined operator T1 is not necessarily closable, and let P1 (as in Subsection 2.2) be
the projection onto the closure Γ(T1). By the assumption, the closure of the graph
might meet the “y-axis” in a non-trivial way, i.e., P1(H⊕H)∩(0⊕H) could contain

non-zero vectors. A vector
(

0
ξ

)
is in this intersection, i.e., P1

(
0
ξ

)
=
(

0
ξ

)
if
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and only if p∗21ξ = 0 and p22ξ = ξ. Actually, the first requirement automatically
follows from the second (see (3.1) in the next section). Let q be the projection

onto ker(1−p22). Then, the discussion so far means that
(

0 0
0 q

)
is the projection

(commuting with P1) onto the above intersection. We set

P1op =

(
1−

(
0 0

0 q

))(
p11 p∗21

p21 p22

)
=

(
p11 p∗21

p21 (1− q)p22

)
.

(Note that we have (1−q)p21 = p21 by (3.1) again.) Obviously, the above matrix is
a projection, and from the construction we have ker(1−(1−q)p22) = 0. Therefore,
P1op is the characteristic matrix of an operator, and P1op is called the operator part
of P1. We consider the operator T1c = (1− q)T1 with the domain D(T1c) = D(T1).
For each ξ ∈ D(T1) we have(

ξ

T1ξ

)
=

(
p11ξ1 + p∗21ξ2

p21ξ1 + p22ξ2

)
for some vectors ξ1, ξ2 so that we have(

ξ

T1cξ

)
=

(
p11ξ1 + p∗21ξ2

(1− q)p21ξ1 + (1− q)p22ξ2

)
=

(
p11ξ1 + p∗21ξ2

p21ξ1 + (1− q)p22ξ2

)
.

Therefore, Γ(T1c) is in the range of P1c, and hence T1c is closable. The decompo-
sition T1 = T1c + T1s (with the singular part T1s = qT1) was investigated in [1] as
a Lebesgue type decomposition, and one can show that

(i) T1c satisfies a certain maximality condition and
(ii) the characteristic matrix of the closure T1c is exactly P1op.
We will refer to the operator T1c as the maximal closable part of T1.

3. TECHNICAL LEMMAS

Let

P =

(
p11 p∗21

p21 p22

)
be a projection. We do not assume ker p11 = ker(1 − p22) = 0 here so that
P (H⊕H) may not be the graph of a densely defined closed operator. Let
p11 =

∫
[0,1]

λ dep
λ be the spectral decomposition, and p21 = u|p21| be the polar

decomposition. Since

p∗21p21 = p11 − p2
11 = p11(1− p11),
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we observe |p21| = (p11(1− p11))
1/2 and the support projection of |p21| is u∗u =

ep
(0,1). On the other hand, notice that

p21p
∗
21 = p22 − p2

22 = p22(1− p22).

Let p22 =
∫

[0,1]

λ dfp
λ be the spectral decomposition, and the above computation

shows that |p∗21| = (p22(1− p22))
1/2 and the support projection of |p∗21| is uu∗ =

fp
(0,1). Since u|p21|u∗ = |p∗21|, we conclude u (p11(1− p11))

1/2
u∗ = (p22(1− p22))

1/2

and

(3.1) p21 = u (p11(1− p11))
1
2 = (p22(1− p22))

1
2 u,

which will be repeatedly used. Also the last relation among pij ’s (see Subsec-
tion 2.2) means

(3.2) (1− p22)p21 = p21p11 and p22p21 = p21(1− p11).

We point out the next result although we will not use it (see Remark 3.1 in [1]).

Lemma 3.1. The phase part u of p21 satisfies u(1− p11) = p22u.

Proof. The last relation between pij ’s (see Subsection 2.2) and (3.1) show

u (p11(1− p11))
1
2 p11 + p22u (p11(1− p11))

1
2 = u (p11(1− p11))

1
2 ,

that is,

u(1− p11) (p11(1− p11))
1
2 = p22u (p11(1− p11))

1
2 .

For ξ ∈ ep
(0,1)H (the support of (p11(1− p11))

1
2 ), we have u(1 − p11)ξ = p22uξ.

For ξ ∈ ep
{0} we have

u(1− p11)ξ = uξ = 0 and p22uξ = p220 = 0

while for ξ ∈ ep
{1} we have

u(1− p11)ξ = u0 = 0 and p22uξ = p220 = 0.

Thus, we have u(1− p11)ξ = p22uξ for every vector ξ.
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Let

P2 =

(
q11 q∗21

q21 q22

)
be another projection. Of course the same relations ((3.1), (3.2)) are valid for
qij ’s. We set

D1 = (1− p11)⊗ (1− q11) + p11 ⊗ q11,

D2 = (1− p22)⊗ (1− q22) + p22 ⊗ q22.

Since kerD1 = ker(p11 ⊗ q11) ∩ ker((1 − p11) ⊗ (1 − q11)) and kerD2 = ker(p22 ⊗
q22) ∩ ker((1− p22)⊗ (1− q22)), we have

kerD1 = ep
{0}H⊗ eq

{1}H+ ep
{1}H⊗ eq

{0}H,

kerD2 = fp
{0}H⊗ fq

{1}H+ fp
{1}H⊗ fq

{0}H,

where eq, fq denote the spectral projections of q11, q22 respectively.

Remarks 3.2. (i) If P1, P2 are characteristic matrices of densely defined
closed operators T1, T2, then ep

{0} = fp
{1} = eq

{0} = fq
{1} = 0 (see the last part of

Subsection 2.2) so that both of D1, D2 are injective and D−1
1 , D−1

2 are defined as
(generally unbounded) non-singular positive operators.

(ii) Furthermore, if T1, T2 are bounded, we have

p11 > ε1 =
1

1 + ‖T1‖2
, q11 > ε2 =

1
1 + ‖T2‖2

.

(see the explicit expression of a characteristic matrix in Subsection 2.2 or Propo-
sition 4 (1) in [2]). Since ‖T ∗1 ‖ = ‖T1‖ and ‖T ∗2 ‖ = ‖T2‖, we also have 1 − p22 >

ε1, 1 − q22 > ε2. We can certainly choose a positive ε such that ε 6 (1 − α)(1 −
β) + αβ 6 1 for scalars satisfying ε1 6 α 6 1, ε2 6 β 6 1. Therefore, in this
case the positive operators D1, D2 are invertible. For example, when T1, T2 are
contractions, it is straightforward to see 1/2 6 D1, D2 6 1.

Due to (3.2) we observe the intertwining property

D2(p21 ⊗ q21) = (1− p22)p21 ⊗ (1− q22)q21 + p22p21 ⊗ q22q21

= p21p11 ⊗ q21q11 + p21(1− p11)⊗ q21(1− q11) = (p21 ⊗ q21)D1.

When D1, D2 are invertible, this means D−1
2 (p21 ⊗ q21) = (p21 ⊗ q21)D−1

1 . To
deal with the general case, by a slight abuse of notation we set for i = 1, 2

D−1
i =

{
(Di |the support of Di

)−1 on the support of Di,
0 on the kernel of Di.
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Lemma 3.3. (i) The ranges of p11 ⊗ q11 and p∗21 ⊗ q∗21 are in the support of
D1.

(ii) The ranges of p22 ⊗ q22 and p21 ⊗ q21 are in the support of D2.

Proof. The range of p11 ⊗ q11 is in the range of ep
(0,1] ⊗ eq

(0,1] while that of
p∗21 ⊗ q∗21 is also in the range of ep

(0,1) ⊗ eq
(0,1) thanks to (3.1). These projections

are obviously smaller than the support projection of D1

1− ep
{0} ⊗ eq

{1} − ep
{1} ⊗ eq

{0},

and we have (i).
We also get (ii) by using the spectral projections fp, fq instead.

In the rest of the article we have to keep these facts in mind since D−1
1 , D−1

2

were defined in the extended sense, and at first we show that the same identity as
before remains valid.

Lemma 3.4. We have D−1
2 (p21 ⊗ q21) = (p21 ⊗ q21)D−1

1 , and this product is
a bounded operator.

Proof. On kerD1 = ep
{0}H ⊗ eq

{1}H + ep
{1}H ⊗ eq

{0}H both operators vanish
since p21 ⊗ q21 = 0 on kerD1 thanks to (3.1) and D−1

1 = 0 on kerD1 from the
definition. Let us assume that a vector ζ is in the support of D1 and in D(D−1

1 ).
Then, we have

(p21 ⊗ q21)ζ = (p21 ⊗ q21)D1D
−1
1 ζ = D2(p21 ⊗ q21)D−1

1 ζ

by the preceding intertwining property. Note that the left side is

(p22(1− p22)⊗ q22(1− q22))
1
2 ζ ′

with ζ ′ = (u⊗v)ζ (see (3.1)). The vector ζ ′ is in fp
(0,1)H⊗f

q
(0,1)H (the final space

of u⊗ v), and hence the computation

D−1
2 (p22(1− p22)⊗ q22(1− q22))

1
2 ζ ′ =

(
(p22(1− p22)⊗ q22(1− q22))

1
2

(1− p22)⊗ (1− q22) + p22 ⊗ q22

)
ζ ′

=


√

p22
1−p22

⊗ q22
1−q22

1 + p22
1−p22

⊗ q22
1−q22

 ζ ′

is legitimate. Since
√

α
1+α 6 1/2 for α ∈ R+, this computation shows that (p21⊗q21)ζ

is certainly in D(D−1
2 ). Since the range of p21 ⊗ q21 is in the support of D2

(Lemma 3.3), by hitting D−1
2 to the equation at the beginning we get

D−1
2 (p21 ⊗ q21)ζ = (p21 ⊗ q21)D−1

1 ζ.

Our computation also shows the boundedness of the product.
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The above proof shows thatD−1
2 (p21⊗q21) is defined everywhere and bounded.

On the other hand, the domain of the right side is D(D−1
1 ). Thus, the precise

meaning of the lemma is that the closure of the right side is the left side which is
a bounded operator.

Definition 3.5. Keeping Lemma 3.4 and the obvious commutativity
[D1, p11 ⊗ q11] = [D2, p22 ⊗ q22] = 0 in our mind, we define the projection P =
P (P1, P2) (see Lemma 3.6 below) by

P =
(
D−1

1 0
0 D−1

2

)(
p11 ⊗ q11 p∗21 ⊗ q∗21

p21 ⊗ q21 p22 ⊗ q22

)

=

(
p11 ⊗ q11 p∗21 ⊗ q∗21

p21 ⊗ q21 p22 ⊗ q22

)(
D−1

1 0
0 D−1

2

)

with the “inverses” D−1
1 , D−1

2 explained right before Lemma 3.3.

Note that the components of P are

P11 = D−1
1 (p11 ⊗ q11) = (p11 ⊗ q11)D−1

1 ,

P22 = D−1
2 (p22 ⊗ q22) = (p22 ⊗ q22)D−1

2 ,

P21 = D−1
2 (p21 ⊗ q21) = (p21 ⊗ q21)D−1

1 .

For example, in the first equation both sides vanish on kerD1 because one of p11

and q11 always vanish here. Obviously, both of P11, P22 are positive contractions.
From the proof of Lemma 3.5 we observe that the following alternative expression
is also possible:

P21 =
√
AB

A+B
(u⊗ v)

with the commuting contractions

A =
(
p22f

p
(0,1)

)
⊗
(
q22f

q
(0,1)

)
, B =

(
(1− p22)f

p
(0,1)

)
⊗
(
(1− q22)f

q
(0,1)

)
.

Lemma 3.6. The above P is indeed a projection.

Proof. At first we show P 2
11 + P ∗

21P21 = P11. Note that both sides vanish on
kerD1 due to the presence of D−1

1 in P11 and P21. If a vector ζ is in the support
of D1 and in D(D−1

1 ), we have

(P 2
11 + P ∗

11P21)D1ζ = D−1
1

(
(p11 ⊗ q11)2 + (p∗21 ⊗ q∗21)(p21 ⊗ q21)

)
ζ.
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The above second term being equal to

p∗21p21 ⊗ q∗21q21 = (p11 − p2
11)⊗ (q11 − q211) = p11(1− p11)⊗ q11(1− q11)

= (p11 ⊗ p11) ((1− p11)⊗ (1− q11)) ,

we conclude

(P 2
11 + P ∗

21P21)D1ζ = D−1
1 (p11 ⊗ q11)D1ζ = P11D1ζ

and we see P11 + P ∗
21P21 = P11 (since both sides are bounded). By analogous

computations (by using D−1
2 instead), we can also show P21P

∗
21 + P 2

22 = P22.

Next we show P21P11+P22P21 = P21. Note that both sides vanish on kerD1.
If a vector ζ is in the support of D1 and in D(D−1

1 ), we compute

(P21P11 + P22P21)D1ζ

= D−1
2 (p21 ⊗ q21)(p11 ⊗ q11)ζ + (p22 ⊗ q22)D−1

2 (p21 ⊗ q21)ζ

= D−1
2 ((1− p22)⊗ (1− q22))(p21 ⊗ q21)ζ

+ (p22 ⊗ q22)D−1
2 (p21 ⊗ q21)ζ (by (3.2))

=
(
D−1

2 ((1− p22)⊗ (1− q22)) + (p22 ⊗ q22)D−1
2

)
(p21 ⊗ q21)ζ.

Since
D−1

2 ((1− p22)⊗ (1− q22)) + (p22 ⊗ q22)D−1
2

= D−1
2 ((1− p22)⊗ (1− q22) + p22 ⊗ q22) = D−1

2 D2

and (p21 ⊗ q21)ζ is in the support of D2 (Lemma 3.3), we conclude

(P21P11 + P22P21)D1ζ = (p21 ⊗ q21)ζ = P21D1ζ

as desired.

Lemma 3.7. Any vector in the direct sum (H⊗H)⊕ (H⊗H) of the form

((p11ξ1 + p∗21ξ2)⊗ (q11η1 + q∗21η2), (p21ξ1 + p22ξ2)⊗ (q21η1 + q22η2))

(ξi, ηi ∈ H) is in the range of the projection P .

Proof. It suffices to show that the above vector is fixed under P . We set

ζ1 = p11(p11ξ1 + p∗21ξ2)⊗ q11(q11η1 + q∗21η2)

+ p∗21(p21ξ1 + p22ξ2)⊗ q∗21(q21η1 + q22η2),

ζ2 = p21(p11ξ1 + p∗21ξ2)⊗ q21(q11η1 + q∗21η2)

+ p22(p21ξ1 + p22ξ2)⊗ q22(q21η1 + q22η2)
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for convenience, and we have to show(
D−1

1 0

0 D−1
2

)(
ζ1

ζ2

)
=

(
(p11ξ1 + p∗21ξ2)⊗ (q11η1 + q∗21η2)

(p21ξ1 + p22ξ2)⊗ (q21η1 + q22η2)

)
.

It is plain to see that ζ1 and the first component in the right side (respectively ζ2
and the second component in the right side) are in the support of D1 (respectively
D2) thanks to (3.1) and Lemma 3.3. Therefore, it suffices to see(

ζ1

ζ2

)
=

(
D1 0

0 D2

)(
(p11ξ1 + p∗21ξ2)⊗ (q11η1 + q∗21η2)

(p21ξ1 + p22ξ2)⊗ (q21η1 + q22η2)

)
.

The two components in the right side are

(p11p11ξ1 + p11p
∗
21ξ2)⊗ (q11q11η1 + q11q

∗
21η2)

+ ((1− p11)p11ξ1 + (1− p11)p∗21ξ2)⊗ ((1− q11)q11η1 + (1− q11)q∗21η2),

(p22p21ξ1 + p2
22ξ2)⊗ (q22q21η1 + q222η2)

+ ((1− p22)p21ξ1 + (1− p22)p22ξ2)⊗ ((1− q22)q21η1 + (1− q22)q22η2)

respectively. Thanks to (1−p11)p∗21 = p∗21p22, (1−p22)p21 = p21p11, (1−p22)p22 =
p21p

∗
21 and the same relations for q’s (see (3.2), (3.1)), it is straightforward to see

that the above vectors are ζ1, ζ2.

Lemma 3.8. The range of the projection P is exactly the closed subspace (in
H⊗H⊕H⊗H) generated by the vectors in the previous lemma.

Proof. Assume that a vector
(
ζ1

ζ2

)
∈ H ⊗ H ⊕ H ⊗ H satisfies P

(
ζ1

ζ2

)
=(

ζ1
ζ2

)
and is perpendicular to the vectors in the previous lemma. The first con-

dition means

P11ζ1 + P ∗
21ζ2 = D−1

1 (p11 ⊗ q11)ζ1 +D−1
1 (p∗21 ⊗ q∗21)ζ2 = ζ1,

P21ζ1 + P22ζ2 = D−1
2 (p21 ⊗ q21)ζ1 +D−1

2 (p22 ⊗ q22)ζ2 = ζ2.

Since (p11⊗ q11)ζ1, (p∗21⊗ q∗21)ζ2 and (p21⊗ q21)ζ1, (p22⊗ q22)ζ2 are in the support
of D1, D2 respectively (Lemma 3.3), by hitting D1 and D2 from the left we see
that the above equations imply

(p∗21 ⊗ q∗21)ζ2 = ((1− p11)⊗ (1− q11))ζ1,(3.3)

(p21 ⊗ q21)ζ1 = ((1− p22)⊗ (1− q22))ζ2(3.4)
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(recall the definition of Di). The second condition says that in particular
(
ζ1
ζ2

)
is perpendicular to

(
p11ξ1 ⊗ q11η1
p21ξ1 ⊗ q21η1

)
and

(
p∗21ξ2 ⊗ q∗21η2
p22ξ2 ⊗ q22η2

)
(which is actually an

equivalent requirement thanks to the “polarization”). Since(
ζ1
ζ2

)
⊥

(
p11ξ1 ⊗ q11η1

p21ξ1 ⊗ q21η1

)
,

we have

0 =
((

ζ1
ζ2

)
,

(
p11ξ1 ⊗ q11η1
p21ξ1 ⊗ q21η1

))
= (ζ1, p11ξ1 ⊗ q11η1) + (ζ2, p21ξ1 ⊗ q21η1)

= ((p11 ⊗ q11)ζ1 + (p∗21 ⊗ q∗21)ζ2, ξ1 ⊗ η1).

Since ξ1, η1 ∈ H are arbitrary vectors, we have

(3.5) (p11 ⊗ q11)ζ1 = −(p∗21 ⊗ q∗21)ζ2.

From
(
ζ1
ζ2

)
⊥
(
p∗21ξ2 ⊗ q∗21η2
p22ξ2 ⊗ q22η2

)
, we similarly get

(3.6) (p21 ⊗ q21)ζ1 = −(p22 ⊗ q22)ζ2.

From (3.3) and (3.5) we get

(p11 ⊗ q11)ζ1 = −((1− p11)⊗ (1− q11))ζ1.

Notice
0 6 ‖(p11 ⊗ q11)ζ1‖2 = ((p11 ⊗ p11)ζ1, (p11 ⊗ p11)ζ1)

= −((p11 ⊗ q11)ζ1, ((1− p11)⊗ (1− q11))ζ1)

= −((p11(1− p11)⊗ q11(1− q11))ζ1, ζ1)

= −‖(p11(1− p11)⊗ q11(1− q11))
1
2 ζ1‖2 6 0.

Here, the above computation is valid since p11(1− p11)⊗ q11(1− q11) is positive.
Therefore, we conclude

(p11 ⊗ q11)ζ1 = (p11(1− p11)⊗ q11(1− q11))
1
2 ζ1 = 0.

Analogously, from (3.4) and (3.6) we get (p22⊗ q22)ζ2 = −((1− p22)⊗ (1− q22))ζ2
and

(p22 ⊗ q22)ζ2 = (p22(1− p22)⊗ q22(1− q22))
1
2 ζ2 = 0.

Recalling (3.1) and the definition of Pij ’s, we have

P11ζ1 = P ∗
21ζ2 = P21ζ1 = P22ζ2 = 0.

Thus, from the two equations at the very beginning of the proof we conclude
ζ1 = ζ2 = 0 as desired.
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4. MAIN RESULTS

In this section we prove the results mentioned in Section 1. In the first half of the
section we assume that operators T1, T2 are densely defined and closed, and in the
second half we will deal with the case when operators are not necessarily closable.

Let us assume that P1, P2 are the characteristic matrices of densely defined
closed operators T1, T2 respectively. Lemma 3.8 means that the range of the pro-

jection P = P (P1, P2) is the closed subspace generated by
(

ϕ⊗ ψ

T1ϕ⊗ T2ψ

)
(ϕ ∈

D(T1), ψ ∈ D(T2)). Hence, the range of the projection P is

Γ(T1 ⊗alg T2) = Γ(T1 ⊗alg T2),

and since T1 ⊗ T2 = T1 ⊗alg T2 (see Subsection 2.1) we have

Theorem 4.1. The characteristic matrix of the tensor product T1 ⊗ T2 of
densely defined closed operators T1, T2 is the projection P = P (P1, P2) constructed
from the characteristic matrices P1, P2 of T1, T2.

It is also possible to prove the theorem by looking at (1−P22)−1P21 (without
having Lemma 3.8); details are left to the reader as an exercise.

In the present case D1, D2 are non-singular as was pointed out in Remark
3.2, and let us recall (see Subsection 2.3) that the characteristic matrices of the
adjoint operators T ∗1 , T

∗
2 are

P ′
1 =

(
1− p22 p21

p∗21 1− p11

)
and P ′

2 =

(
1− q22 q21

q∗21 1− q11

)
respectively. From these we construct the matrix P ′ = P (P ′

1, P
′
2) as before, i.e.,

P ′ =

(
D−1

2 ((1− p22)⊗ (1− q22)) D−1
2 (p21 ⊗ q21)

D−1
1 (p∗21 ⊗ q∗21) D−1

1 ((1− p11)⊗ (1− q11))

)
.

Note that the roles of D1 and D2 have been switched here. By the above theorem,
P ′ is the characteristic matrix of T ∗1 ⊗ T ∗2 , and hence the characteristic matrix of
(T ∗1 ⊗ T ∗2 )∗ is(

1−D−1
1 ((1− p11)⊗ (1− q11)) D−1

1 (p∗21 ⊗ q∗21)

D−1
2 (p21 ⊗ q21) 1−D−1

2 ((1− p22)⊗ (1− q22))

)
.

We observe that this matrix is equal to(
D−1

1 (p11 ⊗ q11) D−1
1 (p∗21 ⊗ q∗21)

D−1
2 (p21 ⊗ q21) D−1

2 (p22 ⊗ q22)

)
= P

because of D−1
1 D1 = D−1

2 D2 = 1. Therefore, we have shown (T ∗1 ⊗T ∗2 )∗ = T1⊗T2,
and hence
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Corollary 4.2. For densely defined closed operators T1, T2 we always have
T ∗1 ⊗ T ∗2 = (T1 ⊗ T2)∗.

This is a standard result and of course not new. However, compare our proof
with that in p. 231 in [5].

In the rest we will deal with the case when T1, T2 are not necessarily clos-
able. Let P1, P2 be the projections onto the closures Γ(T1),Γ(T2), and P be the
projection constructed from these P1, P2 as in the previous section. For simplicity,
let us assume that T1, T2 have dense domains. Since p11, q11 are injective by the
assumption (see the last part of Subsection 2.2), D−1

1 is non-singular and P11 is
also injective. Notice that P may not be a characteristic matrix of an operator
since P ((H⊗H)⊕ (H⊗H)) ∩ (0⊕ (H⊗H)) could contain non-zero vectors. As
in Subsection 2.4, let Q be the projection onto ker(1− P22), and let

Pop =

(
1−

(
0 0

0 Q

))(
p11 p∗21

p21 p22

)
=

(
P11 P ∗

21

P21 (1−Q)P22

)

be the operator part of P .
When Ti’s are closable, Di’s are injective (see Remark 3.2) and hence we

have

1− P22 = D−1
2 D2 −D−1

2 (p22 ⊗ q22) = D−1
2 ((1− p22)⊗ (1− q22)).

Since ker(1− p22) = ker(1− q22) = 0 in the present case (see Subsection 2.2), we
observe that 1 − P22 is injective. Therefore, Q = 0 and Pop = P as expected,
which of course corresponds to the closability of T1 ⊗alg T2 (see Subsection 2.1).

To see what Pop is in the general case, we need to write down the projection
1−Q explicitly.

Lemma 4.3. We have 1−Q = fp
[0,1) ⊗ fq

[0,1) + fp
{0} ⊗ fq

{1} + fp
{1} ⊗ fq

{0}.

Proof. We claim that ζ ∈ ker(1 − P22) if and only if ζ ∈ fp
(0,1]H ⊗ fq

(0,1]H
and ζ ∈ ker((1 − p22) ⊗ (1 − q22)). In fact, if a vector ζ belongs to ker(1 − P22),
i.e., D−1

2 (p22 ⊗ q22)ζ = ζ, then at first ζ must be in fp
(0,1]H ⊗ fq

(0,1]H because
D−1

2 (p22 ⊗ q22) kills the orthogonal complement. Secondly, since the range of
p22 ⊗ q22 is in the support of D2 (Lemma 3.3), we have (p22 ⊗ q22)ζ = D2ζ, i.e.,
((1−p22)⊗(1−q22))ζ = 0. Conversely, if ζ ∈ fp

(0,1]H⊗f
q
(0,1]H and ((1−p22)⊗(1−

q22))ζ = 0, then we have (p22⊗ q22)ζ = D2ζ at first and then D−1
2 (p22⊗ q22)ζ = ζ

because ζ ∈ fp
(0,1]H⊗ fq

(0,1]H is in the support of D2.
So far we have shown

Q = (fp
(0,1] ⊗ fq

(0,1]) ∧ (the projection onto ker((1− p22)⊗ (1− q22))) .
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Therefore, by passing to the orthogonal complement, we have
1−Q = (1− fp

(0,1] ⊗ fq
(0,1]) ∨ (the support projection of (1− p22)⊗ (1− q22))

= (1− fp
(0,1] ⊗ fq

(0,1]) ∨ (fp
[0,1) ⊗ fq

[0,1)),

which is obviously the projection in the lemma.

This lemma shows the (2, 2)-component of Pop is

(1−Q)D−1
2 (p22 ⊗ q22) = (fp

[0,1) ⊗ fq
[0,1)+f

p
{0} ⊗ fq

{1}+f
p
{1} ⊗ fq

{0})D
−1
2 (p22 ⊗ q22)

( = (fp
[0,1) ⊗ fq

[0,1))D
−1
2 (p22 ⊗ q22)).

We set
p′22 = fp

[0,1)p22, q
′
22 = fq

[0,1)q22.

Then, the corresponding D′
2 = p′22 ⊗ q′22 + (1− p′22)⊗ (1− q′22) is injective (since

ker(1− p′22) = ker(1− q′22) = 0 from the construction), and we observe

Lemma 4.4. We have

(1−Q)D−1
2 (p22 ⊗ q22) = D′

2
−1(p′22 ⊗ q′22),

D′
2
−1(p21 ⊗ q21) = D−1

2 (p21 ⊗ q21).

Proof. We observe from (3.1) that the range of p21⊗q21 is in fp
(0,1)H⊗f

q
(0,1)H

on which D′
2 and D2 are the same. Therefore, we have the second equation.

It remains to show the first. For a vector in the range of the projection
fp
{1} ⊗ f

q
(0,1) + fp

(0,1) ⊗ f
q
{1} + fp

{1} ⊗ f
q
{1}, both sides give us 0 since we have 1−Q

on the left side (see Lemma 4.3) and p′22f
p
{1} = q′22f

q
{1} = 0 from the definition.

For a vector in the range of fp
{0} ⊗ fq

(0,1] + fp
(0,1] ⊗ fq

{0} + fp
{0} ⊗ fq

{0}, the same
thing happens again since the vector is killed by p22⊗ q22 and p′22⊗ q′22 (p22f

p
{0} =

p′22f
p
{0} = q22f

q
{0} = q′22f

q
{0} = 0). On the other hand, the two operators are

obviously the same against a vector in the range of fp
(0,1) ⊗ fq

(0,1), and hence we
are done.

It follows from Lemma 4.3 and Lemma 4.4 that

Pop =

(
D−1

1 0

0 D′
2
−1

)(
p11 ⊗ q11 p∗21 ⊗ q∗21

p21 ⊗ q21 p′22 ⊗ q′22

)

= P

((
p11 p∗21

p21 p′22

)
,

(
q11 q∗21

q21 q′22

))
.

Note that 1 − fp
[0,1) = fp

{1} (respectively 1 − fq
[0,1) = fq

{1}) is the projection
onto ker(1 − p22) (respectively ker(1 − q22)). Therefore, the above two matri-

ces
(
p11 p∗21
p21 p′22

)
,
(
q11 q∗21
q21 q′22

)
are the characteristic matrices of the closures T1c,

T2c of the maximal closable parts respectively (see Subsection 2.4), and hence
Theorem 4.1 implies
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Theorem 4.5. Let T1, T2 be densely defined operators, and P1, P2 be the
projections from H ⊕ H onto Γ(T1),Γ(T2) respectively. The operator part Pop of
the projection P = P (P1, P2) constructed from P1 and P2 is the characteristic
matrix of the tensor product T1c ⊗ T2c.

Corollary 4.6. With the same notation as in the above theorem, the alge-
braic tensor product T1 ⊗alg T2 is closable if and only if either both of T1, T2 are
closable or one of them is identically zero.

Proof. The algebraic tensor product is closable if and only if

(Q =)fp
(0,1) ⊗ fq

{1} + fp
{1} ⊗ fq

(0,1) + fp
{1} ⊗ fq

{1} = 0

(see Lemma 4.3). When both of T1, T2 are closable, of course so is T1⊗algT2. When
none of them is closable, then fp

{1} 6= 0 and fq
{1} 6= 0 so that fp

{1}⊗f
q
{1} 6= 0, Q 6= 0

and hence T1 ⊗alg T2 is not closable.
For example, let us assume that T1 is closable while T2 is not, i.e., fp

{1} = 0
and fq

{1} 6= 0. Since Q = fp
(0,1) ⊗ fq

{1} in this case, we conclude that Q = 0 if and
only if fp

(0,1) = 0, that is, p22 = 0. Recalling (3.1), we easily observe that p22 = 0
if and only if T1 is the zero operator.

The following theorem clarifies the meaning of the projection P = P (P1, P2):

Theorem 4.7. Let T1, T2 be densely defined operators, and P1, P2 be the
projections from H ⊕ H onto Γ(T1),Γ(T2) respectively. Then, P = P (P1, P2) is
the projection onto the closure Γ(T1 ⊗alg T2).

Proof. The range of P is obvious larger than Γ(T1 ⊗alg T2) and hence than

its closure (Lemma 3.7). Let us assume that a vector
(
ζ1

ζ2

)
∈ H ⊗ H ⊕ H ⊗ H

is in the range of P (i.e., satisfying P

(
ζ1
ζ2

)
=
(
ζ1
ζ2

)
) and perpendicular to

Γ(T1⊗algT2). Choose and fix
(
ϕ′1
ϕ′2

)
,

(
ψ′1
ψ′2

)
∈ H⊕H from the ranges of P1, P2 re-

spectively. Then, we can choose sequences
{(

ϕi

T1ϕi

)}
i=1,2,···

,

{(
ψj

T2ψj

)}
j=i,2,···

(from Γ(T1) and Γ(T2) respectively) converging to
(
ϕ′1
ϕ′2

)
,

(
ψ′1
ψ′2

)
respectively, and

we have
(
ζ1
ζ2

)
⊥
(

ϕi ⊗ ψj

T1ϕi ⊗ T2ψj

)
by the assumption. For each fixed j the se-

quence
{(

ϕi ⊗ ψj

T1ϕi ⊗ T2ψj

)}
i=1,2,···

in Γ(T1 ⊗alg T2) converges to
(

ϕ′1 ⊗ ψj

ϕ′2 ⊗ T2ψj

)
as

i → ∞ so this limit is perpendicular to
(
ζ1
ζ2

)
. By letting j → ∞ next, we see
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that
(
ζ1
ζ2

)
is also perpendicular to

(
ϕ′1 ⊗ ψ′1
ϕ′2 ⊗ ψ′2

)
. Therefore, for vectors

(
ϕ′1
ϕ′2

)
=(

p11ξ1 + p∗21ξ2
p21ξ1 + p22ξ2

)
,

(
ψ′1
ψ′2

)
=
(
q11η1 + q∗21η2
q21η1 + q22η2

)
in the ranges of P1, P2, we can re-

peat the computations in the proof of Lemma 3.8 to conclude
(
ζ1
ζ2

)
=
(

0
0

)
.

This theorem means that Pop is the characteristic matrix of (T1 ⊗alg T2)c
(see Subsection 2.4 and the discussion after Corollary 4.2), and hence Theorem 4.5
guarantees

(T1 ⊗alg T2)c = T1c ⊗ T2c.

Recall (see Subsection 2.1 and Subsection 2.4) that

D((T1 ⊗alg T2)c) = D(T1 ⊗alg T2) = D(T1)⊗alg D(T2),

D(T1c ⊗alg T2c) = D(T1c)⊗alg D(T2c) = D(T1)⊗alg D(T2).

Thus, by restricting the two operators to this common domain we have

Theorem 4.8. For densely defined operators T1, T2 the maximal closable
part of the algebraic tensor product T1⊗algT2 is given by (T1⊗algT2)c = T1c⊗algT2c,
and we have (T1 ⊗alg T2)c = T1c ⊗ T2c.
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