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Abstract. In the present paper we prove the existence of nontrivial com-
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

One of the big steps in the invariant subspace problem for a single operator was
the paper [4], where the existence of nontrivial invariant subspaces was proved
for contractions having the dominating spectrum for the H∞ algebra. The cor-
responding reflexivity result was shown in [2] and [14], where this property for
completely non-unitary (c.n.u.) contractions with dominancy of left essential and
essential spectrum, respectively, were obtained.

It is natural to ask if the above results are also valid for pairs or N -tuples
of contractions. One of the approaches was made in [12], where reflexivity, thus
also existence of nontrivial common invariant subspaces for N -tuples of doubly
commuting c.n.u. contractions with dominancy of joint left essential spectrum
was proved. In [11] a different result for this spectrum for pairs of contractions
was shown. See also [6] and [8] for further results. However, the natural notion of
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a spectrum for N -tuples is the Taylor spectrum ([18], [19]). Some progress in that
direction was made in [1]. In this note we assume double commutativity for the
contractions and obtain a natural extension of the result from [4]. The definitions
of the notation in the following statements will be given below.

Theorem 1.1. Let T = (T1, . . . , TN ) be an N -tuple of doubly commuting
contractions. If the intersection of the Taylor spectrum with the open polydisc
σ(T ) ∩ DN is dominating for H∞(DN ), then T = (T1, . . . , TN ) has a common
nontrivial invariant subspace.

As we shall see, because of the double commutativity, it will be sufficient in
the proof to consider the case where the Taylor spectrum of T coincides with the
essential Taylor spectrum. This allows us to reduce the proof of Theorem 1.1 to
the following:

Theorem 1.2. Let T = (T1, . . . , TN ) be an N -tuple of doubly commuting
completely non-unitary contractions. If the intersection of the Taylor essential
spectrum with the open polydisc σe(T ) ∩ DN is dominating for H∞(DN ), then
T = (T1, . . . , TN ) is reflexive.

Of course, the reflexivity is a much stronger property than having a nontrivial
common invariant subspace. Theorem 1.2 is a generalization of the reflexivity
result for a single contraction case from [2] and [14]. It also improves the result
of [12], Theorem 5.4, with respect to the type of spectrum considered. Recently,
the existence of a nontrivial common invariant subspace for spherical contracting
instead of N -tuples of contractions is also considered, see [7].

Throughout this paper let H be a separable infinite-dimensional complex
Hilbert space. If R is a subset of the algebra L(H) of all bounded linear opera-
tors on H, we denote by W(R), respectively A(R), the WOT (= weak operator
topology)-closed, respectively the weak-star closed subalgebras of L(H) generated
by R and the identity Id. LatR will be the lattice of all (closed) invariant sub-
spaces for R, and Alg LatR is as usual the algebra of all T ∈ L(H) such that
T L ⊂ L for all L ∈ LatR. R is said to be reflexive if W(R) = Alg LatR. We
say that a commutative set R ⊂ L(H) is doubly commuting (respectively almost
doubly commuting) if S T ∗− T ∗S is a zero (respectively compact) operator for all
S, T ∈ R with S 6= T . In particular sets consisting of a single operator are doubly
commuting.

Recall, that a set E contained in the open polydisc DN is dominating for the
algebra H∞(DN ) of all bounded analytic functions on DN , if for all h ∈ H∞(DN )
we have ‖h‖∞ = sup

z∈E
|h(z)|. A(DN ) denotes the closed subalgebra of all those

h ∈ H∞(DN ) having continuous extensions to the closed polydisc.
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2. PRELIMINARIES FROM SEVERAL VARIABLES SPECTRAL THEORY

Recall from [18], [19] that the Koszul (cochain) complex K(T,H) for a N -tuple
T = (T1, . . . , TN ) of commuting operators in L(H) with respect to H is given by

0 −→ Λ0(H)
δ0(T )−→ Λ1(H)

δ1(T )−→ · · · δN−1(T )−→ ΛN (H) −→ 0,

where Λp(H) denotes the set of all p-forms with coefficients in H and the cochain
mapping δp(T ) : Λp(H) → Λp+1(H) is defined by

δp(T )
∑
|I|=p

′
xIsI :=

N∑
j=1

∑
|I|=p

′
TjxI sj ∧ sI ,

where s1, . . . , sN is a fixed basis of Λ1(C) and
∑
|I|=p

′ denotes that the sum is taken

over all I = (i1, . . . , ip) ∈ Np with 1 6 i1 < · · · < ip 6 N , sI := si1 ∧ · · · ∧ sip . Let
us notice that Λp(H) can be endowed with the natural scalar product(∑

|I|=p

′
xIsI ,

∑
|I|=p

′
yIsI

)
:=
∑
|I|=p

′
(xI , yI),

which gives us a canonical isomorphism with a direct sum of
(

N

p

)
copies of H.

Following [18], [19], λ belongs to the Taylor spectrum σ(T ) ⊂ CN if, by definition,
the complex K(λ − T,H) is not exact, and λ belongs to the Taylor essential
spectrum σe(T ) ⊂ CN if, by definition, at least one of the cohomology groups
Hp(λ− T ) := ker δp(λ− T )/ran δp−1(λ− T ) has infinite dimension. Following [1],

we can decompose σe(T ) =
N⋃

p=0
σp

e (T ), where σp
e (T ) is the set of all λ ∈ CN such

that the induced mapping

δ̂p(λ− T ) : Λp(H)/ ran δp−1(λ− T ) → Λp+1(H)

has non-closed range or infinite dimensional kernel.
The points of σp

e (T ) have the following property:

Lemma 2.1. Let T = (T1, . . . , TN ) be an N -tuple of commuting operators.
If λ is a point in σp

e (T ), there exists an orthonormal sequence {ηn}∞n=1 in Λp(H)
such that

(2.1) δp−1(λ− T )δp−1(λ− T )
∗
ηn + δp(λ− T )∗δp(λ− T )ηn → 0

for n →∞.

Proof. Indeed, by the definition of σp
e (T ) and a standard argument we can

find an orthonormal sequence {ηn}∞n=1 in Λp(H)	ran δp−1(λ−T ) such that δp(λ−
T )ηn → 0. Obviously, this sequence satisfies (2.1).
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We will need the following fact (see [5], Corollary 3.7).

Lemma 2.2. Let T = (T1, . . . , TN ) be a N -tuple of almost doubly commuting
operators. Then there is a compact operator K on Λp(H) such that

δp−1(T )δp−1(T )
∗

+ δp(T )∗δp(T ) = K +
⊕
F

N∑
j=1

TF (j),

where the orthogonal sum is taken over all functions F : {1, . . . , N} → {0, 1},
card{j : F (j) = 0} = p and TF (j) = TjT

∗
j for F (j) = 0 and TF (j) = T ∗j Tj for

F (j) = 1. Moreover, if the N -tuple doubly commutes, then K = 0.

We apply this lemma in the following form.

Lemma 2.3. Let T = (T1, . . . , TN ) be a N -tuple of doubly commuting oper-
ators in L(H). If, for some λ ∈ CN and some p ∈ {1, . . . , N}, we have

ker δp(λ− T ) ∩ ran δp−1(λ− T )
⊥ 6= {0},

then there is i0 ∈ {1, . . . , N} such that the operator Ti0 has nontrivial hyperinvari-
ant subspaces or the tuple consists of scalar operators.

Proof. By our assumptions, there exists some 0 6= ω ∈ Λp(H) with δp(λ −
T )ω = 0 = δp−1(λ− T )∗ ω.

Hence

δp−1(λ− T ) δp−1(λ− T )
∗
ω + δp(λ− T )∗ δp(λ− T ) ω = 0.

By Lemma 2.2 there are disjoint sets S, T with S ∪ T = {1, . . . , N} and a vector
0 6= x ∈ H such that∑

i∈S
(λi − Ti)∗(λi − Ti)x +

∑
k∈T

(λk − Tk)(λk − Tk)∗ x = 0.

Hence x ∈ ker (λi − Ti) for i ∈ S and x ∈ ker (λk − Tk)∗ for k ∈ T . From this we
obtain a nontrivial hyperinvariant subspace or Tj = λj for all j ∈ {1, . . . , N}.

Since the space H is infinite dimensional, we have the following.

Corollary 2.4. Let T = (T1, . . . , TN ) be a N -tuple of doubly commuting
operators in L(H). If σ(T ) \ σe(T ) 6= ∅, then Ti0 has nontrivial hyperinvariant
subspace for some i0 ∈ {1, . . . , N}.

It seems to be a difficult problem to remove the double commutativity as-
sumptions from the preceding statement.
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3. REDUCTION TO THE APPROXIMATION PROBLEM

We start with Reduction from Theorem 1.1 to Theorem 1.2. If one of the con-
tractions T1, . . ., TN , say Ti0 , has a nontrivial unitary part, then from the formula
for the subspace Hu i0 on which the contraction Ti0 is unitary (cf. [17], Theorem
I.3.2), we see that Hu i0 is invariant for all operators S doubly commuting with
Ti0 and Lat(T ) will be nontrivial. Hence we may assume that all T1, . . . , TN are
c.n.u.. Also, because of Corollary 2.4, we may assume that σ(T ) = σe(T ) and we
are in the situation of Theorem 1.2.

For further reductions we need some notation. Recall that a representation
(a unital algebra homomorphism) Φ : A(DN ) → L(H) is called contractive if
‖Φ(f)‖ 6 ‖f‖∞ for f ∈ A(DN ). Standard techniques show that for every x, y ∈ H
there is a complex, Borel, regular measure µx,y on DN

, called the elementary
measure, satisfying (Φ(f)x, y) =

∫
f dµx,y for all f ∈ A(DN ). The representation

Φ is called absolutely continuous (a.c.) if it has a system of elementary measures
{µx,y}x,y∈H such that each measure µx,y is absolutely continuous with respect to
some positive representing measure νz for some z ∈ DN .

We shall also need the language of dual algebras. Recall that L(H) = C1(H)∗,
where C1(H) is the ideal of trace class operators and the duality is given by the
form 〈T, S〉 := tr(TS) for T ∈ L(H), S ∈ C1(H). Hence, every ultraweakly closed
subalgebra A of L(H) is a dual Banach space with predual space QA ∼= C1(H)/⊥A
via 〈T, [S]〉 := tr(TS) for T ∈ A, [S] ∈ C1(H)/⊥A. Thus, for a rank one operator
x⊗ y (z 7→ (z, y)x), we have 〈T, [x⊗ y]〉 = (T x, y).

Now we can start the

Proof of Theorem 1.2. Under the assumptions of the theorem we can con-
struct in a standard way, using a dilation ([17], Proposition I.9.2), a contractive
representation Φ : A(DN ) → L(H) with Φ(zi) = Ti for i = 1, . . . , N . Since
T1, . . . , TN are c.n.u., this representation is a.c. ( see [10], Theorem 1), in which
case we say that the N -tuple T = (T1, . . . , TN ) is a.c. By [12], Proposition 4.1
the functional calculus can be extended to H∞(DN ) as a homeomorphism for the
weak-star topologies as Φ : H∞(DN ) → L(H). We will write h(T ) instead of Φ(h)
for h ∈ H∞(DN ). Since the representation is contractive, to have an isometric
functional calculus, we need the following known fact.

Lemma 3.1. Suppose that the assumptions of Theorem 1.2 are satisfied. If
f ∈ H∞(DN ) then ‖f‖∞ 6 ‖f(T )‖.

For the sake of completeness we include the elementary
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Proof. Let λ ∈ σe(T ) ∩ DN ⊂ σ(T ) ∩ DN . By the Gleason property of

the polydisc f(T ) − f(λ) =
N∑

i=1

(λi − Ti)ui(T ) for some ui ∈ H∞(DN ). Then

the operator
N∑

i=1

(λi − Ti)ui(T ) can not be invertible. Hence f(λ) ∈ σ(f(T )) and

‖f‖∞ 6 r(f(T )) 6 ‖f(T )‖, which completes the proof of the lemma.

Because of the isometry and the weak-star continuity of the functional cal-
culus, the predual of H∞(DN ) and that of A(T ) (which will be denoted by Q) are
isometrically isomorphic. Denote by [Cλ] the element of Q corresponding to the
point evaluation at λ ∈ DN . Since σe(T )∩DN is dominating, standard techniques
(see [4]) show that the set aco{[Cλ] : λ ∈ σe(T ) ∩ DN} contains the closed unit
ball in Q.

We shall need the well known fact from [3] that every dual algebra with
property X0,1 is reflexive. Recall that A has property X0,1 if the unit ball of QA
is contained in X0,1 — the set of all those [L] ∈ QA such that there exist sequences
{xn}∞n=1, {yn}∞n=1, ⊂ H with ‖xn‖ 6 1, ‖yn‖ 6 1 for all n, such that

lim
n→∞

‖[xn ⊗ yn]− [L]‖Q = 0,(3.1)

lim
n→∞

‖[xn ⊗ w]‖Q = 0 for all w ∈ H,(3.2)

lim
n→∞

‖[w ⊗ yn]‖Q = 0 for all w ∈ H.(3.3)

Since X0,1 is absolutely convex and closed ([3]), it suffices to show that X0,1 con-
tains all [Cλ], λ ∈ σe(T ) ∩ DN .

Hence, let us take λ ∈ σe(T ) ∩ DN . Then, by Lemma 2.1 there is a number
p ∈ {1, . . . , N} and an orthonormal sequence {ηn}∞n=1 in Λp(H) such that (2.1)
holds. Passing, if necessary, to some subsequence, we may assume that for some
I = (i1, . . . , ip) ∈ Np the coefficients xn of si1 ∧ · · · ∧ sip

in ηn satisfy ‖xn‖ > α

for all n ∈ N and some α > 0. By Lemma 2.2 there are disjoint sets S, T with
S ∪ T = {1, . . . , N} such that∑

i∈S
(λi − Ti)∗(λi − Ti)xn +

∑
k∈T

(λk − Tk)(λk − Tk)∗ xn → 0.

Taking the scalar product with xn we get ‖(Ti − λi)xn‖ → 0 for all i ∈ S and
‖(T ∗k − λk)xn‖ → 0 for all k ∈ T . The sequence {ηn}∞n=1 being orthonormal we
have xn → 0 weakly. Moreover, since the numbers ‖xn‖ are bounded below, we
can assume, without loss of generality, that ‖xn‖ = 1. The approximation lemmas
in the next section will now prove that [Cλ] ∈ X0,1 for λ ∈ σe(T ) ∩ DN . This will
show the following structure result.



Invariant subspaces for contractions 379

Proposition 3.2. Let T = (T1, . . . , TN ) be an N -tuple of doubly commuting
completely non-unitary contractions. If the intersection of the Taylor essential
spectrum with the open polydisc σe(T ) ∩DN is dominating for H∞(DN ), then the
algebra A(T1, . . . , TN ) has property X0,1.

The proposition implies the reflexivity of A(T1, . . . , TN ), hence also of T =
(T1, . . . , TN ).

4. THE APPROXIMATION LEMMAS

We will start with the approximation of the point evaluation.

Lemma 4.1. Let T = (T1, . . . , TN ) be an a.c. N -tuple of commuting contrac-
tions, S, T be disjoint sets such that S ∪ T = {1, . . . , N}, and λ = (λ1, . . . , λN ) ∈
DN . Assume that xn → 0 weakly, ‖xn‖ = 1 for all n. If ‖(Ti − λi)xn‖ → 0 for all
i ∈ S and ‖(T ∗i − λi)xn‖ → 0 for all i ∈ T then lim

n→∞
‖[xn ⊗ xn]− [Cλ]‖Q = 0.

Proof. By the Hahn-Banach theorem, for each n, there exist some fn ∈
H∞(DN ) such that ‖fn(T )‖ = ‖fn‖ = 1 and ‖[xn⊗xn]− [Cλ]‖Q = |〈fn(T ), [xn⊗
xn]− [Cλ]〉|. The polydisc has the Gleason property, thus there are gn

i ∈ H∞(DN )

satisfying ‖gn
i ‖ 6 Mλ for i = K + 1, . . . , N and fn(z) = fn(λ)−

N∑
i=1

(zi − λi)gn
i (z),

where z = (z1, . . . , zN ) ∈ DN . Hence

‖[xn ⊗ xn]− [Cλ]‖Q

=
∣∣∣〈fn(λ) +

N∑
i=1

(Ti − λi)gn
i (T ), [xn ⊗ xn]− [Cλ]

〉∣∣∣
=
∣∣∣( N∑

i=1

(Ti − λi)gn
i (T )xn, xn

)∣∣∣
6
∑
i∈S

|(gn
i (T )(Ti − λi)xn, xn)|+

∑
i∈T

|(gn
i (T )xn, (T ∗i − λi)xn)|

6
∑
i∈S

‖gn
i (T )‖ ‖(Ti − λi)xn‖+

∑
i∈T

‖gn
i (T )‖ ‖(T ∗i − λi)xn‖

6 Mλ

(∑
i∈S

‖(Ti − λi)xn‖+
∑
i∈T

‖(T ∗i − λi)xn‖
)
.

Thus, the proof of the lemma is finished since ‖(Ti − λi)xn‖ → 0 for all i ∈ S and
‖(T ∗i − λi)xn‖ → 0 for all i ∈ T .

Next, the approximate orthogonality (3.2) will be shown.
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Lemma 4.2. Let T = (T1, . . . , TN ) be an a.c. N -tuple of commuting con-
tractions. Let S, T be disjoint sets such that S ∪ T = {1, . . . , N}. Assume that
{Ti : i ∈ S} is doubly commuting. Let λ = (λ1, . . . , λN ) ∈ DN and xn → 0 weakly,
‖xn‖ = 1 for all n. If ‖(Ti − λi)xn‖ → 0 for all i ∈ S and ‖(T ∗i − λi)xn‖ → 0 for
all i ∈ T then lim

n→∞
‖[y ⊗ xn]‖Q = 0 for all y ∈ H.

Proof. Without loss of generality we can assume that S = {1, . . . ,K}. There
can be found some functions fn ∈ H∞(DN ) such that ‖fn(T )‖ = ‖fn‖ = 1 and
‖[y ⊗ xn]‖Q = |(fn(T )y, xn)|. Notice that

‖[y ⊗ xn]‖Q 6 |(fn(T1, . . . , TK , λK+1, . . . , λN )y, xn)|+ |((fn(T1, . . . , TN )

− fn(T1, . . . , TK , λK+1, . . . , λN ))y, xn)|.

By an obvious modification of the Gleason property for polydomains, there are
functions gn

K+1, . . . , g
n
N ∈ H∞(DN ) such that ‖gn

i ‖ 6 Mλ for i = K +1, . . . , N and

fn(z)− fn(z1, . . . , zK , λK+1, . . . , λN ) =
N∑

i=K+1

(λi − zi)gn
i (z),

where z = (z1, . . . , zN ). The point λ being fixed, let us denote by hn ∈ H∞(DK)
the function hn(z1, . . . , zK) = fn(z1, . . . , zK , λK+1, . . . , λN ) and write T̃ = (T1, . . . ,

TK). Obviously, we have a natural functional calculus for T̃ = (T1, . . . , TK).
Hence, for any ε > 0, we have

‖[y ⊗ xn]‖Q 6 |(fn(T1, . . . , TK , λK+1, . . . , λN )y, xn)|

+
∣∣∣( N∑

i=K+1

(λi − Ti)gn
i (T )y, xn

)∣∣∣
6 |(hn(T̃ )y, xn)|+

N∑
i=K+1

‖gn
i (T )‖ ‖y‖ ‖(λi − T ∗i )xn‖

6 |(hn(T̃ )y, xn)|+ ε,

for n sufficiently large, since ‖(T ∗i − λi)xn‖ → 0 for i = K + 1, . . . , N .
By the same construction as in [15], p. 1234 (see also [13], Lemma 1), we can

construct a doubly commuting K-tuple of isometries V = (V1, . . . , VK) ⊂ L(K),
which is a minimal isometric dilation of the K-tuple T̃ ∗ = (T ∗1 , . . . , T ∗K). Then
V ∗ = (V ∗

1 , . . . , V ∗
K) is an extension of T̃ = (T1, . . . , TK). By the minimality, as

in [11] using [10], Section 3 (see also [9], [12]) the K-tuple V = (V1, . . . , VK) is
a.c. and so is V ∗, see [11], Lemma 2.1. Moreover, by [12], Proposition 4.1 we can
construct a functional calculus for each of them.
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For any contraction A and any µ ∈ D, we will denote by Aµ the operator (A−
µ)(Id−µA)−1. Let K = Ki

s⊕Ki
u be the decomposition of Vi in a shift and a unitary

part, respectively. The decomposition coincides with the decomposition of V λi
i (see

[17], Proposition I.4.3 and its proof). Moreover (V λ)∗ = ((V1
λ1)∗, . . . , (VK

λK )∗) is
an extension of T̃λ = (T1

λ1 , . . . , TK
λK ). Since ‖(Ti−λi)xn‖ → 0 for i = 1, . . . ,K,

we have ‖Tλi
i xn‖ → 0 for i = 1, . . . ,K.

By the double commutativity of V = (V1, . . . , VK), using [16], Theorem 3,
we obtain an orthogonal decomposition K = Ks⊕Kr = Ks⊕Kr1 ⊕ · · ·⊕ KrK

, into
reducing invariant subspaces for V , such that Vi

s = Vi|Ks
is a shift operator and

Vi|Kri
is a unitary operator for all i = 1, . . . ,K. We will write Vi

r = Vi|Kr
. Form

xn = xs
n ⊕ xr

n, y = ys ⊕ yr with respect to this orthogonal decomposition. Let Pi

denote the projection onto ker(V λi
i )∗. By the double commutativity one can see

that Pi, Pj commute for i, j = 1, . . . ,K. We have also P1 · · ·PK H ⊂ Ks. Thus

‖xr
n‖ 6 ‖xn − P1 · · ·PK xn‖ 6

K∑
i=1

‖P1 · · ·Pi−1(xn − Pixn)‖

6
K∑

i=1

‖xn − Pixn‖ =
K∑

i=1

‖V λi
i (V λi

i )∗xn‖

=
K∑

i=1

‖(V λi
i )∗xn‖ =

K∑
i=1

‖Tλi
i xn‖ → 0.

There is also a natural functional calculus for V ∗
s = (V s

1
∗, . . . , V s

K
∗) and for V ∗

r =
(V r

1
∗, . . . , V r

K
∗), since V ∗

s and V ∗
r are the restrictions of V ∗. Hence, because of

‖xr
n‖ → 0, we have

|(hn(T̃ )y, xn)| = |(hn(V ∗)y, xn)| 6 |(hn(V ∗
s )ys, xs

n)|+ |(hn(V ∗
r )yr, xr

n)|
6 |(hn(V ∗

s )ys, xs
n)|+ ‖hn‖ ‖yr‖ ‖xr

n‖ 6 |(hn(V ∗
s )ys, xs

n)|+ ε,

for n sufficiently large. Since ‖xr
n‖ → 0, we have ‖xs

n‖ → 1, hence we may assume
that ‖xs

n‖ = 1.
Now we know that V s

i
∗ is a shift, for i = 1, . . . ,K. For 2 < M ∈ N let

RM be the orthogonal projection onto the space
K∨

i=1

ranV s
i

M . Using the obvious

extension of [16], Theorem 1, from pairs to K-tuples of doubly commuting shifts,
there is M (sufficiently large) such that ‖RM ys‖ 6 ε/2. Let y1 = (Id − RM )ys

and y2 = RM ys. Then V s
i
∗M y1 = 0 for i = 1, . . . ,K. We can write

hn(z) =
M−1∑
|I|=0

an
I zI +

K∑
i=1

zM
i qn

i (z),
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where z = (z1, . . . , zK), an
I ∈ C, qn

i ∈ H∞(DK). Moreover, since an
I is a Fourier

coefficient of hn we can estimate that |an
I | 6 1.

Since xs
n → 0 weakly, we have for n sufficiently large |(V ∗

I
Iy1, x

s
n)| 6 ε/2MK ,

for all I such that |I| 6 M − 1. Hence

|(hn(V ∗
s )ys, xs

n)| 6 |(hn(V ∗
s )y2, xs

n)|+
M−1∑
|I|=0

|an
I | |(V ∗

s
Iy1, x

s
n)|

+
K∑

i=1

|(qn
i (V ∗

s )V s
i
∗M y1, x

s
n)|

6 ‖hn‖ ‖y2‖ ‖xs
n‖+

K∑
i=1

ε

2MK
+ 0 6 2ε.

Thus, for n sufficiently large ‖[y ⊗ xn]‖Q 6 4ε.

The second orthogonality condition (3.3) turns out to be symmetric to the
previous one.

Lemma 4.3. Let T = (T1, . . . , TN ) be an a.c. N -tuple of commuting con-
tractions. Let S ′, T ′ be disjoint sets such that S ′ ∪ T ′ = {1, . . . , N}. Assume that
{Ti : i ∈ T ′} is doubly commuting. Let λ = (λ1, . . . , λN ) ∈ DN and xn → 0 weakly,
‖xn‖ = 1 for all n. If ‖(Ti − λi)xn‖ → 0 for all i ∈ S ′ and ‖(T ∗i − λi)xn‖ → 0 for
all i ∈ T ′ then lim

n→∞
‖[xn ⊗ y]‖Q = 0 for all y ∈ H.

Proof. The set {T ∗i : i ∈ T ′} is also doubly commuting and we can ap-
ply Lemma 4.2 to S = T ′ and T = S ′. Hence we get ‖[xn ⊗ y]‖Q = |[y ⊗
xn]‖Q(A(T ∗)) → 0.

5. FINAL REMARKS

Remark 5.1. Notice that (with the same proof) the c.n.u. assumptions for
contractions in Theorem 1.2 can be replaced by the requirement that the N -tuple
is a.c..

Remark 5.2. Let T = (T1, . . . , TN ) be a N -tuple fulfilling the assumptions
of Theorem 1.1 or Theorem 1.2. Let T a = (T a

1 , . . . , T a
N ) be an N -tuple such that

T a
i = Ti or T a

i = T ∗i for i = 1, . . . , N . Then Lemma 2.2 and easy calculations
show that the dominating property still holds for T a. Thus, Theorem 1.1 or
Theorem 1.2, respectively, holds for T a.

Some of our methods work even under the weaker conditions that the con-
tractions are only almost doubly commuting.
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Proposition 5.3. Let T = (T1, T2) be an a.c. pair of almost doubly com-
muting contractions. If the middle part σ1

e (T ) of the essential Taylor spectrum is
dominating for H∞(D2), then T = (T1, T2) is reflexive.

Proof. We only need to make some remarks, which cover the difference to
the proof of Theorem 1.2. First, for any pair of contractions there is a unitary
dilation ([17], Theorem I.6.4), so we can construct the functional calculus and it
will have the same property as before. Next, since compact operators convert weak
convergence of sequences of vectors to strong convergence, using Lemma 2.2, one
can see that a compact perturbation does not disturb us in choosing the sequence
xn in Section 3. Finally, notice that we consider the spectrum σ1

e (T1, T2) and that
S and T have exactly one element and all the approximation Lemmas 4.1, 4.2, 4.3
remain true.

Remark 5.4. Let us observe that the statement of the preceding proposi-
tion is still valid if the dominancy assumption is replaced by one of the following
conditions:

(i) T1 is of class C0·, T2 is of class C·0 and σe(T ) is dominating for H∞(D2);
(ii) one of the operators is of class C0· and σ0

e (T ) ∪ σ1
e (T ) is dominating for

H∞(D2);
(iii) one of the operators is of class C·0 and σ1

e (T ) ∪ σ2
e (T ) is dominating for

H∞(D2);
(iv) T is diagonally extendable (for definition see [11]) and σ0

e (T ) ∪ σ1
e (T ) is

dominating for H∞(D2).

For the proof of the approximation lemmas for λ ∈ σ1
e (T ) we proceed as

in the proof of Proposition 5.3. For the left case (i.e. λ ∈ σ0
e (T )) one uses the

methods of [11]. Finally, the right exterior case (i.e. λ ∈ σ2
e (T )) follows by duality.

Note added in proof. B. Chevreau announced during the conference “Deuxiem̀es
Journées Lilloises de Théorie des Opérateurs”, March 1997, that he removed from Theo-
rem 1.2 the doubly commutativity assumption keeping the existence of a unitary dilation.

The research was supported in part by KBN and DAAD.
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