
J. OPERATOR THEORY

40(1998), 385–407

c© Copyright by Theta, 1998

OPERATORS THAT DOMINATE NORMAL OPERATORS

JIM AGLER and JOHN E. McCARTHY

Communicated by Norberto Salinas

Abstract. We say that an operator T dominates a normal operator N if
there is an intertwining LT = NL by a non-zero operator L. This notion
generalizes that of subnormality. We consider operators that dominate nor-
mals, and characterize the invariant subspaces for a special class of these
operators.
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0. INTRODUCTION

Let T be an operator on a Hilbert space (by operator we shall always mean a
bounded linear operator). We say that T dominates an operator N if there is a
non-zero operator L such

(0.1) LT = NL.

The order of this intertwining is important. We shall say that T dominates a
normal operator if there is some normal N for which (0.1) holds. The object of
this paper is to study operators that dominate normals.

The reason for the term “dominate” is that, under certain assumptions (A1–
A3 below), it follows from equation (0.1) that there is a vector γ and a constant
c such that the inequality ∫

|p|2 dµ 6 c‖p(T )γ‖2
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holds for all polynomials p, where µ is a scalar spectral measure of N .
There are two reasons to study these operators. The first is that they allow

one to use what is known about the structure of normal operators to study a larger
class of operators. One could then view this study as an extension of the theory
of subnormal operators. (A subnormal operator is the restriction of a normal
operator to an invariant subspace; it corresponds in our setting to L being the
inclusion map from an invariant subspace of X to the whole space on which X

acts.) The theory of subnormal operators has been richly developed — see e.g. the
book by Conway ([3]).

The second reason to study these operators comes from the first author’s
theory of states ([1]). Operators that dominate normals correspond to non-extreme
points of the state space, and so in some sense are generic.

We shall be mainly concerned with invariant subspaces of operators that
dominate normals. (By an invariant subspace of T we shall always mean a closed,
non-zero, proper subspace that T leaves invariant). If the operator L in (0.1) has
a kernel, this will automatically be an invariant subspace of T ; so we shall always
assume that L has no kernel, and where convenient we shall take T to be cyclic.
The closure of the range of L, call it L, is an invariant subspace for N ; the reducing
subspace it generates, the closed linear span of {N∗kξ : ξ ∈ L}, we shall call K.
Replacing N by N |K loses no information from (0.1), so we shall do this. We shall
show (Proposition 1.1) that if L is not all of K, then T has an invariant subspace.
Thus, after Section 1, we shall make the following assumptions:

(A1) L has no kernel.
(A2) L has dense range.
(A3) T is cyclic.

If T is cyclic and dominates the operator N , then we show (Proposition 1.2)
that there is another operator T̃ such that T is unitarily equivalent to the restric-
tion of T̃ ⊕N to some invariant subspace M:

(0.2) T ∼=
(

T̃ 0
0 N

)∣∣∣∣M.

Conversely, for any operator T̃ and any invariant subspace M of T̃ ⊕N that
is not zero in the second slot, the restriction of T̃ ⊕ N to M is an operator that
dominates N . We study operators of this form. In Section 2, we consider the case
T̃ = S∗, where S is the unilateral shift. We give a complete description of the
lattice of S∗ ⊕N for N a reductive cyclic normal operator, and show that if T̃ in
(0.2) is the backward shift, then T has an invariant subspace.
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In Section 3 we extend the invariant subspace result to the case that T̃ =
S∗(n), where n is a positive integer. Unfortunately we cannot extend the result
to the case n = ∞: if we could, it would follow that all operators that dominate
normal operators have invariant subspaces.

In Section 4 we give examples of operators that dominate the operator of
multiplication by x on [0, 1], and show that three fundamentally different sorts of
invariant subspaces can arise.

In Section 5 we collect some miscellaneous results.

1. PRELIMINARIES

We show that if L, the closure of the range of L, is not a reducing subspace for N ,
then T has an invariant subspace. We shall assume that N has been replaced, if
necessary, by its restriction to K, the reducing subspace generated by the range of
L. Then Thomson’s theorem on bounded point evaluations ([12]) will yield that
either N |L is normal (so L = K), or that bounded point evaluations pull back
to T .

Proposition 1.1. Suppose LT = NL where N is normal and T is cyclic.
Then either:

(i) N |L is normal;
or

(ii) T has an invariant subspace of codimension one.

Proof. Let R = N |L, and assume it is not normal. Let γ be a cyclic vector
for T ; then Lγ is cyclic for R. As R is subnormal, by Thomson’s theorem ([12])
there is a complex number λ for which (R− λ)L is closed and of codimension one
in L. Let M = L−1(R− λ)M.

It is easy to check that M is a closed subspace that is T -invariant, and it
contains all vectors of the form (T − λ)p(T )γ, so is of codimension at most one.
Let β be a non-zero vector in L that is orthogonal to (R− λ)L. As

LL−1(S − λ)L ⊆ (S − λ)L,

it follows that L∗β is orthogonal to M; and

〈L∗β, γ〉 = 〈β, Lγ〉 6= 0.

Therefore M is of codimension exactly one.
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Next, we show that if R is an operator that dominates another operator
X (normal or not), and T is the restriction of R to any cyclic subspace (i.e. a
subspace of the form cl({p(R)ξ : p a polynomial}) for some vector ξ) then T has
an extension to an operator of the form T̃ ⊕ X, where T̃ is similar to T . In
other words, there is an invariant subspace M of T̃ ⊕X such that T is unitarily
equivalent to T̃ ⊕X restricted to M.

Proposition 1.2. Suppose LR = XL and L has no kernel. Let ξ be any
non-zero vector, and let T be the restriction of R to the cyclic subspace generated
by ξ. Then there is an operator T̃ similar to T such that T is unitarily equivalent
to the restriction of T̃⊕X to some invariant subspace M. Moreover, the condition
number of the similarity between T and T̃ can be chosen arbitrarily close to 1.

Proof. Let Lξ = η, and choose ε so that 0 < ε < 1
‖L‖ . Define an inner

product 〈·, ·〉1 on polynomials by

〈p, q〉1 = 〈p(T )ξ, q(T )ξ〉 − ε2〈p(X)η, q(X)η〉.

Let H̃ be the completion of the polynomials with respect to this sesquilinear form,
and let T̃ be the operator of multiplication by the independent variable on H̃.

Then T̃ is similar to T , and the condition number of the similarity is at most

1 + ε2‖L‖2

1− ε2‖L‖2
,

which can be made arbitrarily close to 1.

Let the space on which T acts be called H. Let M be the cyclic subspace of
T̃⊕X generated by the vector (1, εη). Define U : H →M by p(T )ξ 7→ (p, εp(X)η).
This is an isometry on a dense set, so it extends to a unitary onto its range, which
by construction is all of M. Moreover, it intertwines T and T̃ ⊕X, as desired.

Note that although this construction yields a T̃ similar to T , if one starts
with an operator T̃ , and looks at T̃ ⊕N restricted to an invariant subspace whose
projection onto the second component is not zero, then one gets an operator that
dominates N but that is not, in general, similar to the operator T̃ . Choosing T̃

and working backwards is what we do in the next two sections.
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2. THE CASE T̃ = S∗

Let S be the unilateral shift on the Hardy space H2, and let N be a contractive
normal operator. In this section, we shall study operators of the form S∗ ⊕ N

restricted to a cyclic invariant subspace, as examples of operators that dominate
N . Rather than directly characterizing the cyclic invariant subspaces of S∗ ⊕N ,
we shall instead look at the invariant subspaces of the adjoint S ⊕N∗, and then
take orthogonal complements.

By assumptions (A1)–(A3), we may assume that N is cyclic. The spectral
theorem then yields that N∗ is unitarily equivalent to some Nµ, the operator of
multiplication by z on L2(µ) for µ a finite compactly supported Borel measure on
D (see e.g. [2]).

First, we characterize the cyclic subspaces of S ⊕Nµ. For any vector (g, v)
in H2 ⊕ L2(µ), let [(g, v)] denote the cyclic subspace of S ⊕Nµ it generates. Let
σ be normalized Lebesgue measure on the unit circle T, and write µ as µ1 + µ2,
where

µ1 = µ |D +
dµ

dσ
σ

µ2 = µ |T− dµ

dσ
σ.

By Forelli’s lemma ([4], p. 43), there is a bounded sequence of polynomials
that tends to 1 µ2 a.e., and to 0 µ1 a.e., so [(g, v)] decomposes as L2(µ2)⊕[(g, vχF )],
where F is a set of µ2 measure zero. Thus the interesting part of [(g, v)] corresponds
to µ1, that part of µ that lives on the open disk or is absolutely continuous with
respect to Lebesgue measure on the circle.

The Smirnov class N+ consists of those functions f analytic on the unit disk
for which

lim
r→1

1
2π

∫
T

log(1 + |f(reiθ)|)dθ =
1
2π

∫
T

log(1 + |f(eiθ)|)dθ < ∞.

(The boundedness of the integrals on the left implies that f is in the Nevanlinna
class, and so has non-tangential limits almost everywhere on the circle. It is this
boundary function that we mean in the second integral.) For basic facts about
N+ see e.g. [5] or [8]. They can be thought of as functions that are the ratio of
two H2 functions, where the denominator is outer.

We need a preliminary lemma.
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Lemma 2.1. Let f be an outer function in H2 with f(0) > 0, and let rn be
a sequence of positive numbers that increase to 1. For each n, let hn be the outer
function that is positive at zero and satisfies

|hn(eiθ)| = min(|f(eiθ)|, |f(rneiθ)|).

Then hn converges to f in H2.

Proof. As the norms of the functions hn are bounded, they have a weak clus-
ter point, h. By passing to a subsequence if necessary, assume that hn converges
weakly to h.

As hn is outer,

(2.1)

log |hn(0)| =
∫

{|f |,|frn |>1}

log+(min(|f |, |frn |))

−
∫

{min(|f |,|frn |)<1}

log−(min(|f |, |frn |)).

The first integral tends to
∫

log+ |f | because frn
tends to f in measure and the

family log+ |frn
| is uniformly integrable ([4], V.1.2.). The second integrand satisfies

log−(min(|f |, |frn
|)) 6 log− |f |+ log− |frn

|.

Moreover,

lim
n→∞

∫
log− |frn

| = lim
n→∞

[∫
log+ |frn

| − log |frn
(0)|
]

=
∫

log+ |f | − log |f(0)| =
∫

log− |f |.

So, by the generalized Lebesgue Convergence Theorem ([10], p. 92), the second
integral in (2.1) converges to

∫
log− |f |. Therefore

log |h(0)| = lim
n→∞

log |hn(0)| = log |f(0)|.

As f is outer, and |h(z)| 6 |f(z)| for all z in D, we get that h actually equals f .
Moreover, as

lim
n→∞

‖hn‖ = ‖f‖,

we get that hn converges to f in norm. Finally, as we proved that any weak cluster
point of the original sequence had to be f , we get that the original sequence must
converge in norm to f , as desired.
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We can now characterize the cyclic subspaces of S ⊕Nµ.

Theorem 2.2. Let µ be a measure on D that is absolutely continuous with
respect to σ on T. Let (g, v) be in H2⊕L2(µ). Let M be the closed cyclic subspace
of S ⊕Nµ generated by (g, v). Then

M =
{(

fg

fv

)
: f ∈ N+, fg ∈ H2, fv ∈ L2(µ)

}
.

Proof. (⊆) Let pn be a sequence of polynomials such that png converges in
H2 to some function h, and pnv converges in L2(µ) to a function v. Then the
inner factor of g divides the inner factor of h, so h/g := f is in N+.

Moreover, by passing to a subsequence if necessary, pnk
g converges pointwise

a.e. (σ) and everywhere on D, so pnk
converges µ a.e. to f , and therefore pnk

v

converges to fv.
(⊇) Let A = S ⊕Nµ. We need to show that for any f in N+, if fg is in H2

and fv is in L2(µ), then (fg, fv) is in M. The proof shall be in three steps.

Step 1. Suppose first that f is in H∞. Then f(A) is in the σ-weakly closed
algebra generated by A ([3], II.11.4), and therefore in the weak operator topology
closed algebra generated by A (which is actually the same thing [9]). Therefore
f(A)(g, v) = (fg, fv) is in the weak-closure of M which is M.

Step 2. Now suppose f is outer and f(0) > 0. Let hn be as in Lemma 2.1.
Each hn is bounded, so (hng, hnv) is in M. Moreover∫

|hng|2 dσ +
∫
|hnv|2 dµ 6

∫
|fg|2 dσ +

∫
|fv|2 dµ < ∞.

Therefore some subsequence of (hng, hnv) has a weak limit, (h, w) say, which
is in M; and by Lemma 2.1, hn tends to f in H2, and in particular almost
uniformly on D. By passing to convex combinations of the hn , and then passing
to a subsequence, we can assume that for some sequence of H∞ functions kn,
(kng, knv) tends to (h, w) in norm and almost everywhere. But h/g = f on D and
therefore σ a.e. on T, so w/v also equals f µ a.e. Therefore (fg, fv) is in M.

Step 3. For a general f , factor it as IF where I is inner and F is outer,
F (0) > 0. We would have (Fg, Fv) in M if Fv were in L2(µ), but this need not
be the case. So apply the argument in (ii) above to the vector (g, Iv) instead of
(g, v). This argument yields a sequence of polynomials pn such that (png, pnIv)
tends in norm to (Fg, FIv), so∫

|pn − F |2|g|2 dσ +
∫
|pn − F |2|Iv|2 dµ → 0.
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But then ∫
|Ipn − IF |2|g|2 dσ +

∫
|pn − F |2|Iv|2 dµ → 0,

so (fg, fv) is the limit of (Ipng, Ipnv) and is therefore in M.

An operator is called reductive if every invariant subspace is also a reducing
subspace. For the operator Nµ, being reductive is equivalent to the polynomials
being weak-star dense in L∞(µ) ([3], VII.1.3). When Nµ is reductive, we can give
a complete description of the lattice of S ⊕Nµ.

Theorem 2.3. Let µ be a measure on D such that Nµ is reductive, and let
A = S ⊕ Nµ. Let M be an invariant subspace of A. Then there are a Borel set
E, a µ-measurable function w which is zero on E a.e.(µ) and also zero a.e. (µ2),
and a function I that is either inner or identically zero so that

M =

(
0

L2(µ|E)

)
⊕

{(
g

wg

)
: g ∈ IH2, gw ∈ L2(µ)

}
.

Moreover any such choice of E,w and I gives rise to an invariant subspace.

Proof. By the remarks at the beginning of the section, we can assume that µ2

is zero, as it can just contribute an L2 summand. Let P1 and P2 be the projections
onto the first and second summands of H2 ⊕ L2(µ).

Case (a). There is no vector ξ in M for which P1ξ = 0 and P2ξ 6= 0.

The space P1M is invariant for S, so is of the form IL, where I is inner and
L is dense in H2.

Claim. If (g1, v1) and (g2, v2) are in M, then g1v2 = g2v1 a.e. (µ).

Indeed, let g1 and g2 have inner-outer factorings I1F1 and I2F2 respectively.
For any positive log-integrable function p on the unit circle, let O{p} denote the
outer function that is positive at 0 and has modulus p on the boundary. Then by
Theorem 2.2

(
I1F1

v1

)
∈M⇒

(
I2O{min

(
1, 1
|F1|
)

min(1, |F2|)}I1F1

I2O{min
(
1, 1
|F1|
)

min(1, |F2|)}v1

)
∈M

and similarly (
I1O{min

(
1, 1
|F2|
)

min(1, |F1|)}I2F2

I1O{min
(
1, 1
|F2|
)

min(1, |F1|)}v2

)
∈M.
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Subtracting these two vectors, one gets a vector whose first component vanishes,
and the assumption of case (a) means the second component must also vanish,
which yields the claim.

Let {(gi, vi)} be a countable dense set in M. Define w to be zero on the set
where all the vi vanish, and define it to be gi/vi whenever there is some vi that
is essentially non-zero. By the claim, w is well-defined, and (gi, vi) = (gi, wgi).
Therefore

M =
{(

g

wg

)
: g ∈ IL

}
.

As M is closed, by Lemma 2.4 below

M =
{(

g

wg

)
: g ∈ IH2,

∫
|g|2|w|2 dµ < ∞

}
,

as desired.

Case (b). Let

K1 = P2

{(
0

f

)
:
(

0

f

)
∈M

}
.

Then K1 is closed and Nµ invariant, so by the assumption that Nµ is reductive,
K1 = L2(µ|E) for some E. Moreover, M	 (0,K1) is A-invariant, and reduces to
Case (a). Finally, w has to vanish on E because any vector of the form (g, wg)
must be orthogonal to any vector of the form (0, wg|E).

We needed one lemma in the proof.

Lemma 2.4. Let I be inner, and L be a dense subspace of H2. Let

N =
{(

g

wg

)
: g ∈ IL

}
,

and assume (S ⊕Nµ)N ⊆ N . Let M be the closure of N . Then

M =
{(

f

wf

)
: f ∈ IH2,

∫
|f |2|w|2 dµ < ∞

}
.

Proof. The right-hand side is closed and contains N , so it suffices to prove
that for any f in IH2 with wf in L2(µ), we have (f, wf) in M.

Case (a). The inner function I is 1 and f is outer.

As L is dense, there are functions gn (with inner-outer factorings InFn) that
converge to f in H2; the problem is that {wgn} need not be bounded in L2(µ). But
by Theorem 2.2, we can multiply (InFn, InFnw) by f/Fn to get that (Inf, Infw)
is in M. Thus we only need to show that In tends to 1 weakly.
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By passing to a subsequence, if necessary, we can assume that gn converges
to f almost everywhere. Notice first that as lim

n→∞
In(0)Fn(0) = f(0), we get

(2.2)
lim inf
n→∞

∫
log+ |Fn| − log− |Fn| = lim inf

n→∞
log |Fn(0)|

> log |f(0)| =
∫

log+ |f | − log− |f |.

Because gn tends to f in H2, the set {log+ |Fn|} is uniformly integrable, so∫
log+ |Fn| tends to

∫
log+ |f |. Moreover, by Fatou’s lemma,

lim inf
n→∞

∫
log− |Fn| >

∫
log− |f |.

Combining these facts, we get that the inequality in (2.2) is actually an equality,
which means that lim

n→∞
In(0) = 1. Replacing Lebesgue measure by harmonic

measure for other points in the disk, the above argument yields that the functions
In converge to 1 pointwise on D. Therefore the set {(Inf, Infw)} has (f, wf) as a
weak cluster point, and so this vector is in M as desired.

Case (b). The function f is not outer.

Choose gn in L as above converging to O{|f |}. Let J be the inner factor of
f . Then (Jgn, Jgnw) is in M, so can be multiplied by O{|f |}/Fn, which as above
will converge weakly to (f, wf).

By taking orthogonal complements, Theorem 2.3 also describes the lattice
of S∗ ⊕N∗

µ, but the description is a little messier. For ν a measure on the closed
disk let ν ̂be its balayage to the boundary, i.e. that measure on T whose integral
against any continuous harmonic function is the same as that of ν. Let PH2 and
PIH2 be projections onto H2 and IH2, respectively. Then the previous theorem
becomes.

Corollary 2.5. Let µ be a measure on D such that Nµ is reductive, and
let N be an invariant subspace of S∗ ⊕N∗

µ. Then there is a set F of µ1 measure
zero, and E,w and I as in Theorem 2.3, so that

N =
(

0

L2(µ|F )

)
⊕
{(

f

v

)
: v = 0 on E, PIH2f = −IPH2 [wIvµ]

}̂
.

It is possible to have A-invariant subspaces of the form

M =
{(

f

wf

)
: f ∈ H2,

∫
|f |2(dσ + |w|2dµ) < ∞

}
that are not cyclic, as the following example shows.
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Example 2.6. Let αn be an infinite Blaschke sequence on the positive real

axis. Let βn = αn + εn be another, where αn < βn < αn+1, and the εn’s will be

chosen later. Let I1 be the Blaschke product with zeroes at the {αn}’s, and I2

be the Blaschke product with zeroes at the {βn}’s. Let µ be Lebesgue measure

on [0, 1], and let w = min(1/|I1|, 1/|I2|). Let ρ(x, y) denote the pseudo-hyperbolic

distance from x to y.

Then for any function f ,

(2.3)

βn∫
αn

|f |2w2 dx > inf
x∈[αn,βn]

|f(x)|2εn
1

ρ(αn, βn)2
.

As ρ(αn, βn) 6 εn/(1− β2
n), if fw is in L2, equation (2.2) yields that for all n

(2.4) inf
x∈[αn,βn]

|f(x)|2 6
εn

(1− β2
n)2

‖fw‖2L2 .

But if f is outer, there is a constant c (the number 4
∫

log− |f | will do) such that

|f(x)|2 > e−c 1
1−βn for all x ∈ [αn, βn].

So if we choose

εn 6 (1− α2
n+1)

2e−n 1
1−αn+1 ,

then no outer function f can satisfy (2.10). Therefore if M were cyclic with cyclic

vector (g, v), then, by Theorem 2.2, the non-trivial inner factor of g would have

to divide the first component of every vector in M. But M contains (I1, I1w)

and (I2, I2w) and I1 and I2 have greatest common divisor 1. Therefore M is not

cyclic.

The space M constructed in Example 2.6 is 2-cyclic.

Question 2.7. Is every invariant subspace of an operator of the form S⊕Nµ

at most 2-cyclic?

Although we do not know as much about the lattice of A if Nµ is not re-

ductive, we can prove that any restriction of S∗ ⊕Nµ to an invariant subspace of

dimension greater than one does itself have an invariant subspace.
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Theorem 2.8. Let N be a normal contraction, and let N be an invariant
subspace of S∗ ⊕N of dimension greater than 1, and let T = S∗ ⊕N |N . Then T

has an invariant subspace.

Proof. We can assume N is star-cyclic, so writing N = N∗
µ, we are in the

situation we have been considering throughout this section. Let M = N⊥. It
suffices to show that M has a proper superspace that is A-invariant. If Nµ is
reductive, the result follows immediately from Theorem 2.3 (just make E or I a
little bigger). If Nµ is not reductive, then the conclusion of Theorem 2.3 would
only fail to be true if the space K1 were invariant for Nµ but not for N∗

µ.
If the codimension of K1 in L2(µ) is larger than 1, then N∗

µ restricted to
L2(µ)	K1 is subnormal, so has an invariant subspace L1. Add to M everything
of the form {(

0

f

)
: f ∈ L2(µ), f ⊥ L1

}
.

This superspace of M will be A-invariant, and proper, since P2 of it is just L⊥1 .
If the codimension of K1 is exactly 1, then everything in the first slot of

M must have a common inner factor, because M has codimension larger than
1. Therefore enlarging K1 to all of L2(µ) will still result in a proper subspace of
H2 ⊕ L2(µ).

3. THE CASE T̃ = S∗(n)

The general operator T that dominates X and satisfies assumptions (A1–A3) is,
by Proposition 1.2, the restriction of some operator of the form T̃ ⊕X to a cyclic
invariant subspace N , with cyclic vector (ξ0, η0) say. Moreover, by (A2), the vector
η0 is cyclic for X.

Let the space on which T̃ acts be called H, and the space on which X

acts be called K. If we let M denote N⊥, then M cannot contain a vector
with H-component zero and K-component non-zero, because of the cyclicity of η0.
Therefore M can be represented as

M =
{(

ξ

Λξ

)}
where Λ is a closed, linear, densely defined operator from H to K, with kernel the
orthogonal complement of the T̃ ∗-invariant subspace generated by ξ0. Moreover
ΛT̃ ∗ = X∗Λ.
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Finding an invariant subspace for T̃ ⊕X|N is equivalent to finding a proper
superspace of M invariant under T̃ ∗⊕X∗. One way of doing this would be to find
an invariant subspace of X∗, K0 say, and to look at

M1 = cl
{
M+

(
0

K0

)}
.

The only problem is that M1 might be all of H ⊕ K. This will not occur if and
only if there is a non-zero vector (ζ, η) in M⊥ = N for which η is perpendicular
to K0.

If we knew η, we could recover ζ because the fact that (ζ, η) is in M⊥ means

(3.1) 〈ζ, ξ〉 = −〈η, Λξ〉.

So starting with η in K, we could find a ζ in H with (ζ, η) in N , provided that

(3.2) |〈Λξ, η〉| 6 c‖ξ‖H ∀ ξ ∈ H,

because ζ would then be the unique vector in H whose inner products satisfy (3.1)
as ξ ranges over a dense set. We could let K0 be the orthogonal complement, in
K, of the X-invariant subspace generated by η. The conclusion we reach is thus:

Proposition 3.1. With the above notation, a sufficient condition for T to
have an invariant subspace is the existence of a non-zero vector η in K that is not
cyclic for X and that satisfies (3.2).

Let us now specialize to the case where X = N∗
µ and T̃ = S∗(n) for some

finite n. As in the previous section, we shall assume that µ2 is zero, as the same
argument we used in Section 2 shows that its contribution is uninteresting.

Let the domain of Λ be L, where L is a dense subspace of H2(n). The map
Λ has a nice form.

Proposition 3.2. There are functions u1, . . . , un so that the map

Λ : H2(n) ⊇ L → L2(µ)

sends (f1, . . . , fn) to
n∑

i=1

uifi.

Proof. The idea of the proof is that, if n were 2 and L contained non-
vanishing functions (f, 0) and (0, g), then letting
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u1 =
1
f

Λ
(

f

0

)
, u2 =

1
g
Λ
(

0

g

)
,

would work, because Λ intertwines S(n) and Nµ.
In general, let (f1, f2, . . . , fn) and (g1, g2, . . . , gn) be elements of L with

f1g2 6= f2g1. Let f1 have inner-outer factoring IF , and g1 have factoring JG.
As L is invariant under multiplication by H∞ functions (by the same argu-

ment as in the proof of Theorem 2.2), we get that L contains

(3.3)


f1JO{min(1, 1

|F | ) min(1, |G|)}
f2JO{min(1, 1

|F | ) min(1, |G|)}
...

fnJO{min(1, 1
|F | ) min(1, |G|)}

 and


g1IO{min(1, 1

|G| ) min(1, |F |)}
g2IO{min(1, 1

|G| ) min(1, |F |)}
...

gnIO{min(1, 1
|G| ) min(1, |F |)}

.

The difference of these two vectors is a vector whose first component is zero,
and whose second component is non-zero. By iterating this procedure, we can find
n vectors ξ1, . . . , ξn in L such that for each i, the ith component of ξi is non-zero,
and the other components are all zero. Define

(3.4) ui =
1
ξi

Λ (ξi) .

The only problem with the definition is at atoms of µ where ξi vanishes.

Claim. For any choice of λ in D, we can choose {ξi}n
i=1 in L so that, for each

i, all but the ith component of ξi is identically zero, and the ith component does
not vanish at λ.

We shall let superscripts denote the components of a vector, so ξj
i is the jth

component function of the vector ξi. Without loss of generality, we can assume
i = n.

The claim will follow from the following claim.

Claim. If j < n, there exist (n − j) vectors {ηk}n
k=j+1 such that ηl

k ≡ 0 for
1 6 l 6 j and ηl

k(λ) = δlk.

The proof is by induction on j. When j = 0, the claim is true because the
density of L means that 

 f1(λ)
...

fn(λ)

 :

 f1
...

fn

 ∈ L


is all of Cn.
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Assume now the claim has been proved for j, giving vectors {ηk}n
k=j+1, and

we want to prove the claim for j + 1 < n. Applying the construction in (3.3) to

the pairs (ηj , ηl) as l ranges from j + 1 to n, we get n − j − 1 vectors such that

the kth component of the lth vector is an outer function times ηj
jη

k
l − ηk

j ηj
l . After

multiplying by a constant to take care of the outer factor, we get that these new

vectors satisfy the claim.

Thus at every point of D we can choose ξi so that ui are defined by (3.4).

Next we must show that they are well-defined, so suppose ξ and η are two

vectors in L, for which all but the ith components vanish, and let Λ(ξ) = v1,

Λ(η) = v2. Let ξ = IF and η = JG be the inner-outer factorings. Then as

ξJO

{
min

(
1,

1
|F |

)
min(1, |G|)

}
= ηIO

{
min

(
1,

1
|G|

)
min(1, |F |)

}

we get that

v1JO

{
min

(
1,

1
|F |

)
min(1, |G|)

}
= v2IO

{
min

(
1,

1
|G|

)
min(1, |F |)

}

and hence

v1η = v2ξ,

so formula (3.4) is well-defined.

Finally we must prove that the formula in the statement of the proposition

holds true for a general (f1, . . . , fn) in L. Pick ξ1, . . . , ξn as in the claim. Let J

be the product of the inner factors of each ξi. Then there is an outer function F

so that  JF
. . .

JF


 f1

...
fn

 =
n∑

i=1

(
JFfi

ξi

)
ξi.

Therefore

JFΛ

 f1
...

fn

 = Λ


 JF

. . .
JF


 f1

...
fn


 = JF

n∑
i=1

uifi.
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If we divide both sides by JF , we get that the theorem holds except possibly
at the zeroes of J . But let λ be such a zero. Then we can repeat the above
argument with ξi chosen not to vanish at λ, and thus we get that Λ(f1, . . . , fn) =
n∑

i=1

uifi almost everywhere (µ), as desired.

It is now easy to prove the main result of this section.

Theorem 3.3. Let N be a contractive normal operator, and let N be an
invariant subspace of S∗(n)⊕N of dimension greater than 1. Let T = S∗(n)⊕N |N .
Then T has an invariant subspace.

Proof. We can assume that N is cyclic, and letting Nµ = N∗ we are in the
situation considered above. If Λ were zero, N would be contained in H2(n), and
the theorem would follow from the factoring of matrix-valued inner functions ([16],
Theorem 16).

If Λ is not zero, we can apply Propositions 3.1 and 3.2 to conclude that we
need only find a vector η in L2(µ), such that

(3.5) µ{η 6= 0} < ‖µ‖

and

(3.6)
∣∣∣ n∑

i=1

〈uifi, η〉L2(µ)

∣∣∣ 6 c

∥∥∥∥∥∥∥
 f1

...
fn


∥∥∥∥∥∥∥

H2(n)

.

The measure µ cannot consist of just one atom, because otherwise M would be
of codimension 1. Therefore there is a set E such that 0 < µ(E) < ‖µ‖. If µ has
mass on the open unit disk, choose E to be a subset of some set of the form{

z : max(|u1(z)|, . . . , |un(z)|) 1√
1− |z|2

6 M

}
,

for some constant M ; if µ lives solely on the circle, choose E to be a subset of{
z : max(|u1(z)|, . . . , |un(z)|)dµ

dσ
(z) 6 M

}
.

In either case, if η is chosen to be the characteristic function of E, both (3.5) and
(3.6) will be satisfied.
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4. EXAMPLES

Throughout this section, µ will be the Lebesgue measure on the unit interval [0, 1],

and N = Nµ will be the (self-adjoint) operator of multiplication by x on L2(µ).

We shall look at several different sorts of operator that dominate N .

Example 4.1. Let Mn = (n + 2)!(log(n + 2))n, and define a Hilbert space

H by

H =

{
f ∈ C∞[0, 1] :

∞∑
n=0

‖f (n)‖2 1
M2

n

< ∞

}
.

Let T be multiplication by the independent variable on H. Then:

(i) The spectrum of T is [0, 1].

(ii) Evaluation at λ is continuous for all λ in [0, 1].

(iii) H contains no functions that vanish on a set of positive measure.

(iv) If L : H → L2(µ) is the inclusion map, then LT = NL and the range of

L contains no non-cyclic vectors of N (except for 0).

Proof. (i) By Leibniz’s formula,

‖(xf)(n)‖L2 = |xf (n) + nf (n−1)‖L2 6 ‖f (n)‖L2 + n‖f (n−1)‖L2 ,

so

‖Tf‖2H 6 2
∞∑

n=0

‖f (n)‖2L2

[
1

M2
n

+
(n + 1)2

M2
n+1

]
6 4‖f‖2H.

Therefore T is bounded.

To prove (i), we shall estimate the norm of f(x)/(λ − x) for λ not in [0, 1].

Let ε = dist(λ, [0, 1]). Then

∥∥∥∥Dn

(
f(x)
λ− x

)∥∥∥∥2

L2

=

∥∥∥∥∥
n∑

j=0

(
n

j

)
f (j)(x)(n− j + 1)!

1
(λ− x)n−j+1

∥∥∥∥∥
2

L2

6
π2

6

n∑
j=0

(n− j + 1)4
(

n!
j!

)2

ε−2(n−j+1)‖f (j)‖2L2

where we used the fact that
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∣∣∣ n∑
j=0

aj

∣∣∣2 6
π2

6

n∑
j=0

(n− j + 1)2|aj |2

(this follows from the Cauchy-Schwarz inequality). So

∥∥∥∥ f(x)
λ− x

∥∥∥∥2

H
6

π2

6

∞∑
n=0

1
M2

n

n∑
j=0

(n− j + 1)4
(

n!
j!

)2

ε−2(n−j+1)‖f (j)‖2L2

6
π2

6ε2

∞∑
j=0

1
M2

j

‖f (j)‖2L2

∞∑
n=j

(n− j + 1)4
n!2

M2
n

M2
j

j!2
ε2j

ε2n
.

Substituting in for Mn and the second occurrence of Mj , this becomes

(4.1)
∥∥∥∥ f(x)

λ− x

∥∥∥∥2

H
6

π2

6ε2

∞∑
j=0

1
M2

j

‖f (j)‖2L2

∞∑
n=j

(n− j + 1)4
(j + 1)2

(n + 1)2
[ε log(j + 2)]2j

[ε log(n + 2)]2n
.

Now

∞∑
n=j

(n− j + 1)4
(j + 1)2

(n + 1)2
[ε log(j + 2)]2j

[ε log(n + 2)]2n
6

∞∑
n=j

(n− j + 1)4
1

[ε log(n + 2)]2(n−j)

6
∞∑

n=1

n4 1
[ε log(n + 1)]2(n−1)

and this sum is finite. Plugging this last inequality back into (4.2), we get that

there is a constant c depending only on ε such that∥∥∥∥ f(x)
λ− x

∥∥∥∥
H

6 c‖f‖H,

so T − λ is invertible.

(ii) This is obvious — indeed, evaluating any derivative of f at any point of

[0, 1] is continuous, because the norm gives control over all the derivatives.

(iii) In fact a much stronger conclusion holds: by the Denjoy-Carleman the-

orem (e.g. [7], V.2), the space H is quasi-analytic, so no non-zero function in H
can vanish to infinite order at any point in [0, 1]. Therefore the zero set of any

function in H must be finite.

(iv) This follows from (iii).
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If Z is any finite subset of [0, 1], with multiplicities allowed, the set of all
functions in H that vanish on Z to the prescribed orders will form an invariant
subspace of T of finite codimension.

Question 4.2. Is every invariant subspace of T of this form?

Let us list four more examples of operators that dominate N , and then discuss
them.

Example 4.3. Let T = S ⊕N restricted to [(1, 1)]. Then T is similar to S.

Example 4.4. Let ν be harmonic measure on the boundary of the unit
square [0, 1] × [0, 1]. Let H be the closure of the polynomials in L2(ν), and T

be multiplication by z on H. Then T is just ϕ(S), where ϕ is the Riemann map
from the disk to the square, and the invariant subspace lattice of T is described
by Beurling’s theorem.

Example 4.5. Let ξ be a cyclic vector for S∗, and let T be S∗⊕N restricted
to [(ξ, 1)]. The lattice of T is described by Corollary 2.5, modulo identifying w

and I. For the purpose of this example, let w = 1 and I = 1, which corresponds
to choosing ξ(z) = − 1

z log(1− z). Then [(ξ, 1)] = {(f, v) : P (vµ)̂= −f}. Both F

and E are empty, and subspaces of [(ξ, 1)] correspond to different sets E.

Example 4.6. Let T = N .

Notice that there are three qualitatively different behaviors for the invariant
subspace lattice of T . In Examples 4.5 and 4.6, the invariant subspaces correspond
precisely to functions vanishing on sets of positive µ-measure. Indeed there is a
lattice anti-isomorphism between the invariant subspace lattice of T and the lattice
of Borel subsets of [0, 1] modulo µ-null sets.

In Examples 4.3 and 4.4 there is an analytic structure, and one has analytic
bounded point evaluations for T . In the former case, [0, 1) is contained in the set of
analytic bounded point evaluations, whereas in the latter there is only “one-sided”
analyticity.

Finally, in Example 4.1, there is no analytic structure, yet there is a quasi-
analytic structure that allows one to find bounded point evaluations and hence get
invariant subspaces; but even though all the action is on the interval [0, 1], these
subspaces correspond to µ-null sets.

Given these three forms of behavior, it is hard to see in general how an
operator that dominates N “inherits” an invariant subspace from it.
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5. MISCELLANEOUS RESULTS

If both T and T ∗ dominate normals, it is tantamount to saying that T is quasi-
similar to a normal, and indeed under hypotheses (A1–A2), it is.

Theorem 5.1. Suppose T and T ∗ both dominate normal operators. Then
T has an invariant subspace.

Proof. By hypothesis, there are operators L1 and L2 and normal operators
N1 and N2 so that L1T = N1L1 and L2T

∗ = N2L2. By the discussion in the
introduction, we may assume that both L1 and L2 have no kernel and dense
range, as otherwise T already has an invariant subspace. As

N1(L1L
∗
2) = (L1L

∗
2)N

∗
2

the Fuglede-Putnam theorem (see e.g. [2]) gives

N∗
1 (L1L

∗
2) = (L1L

∗
2)N2.

So N1 and N∗
2 are quasi-similar, so T is quasi-similar to N1, and hence has an

invariant subspace.

Fix an operator T on H. For any vector u in H, let

Eu =
{

µ :
∫
|p|2dµ 6 ‖p(T )u‖2 for all polynomials p

}
.

Define

ρ(u) = sup{‖µ‖ 1
2 : µ ∈ Eu}.

For u in H, and for each µ in Eu, define Lu,µ from the cyclic subspace generated
by u to P 2(µ) (the closure of the polynomials in L2(µ)), to be that continuous
operator whose action on a dense set is given by

Lu,µ : p(T )u 7→ p.

Let Sµ be multiplication by z on P 2(µ). Then Lu,µT = SµLu,µ. If q is a rational
function with poles off the spectrum of T |[u], then Lu,µ(q(T )u) = q.

If T has no invariant subspaces, then ρ is a semi-norm, as a consequence of
the following proposition.
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Proposition 5.2. Suppose T is transitive. Fix u 6= 0 in H. Then, for all v

in H,

Ev = {|Lu,µ(v)|2µ : µ ∈ Eu}.

Proof. Fix some v 6= 0.

(⊇) There is a sequence of polynomials pn so that v = lim
n→∞

pn(T )u. For any

µ in Eu, the sequence pn is Cauchy in L2(µ), so converges to some function, f say.

As, for any polynomial p,∫
|p|2|f |2 dµ = lim

n→∞

∫
|p|2|pn|2 dµ 6 lim

n→∞
‖p(T )pn(T )u‖2 = ‖p(T )v‖2,

we get that |Lu,µ(v)|2µ is in Ev.

(⊆) Fix ν ∈ Ev. Let µ = |Lv,ν(u)|2ν, which is in Eu by the first part of the

proof.

Claim. |Lu,µ(v)|2µ = ν.

Indeed, there are polynomials qn so that qn(T )v converges to u. Let g =

Lv,ν(u), so µ = |g|2ν. Then

|Lu,µ(v)|2µ = lim
k→∞

|pk|2
(

lim
n→∞

|qn|2
)
ν.

Fix ε > 0. Choose K0 so that

‖pk(T )u− v‖ <
ε

2
if k > K0,

and choose N0 = N0(k) so that

‖qn(T )v − u‖ <
ε

2(1 + ‖pk(T )‖)
if n > N0.

Then for k > K0 and n > N0(k),

[∫
|pkqn − 1|2 dν

] 1
2

6

[∫
|pkg − 1|2 dν

] 1
2

+
[∫

|pk|2|qn − g|2 dν

] 1
2

< ε.

As ε is arbitrary, it follows that lim
k→∞

(
lim

n→∞
pkqn

)
= 1, so |Lu,µ(v)|2µ = ν, as

desired.
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Corollary 5.3. If T is intransitive, ρ(u + v) 6 ρ(u) + ρ(v).

Proof. By Proposition 5.2,

ρ(u + v) = sup

{[∫
|Lu,µ(u + v)|2 dµ

] 1
2

: µ ∈ Eu

}

6 sup

{[∫
|Lu,µ(u)|2 dµ

] 1
2

+
[∫

|Lu,µ(v)|2 dµ

] 1
2

: µ ∈ Eu

}
6 ρ(u) + ρ(v)

Lemma 5.4. If µ is in Eu, then the support of µ lies in the spectrum of T |[u].

Proof. Let R = T |[u], and let U be an open disk in the resolvent of R. For
each λ in U

Lu,µ((R− λ)−1u) =
1

z − λ

is in L2(µ), and these functions have uniformly bounded norms. Therefore by
Tonelli’s theorem, µ(U) = 0.

Finally we show that if ρ is actually a complete norm, then T has an invariant
subspace.

Theorem 5.5. Suppose ρ is a complete norm on H. Then T has an invari-
ant subspace.

Proof. From the open mapping theorem, there must exist a constant c > 0
so that

c‖v‖H 6 ρ(v) 6 ‖v‖H
for all vectors v in H. Assume T is transitive, and fix some rational function q

with poles off the spectrum of T .
By Proposition 5.2, for any vector u ∈ H,

ρ(q(T )u)2 = sup
{∫

|Lu,µ(q(T )u)|2 dµ : µ ∈ Eu

}
6 sup

µ∈Eu

‖q‖2∞,supp t(µ)ρ(u)2.

Let K be the closure of the union of the supports of all measures in Eu. Then we
just showed that

‖q(T )‖(H,ρ)→(H,ρ) 6 sup{|q(z)| : z ∈ K}.

As the ρ-norm is similar to the original norm, we have that K is an M -spectral
set for T (with M = 1/c).

As K is contained in the spectrum of T by Lemma 5.4, it follows that the
spectrum of T is an M -spectral set for T , so, by a theorem of Stampfli ([11]), T

would have to have an invariant subspace after all.
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