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Abstract. We introduce the notion of (completely) multi-positive linear
maps between C∗-algebras, and show that a completely multi-positive lin-
ear map induces a representation of a C∗-algebra on Hilbert C∗-modules.
This generalizes the Stinespring’s representation and the representations con-
structed by Paschke and Kaplan as well as the GNS representation. We also
construct the covariant representations on Hilbert C∗-modules for covari-
ant completely positive linear maps. Using representations of C∗-algebras on
Hilbert C∗-modules associated with completely multi-positive linear maps we
establish another approach about representations associated with completely
bounded linear maps.
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0. INTRODUCTION

For each positive linear functional on a C∗-algebra A, we associate the cyclic repre-
sentation on a Hilbert space by the Gelfand-Naimark-Segal construction. This fun-
damental theorem has been generalized by Stinespring ([17]) (respectively, Paschke
([9])) for a completely positive linear map from A into B(H) (respectively, another
C∗-algebra B) to get a representation of A on another Hilbert space K (respec-
tively, a Hilbert B-module). On the other hand, Kaplan ([5]) introduced the notion
of an n-positive linear functional of A, an n×n matrix of linear functionals which
induce a positive linear map from Mn(A) into Mn(C), and got a representation
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of A on a Hilbert space associated with an n-positive linear functional. The rep-

resentations on Hilbert spaces are naturally generalized to the representations on

Hilbert C∗-modules. But the bounded operators on Hilbert C∗-module do not

always have adjoints and closed submodules of a Hilbert C∗-module need not be

complemented. The main purpose of this paper is to combine the above two con-

structions to get a representation of A on a Hilbert C∗-module for completely

multi-positive linear maps from A into another C∗-algebra. Using this, we will ob-

tain a representation on a Hilbert C∗-module associated with completely bounded

linear maps.

Paulsen ([11]) gave the covariant version of Stinespring’s Theorem to show

that each of three (rigidly, strongly, weakly) equivalence classes forms a group.

Kaplan ([6]) extended to bounded operators on Hilbert C∗-modules to characterize

the existence of completely positive liftings for extensions of the algebra of compact

operators by certain reduced discrete group C∗-algebras.

An n × n matrix [φij ]ni,j=1 of linear maps from a C∗-algebra A into a C∗-

algebra B is called multi-positive if [φij(aij)] is positive in Mn(B) whenever [aij ]

is a positive element of Mn(A). The map [φij ]ni,j=1 is said to be completely multi-

positive if [φij ] ⊗ Ik : Mn(A) ⊗Mk → Mn(B) ⊗Mk is positive for each positive

integer k, where Ik : Mk →Mk denotes the identity map.

In Section 1, we show that the cone Pn
∞[A,B] of completely multi-positive lin-

ear maps [φij ]ni,j=1 from A into B is isomorphic to the cone P∞[Mn(A), B] of usual

completely positive linear maps from Mn(A) into B, and the cone P∞[A,Mn(B)]

of usual completely positive linear maps from A into Mn(B). We will construct in

Section 2 the representation of A on a Hilbert B-module for a completely multi-

positive linear map from A into B.

In Section 3, we consider the covariant version to construct a covariant rep-

resentation on Hilbert C∗-module for a covariant completely multi-positive linear

map. Using this, we show that a covariant completely multi-positive linear map

from A into B extends to a completely multi-positive linear map from the crossed

product A×α G into B, which generalizes the result in [6].
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1. COMPLETELY MULTI-POSITIVE LINEAR MAPS

For a C∗-algebra A, we denote by Mn(A) the C∗-algebra of all n×n matrices over
A. The C∗-algebra Mn(C) will be denoted by Mn.

Definition 1.1. Let [φij ]ni,j=1 be an n × n matrix of linear maps from a
C∗-algebra A into a C∗-algebra B. Then [φij ]ni,j=1 may be considered as a linear
map from Mn(A) into Mn(B) by

(1.1) [φij ] : [aij ] 7→ [φij(aij)]ni,j=1, [aij ] ∈Mn(A).

We say that [φij ]ni,j=1 is a multi-positive (respectively, k-multi-positive or com-
pletely multi-positive) linear map from A into B if the linear map [φij ] in (1.1) is
positive (respectively, k-positive or completely positive). We denote by Pn

k [A,B]
(respectively, Pn

∞[A,B]) the cone of all k-multi-positive (respectively, completely
multi-positive) linear maps. If n = 1, then P1

k [A,B] and P1
∞[A,B] coincide with

Pk[A,B] and P∞[A,B], respectively, as was introduced in [2]. The following propo-
sition is known.

Proposition 1.2. Let [φij ]ni,j=1 be a multi-positive linear map from a unital
C∗-algebra A into a C∗-algebra B. Then we have:

(i) φij(a∗) = φji(a)∗ for each a ∈ A and i, j = 1, . . . , n;
(ii) [φij(a∗i a

∗aaj)]ni,j=1 6 ‖a‖2[φij(a∗i aj)]ni,j=1 for each a1, . . . , an, a ∈ A.

Let B(A,B) denote the space of all bounded linear maps from A into B. We
define the linear map T : Mn(B(A,B)) → B(Mn(A), B) by

(1.2) T ([φij ])([aij ]) =
n∑

i,j=1

φij(aij)

for [φij ] ∈Mn(B(A,B)) and [aij ] ∈Mn(A).

Theorem 1.3. Let A and B be C∗-algebras. Then the linear map T given
by (1.2) satisfies the following:

(i) T is an isomorphism from Mn(B(A,B)) onto B(Mn(A), B);
(ii) T maps Pn

k [A,B] into Pk[Mn(A), B], and T−1 maps Pkn[Mn(A), B] into
Pn

k [A,B] for each k = 1, 2, . . .;
(iii) T is an isomorphism from Pn

∞[A,B] onto P∞[Mn(A), B].

Proof. It is clear that the linear map T is one-to-one. Let {Eij | i, j =
1, . . . , n} be the standard matrix units in Mn. Then a⊗Eij is the n×n matrix in
Mn(A) with a at the (i, j) component and zeros elsewhere. For Φ ∈ B(Mn(A), B),
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define the linear maps φij : A → B by φij(a) = Φ(a ⊗ Eij) for a ∈ A and
1 6 i, j 6 n. Then we have

T ([φij ]ni,j=1)([aij ]ni,j=1) =
n∑

i,j=1

φij(aij) = Φ([aij ]ni,j=1),

and so the linear map T is onto.
Let [φij ]ni,j=1 be a k-multi-positive linear map from A into B. For a while,

we will use the notation φ instead of the linear map [φij ] from Mn(A) into Mn(B)
as was given by (1.1) in order to avoid the confusion. We define the linear map
Γ : Mn(B) → B by

Γ([bij ]) =
n∑

i,j=1

bij , [bij ]ni,j=1 ∈Mn(B).

Then we have T ([φij ]ni,j=1) = Γ ◦ φ. Since φ ∈ Pk[Mn(A),Mn(B)] and Γ ∈
P∞[Mn(B), B], we see that T ([φij ]) is a k-positive linear map of Mn(A) into B.

In order to show that T−1(Pkn[Mn(A), B]) ⊆ Pn
k [A,B] for each positive

integer k, let [φij ]ni,j=1 = T−1(Φ) for any Φ ∈ B(Mn(A), B). First, suppose that Φ
is an n-positive linear map of Mn(A) into B. Define the linear map ϕn : Mn(A) →
Mn(Mn(A)) by

ϕn([aij ]) = [aij ⊗ Eij ]ni,j=1, [aij ]ni,j=1 ∈Mn(A).

Then ϕn is completely positive, and we have

((Φ⊗ In) ◦ ϕn)([aij ]ni,j=1) = (Φ⊗ In)([aij ⊗ Eij ]ni,j=1)

= [Φ(aij ⊗ Eij)]ni,j=1 = φ([aij ]),

for each [aij ]ni,j=1 ∈ Mn(A). Since Φ ⊗ In and ϕn are positive linear, [φij ]ni,j=1 =
(Φ⊗ In) ◦ ϕn is a multi-positive linear map from A into B. From the relation

[φij ]ni,j=1 ⊗ Ik = ((Φ⊗ In) ◦ ϕn)⊗ Ik = (Φ⊗ Ink) ◦ (ϕn ⊗ Ik),

we see that if Φ ∈ Pkn[Mn(A), B] then [φij ] ∈ Pn
k [A,B].

It only remains to establish the property (iii). Let the map [φij ]ni,j=1 be a
completely multi-positive linear map fromA intoB. Then φ ∈ P∞[Mn(A),Mn(B)].
Since T ([φij ]) = Γ ◦ φ and Γ is completely positive, the linear map T ([φij ]) is
completely positive. To show that T (Pn

∞[A,B]) = P∞[Mn(A), B], assume that
Φ ∈ P∞[Mn(A), B]. Since [φij ]ni,j=1 = (Φ⊗In)◦ϕn and the linear map ϕn is com-
pletely positive, the linear map [φij ] is completely multi-positive, which completes
the proof.
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Define the linear map S : Mn(B(A,B)) → B(A,Mn(B)) by

(1.3) S([ψij ]ni,j=1)(a) = [ψij(a)]ni,j=1

for each [ψij ] ∈Mn(B(A,B)) and a ∈ A.

Theorem 1.4. Let A and B be C∗-algebras. Then the linear map S given
by (1.3) satisfies the following:

(i) S is an isomorphism from Mn(B(A,B)) onto B(A,Mn(B));
(ii) S maps Pn

k [A,B] into Pk[A,Mn(B)], and S−1 maps Pkn[A,Mn(B)] into
Pn

k [A,B] for each k = 1, 2, . . .;
(iii) S is an isomorphism from Pn

∞[A,B] onto P∞[A,Mn(B)].

Proof. Clearly, S is one-to-one. Let Ψ ∈ B(A,Mn(B)). We denote by ψij(a)
the (i, j) component of Ψ(a) ∈ Mn(B) for each a ∈ A and i, j = 1, . . . , n. Then
[ψij ]ni,j=1 ∈Mn(B(A,B)) and

S([ψij ])(a) = [ψij(a)]ni,j=1 = Ψ(a), a ∈ A.

Therefore, it follows that S is onto.
Let [ψij ]ni,j=1 ∈ Pn

k [A,B] for each k = 1, 2, . . . . Define the linear map Θ :
A→Mn(A) by

Θ(a) =
n∑

i,j=1

a⊗ Eij , a ∈ A.

Then S([ψij ]) = ψ ◦Θ, where ψ denotes the linear map from Mn(A) into Mn(B)
as was given by (1.1). Since Θ ∈ P∞[A,Mn(A)] and ψ ∈ Pk[Mn(A),Mn(B)], we
see that S([ψij ]) is a k-positive linear map of A into Mn(B).

We shall show that S−1(Pkn[A,Mn(B)]) ⊆ Pn
k [A,B] for each positive integer

k. First, assume that Ψ ∈ Pn[A,Mn(B)]. Let [ψij ]ni,j=1 = S−1(Ψ). We define the
linear map τn : Mn(Mn(B)) →Mn(B) by

τn

( n∑
i,j=1

Xij ⊗ Eij

)
=

n∑
i,j=1

xij ⊗ Eij , Xij ∈Mn(B),

where xij is the (i, j) component of Xij . Then τn is completely positive. For each
[aij ]ni,j=1 ∈Mn(A), we have

(τn ◦ (Ψ⊗ In))([aij ]ni,j=1) = τn

( n∑
i,j=1

[ψkl(aij)]nk,l=1 ⊗ Eij ]
)

=
n∑

i,j=1

ψij(aij)⊗ Eij = ψ([aij ]).
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Thus, it follows that ψ = τn ◦ (Ψ⊗In). Since Ψ⊗In and τn are positive linear, the
linear map [ψij ]ni,j=1 is a multi-positive linear map from A into B. By the equality

[ψij ]ni,j=1 ⊗ Ik = (τn ◦ (Ψ⊗ In))⊗ Ik = (τn ⊗ Ik) ◦ (Ψ⊗ Ink),

we obtain that [ψij ] ∈ Pn
k [A,B] whenever Ψ ∈ Pkn[A,Mn(B)].

Now, it only remains to establish the property (iii). Let [ψij ]ni,j=1 be a com-
pletely multi-positive linear map from A into B. Then ψ ∈ P∞[Mn(A),Mn(B)].
Since S([ψij ]ni,j=1) = ψ ◦ Θ and Θ is completely positive, we have S([ψij ]) ∈
P∞[A,Mn(B)]. If Ψ ∈ P∞[A,Mn(B)], then we get [ψij ] ∈ Pn

∞[A,B] since
ψ = τn ◦ (Ψ⊗ In) and τn is completely positive. This completes the proof.

Corollary 1.5. The map V : B(Mn(A), B) → B(A,Mn(B)) given by V =
S ◦ T−1 is an isomorphism preserving the complete positivity.

2. REPRESENTATIONS ON HILBERT C∗-MODULES

In this chapter we modify Paschke’s and Kaplan’s methods ([9] and [5]) to con-
struct a representation of A on a Hilbert B-module associated with completely
multi-positive linear map [φij ]ni,j=1, from a C∗-algebra A into a C∗-algebra B. We
first recall the definition of Hilbert C∗-modules.

Let B be a C∗-algebra with the norm ‖ · ‖. A complex vector space X is
called a pre-Hilbert B-module if X is a right B-module equipped with a B-valued
mapping 〈 · , · 〉 : X × X → B which is linear in the second variable with the
properties:

(i) 〈x, y〉 = 〈y, x〉∗,
(ii) 〈x, y · b〉 = 〈x, y〉b,
(iii) 〈x, x〉 > 0,
(iv) 〈x, x〉 = 0 ⇔ x = 0.

The mapping 〈 · , · 〉 is called a B-valued inner product on X. If, in addition,
X is complete with respect to the norm ‖x‖X = ‖〈x, x〉‖1/2, then X is called
a Hilbert B-module. Note that the properties (i), (ii), and (iii) of X imply ([4],
Lemma 1.1.2) the Cauchy-Schwarz inequality

(2.1) ‖〈x, y〉‖2 6 ‖〈x, x〉‖ · ‖〈y, y〉‖, x, y ∈ X.

Throughout this section, B and X denote a C∗-algebra and a Hilbert B-module,
respectively, unless specified otherwise.
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We denote by X ′ = HomB(X,B) the set of all bounded B-module maps of
X into B. Then X ′ becomes a right B-module with the operations

(f + g)(x) = f(x) + g(x), (λ · f)(x) = λf(x), (f · b)(x) = b∗f(x)

for x ∈ X, b ∈ B, and λ ∈ C. If we endow X ′ with the norm ‖f‖X′ of f as a
bounded linear map from X into B, then X ′ becomes a Banach B-module. Note
that each x ∈ X gives rise to the map x′ ∈ X ′ defined by x′(y) = 〈x, y〉 for y ∈ X.
Since the map φ : X → X ′ given by φ(x) = x′ is an isometric B-module map,
we can regard X as a submodule of X ′ by identifying it with φ(X). We call X
self-dual if X = X ′, that is, every bounded B-module map f : X → B is of the
form 〈xf , · 〉 for some element xf ∈ X.

Let X and Y be Hilbert B-modules. We denote by BB(X,Y ) the space of all
bounded B-linear operators of X into Y . We write BB(X) for BB(X,X). With
the operator norm, BB(X) is a Banach algebra. We denote by LB(X,Y ) the set
of all B-module maps T : X → Y for which there is an operator T ∗ : Y → X,
called the adjoint of T , such that

〈Tx, y〉 = 〈x, T ∗y〉, x ∈ X, y ∈ Y.

By the Banach-Steinhaus Theorem, T ∈ LB(X,Y ) is bounded. We write LB(X)
for LB(X,X), which becomes a C∗-algebra with the operator norm ([4], Lemma
1.1.7). By a representation of a C∗-algebra A on a Hilbert B-module X, we mean
a ∗-homomorphism π : A→ LB(X).

Note that a C∗-algebra B is a Hilbert B-module with the B-valued inner
product 〈 · , · 〉B given by 〈a, b〉B = a∗b. Any complex Hilbert space is the Hilbert
C-module with the inner product 〈 · , · 〉 which is linear in the second variable and
conjugate linear in the first variable.

Let A and B be C∗-algebras, and let X be a Hilbert B-module. Given a ∗-
homomorphism π : A→ LB(X) and elements x1, . . . , xn ∈ X, we define the linear
maps φij : A → B by φij(a) = 〈xi, π(a)xj〉 for every a ∈ A and i, j = 1, 2, . . . , n.
Then the linear map [φij ]ni,j=1 is completely multi-positive. For x, y ∈ X, we define
the linear map ωx,y : BB(X) → B by

(2.2) ωx,y(T ) = 〈x, Ty〉, T ∈ BB(X).

Theorem 2.1. Let [φij ]ni,j=1 be a completely multi-positive linear map from
a unital C∗-algebra A into a unital C∗-algebra B. Then there exist a Hilbert B-
module X, a representation π of A on X, and vectors x1, . . . ,xn ∈ X with the
properties:
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(i) φij = ωxi,xj
◦ π for each i, j = 1, . . . , n,

(ii) {π(a)(xi · b) | a ∈ A, b ∈ B, 1 6 i 6 n} spans a dense subspace of X.

Proof. LetA⊗B be the algebraic tensor product ofA andB, and (A⊗B)n the
direct sum of n copies of A⊗B. For a = (a1, . . . , an) ∈ An and b = (b1, . . . , bn) ∈
Bn, we write a⊗b = (a1⊗ b1, . . . , an ⊗ bn) ∈ (A⊗B)n by the abuse of notations.
Then we see that every element of (A⊗B)n is the finite sum of a⊗b with a ∈ An

and b ∈ Bn.
Now, we define the map 〈 · , · 〉 : (A⊗B)n × (A⊗B)n → B by

(2.3)

〈 k∑
s=1

as ⊗ bs,
∑̀
t=1

ct ⊗ dt

〉
=

k∑
s=1

∑̀
t=1

b∗s([φij ](a∗sct))dt

=
k∑

s=1

∑̀
t=1

n∑
i,j=1

b∗i,sφij(a∗i,scj,t)dj,t,

for as = (a1,s, . . . , an,s), ct = (c1,t, . . . , cn,t) ∈ An, and bs = (b1,s, . . . , bn,s)T,
dt = (d1,t, . . . , dn,t)T ∈ Bn, where T denotes the transpose.

It is clear that 〈 · , · 〉 is well-defined and is linear in the second variable and

conjugate-linear in the first variable. For any x =
k∑

s=1
as⊗bs ∈ (A⊗B)n, we have

〈x,x〉 =
k∑

s,t=1

b∗s([φij ](a∗sat))bt =
k∑

s,t=1

n∑
i,j=1

b∗i,sφij(a∗i,saj,t)bj,t > 0,

since [φij ] is completely multi-positive. We will show that 〈x,y〉 = 〈y,x〉∗ for all

x,y ∈ (A ⊗ B)n. For any x =
k∑

s=1
as ⊗ bs and y =

∑̀
t=1

ct ⊗ dt in (A ⊗ B)n, we

have

〈x,y〉 =
k∑

s=1

∑̀
t=1

n∑
i,j=1

b∗i,sφij(a∗i,scj,t)dj,t

=
( ∑̀

t=1

k∑
s=1

n∑
i,j=1

d∗j,tφji(c∗j,tai,s)bi,s
)∗

= 〈y,x〉∗,

where the second equality follows from Proposition 1.2 (i). If we define

(2.4) (a⊗ b) · b = a⊗ b · b = (a1 ⊗ b1b, . . . , an ⊗ bnb)

for each b ∈ B, then (A⊗B)n becomes a right B-module. It is also easily checked
that 〈x,y · b〉 = 〈x,y〉b for each x,y ∈ (A⊗B)n and b ∈ B.
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Let N be the set of all x ∈ (A⊗B)n with 〈x,x〉 = 0. By the Cauchy-Schwarz
inequality (2.1), we see that the set

N = {x ∈ (A⊗B)n | 〈x,x〉 = 0}
= {x ∈ (A⊗B)n | 〈x,y〉 = 0 for all y ∈ (A⊗B)n}

is a linear subspace of (A ⊗ B)n. From 〈x,y · b〉 = 〈x,y〉b we have the relation
N · B ⊆ N , and so N is a B-submodule of (A ⊗ B)n. By the Cauchy-Schwarz
inequality again, we see that the B-valued map 〈 · , · 〉 given in (2.3) induces the
B-valued inner product on the quotient B-module X0 = (A ⊗ B)n/N , and the
completion X of X0 becomes a Hilbert B-module.

For each a ∈ A, we define the linear operator π(a) acting on a pre-Hilbert
B-module X0 by

(2.5)

π(a)
( k∑

s=1

as ⊗ bs +N
)

=
k∑

s=1

a · as ⊗ bs +N

=
k∑

s=1

(aa1,s ⊗ b1,s, . . . , aan,s ⊗ bn,s) +N

for each
k∑

s=1
as⊗bs ∈ (A⊗B)n. It follows immediately from the definition that π(a)

is a B-module map. Let x = a⊗b+N ∈ X0 with a⊗b = (a1⊗ b1, . . . , an⊗ bn) ∈
(A⊗B)n. Then we have

〈π(a)x, π(a)x〉 = 〈a · a⊗ b +N, a · a⊗ b +N〉 =
n∑

i,j=1

b∗iφij(a∗i a
∗aaj)bj

6 ‖a‖2
n∑

i,j=1

b∗iφij(a∗i aj)bj = ‖a‖2〈x,x〉,

by Proposition 1.2 (ii). Therefore, π(a) extends to a bounded B-module map from
X to X. We proceed to show that π(a) ∈ LB(X).

Take x = a⊗b+N and y = c⊗d+N inX0 with a⊗b = (a1⊗b1, . . . , an⊗bn),
c⊗ d = (c1 ⊗ d1, . . . , cn ⊗ dn). Then we have

〈π(a)x,y〉 =
n∑

i,j=1

b∗iφij(a∗i (a
∗cj))dj = 〈a⊗b+N,π(a∗)(c⊗d+N)〉 = 〈x, π(a∗)y〉.

Thus, we see that π(a) ∈ LB(X0) for each a ∈ A. It is straightforward to check
that a 7→ π(a) is a representation of A on the Hilbert B-module X.
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For each i = 1, 2, . . . , n, let xi be the vector ei + N ∈ X where ei is the
element of (A⊗B)n whose i-th component is 1A⊗1B and all the other components
are 0. Then we have

φij(a) = 〈ei +N, a · ej +N〉 = 〈ei +N,π(a)(ej +N)〉 = 〈xi, π(a)xj〉

for each a ∈ A and i, j = 1, 2, . . . , n. Therefore, we have φij = ωxi,xj
◦ π. It

remains to show (ii). For a ∈ A and b ∈ B, we have

π(a)(xi · b) = π(a)((ei +N) · b) = (0, . . . , a⊗ b, . . . , 0) +N,

where a⊗b is placed in the i-th position. So, the linear span of the set {π(a)(xi ·b) |
a ∈ A, b ∈ B, 1 6 i 6 n} is precisely X0, and this completes the proof.

Our construction may be modified for non unital case as was done by Lin ([8])
for n = 1. First, we consider the case when B is not unital. Let X be a Hilbert
B-module. The algebraic tensor product X ⊗ B∗∗ becomes a right B∗∗-module
if we set (x ⊗ b) · b′ = x ⊗ bb′ for each x ∈ X and b, b′ ∈ B∗∗. We define the
conjugate-linear map 〈 · , · 〉 : X ⊗B∗∗ ×X ⊗B∗∗ → B∗∗ by

(2.6) 〈x⊗ b, y ⊗ d〉 = b∗〈x, y〉d, x, y ∈ X, b, d ∈ B∗∗.

Then X ⊗B∗∗/L becomes a pre-Hilbert B∗∗-module containing X as a B-submo-
dule, where L = {z ∈ X ⊗B∗∗ | 〈z, z〉 = 0}. Therefore, we may assume that B is
unital.

Suppose that A is not unital. Let {uλ} be an approximate identity for A.
Let xi,λ be the vector ei,λ +N for each i = 1, . . . , n where ei,λ is the element of
(A ⊗ B)n whose i-th component is uλ ⊗ 1B and all the other components are 0.
Since

〈xi,λ,x〉 =
n∑

j=1

φij(uλaj)bj →
n∑

j=1

φij(aj)bj

in norm for each x = (a1 ⊗ b1, . . . , an ⊗ bn) +N ∈ X, there are xi ∈ X ′ such that

〈xi,x〉 = lim〈xi,λ,x〉 for all x ∈ X.

Therefore, we may take x1, . . . ,xn ∈ X ′.
For a completely multi-positive linear map [φij ]ni,j=1 from a C∗-algebra A into

a C∗-algebra B, we say that the representation (π,X) constructed in Theorem 2.1
is the representation associated with [φij ]. We call a subset Z of a Hilbert B-
module X a generating set for X if the closed B-submodule of X generated by Z
is the whole of X.
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An element u of LB(X,Y ) is called to be unitary if u∗u = 1X , and uu∗ = 1Y

where 1X and 1Y denotes the identity maps. Let π1 and π2 be representations of a
C∗-algebra A on Hilbert B-modules X1 and X2, respectively. We say that π1 and
π2 are unitarily equivalent if there is an isometric B-module map u of X1 onto X2

such that uπ1(a)u∗ = π2(a) for each a in A. If u is a B-module map from X1 to
X2, it is well known that u is isometric and surjective if and only if u is a unitary
element of LB(X1, X2).

Theorem 2.2. Let [φij ]ni,j=1 be a completely multi-positive linear map from
a unital C∗-algebra A into a unital C∗-algebra B. Then the representation (π,X)
associated with [φij ] is unique up to an unitary equivalence.

Proof. Let (π,X) and (π′, Y ) be the representations associated with [φij ]ni,j=1,
which have the generating sets {x1, . . . ,xn} and {y1, . . . ,yn}, respectively. For
each a1, . . . , an ∈ A and b1, . . . , bn ∈ B, we have

∥∥∥ n∑
i=1

π(ai)(xi · bi)
∥∥∥2

X
=

∥∥∥ n∑
i,j=1

b∗i 〈π(ai)xi, π(aj)xj〉bj
∥∥∥ =

∥∥∥ n∑
i,j=1

b∗iφij(a∗i aj)bj
∥∥∥

=
∥∥∥ n∑

i,j=1

b∗i 〈π′(ai)yi, π
′(aj)yj〉bj

∥∥∥ =
∥∥∥ n∑

i=1

π′(ai)(yi · bi)
∥∥∥2

Y
,

and so the linear map

(2.7)
n∑

i=1

π(ai)(xi · bi) 7→
n∑

i=1

π′(ai)(yi · bi)

extends to an isometry from X onto Y , which will be denoted by u. It is clear
that u : X → Y is a B-module map, and so u is a unitary of X onto Y .

From the relation

ωxi,xj
◦ π = φij = ωyi,yj

◦ π′, i, j = 1, . . . , n,

we get u∗
( n∑

i=1

π′(ai)(yi · bi)
)

=
n∑

i=1

π(ai)(xi · bi). For each a, a1, . . . , an ∈ A and

b1, . . . , bn ∈ B, we have

uπ(a)u∗
( n∑

i=1

π′(ai)(yi · bi)
)

= u
( n∑

i=1

π(aai)(xi · bi)
)

= π′(a)
( n∑

i=1

π′(ai)(yi · bi)
)
.

Since uπ(a)u∗ and π′(a) are bounded and {π′(a)(yi · b) | a ∈ A, b ∈ B, 1 6 i 6 n}
spans a dense subspace of Y , we have π′(a) = uπ(a)u∗ for all a ∈ A. Therefore, u
sets up the unitary equivalence of π and π′.
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The linear map φ : A→ B is called completely bounded if the map φ⊗In : A⊗
Mn → B⊗Mn is bounded for all positive integer n, and set ‖φ‖cb = sup

n
‖φ⊗ In‖.

We define a linear map φ∗ : A → B by φ∗(a) = φ(a∗)∗ for each a ∈ A. We call a
C∗-algebra A injective if it has Arveson’s extension property. It is known that a
C∗-algebra A is injective if and only if there exists a completely positive projection
of the algebra B(H) of operators on a Hilbert space H onto A. We see that if A is
injective, then A⊗Mn is injective for n = 1, 2, . . . .

We say that a closed submodule Y of a Hilbert C∗-module X is comple-
mented if X = Y ⊕ Y ⊥, where Y ⊥ = {x ∈ X | 〈y, x〉 = 0, for all y ∈ Y }. The
following proposition is similar to [13], Theorem 7.3, whose proof depends on the
fact that any closed subspace of a Hilbert space is complemented. Note that a
closed submodule of a Hilbert C∗-module need not be complemented, and that a
closed submodule of a Hilbert C∗-module constructed as above is, in general, not
complemented. To get a representation on a Hilbert C∗-module associated with
completely bounded maps, we will consider completely multi-positive linear maps.

Proposition 2.3. Let A and B be C∗-algebras with B injective. If φ : A→
B is a completely bounded linear map, then there exist a Hilbert B-module X, a
representation π of A on X and vectors x1,x2 ∈ X with the properties;

(i) φ(a) = 〈x1, π(a)x2〉 for each a ∈ A;
(ii) the set {π(a)(xi ·b) | a ∈ A, b ∈ B, i = 1, 2} spans a dense subspace of X.

Proof. By [12], Theorem 7.3, there exist completely positive linear maps
ϕi : A→ B, with ‖ϕi‖cb = ‖φ‖cb, i = 1, 2, such that the map Φ : M2(A) →M2(B)
given by

Φ
(
a b

c d

)
=

(
ϕ1(a) φ(b)
φ∗(c) ϕ2(d)

)
,

(
a b

c d

)
∈M2(A)

is completely positive. We can consider Φ as a linear map from the C∗-algebra
M2(A) into the C∗-algebra M2(B), that is,

Φ =
(
ϕ1 φ

φ∗ ϕ2

)
:
(
a b

c d

)
7→

(
ϕ1(a) φ(b)
φ∗(c) ϕ2(d)

)
=

(
φ11(a) φ12(b)
φ21(c) φ22(d)

)
.

Putting Φ = [φij ]2i,j=1, we see that [φij ]2i,j=1 is completely multi-positive. By
Theorem 2.1, there exist a Hilbert B-module X, a representation π of A on X,
and vectors x1,x2 ∈ X such that φij = ωxi,xj

◦π for i, j = 1, 2 and the linear span
of {π(a)(xi · b) | a ∈ A, b ∈ B, i = 1, 2} is dense in X. Hence we have

φ(a) = φ12(a) = ωx1,x2 ◦ π(a) = 〈x1, π(a)x2〉

for each a ∈ A, which completes the proof.
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Kaplan ([5]) constructed representations of n-positive linear functionals on
unital C∗-algebras and Suen ([18]) gave representations of n×n matrices of linear
maps by using the methods of Paulsen ([13], Theorem 7.4). But we can give
representations of completely multi-positive maps of C∗-algebras into B(H) from
Theorem 2.1 extended the method of Stinespring ([17]).

Corollary 2.4. Let A be a C∗-algebra and let [φij ]ni,j=1 be a completely
multi-positive linear map from A into B(H). Then there exist a representation π

of A on a Hilbert space K and bounded operators Vi : H → K, i = 1, . . . , n such
that φij(a) = V ∗i π(a)Vj for each a ∈ A and i, j = 1, . . . , n.

In Proposition 2.3, we established the representation for completely bounded
maps from C∗-algebras into injective C∗-algebras using the representation on
Hilbert C∗-modules for completely multi-positive maps. The following proposi-
tion gives a commutant representation on a Hilbert C∗-module for completely
bounded maps.

Proposition 2.5. Let A and B be C∗-algebras with B injective. If φ :
A → B is a completely bounded linear map, then there exist a Hilbert B-module
X, a representation π of A on X, a vector x ∈ X, and a unique operator T ∈
BB(X,X ′) ∩ π(A)′ with the properties:

(i) φ(a) = 〈x, Tπ(a)x〉 for each a ∈ A;
(ii) the set {π(a)(x · b) | a ∈ A, b ∈ B} spans a dense subspace of X.

Proof. By [13], Theorem 7.5, there exists a completely positive map ψ : A→
B with ‖ψ‖ = ψ(1) = ‖φ‖cb such that ψ ± Re(φ) and ψ ± Im (φ) are completely
positive. Since ψ : A→ B is completely positive, by [8], Theorem 2.1, there exist
a Hilbert B-module X, a representation π of A on X, and a vector x ∈ X such
that for each a ∈ A, ψ(a) = 〈x, π(a)x〉 and the span of {π(a)(x · b) | a ∈ A, b ∈ B}
is dense in X. Note that 1/2(ψ + Re (φ)) and 1/2(ψ + Im (φ)) are completely
positive. Since the following maps

ψ − 1
2
(ψ + Re (φ)) =

1
2
(ψ − Re (φ)),

ψ − 1
2
(ψ + Im (φ)) =

1
2
(ψ − Im (φ))

are completely positive, we have ψ > 1/2(ψ+Re (φ)) and ψ > 1/2(ψ+Im (φ)). By
[8], Theorem 2.2, there exist positive operators P,Q ∈ BB(X,X ′) which commute
with every element in π(A) such that for each a ∈ A

1
2
(ψ + Re (φ))(a) = 〈x, Pπ(a)x〉,

1
2
(ψ + Im (φ))(a) = 〈x,Qπ(a)x〉.
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Hence we have that for each a ∈ A,

Re (φ(a)) = 2〈x, Pπ(a)x〉 − ψ(a) = 〈x, (2P − 1)π(a)x〉,
Im (φ(a)) = 2〈x,Qπ(a)x〉 − ψ(a) = 〈x, (2Q− 1)π(a)x〉.

Putting T1 = 2P − 1, T2 = 2Q− 1 and T = T1 + iT2, we have that T ∈ π(A)′ and
for each a ∈ A

φ(a) = Re (φ(a)) + i Im (φ(a)) = 〈x, T1π(a)x〉+ 〈x, iT2π(a)x〉 = 〈x, Tπ(a)x〉.

If T ′ is another operator which commutes with every elements in π(A) such
that φ(a) = 〈x, T ′π(a)x〉 for each a ∈ A, letting T ′ = T ′1 + iT ′2 be its cartesian
decomposition, we have (ψ+Re (φ))(a) = 〈x, (1+T ′1)π(a)x〉 and (ψ+Re (φ))(a) =
〈x, (1 + T ′2)π(a)x〉 which imply that 1 + T ′1 = 2P and 1 + T ′2 = 2Q. Therefore, we
get T = T ′.

Theorem 7.4 in [13] implies the Stinespring’s theorem for completely bounded
maps and Suen ([18]) gave the representation for completely multi-bounded maps
which is similar to the Stinespring representation for completely bounded maps.
Using [1], Theorem 1.4.2, we give another characterization of the representation
for completely multi-bounded maps.

Corollary 2.6. Let A be a C∗-algebra and let [φij ]ni,j=1 be a completely
multi-bounded linear map from A into B(H). Then there exist a representation π

of A on a Hilbert space K, a bounded operator V : H → K and Tij ∈ π(A)′, for
each a ∈ A.

Proof. Since each φij is completely bounded, φij is expressed by a linear
combination of four completely positive linear maps, that is,

φij = σ+
ij − σ−ij + i(τ+

ij − τ−ij )

where σ±ij and τ±ij are completely positive for i, j = 1, . . . , n. Set

ϕ =
n∑

i,j=1

(σ+
ij + σ−ij + τ+

ij + τ−ij ), i, j = 1, . . . , n.

Clearly, ϕ is completely positive. Let (π, V,K) be the Stinespring representation
associated with ϕ. Since ϕ > σ±ij , τ

±
ij for each i, j = 1, . . . , n, by [1], Theorem 1.4.2,

there are unique positive operators P±ij , Q
±
ij ∈ B(K)∩π(A)′ such that P±ij , Q

±
ij 6 1

and
σ±ij(a) = V ∗P±ij π(a)V, τ±ij (a) = V ∗Q±ijπ(a)V, i, j = 1, . . . , n

for each a ∈ A. Putting Tij = P+
ij − P−ij + i(Q+

ij − Q−ij), we have φij(a) =
V ∗Tijπ(a)V , (i, j = 1, . . . , n) for each a ∈ A.
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3. COVARIANT REPRESENTATIONS ON HILBERT C∗-MODULES

Let (A,G, α) be a C∗-dynamical system with a locally compact group G.
Given a unitary representation u : G → U(B) of G into the unitary group
of a unital C∗-algebra B, a linear map φ : A → B is called u-covariant if
φ(αg(a)) = ugφ(a)u∗g for each a ∈ A, g ∈ G. Let X be a Hilbert B-module. A
covariant representation of a C∗-dynamical system (A,G, α) is a triple (π, σ,X),
where (π,X) is a representation of A on a Hilbert B-module X and (σ,X) is a
unitary representation of G into LB(X) such that

(3.1) π(αg(a)) = σgπ(a)σ∗g , a ∈ A, g ∈ G.

The action α : G→ Aut (A) induces the action α̃ : G→ Aut (Mn(A)) by

(3.2) α̃g([aij ]) = [αg(aij)], [aij ] ∈Mn(A).

Let [φij ]ni,j=1 be a multi-positive linear map from A into B. The map [φij ]
may be considered as a map from Mn(A) into Mn(B) as in (1.1). Let ũg ∈
U(Mn(B)) be a diagonal matrix with all the diagonal entries ug. If the map
[φij ] : Mn(A) → Mn(B) is ũ-covariant with respect to the dynamical system
(Mn(A), G, α̃), we say that [φij ] is a u-covariant multi-positive linear map from A

into B. Note that a multi-positive linear map [φij ]ni,j=1 is u-covariant if and only if

(3.3) φij(αg(aij)) = ugφij(aij)u∗g, i, j = 1, . . . , n,

for each [aij ] ∈Mn(A) and g ∈ G.

Theorem 3.1. Let (A,G, α) be a unital C∗-dynamical system and u : G→
U(B) a unitary representation of G into a unital C∗-algebra B. If [φij ]ni,j=1 is a
u-covariant completely multi-positive linear map from A into B, then there exist:

(i) a Hilbert B-module X;
(ii) a covariant representation (π, σ,X) of (A,G, α) into LB(X);
(iii) n vectors x1, . . . ,xn ∈ X;
(iv) n elements v1, . . . , vn ∈ LB(B,X); such that:

(1) φij = ωxi,xj
◦ π for i, j = 1, 2, . . . , n;

(2) {π(a)(xi · b) | a ∈ A, b ∈ B, 1 6 i 6 n} spans a dense subspace of X;
(3) v∗i π(a)vj = mφij(a), i, j = 1, . . . , n for each a ∈ A;
(4) σgvi = vimug

, i = 1, . . . , n for each g ∈ G;
where m is a left multiplication operator on B.

Proof. We follow the notation in the proof of Theorem 2.1. By Theorem 2.1,
there exist a Hilbert B-module X, a representation π : A→ LB(X) and n vectors
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x1, . . . ,xn ∈ X satisfying the properties (1) and (2). Hence it suffices to con-
struct a covariant representation (π, σ,X) of (A,G, α) into LB(X) and elements
v1, . . . , vn ∈ LB(B,X) satisfying the properties (3) and (4).

For each g ∈ G and x =
k∑

s=1
as ⊗ bs + N ∈ X, we define the linear map

σ : G→ LB(X) by

(3.4) σg(x) =
k∑

s=1

(αg(a1,s)⊗ ugb1,s, . . . , αg(an,s)⊗ ugbn,s) +N.

Clearly, σg is bounded and linear. Take any x = a⊗ b +N , y = c⊗ d +N ∈ X.
Then we obtain that for each g ∈ G

〈σg(x),y〉 = 〈(αg(a1)⊗ugb1, . . . , αg(an)⊗ugbn)+N, (c1⊗d1, . . . , cn⊗dn)+N〉

=
n∑

i,j=1

b∗iφij(a∗iαg−1(cj))u∗gdj

= 〈(a1⊗b1, . . . , an⊗bn)+N, (αg−1(c1)⊗u∗gd1, . . . , αg−1(cn)⊗u∗gdn)+N〉
= 〈x, σg−1(y)〉.

Therefore σg has the adjoint σg−1 , and it is straightforward that g 7→ σg is a

unitary representation on X. For each x =
k∑

s=1
as ⊗ bs + N ∈ X and a ∈ A, we

have

σgπ(a)σ∗g(x) = σg

( k∑
s=1

(aα∗g(a1,s)⊗ u∗gb1,s, . . . , aα
∗
g(an,s)⊗ u∗gbn,s) +N

)
=

k∑
s=1

(αg(a)a1,s ⊗ b1,s, . . . , αg(a)an,s ⊗ bn,s) +N = π(αg(a))x,

which implies that (π, σ,X) is a covariant representation of (A,G, α) on X.
For each i = 1, 2, . . . , n, we define the B-module map vi : B → X by

(3.5) vi(b) = (0, . . . , 1A ⊗ b, . . . , 0) +N,

that is, the element whose i-th component is 1A ⊗ b and all the other components
are 0. For each a⊗ b +N ∈ X, b ∈ B and i = 1, . . . , n we have

〈vi(b),a⊗ b +N〉 = 〈(0, . . . , 1A ⊗ b, . . . , 0) +N, (a1 ⊗ b1, . . . , an ⊗ bn) +N〉

= b∗
n∑

j=1

φij(aj)bj =
〈
b,

n∑
j=1

φij(aj)bj
〉
,
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which implies that v∗i (a ⊗ b + N) =
n∑

j=1

φij(aj)bj . For each i, j = 1, 2, . . . , n, we

have

v∗i π(a)vj = mφij(a), a ∈ A.

It is straightforward to check that σgvi(b) = vi(ugb) = vimug (b) for each b ∈ B

and i = 1, . . . , n, which completes the proof.

In [6], Kaplan showed that given a discrete unital C∗-dynamical system
(A,G, α), a covariant completely positive linear map ϕ : A→ B extends to a com-
pletely positive linear map on the crossed product A ×α G. Using Theorem 3.1,
we generalize Kaplan’s argument in the following proposition where we follow the
notations in [12], Section 7.6.

Proposition 3.2. Let (A,G, α) be a unital C∗-dynamical system, and u :
G→ U(B) a unitary representation of G into a unital C∗-algebra B. If [φij ]ni,j=1

is a u-covariant completely multi-positive linear map from A into B, then there
exists a completely multi-positive linear map [ψij ]ni,j=1 from A×αG into B uniquely
given by

(3.6) ψij(f) =
∫
φij(f(g))ug dµ, f ∈ K(G,A)

where K(G,A) is a set of continuous functions from G to A with compact supports.

Proof. By Theorem 3.1, there exist a covariant representation (π, σ,X) of
(A,G, α) into LB(X) and vi ∈ LB(B,X) such that v∗i π(a)vj = mφij(a) and σgvi =
vimug

, 1 6 i, j 6 n for all a ∈ A, g ∈ G. We define π × σ by

(3.7) (π × σ)(f) =
∫
G

π(f(g))σg dµ, f ∈ K(G,A).

From [16], Proposition 7.6.4, we see that

(π × σ)(f∗) = ((π × σ)(f))∗,

‖(π × σ)(f)‖ 6 ‖f‖1,

(π × σ)(f1 ∗ f2) = (π × σ)(f1)(π × σ)(f2),

for each f, f1, f2 ∈ K(G,A). Hence π × σ extends to a representation, again
denoted by π × σ from L1(G,A) to LB(X). By the universal property of the
crossed product A ×α G, the representation π × σ extends to a representation of
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A ×α G into LB(X), still denoted by π × σ. For each i, j = 1, 2, . . . , n we define
linear map ϕij : A×α G→ LB(B) by

(3.8) ϕij(x) = v∗i (π × σ)(x)vj , x ∈ A×α G.

For each b ∈ B and f ∈ K(G,A), we have

ϕij(f)(b) = v∗i (π × σ)(f)vj(b) =
∫
G

v∗i π(f(g))σgvj(b) dµ

=
∫
G

v∗i π(f(g))vj(ugb) dµ =
∫
G

φij(f(g))ugb dµ.

Since the map π × σ is a representation from A ×α G to LB(X), [ϕij ]ni,j=1 is a
completely multi-positive linear map from A×αG into LB(B). Let τ : LB(B) → B

be a natural isomorphism. Putting ψij = τ ◦ ϕij (i, j = 1, . . . , n), the linear map
[ψij ] is completely multi-positive. This completes the proof.

Let (A,G, α) be a unital C∗-dynamical system, and u a unitary representa-
tion of G into an injective von Neumann algebra B. Let S be an operator system
in the C∗-algebra A which is invariant under the action α of G and φ : S → B

a u-covariant completely positive map. If G is amenable, then there exists a u-
covariant completely positive map φ̃ : A→ B extending φ. To get a new covariant
completely positive map, we use the invariant mean to average. But this averag-
ing usually lies in the weak operator closure of the range. We are not sure about
the C∗-case. Under the stronger assumption that G is compact, this would work
because the averages are in the norm closure ([15]). Using this and Paulsen’s
off-diagonalization trick, we can see that the covariant version of Theorem 7.3 in
[13] holds for covariant completely bounded maps. The following corollary is a
covariant version of Proposition 2.3.

Corollary 3.3. Let (A,G, α) be a unital C∗-dynamical system with G

amenable and u : G → U(B) a unitary representation of G into a unital in-
jective von Neumann algebra B. If φ is a u-covariant completely bounded linear
map from A into B, then there exist:

(i) a Hilbert B-module X;
(ii) a covariant representation (π, σ,X) of (A,G, α) into LB(X);
(iii) vectors x1,x2 ∈ X;
(iv) elements v1, v2 ∈ LB(B,X); such that:

(1) φ(a) = 〈x1, π(a)x2〉 for each a ∈ A;
(2) {π(a)(xi · b) | a ∈ A, b ∈ B, i = 1, 2} spans a dense subspace of X;
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(3) v∗1π(a)v2 = mφ(a) for each a ∈ A;
(4) σgvi = vimug

, i = 1, 2 for each g ∈ G;
where m is a left multiplication operator on B.

Proof. By the above remark, there exist u-covariant completely positive lin-
ear maps ϕ1 and ϕ2 from A into B such that the map Φ : M2(A) →M2(B) given
by

(3.9) Φ
(
a b

c d

)
=

(
ϕ1(a) φ(b)
φ∗(c) ϕ2(d)

)
,

(
a b

c d

)
∈M2(A)

is completely positive. When Φ is considered as a linear map from a C∗-algebra
M2(A) into a C∗-algebra M2(B), that is,

Φ =
(
ϕ1 φ

φ∗ ϕ2

)
:
(
a b

c d

)
7→

(
ϕ1(a) φ(b)
φ∗(c) ϕ2(d)

)
=

(
φ11(a) φ12(b)
φ21(c) φ22(d)

)
,

it follows from definition that Φ = [φij ]2i,j=1 is u-covariant completely multi-
positive. By Theorem 3.1, there exist a Hilbert B-module X, a covariant represen-
tation (π, σ,X) of A on X, and vectors x1,x2 ∈ X and elements v1, v2 ∈ LB(B,X)
satisfying properties (1), (2), (3) and (4), which completes the proof.
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