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Abstract. In this paper we investigate the continuity of the Drazin inverse
of a bounded linear operator on Banach space. Then as a corollary, among
other things, we get the well known result of Campbell and Meyer ([1]) for
the continuity of the Drazin inverse of square matrix.

Keywords: Drazin inverse, continuity of the Drazin inverse, bounded linear
operator.

MSC (2000): 47A05, 47A53, 15A09.

1. INTRODUCTION AND PRELIMINARIES

The aim of this paper is to give some characterizations of the continuity of the
Drazin inverse of a bounded linear operator on Banach space.

Let us recall that if S is an algebraic semigroup (or associative ring), then
an element a ∈ S is said to have a Drazin inverse ([4]) if there exists x ∈ S such
that

(1.1) am = am+1x for some non-negative integer m,

(1.2) x = ax2 and ax = xa.

If a has Drazin inverse, then the smallest non-negative integer m in (1.1) above is
called the index i(a) of a. It is well known that there is at most one x such that
equations (1.1) and (1.2) hold. The unique x is denoted by aD and is called the
Drazin inverse of a. Recall that if a has Drazin inverse, then aD also has Drazin
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inverse, i(aD) 6 1, (aD)D = a2aD and ((aD)D)D = aD ([4]). If S is an associative
ring and a ∈ S has Drazin inverse then a may always be written as

(1.3) a = c + n,

where c, n ∈ S, c has Drazin inverse, i(c) 6 1, cn = nc = 0, and ni(a) = 0. The
elements c, n are unique. Then c is called the core of a, and n the nilpotent part
of a. Let us mention that in this case

(1.4) c = a2aD and n = a− a2aD.

We shall refer to c + n as the core nilpotent decomposition of a ([1], [4]).
Recall that a square matrix always has Drazin inverse, and that the Drazin

inverse of a matrix is not necessarily a continuous function of the elements of the
matrix ([1], [2]).

Let X be an infinite-dimensional complex Banach space and denote the set
of bounded linear operators on X by B(X). For T in B(X) throughout this paper
N(T ) and R(T ) will denote, respectively, the null space and the range space of
T . Let σ(T ) and ρ(T ) be the spectrum and the resolvent set of T , respectively. If
z ∈ ρ(T ), the resolvent R(z, T ) = (zI − T )−1 ∈ B(X). Recall that a(T ) (d(T )),
the ascent (descent) of T ∈ B(X), is the smallest non-negative integer n such that
N(Tn) = N(Tn+1) (R(Tn) = R(Tn+1)). If no such n exists, then a(T ) = ∞
(d(T ) = ∞). It is well known that an operator T ∈ B(X) has a Drazin inverse
TD if and only if it has finite ascent and descent. In this case, the index of T is
equal to the ascent of T ([3], [12]).

The minimal angle ϕ(Y, Z) (0 6 ϕ 6 π/2) between two nonzero subspaces
Y,Z of a Banach space is defined by

(1.5) sin ϕ(Y, Z) = inf
y∈Y, z∈Z

max{‖y‖,‖z‖}=1

‖y + z‖.

The following result ([6], Lemma 1) is valid:

Let Y and Z be nonzero subspaces of a Banach space. Then Y ∩ Z = {0}
and Y + Z is closed if and only if ϕ(Y, Z) > 0.

Also, let us remark that if Y ∩ Z = {0}, then

(1.6) sinϕ(Y, Z) =
1

max{‖P‖, ‖I − P‖}
,

where P is the projector from Y + Z onto Y along Z.
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If M and N are two closed subspaces of the Banach space X, we set

(1.7) δ(M,N) = sup{dist (u, N) : u ∈ M, ‖u‖ = 1}

and

(1.8) δ̂(M,N) = max[δ(M,N), δ(N,M)].

Then δ̂ is called the gap (or opening) between the M and N ([11], p. 197). For an
element T in B(X) the reduced minimum modulus of T , γ(T ), is defined by

(1.9) γ(T ) = inf{‖Tz‖/dist (z,N(T )) : dist (z,N(T )) > 0}.

Recall that R(T ) is closed if and only if γ(T ) > 0 ([11], p. 251). If there is S in
B(X), such that TST = T , then R(T ) is closed and γ(T ) > 1/‖S‖ ([5], Lemma 4).
Let us remark that 1/γ(T ) = k(T ), where k(T ) = sup{inf{‖z‖ : Tz = y} : y ∈
R(T ), ‖y‖ = 1}. For the convenience of the reader, recall the following well known
result of A.S. Markus ([13], Theorem 2 and Remark 1).

Theorem 1.1. Suppose that A,An ∈ B(X), R(A) and R(An) are closed,
n = 1, 2, . . ., and let An → A. Then the following conditions are equivalent:

sup
n

k(An) < ∞;(1.10)

lim
n→∞

k(An) = k(A);(1.11)

lim
n→∞

δ̂(N(An), N(A)) = 0;(1.12)

lim
n→∞

δ̂(R(An), R(A)) = 0.(1.13)

In this paper we study the continuity of the Drazin inverse of a bounded linear
operator on a Banach space, i.e., the continuity of the map A 7→ AD, A ∈ B(X).
Then, among other things, as a corollary we get the well known result of Campbell
and Meyer for the continuity of the Drazin inverse of a square matrices ([1], [2]).
Let us mention that Campbell and Meyer in their proof used the continuity of
the Moore-Penrose inverse of matrix. It seems that our proof of Theorem 2.2
(or Corollary 3.5) is more natural, because it does not invoke the Moore-Penrose
inverse and the definition of Drazin inverse does not clearly involve the notation
of the Moore-Penrose inverse (see Remark 3.6).
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2. THE MAIN RESULTS

In this section we first prove an auxiliary result and then the main theorem.

Lemma 2.1. Suppose that A ∈ B(X) has Drazin inverse. If A = C + N is
the core nilpotent decomposition of A, then

(2.1) {λ ∈ C : 0 < |λ| < γ(C)} ⊂ ρ(A).

Proof. Since a(C) = d(C) 6 1 we have X = R(C) ⊕ N(C) and R(C) is
a closed subspace of X. Set X0 = R(C), X1 = N(C), and let C0 and C1 be
the restrictions of C to X0 and X1, respectively. Now, C0 is invertible, and for
|λ| < γ(C) = ‖C−1

0 ‖−1 we have C0 − λ invertible. Since C1 is nilpotent, it follows
that C1 − λ is invertible for all λ 6= 0. Thus we have that C − λ is invertible for
0 < |λ| < γ(C). Finally, to prove (2.1), let us remark that since N is nilpotent
and commutes with C we have σ(A) = σ(C). This completes the proof.

Now we prove the main result of this paper.

Theorem 2.2. Let {An} be a sequence in B(X), and let An → A ∈ B(X).
Suppose that A and An, n = 1, 2, . . ., have Drazin inverses AD and AD

n , n =
1, 2, . . ., respectively, and let A = C + N and An = Cn + Nn, n = 1, 2, . . ., be the
core nilpotent decompositions of A and An, n = 1, 2, . . ., respectively. Then the
following conditions are equivalent:

AD
n → AD;(2.2)

AD
n An → ADA;(2.3)

sup
n
‖AD

n ‖ < ∞;(2.4)

δ̂(N(Cn), N(C)) → 0 and δ̂(R(Cn), R(C)) → 0;(2.5)

Cn → C and δ̂(N(Cn), N(C)) → 0;(2.6)

Cn → C and δ̂(R(Cn), R(C)) → 0;(2.7)

Cn → C and sup
n

k(Cn) < ∞;(2.8)

sup
n

k(Cn) < ∞.(2.9)

Proof. It is clear that (2.2) ⇒ (2.3).
(2.3) ⇒ (2.2) Since Cn = A2

nAD
n and C = A2AD, it is clear that (2.3) implies

Cn → C. Since a(C) = d(C) 6 1, we have X = R(C) ⊕ N(C) and R(C) is a
closed subspace of X. Further, since A has Drazin inverse, there is an integer n0

such that a(A) = d(A) = n0. Now,

(2.10) R(An0) = R(AAD) = R(C) and N(An0) = N(AAD) = N(C).
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Recall that

(2.11) AD = CD =

{
(C|R(C))−1 on R(C),

0 on N(C).

Since CCD is the projector onto R(C) along N(C), by [15], (13) and (1.6) we have

(2.12) ‖CD‖ 6 k(C)[max{‖CCD‖, ‖I − CCD‖}]2.

Clearly, from (2.12) we get

(2.13) ‖CD
n ‖ 6 k(Cn)[max{‖CnCD

n ‖, ‖I − CnCD
n ‖}]2, n = 1, 2, . . . .

Let us remark that by (2.3) we have

(2.14)

δ̂(R(Cn), R(C)) = δ̂(R(AnAD
n ), R(AAD))

6 max{‖(AAD −AnAD
n )AAD‖, ‖(AAD −AnAD

n )AnAD
n ‖}

→ 0,

and

(2.15)

δ̂(N(Cn), N(C)) = δ̂(N(AnAD
n ), N(AAD))

6 max{‖(AAD−AnAD
n )(I−AAD)‖, ‖(AAD−AnAD

n )(I−AnAD
n )‖}

→ 0.

Hence, by Theorem 1.1 and (2.14), it follows that

(2.16) sup
n

k(Cn) < ∞.

Further, by (2.14) and (2.15) we have (see [15], p. 271 and [6], Lemma 2)

(2.17)
| sinϕ(m)(N(Cn), R(Cn))− sinϕ(m)(N(C), R(C))|

6 2δ̂(N(Cn), N(C)) + 2δ̂(R(Cn), R(C)) → 0.

Now, by (2.13), (1.6) and (2.16) we get

(2.18) sup
n
‖CD

n ‖ 6 k(Cn)[max{‖CnCD
n ‖, ‖I − CnCD

n ‖}]2 < ∞.

Finally, since AD
n = CD

n , it is clear that

(2.19) AD
n −AD = AD

n (AnAD
n −AAD)+(AnAD

n −AAD)AD+AD
n (An−A)AD → 0.
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Hence, we have that (2.3) implies (2.2).
(2.3) ⇒ (2.4) This is (2.18).
(2.4) ⇒ (2.3) Let A = C + N and An = Cn + Nn be the core nilpotent

decompositions of A and An, n = 1, 2, . . ., respectively. Now, AD = CD, and
CCDC = C. Hence, ‖CD‖ > 1/γ(C) = k(C). Thus, we have that

(2.20) ‖CD
n ‖ > 1/γ(Cn) = k(Cn), n = 1, 2, . . .

and (2.4) implies

(2.21) inf
n

γ(Cn) = γ > 0.

Set δ = min{γ, γ(C)} and Γ = {λ ∈ C : |λ| = δ/2}. By Lemma 2.1 we have

(2.22) {λ ∈ C : 0 < |λ| < δ} ⊂
( ∞⋂

n=1

ρ(An)
)
∩ ρ(A).

Now
I −AAD =

1
2πi

∫
Γ

R(z,A) dz

and
I −AnAD

n =
1

2πi

∫
Γ

R(z,An) dz, n = 1, 2, . . . .

Hence

(2.23)

(I −AAD)− (I −AnAD
n ) = AnAD

n −AAD

=
1

2πi

∫
Γ

[R(z,A)−R(z,An)] dz

=
1

2πi

∫
Γ

R(z,An)(A−An)R(z,A) dz.

Since R(z,An) → R(z,A) uniformly on Γ, then for some n0

sup
n>n0

{‖R(z,An)‖ : z ∈ Γ} < ∞.

Now from (2.23) it follows that for some M > 0

‖AAD
n −AAD‖ 6 M‖An −A‖ → 0.

Hence (2.4) ⇒ (2.3).
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That (2.3) ⇒ (2.5) is clear from (2.14) and (2.15).

(2.5) ⇒ (2.3) Since An, n = 1, 2, . . ., has Drazin inverse, we know that

(2.24) X = R(Ai(An)
n )⊕N(Ai(An)

n ), n = 1, 2, . . . .

Thus, if x ∈ X, then there are yn ∈ R(Ai(An)
n ) and zn ∈ N(Ai(An)

n ), n = 1, 2, . . .,
such that x = yn + zn, n = 1, 2, . . .. Hence

(2.25) (AAD −AnAD
n )x = AADzn − (I −AAD)yn, n = 1, 2, . . . .

Since AADzn = AAD(zn − u), u ∈ N(Ai(A)), we have

(2.26)

‖AADzn‖ 6 ‖AAD‖dist (zn, N(Ai(A)))

6 ‖AAD‖ δ̂(N(Ai(A)
n ), N(Ai(A))) ‖zn‖

6 ‖AAD‖ δ̂(N(Ai(A)
n ), N(Ai(A))) ‖I −AnAD

n ‖ ‖x‖.

In a similar way we could prove

(2.27) ‖(I −AAD)yn‖ 6 ‖I −AAD‖ δ̂(R(Ai(A)
n ), R(Ai(A))) ‖AnAD

n ‖ ‖x‖.

Hence

‖(AAD −AnAD
n )x‖ 6 (‖AAD‖ δ̂(N(Ai(A)

n ), N(Ai(A))) ‖I −AnAD
n ‖

+ ‖I −AAD‖ δ̂(R(Ai(A)
n ), R(Ai(A))) ‖AnAD

n ‖)‖x‖,

and

(2.28)
‖(AAD −AnAD

n )‖ 6 [δ̂(N(Ai(An)
n ), N(Ai(A))) + δ̂(R(Ai(An)

n ), R(Ai(A))]

×max{‖AAD‖, ‖I −AAD‖} max{‖AnAD
n ‖, ‖I −AnAD

n ‖}.

Now, by (1.6), (2.17) and (2.28) we have that (2.5) ⇒ (2.3).

Let us remark that by Theorem 1.1 the conditions (2.6), (2.7) and (2.8) are
equivalent. Clearly (2.6) and (2.7) imply (2.5), and from the proof of (2.3) ⇒ (2.2)
we have that (2.3) implies (2.6).

It is clear that (2.8) ⇒ (2.9), and from (2.21) it follows that (2.9) ⇒ (2.3).
The proof of the theorem is complete.
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3. APPLICATIONS

In this section we prove several corollaries of Theorem 2.2. In a particular case
we get the main result of Campbell and Meyer ([1], Theorem 2; see also [2],
Theorem 10.7.1). We also study the pointwise continuity of the Drazin inverse.

Let us recall that if A ∈ B(X) has Drazin inverse, then Ak has Drazin inverse
for any positive integer k, and (Ak)D = (AD)k ([4], Theorem 2). We continue with
the following auxiliary result.

Lemma 3.1. Let An, A, Cn, C,Nn and N be as in Theorem 2.2 above. Then
the following conditions are equivalent:

AD
n → AD;(3.1)

there is m ∈ N such that (Am
n )D → (Am)D;(3.2)

for any m ∈ N we have (Am
n )D → (Am)D.(3.3)

Proof. Since (AD)m = (Am)D, it is clear that (3.1) implies (3.3), and it is
enough to prove (3.2) implies (3.1). Suppose that m > 1. Now from (3.2) we have
(Am

n )D → (Am)D, and

AD
n = (AD

n )mAm−1
n = (Am

n )DAm−1
n → (Am)DAm−1 = (AD)mAm−1 = AD.

The proof is complete.

Now, using Theorem 2.2 and Lemma 3.1 we can prove

Corollary 3.2. Let An, A, Cn, C, Nn and N be as above in Theorem 2.2.
Then the following conditions are equivalent:

AD
n → AD;(3.4)

there are m, k ∈ N such that Cm
n → Cm and δ̂(N(Ck

n), N(Ck)) → 0;(3.5)

there are m, k ∈ N such that Cm
n → Cm and δ̂(R(Ck

n), R(Ck)) → 0;(3.6)

there are m, k ∈ N such that Cm
n → Cm and sup

n
k(Ck

n) < ∞;(3.7)

there is m ∈ N such that sup
n

k(Cm
n ) < ∞;(3.8)

for any m, k ∈ N we have Cm
n → Cm and δ̂(N(Ck

n), N(Ck)) → 0;(3.9)

for any m, k ∈ N we have Cm
n → Cm and δ̂(R(Ck

n), R(Ck)) → 0;(3.10)

for any m, k ∈ N we have Cm
n → Cm and sup

n
k(Ck

n) < ∞;(3.11)

for any m ∈ N we have sup
n

k(Cm
n ) < ∞.(3.12)

Proof. Since a(C) = d(C) 6 1, and a(Cn) = d(Cn) 6 1, n = 1, 2, . . ., the
proof follows by Theorem 2.2, Lemma 3.1 and Theorem 1.1.
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Corollary 3.3. Let An, A, Cn, C, Nn and N be as above in Theorem 2.2. If
the index of An, n = 1, 2, . . ., is bounded, i.e, if sup

n
i(An) < ∞, then the following

conditions are equivalent:

AD
n → AD,(3.13)

δ̂(N(Cn), N(C)) → 0,(3.14)

δ̂(R(Cn), R(C)) → 0.(3.15)

Proof. Set m0 = max{sup
n

i(An), i(A)}. Then Am0 = Cm0 + Nm0 = Cm0

and Am0
n = Cm0

n +Nm0
n = Cm0

n , n = 1, 2, . . .. Hence An → A implies Cm0
n → Cm0 ,

and the proof follows by Corollary 3.2, (3.5) and (3.6).

Now we study the continuity of the Drazin inverse when the operators have
finite dimensional null spaces and when their ranges have finite codimension. For T

in B(X) set α(T ) = dim N(T ) and β(T ) = dim X/R(T ). Recall that an operator
T ∈ B(X) is semi-Fredholm if R(T ) is closed and at least one of α(T ) and β(T )
is finite. Let Φ+(X) (Φ−(X)) denote the set of upper (lower) semi-Fredholm
operators, i.e., the set of semi-Fredholm operators with α(T ) < ∞ (β(T ) < ∞).
An operator T is Fredholm if it is both upper semi-Fredholm and lower semi-
Fredholm ([7], [11]). Let Φ(X) denote the set of Fredholm operators, i.e., Φ(X) =
Φ+(X)∩Φ−(X). It is clear that if T is semi-Fredholm and has Drazin inverse, then
T is Fredholm. Let us remark that the convergence problem of Drazin inverses
is connected with perturbation problems (see [19] and [20] for recent results on
perturbations of semi-Fredholm operators with finite ascent or descent).

Corollary 3.4. Let An, A, Cn, C, Nn and N be as above in Theorem 2.2.
If the index of An, n = 1, 2, . . ., is bounded and C,Cn ∈ Φ(X), n = 1, 2, . . ., then
the following conditions are equivalent:

AD
n → AD;(3.16)

δ̂(N(Cn), N(C)) → 0;(3.17)

δ̂(R(Cn), R(C)) → 0;(3.18)

there is n0 ∈ N such that α(Cn) = α(C), for n > n0;(3.19)

there is n0 ∈ N such that β(Cn) = β(C), for n > n0.(3.20)

Proof. From the proof of Corollary 3.3 we know that there exists m0 such
that Cm0

n → Cm0 . Now, since α(Cm0
n ) = α(Cn), n = 1, 2, . . ., and α(Cm0) = α(C),

the proof follows by [15], Theorem 2 and Corollary 3.3.
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Now, as a corollary, we get the main result of Campbell and Meyer ([1], The-
orem 2; see also [2], Theorem 10.7.1). Our formulation of that result is somehow
different from that of Campbell and Meyer’s, but resembles that of Theorem 2.2.

Corollary 3.5. (Campbell and Meyer) Suppose that Aj and A are n × n

complex matrices such that Aj → A. Then AD
j → AD if and only if there exists j0

such that rank(Cj) = rank(C) for j > j0, where C and Cj are the core of A and
Aj, respectively, j = 1, 2, . . ..

Proof. It is clear that the index of Aj , j = 1, 2, . . ., is bounded by n, and
that the matrices A,Aj , as operators, are Fredholm. Now the proof follows by
Corollary 3.4.

Remark 3.6. Recall that if X is a complex Hilbert space and T ∈ B(X),
then R(T ) is closed if and only if there exists a unique operator T † ∈ B(X)
satisfying the following four Penrose identities (see e.g., [2], [3], [8], [10], [16]):

(3.21) TT †T = T, T †TT † = T †, (TT †)∗ = TT †, and (T †T )∗ = T †T.

The operator T † is called the Moore-Penrose inverse of T . Let us remark that in
the proof of [1], Theorem 2, Campbell and Meyer used the continuity properties of
the Moore-Penrose inverse of a matrices. It seems that our proof of Theorem 2.2
(or Corollary 3.5) is more natural, because it does not invoke the Moore-Penrose
inverse and the definition of Drazin inverse does not clearly involve the notion of
the Moore-Penrose inverse.

Let X and Y be Banach spaces and let An (n = 1, 2, . . .) and A be operators
in B(X, Y ). We then write An

s−→ A if the sequence An converges to A strongly.
We next show an equivalent condition for the strong convergence of Drazin inverses,
which is to be compared with Theorem 2.2.

Theorem 3.6. Let {An} be a sequence in B(X), and let An
s−→ A ∈ B(X).

Suppose that A and An, n = 1, 2, . . ., have Drazin inverses AD and AD
n , n =

1, 2, . . ., respectively. Then the following conditions are equivalent:

AD
n

s−→ AD,(3.22)

sup
n
‖AD

n ‖ < ∞ and AD
n An

s−→ ADA.(3.23)

Proof. If we assume (3.22), then the inequality in (3.23) is obtained from the
Banach-Steinhaus Theorem and the other assertation in (3.23) is easily seen by
the uniform boundedness of {AD

n }.
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For the converse, (3.23) ⇒ (3.22), it is enough to note that

(3.24) AD
n −AD = AD

n (AnAD
n −AAD)+ (AnAD

n −AAD)AD +AD
n (An−A)AD.

Remark 3.7. In contradiction to the case of uniform convergence, we cannot
deduce the inequality sup

n
‖AD

n ‖ < ∞ from AD
n An

s−→ ADA. For example (see [10]

for other applications of the following example), let A = I on X = l2, and let

An = diag
{ n︷ ︸︸ ︷

1, . . . , 1,
1
n

,
1
n

, . . .
}

on X = l2, n = 1, 2, . . . .

Clearly, An
s−→ A, and

AD
n = diag

{ n︷ ︸︸ ︷
1, . . . , 1, n, n, . . .

}
, n = 1, 2, . . . .

Now AD
n An

s−→ ADA, but ‖AD
n ‖ = n, n = 1, 2, . . ., i.e., sup

n
‖AD

n ‖ = ∞.

4. DRAZIN INVERSE IN BANACH ALGEBRAS

Finally, in this section we prove that some of the above results could be presented
in general Banach algebras. Let us recall some notation and results.

Let A denote a complex Banach algebra with identity 1. An element a ∈ A is
(von Neumann) regular if a ∈ aAa. That is, there exists a solution of the equation
axa = a. These solutions are usually called inner or 1-inverses of a. The set
of all regular elements in A will be denoted by Â and it obviously includes the
invertible group of A. Recall that an element a in A is hermitian if ‖exp(ita)‖ = 1
for all real t ([21]). In connection with the Moore-Penrose generalized inverse, we
have studied ([16], [17]) the set of elements a in A for which there exists an x in
A satisfying the following conditions:

(4.1) axa = a, xax = x, ax and xa are hermitian.

By [16], Lemma 2.1 there is at most one x such that the four above equations
hold. The unique x is denoted by a† and is called the Moore-Penrose inverse of
a. Let A† denote the set of all elements in A which have Moore-Penrose inverses.

Given an element a in A let La ∈ B(A) be the left regular representation of
a, i.e. Lax = ax, x ∈ A. Further, for a ∈ A† it is known that ‖a†‖ = 1/γ(La)
([16], Theorem 2.3). Recall that if A is a C∗-algebra then a ∈ A is hermitian if
and only if a∗ = a, and by the Harte-Mbekhta Theorem ([8], Theorem 6) in that
case A† = Â. Now by Theorem 2.2 we have
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Theorem 4.1. Let A denote a complex Banach algebra with identity 1. Let
{am} be a sequence in A, with am → a ∈ A. Suppose that a and am, m = 1, 2, . . .,
have Drazin inverses aD and aD

m, m = 1, 2, . . ., respectively, and let a = c + n and
am = cm + nm, m = 1, 2, . . ., be the core nilpotent decompositions of a and am,
m = 1, 2, . . ., respectively. Then the following conditions are equivalent:

aD
m → aD;(4.2)

aD
mam → aDa;(4.3)

sup
m
‖aD

m‖ < ∞;(4.4)

δ̂(N(Lcm), N(Lc)) → 0 and δ̂(R(Lcm), R(Lc)) → 0;(4.5)

cm → c and δ̂(N(Lcm
), N(Lc)) → 0;(4.6)

cm → c and δ̂(R(Lcm
), R(Lc)) → 0;(4.7)

cm → c and sup
m

k(Lcm) < ∞;(4.8)

sup
m

k(Lcm) < ∞.(4.9)

Theorem 4.2. Let A denote a complex Banach algebra with identity 1. Sup-
pose that all the assumptions from Theorem 4.1 are valid, and that in addition c

and cm are in A†, m = 1, 2, . . .. Then the following conditions are equivalent:

aD
m → aD, δ̂(N(L

c
†
m

), N(L
c†)) → 0, and δ̂(R(L

c
†
m

), R(L
c†)) → 0;(4.10)

c†m → c†.(4.11)

Proof. If we assume (4.10), then by (4.9) sup
m

k(Lcm) < ∞, and by [16],

Theorem 2.3 we have sup
m
‖c†m‖ < ∞. Now (4.11) follows by [17], Theorem 2.5.

For the converse, (4.11) ⇒ (4.10), it is enough to note that by [17], Theorem
2.5 (ii), (4.11) implies

sup
m
‖c†m‖ < ∞, δ̂(N(L

c
†
m

), N(L
c†)) → 0, and δ̂(R(L

c
†
m

), R(L
c†)) → 0.

Again, by [16], Theorem 2.3 we have sup
m

k(Lcm) < ∞, and (4.9) implies aD
m → aD.

The proof of the theorem is complete.

Let us remark that if A is a C∗–algebra, then the previous results could be
presented in a simplier form.
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Theorem 4.3. Let A be a C∗-algebra, and suppose that all the assumptions
from Theorem 4.1 are valid. Then c and cm are in A†, m = 1, 2, . . ., and the
following conditions are equivalent:

aD
m → aD,(4.12)

c†m → c†.(4.13)

Proof. By the Harte-Mbekhta Theorem ([8], Theorem 6) we know that c and
cm are in A†, m = 1, 2, . . .. Now the conditions (4.12) and (4.13) are equivalent
by (4.9), [16], Theorem 2.3 and [9], Theorem 6 or [18], Theorem 2.2.

Remark 4.4. Recently Koliha ([13]) has introduced and investigated a gen-
eralized inverse (he calls it a generalized Drazin inverse) in associative rings and
Banach algebras; namely, if A is a complex unital Banach algebra, then an element
a ∈ A is said to have a generalized Drazin inverse if there exists x ∈ A such that

a− a2x is quasinilpotent;(4.14)

x = ax2 and ax = xa.(4.15)

If a has generalized Drazin inverse, then there is at most one x such that equations
(4.14) and (4.15) hold. In our opinion it is interesting to study the continuity of
the generalized Drazin inverse.

Remark 4.5. Finally, let us remark that Labrousse and Mbekhta ([14])
have investigated the continuity properties of the Moore-Penrose inverse of closed
densely defined linear operators on Hilbert space. In our opinion it is worth inves-
tigating the continuity properties of the Drazin inverse of closed densely defined
linear operators on Banach (or Hilbert) space.
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