ALGEBRAIC REDUCTION FOR HARDY SUBMODULES OVER POLYDISK ALGEBRAS

KUNYU GUO

Communicated by Norberto Salinas

Abstract

For a Hardy submodule M of $H^{2}\left(\mathbb{D}^{n}\right)$, assume that $M \cap \mathcal{C}$ (or $M \cap \mathcal{R}$) is dense in M, where \mathcal{C} (or \mathcal{R}) is the ring of all polynomials (or \mathcal{R} is a Noetherian subring of $\operatorname{Hol}\left(\overline{\mathbb{D}}^{n}\right)$ containing $\left.\mathcal{C}\right)$. We describe those finite codimensional submodules of M by considering zero varieties. The codimension formulas related to zero varieties, and some algebraic reduction theorems are obtained. These results can be regarded as generalizations of the result of Ahern-Clark ([2]). Finally, we point out that the results in this paper extend with essentially no change to any reproducing Hilbert $A(\Omega)$ module H which satisfies certain technical hypotheses.

Keywords: Hardy submodules, ideals, charactistic space.
MSC (2000): Primary 46H25; Secondary 47D06.

1. INTRODUCTION

The starting point for the present paper is the remarkable algebraic reduction of Ahern-Clark ([2]) for finite codimensional submodules of Hardy module $H^{2}\left(\mathbb{D}^{n}\right)$ over the polydisk algebra $A\left(\mathbb{D}^{n}\right)$. In the following, we will use \mathcal{C} to denote the ring of all polynomials on \mathbb{C}^{n}.

Theorem 1.1. ([2]) Suppose M is a submodule of $H^{2}\left(\mathbb{D}^{n}\right)$ of codimension $k<\infty$. Then $\mathcal{C} \cap M$ is an ideal in the ring \mathcal{C} such that:
(i) $\mathcal{C} \cap M$ is dense in M;
(ii) $\operatorname{dim} \mathcal{C} / \mathcal{C} \cap M=k$;
(iii) $Z(\mathcal{C} \cap M)$ is finite and lies in \mathbb{D}^{n}.

Conversly, if I is an ideal in \mathcal{C} with $Z(I)$ being finite, and $Z(I) \subset \mathbb{D}^{n}$, then $[I]$, the closure of I in $H^{2}\left(\mathbb{D}^{n}\right)$, is a submodule of the same codimension and $[I] \cap \mathcal{C}=I$.

Also arising from this motivation, R.G. Douglas, V.I. Paulsen, C.H. Sah and K. Yan ([8]), S. Axler and P. Bourdon ([4]), O.P. Agrawal and N. Salinas ([1]), M. Putinar ([9]), X.M. Chen and R.G. Douglas ([5]) have developed a series of techniques to investigate algebraic reduction and rigidity for Hilbert modules over function algebras. In the present paper, we focus on Theorem 1.1 of [2].

Given submodules M_{1}, M_{2} of $H^{2}\left(\mathbb{D}^{n}\right)$, with $M_{1} \supseteq M_{2}$, we can define a canonical module homomorphism over \mathcal{C}

$$
\tau: M_{1} \cap \mathcal{C} / M_{2} \cap \mathcal{C} \rightarrow M_{1} / M_{2}
$$

by $\tau(\widetilde{p})=\widetilde{p}$. If $M_{1} \cap \mathcal{C}$ is dense in M_{1}, and M_{2} is finite codimensional in M_{1}, then it is not difficult to verify the following proposition.

Proposition 1.2. Under the above assumption, we have:
(i) $M_{2} \cap \mathcal{C}$ is dense in M_{2};
(ii) the canonical homomorphism $\tau: M_{1} \cap \mathcal{C} / M_{2} \cap \mathcal{C} \rightarrow M_{1} / M_{2}$ is an isomorphism.

Focusing on the above Theorem 1.1, we will be concerned with the following problems.
(A) How do we describe the structure of $Z\left(M_{2} \cap \mathcal{C}\right)$ related to $Z\left(M_{1} \cap \mathcal{C}\right)$?
(B) How is the submodule M_{2} represented by M_{1} and the zeros of M_{2} via considering mulitiplicity?
(C) How is codimension $\operatorname{dim} M_{1} / M_{2}$ related to the zeros and their mulitiplicity of $M_{1}, M_{2}\left(\right.$ or $\left.M_{1} \cap \mathcal{C}, M_{2} \cap \mathcal{C}\right)$?
(D) Conversely, suppose I_{1}, I_{2} are ideals of $\mathcal{C}, I_{1} \supseteq I_{2}$ and the boundary of $Z\left(I_{2}\right)$ related to $Z\left(I_{1}\right)$ is finite. We want to know how $\left[I_{2}\right]$ is related to $\left[I_{1}\right]$.

Furthermore, if we replace ideals of polynomials in the above problems by ideals of Noetherian ring \mathcal{R}, where \mathcal{R} consists of some holomorphic functions defined on neighborhoods of the closure of \mathbb{D}^{n}, and \mathcal{R} contains \mathcal{C}, then, how are these related to the above problems? In order to proceed with our discussion about the answers to the above problems, some basic concepts and terminologies are introduceed in Section 2. We give the basic analysis for ideals of polynomials, as carried out in Section 2, as preliminaries for Sections 3 and 4. In Section 3 we give complete answers to problems (A), (B), (C), (D) in the case of polynomials. In Section 4, we proceed to discuss the case of a Noetherian ring \mathcal{R}. Since a

Noetherian ring \mathcal{R} has the same algebraic properties as the ring of polynomials, we essentially obtain similar results to those of Section 3. Finally, we point out that the techniques in this paper are also available for Hardy submodules and Bergman submodules on a bounded connected domain Ω which satisfies some technical conditions; for exemple, we may assume that all polynomials are dense in the Hardy module $H^{2}(\Omega)$ (Bergman module $L_{\mathrm{a}}^{2}(\Omega)$), and for $\lambda \notin \Omega$, there exists a polynomial q such that $q(\lambda)=1$, and $|q(z)|<1$ for all $z \in \bar{\Omega} \backslash\{\lambda\}(z \in \Omega)$.

2. ANALYSIS OF IDEALS OF POLYNOMIALS

Let $q=\sum a_{m_{1} \cdots m_{n}} z_{1}^{m_{1}} z_{2}^{m_{2}} \cdots z_{n}^{m_{n}}$ be in \mathcal{C}, and let $q(D)$ denote the linear partial differential operator $\sum a_{m_{1} \cdots m_{n}}\left(\partial^{m_{1}+m_{2}+\cdots+m_{n}} / \partial z_{1}^{m_{1}} \partial z_{2}^{m_{2}} \cdots \partial z_{n}^{m_{n}}\right)$. If I is an ideal of \mathcal{C} and $\lambda \in \mathbb{C}^{n}$, set

$$
I_{\lambda}=\left\{q \in \mathcal{C}|q(D) f|_{\lambda}=0, \forall f \in I\right\}
$$

where $\left.q(D) f\right|_{\lambda}$ denotes $(q(D) f)(\lambda)$. From the Leibniz rule, for any polynomial q and any analytic function f, the following holds

$$
\left.q(D)\left(z_{j} f\right)\right|_{\lambda}=\left.\lambda_{j} q(D) f\right|_{\lambda}+\left.\frac{\partial q}{\partial z_{j}}(D) f\right|_{\lambda} \quad j=1,2, \ldots, n
$$

We thus conclude that I_{λ} is invariant under the action of the basic partial differential operators $\left\{\partial / \partial z_{1}, \partial / \partial z_{2}, \ldots, \partial / \partial z_{n}\right\}$, and I_{λ} is called the characteristic space of I at λ. Clearly, if $\lambda \in Z(I)$, then $1 \in I_{\lambda}$, and if $\lambda \notin Z(I)$, then $I_{\lambda}=0$, where $Z(I)$ is the zero variety of I, that is, $Z(I)=\left\{z \in \mathbb{C}^{n} \mid f(z)=0, \forall f \in I\right\}$. Also arising from the observation for polynomials of one variable, we define the multiplicity of I at λ by the dimension of its characteristic space, $\operatorname{dim} I_{\lambda}$. Of course, we allow the case where the multiplicity is infinite. Let I_{1}, I_{2} be ideals of polynomials, and $\lambda \in \mathbb{C}^{n}$. We say that I_{1} and I_{2} have the same mulitiplicity at λ if $I_{1 \lambda}=I_{2 \lambda}$, and we use the symbol $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)$ to denote the set $\left\{\lambda \in Z\left(I_{2}\right) \mid I_{2 \lambda} \neq I_{1 \lambda}\right\}$. If $I_{1} \supseteq I_{2}$, and $\lambda \in Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)$, the mulitiplicity of I_{2} related to I_{1} at λ is defined by $\operatorname{dim} I_{2 \lambda} / I_{1 \lambda}$. In this way, the cardinality of $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)$ is defined by $\sum_{\lambda \in Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)} \operatorname{dim} I_{2 \lambda} / I_{1 \lambda}$ (counting multiplicity), and is denoted by $\operatorname{card}\left(Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)\right)$.

Theorem 2.1. Let I_{1}, I_{2} be ideals in \mathcal{C}. If for any $\lambda \in \mathbb{C}^{n}, I_{1 \lambda}=I_{2 \lambda}$, then $I_{1}=I_{2}$.

Proof. There are three main steps in the proof of Theorem 2.1. Firstly, for every finite codimensional ideal O in \mathcal{C}, we claim that $I_{1}+O=I_{2}+O$.

Obviously, the finite codimensional ideals $I_{1}+O, I_{2}+O$ have the same zero set. Let $\lambda \in Z\left(I_{1}+O\right)$ and $q \in\left(I_{1}+O\right)_{\lambda}$; then $q \in I_{1 \lambda}$, and $q \in O_{\lambda}$. It follows that q is in $I_{2 \lambda}$ by the assumption. We thus obtain that q is in $\left(I_{2}+O\right)_{\lambda}$, that is, $\left(I_{1}+O\right)_{\lambda} \subseteq\left(I_{2}+O\right)_{\lambda}$. Similarly, we have that $\left(I_{2}+O\right)_{\lambda} \subseteq\left(I_{1}+O\right)_{\lambda}$. That is, they have the same multiplicity at every zero point. Some basic analysis for ideals of polynomials implies that $I_{1}+O=I_{2}+O$.

Secondly, set

$$
I=\bigcap_{O}\left(I_{1}+O\right)=\bigcap_{O}\left(I_{2}+O\right)
$$

where O runs over all finite codimensional ideals in \mathcal{C}. Then $I \supseteq I_{1}$ and $Z(I)=$ $Z\left(I_{1}\right)$. We also claim that for every $\lambda \in Z(I), I_{\lambda}=I_{1 \lambda}$. In fact, it is obvious that $I_{\lambda} \subseteq I_{1 \lambda}$. Let p be in $I_{1 \lambda}$ and $p \neq 0$. Use \mathcal{P} to denote the linear space generated by p which is invariant under the action by $\left\{\partial / \partial z_{1}, \partial / \partial z_{2}, \ldots, \partial / \partial z_{n}\right\}$. Put

$$
O_{\mathcal{P}}=\left\{q \in \mathcal{C}|f(D) q|_{\lambda}=0, \forall f \in \mathcal{P}\right\}
$$

From the Leibniz rule, we see that $O_{\mathcal{P}}$ is an ideal in \mathcal{C}, and is finite codimensional because \mathcal{P} is finite dimensional. For any $g \in I$, write $g=g_{1}+g_{2}$, where $g_{1} \in I_{1}$ and $g_{2} \in O_{\mathcal{P}}$. We see that $\left.p(D) g\right|_{\lambda}=\left.p(D) g_{1}\right|_{\lambda}+\left.p(D) g_{2}\right|_{\lambda}=0$. Thus p is in I_{λ}. This shows that $I_{1 \lambda}=I_{\lambda}$.

Finally, our task is to prove that $I=I_{1}$ under the assumption that $I \supseteq I_{1}$ and $I_{\lambda}=I_{1 \lambda}$ for every $\lambda \in \mathbb{C}^{n}$. Below, the technique which we use is essentially due to Douglas and Paulsen ([7], Chapter 6). For each $\lambda \in \mathbb{C}^{n}$, use \mathcal{U}_{λ} to denote the maximal ideal of polynomials that vanish at λ, that is, $\mathcal{U}_{\lambda}=\{q \in \mathcal{C} \mid q(\lambda)=0\}$. Obviously,

$$
I=I_{1}+\mathcal{U}_{\lambda}^{j} \cap I
$$

for all $j \geqslant 1$ because $\mathcal{U}_{\lambda}^{j}$ is finite codimensional. By the Artin-Rees Lemma ([3], Corollary 10.10), there is an integer k such that for $j \geqslant k, \mathcal{U}_{\lambda}^{j} \cap I=\mathcal{U}_{\lambda}^{j-k}\left(\mathcal{U}_{\lambda}^{k} \cap I\right)$. Setting $j=k+1$, we have that $I=I_{1}+\mathcal{U}_{\lambda} I$ for all $\lambda \in \mathbb{C}^{n}$. Using the method of localization ([3], Chapter 3), let $S_{\lambda}=\mathcal{C} \backslash \mathcal{U}_{\lambda}$; then S_{λ} is a multipliciatively closed set. Consider the quotient $\operatorname{ring} S_{\lambda}^{-1}(\mathcal{C})=\left\{p / q \mid p \in \mathcal{C}, q \in S_{\lambda}\right\}$. Since $S_{\lambda}^{-1}\left(\mathcal{U}_{\lambda}\right)$ is the unique maximal ideal in $S_{\lambda}^{-1}(\mathcal{C})$, and $S_{\lambda}^{-1}(I)=S_{\lambda}^{-1}\left(I_{1}\right)+S_{\lambda}^{-1}\left(\mathcal{U}_{\lambda}\right) S_{\lambda}^{-1}(I)$, we can apply Nakayama Lemma ([3], Corollary 2.7) to deduce that $S_{\lambda}^{-1}(I)=S_{\lambda}^{-1}\left(I_{1}\right)$ for any $\lambda \in \mathbb{C}^{n}$. Let $I_{1}=\bigcap_{j=1}^{m} I_{j}^{\prime}$ be an irredundant primary decomposition of I_{1}, where I_{j}^{\prime} is a primary ideal with associated prime ideal P_{j} ([3], Chapter 4). For every $\lambda \in Z\left(P_{j}\right)$, from [3], Proposition 4.8, we have that

$$
I \subseteq S_{\lambda}^{-1}\left(I_{1}\right) \cap \mathcal{C} \subseteq S_{\lambda}^{-1}\left(I_{j}^{\prime}\right) \cap \mathcal{C}=I_{j}^{\prime}
$$

for $j=1, \ldots, m$. This leads to $I \subseteq \bigcap_{j=1}^{m} I_{j}^{\prime}=I_{1}$. It follows that $I=I_{1}$. Similarly we have that $I=I_{2}$. We thus conclude that $I_{1}=I_{2}$. The proof of Theorem 2.1 is complete.

Notice that the proof of Theorem 2.1 yields the following corollary.
Corollary 2.2. Let I be an ideal of polynomials. Then I is equal to the intersection of all finite codimensional ideals containing I.

From the proof of Theorem 2.1, we can obtain the following important conclusion.

Corollary 2.3. Let I_{1}, I_{2} be ideals in \mathcal{C}, and $I_{1} \supseteq I_{2}$. If the set $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)$ is bounded, then $\operatorname{dim} I_{1} / I_{2}<\infty$, that is, I_{2} is finite codimensional in I_{1}.

Proof. Let $I_{2}=\bigcap_{j=1}^{m} I_{j}^{\prime}$ be an irredundant primary decomposition of I_{2}, where I_{j}^{\prime} is a primary ideal with associated prime ideal P_{j}. We can assume that $I_{1}^{\prime}, \ldots, I_{m_{0}}^{\prime}$ are finite codimensiomal, and $I_{m_{0}+1}^{\prime}, \ldots, I_{m}^{\prime}$ are infinite codimensional. Since $Z\left(P_{j}\right)=Z\left(I_{j}^{\prime}\right), j=1, \ldots, m$, we see that $Z\left(I_{2}\right)=\bigcup_{j=1}^{m} Z\left(P_{j}\right)$. It is well known that $\bigcup_{j=1}^{m_{0}} Z\left(P_{j}\right)$ is bounded, and $Z\left(P_{j}\right)$ is unbounded for $j \geqslant m_{0}+1$. Let $\bigcup_{j=1}^{m_{0}} Z\left(P_{j}\right)$ and $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)$ are contained in the ball $B_{l}=\left\{\left.\left(z_{1}, \ldots, z_{n}\right)\left|\sum_{i=1}^{n}\right| z_{i}\right|^{2} \leqslant l^{2}\right\}$, where l is some positive real number. Let $j \geqslant m_{0}+1$ and s be any natural number. Then for every $\lambda \in Z\left(P_{j}\right) \cap\left(\mathbb{C}^{n} \backslash B_{l}\right)$, it is easy to see that finite codimensional ideal $I_{2}+\mathcal{U}_{\lambda}^{s}$ has only a zero point λ, and

$$
I_{2}+\mathcal{U}_{\lambda}^{s}=\left\{q \in \mathcal{C}|p(D) q|_{\lambda}=0, p \in\left(I_{2}+\mathcal{U}_{\lambda}^{s}\right)_{\lambda}\right\}
$$

Since for such λ,

$$
\left(I_{2}+\mathcal{U}_{\lambda}^{s}\right)_{\lambda} \subseteq I_{2 \lambda}=I_{1 \lambda}
$$

it follows that

$$
I_{1} \subseteq I_{2}+\mathcal{U}_{\lambda}^{s}
$$

that is, $I_{1}=I_{2}+\mathcal{U}_{\lambda}^{s} \cap I_{1}$. Using the last part of the proof of Theorem 2.1, we obtain that $I_{1} \subseteq I_{j}^{\prime}, j \geqslant m_{0}+1$. This implies that $I_{1} \subseteq \bigcap_{j=m_{0}+1}^{m} I_{j}^{\prime}$. Since $\bigcap_{j=1}^{m_{0}} I_{j}^{\prime}$ is finite codimensional and $\bigcap_{j=m_{0}+1}^{m} I_{j}^{\prime}$ is finitely generated, it follows that $\bigcap_{j=1}^{m} I_{j}^{\prime}$ is finite codimensional in $\bigcap_{j=m_{0}+1}^{m} I_{j}^{\prime}$. We conclude thus that $I_{2}\left(=\bigcap_{j=1}^{m} I_{j}^{\prime}\right)$ is finite codimensional in I_{1}. This completes the proof of Corollary 2.3.

Now suppose that $I_{1} \supseteq I_{2}$. Let $\left\{M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right\}$ be the n-tuple of operators which are defined on the quotient ring I_{1} / I_{2} by $M_{z_{i}} \widetilde{f}=\widetilde{\left(z_{i} f\right)}$ for $i=1, \ldots, n$. We use $\sigma_{\mathrm{p}}\left(M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right)$ to denote the joint eigenvalues for $\left\{M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right\}$, that is, $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \sigma_{\mathrm{p}}\left(M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right)$ if and only if there exists a $q \in I_{1}$ and $q \notin I_{2}$ such that $\left(z_{i}-\lambda_{i}\right) q \in I_{2}, i=1,2, \ldots, n$.

TheOrem 2.4. Let I_{1}, I_{2} be ideals in $\mathcal{C}, I_{1} \supseteq I_{2}$ and $\operatorname{dim} I_{1} / I_{2}=k<\infty$. Then we have:
(i) $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)=\sigma_{\mathrm{p}}\left(M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right)$;
(ii) $I_{2}=\left\{q \in I_{1}|p(D) q|_{\lambda}=0, p \in I_{2 \lambda}, \lambda \in Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)\right\}$;
(iii) $\operatorname{dim} I_{1} / I_{2}=\sum_{\lambda \in Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)} \operatorname{dim} I_{2 \lambda} / I_{1 \lambda}=\operatorname{card}\left(Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)\right)$.

It is worth noticing that (iii) of Theorem 2.4 says that the codimension $\operatorname{dim} I_{1} / I_{2}$ of I_{2} in I_{1} is equal to the cardinality of zeros of I_{2} related to I_{1}. In this way, the equality (iii) is an interesting codimension formula whose left side is an algebraic invariant, while the right side is a geometric invariant.

Proof. (i) Write

$$
I_{1}=I_{2} \dot{+} R
$$

where R is a linear space of polynomials with $\operatorname{dim} R=\operatorname{dim} I_{1} / I_{2}$. We may regard $\left\{M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right\}$ being defined on R by $M_{z_{i}} q=$ decomposition of $z_{i} q$ on R for any $q \in R$. By [6], they can be simultaneously triangularized as

$$
M_{z_{i}}=\left(\begin{array}{ccc}
\lambda_{i}^{(1)} & & * \\
& \ddots & \\
& & \lambda_{i}^{(k)}
\end{array}\right)
$$

here $i=1,2, \ldots, n$, and $k=\operatorname{dim} I_{1} / I_{2}$, so that $\sigma_{\mathrm{p}}\left(M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right)$ is equal to $\left\{\lambda^{(1)}, \ldots, \lambda^{(k)}\right\}$. Then we have

$$
\mathcal{U}_{\lambda^{(k)}} \mathcal{U}_{\lambda^{(k-1)}} \cdots \mathcal{U}_{\lambda^{(1)}} I_{1} \subseteq I_{2} \subseteq I_{1}
$$

This implies that $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right) \subseteq \sigma_{\mathrm{p}}\left(M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right)$. Let $\lambda \in \sigma_{\mathrm{p}}\left(M_{z_{1}}, M_{z_{2}}\right.$, $\ldots, M_{z_{n}}$). Since λ is a joint eigenvalue of $\left\{M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right\}$, there is a polynomial q in R such that $q \mathcal{U}_{\lambda} \subseteq I_{2}$. Defining I_{2}^{\dagger} to be the ideal generated by I_{2} and q, then for any $\lambda^{\prime} \neq \lambda$, there holds that $\left(I_{2}^{\dagger}\right)_{\lambda^{\prime}}=I_{2 \lambda^{\prime}}$. Therefore, by Theorem 2.1, we have that $\left(I_{2}^{\dagger}\right)_{\lambda} \varsubsetneqq I_{2 \lambda}$. Since $\left(I_{2}^{\dagger}\right)_{\lambda} \supseteq I_{1 \lambda}$, we see that $I_{1 \lambda} \varsubsetneqq I_{2 \lambda}$, that is, λ is in $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)$. Combining the above discussion, we thus conclude that $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)=\sigma_{\mathrm{p}}\left(M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right)$. This completes the proof of (i).
(ii) Let $I_{2}^{\natural}=\left\{q \in I_{1}|p(D) q|_{\lambda}=0, p \in I_{2 \lambda}, \lambda \in Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)\right\}$. Then I_{2}^{\natural} is an ideal which contains I_{2}. It follows that $\left(I_{2}^{\natural}\right)_{\lambda} \subseteq I_{2 \lambda}$ for all $\lambda \in \mathbb{C}^{n}$. By the representation of I^{\natural}, we have that $\left(I_{2}^{\natural}\right)_{\lambda} \supseteq I_{2 \lambda}$ for all $\lambda \in \mathbb{C}^{n}$. According to Theorem 2.1, we obtain that $I_{2}^{\natural}=I_{2}$. The proof of (ii) is complete.
(iii) The proof is by induction on number of points in $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)$. If $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)$ contains only a point λ, then by (ii) I_{2} can be written as

$$
I_{2}=\left\{q \in I_{1}|p(D) q|_{\lambda}=0, p \in I_{2 \lambda}\right\}
$$

We define the pairing

$$
[-,-]: I_{2 \lambda} / I_{1 \lambda} \times I_{1} / I_{2} \rightarrow \mathbb{C}
$$

by $[\widetilde{p}, \widetilde{q}]=\left.p(D) q\right|_{\lambda}$. Clearly, this is well-defined. From this pairing and the representation of I_{2}, it is not difficult to see that $\operatorname{dim} I_{1} / I_{2}=\operatorname{dim} I_{2 \lambda} / I_{1 \lambda}=$ $\operatorname{card}\left(Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)\right)$.

Now let $l>1$, and assume that (iii) has been proved for $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)$ containing different points less than l. Let $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)=\left\{\lambda_{1}, \ldots, \lambda_{l}\right\}$ here $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$. Writting

$$
I_{2}^{\star}=\left\{q \in I_{1}|p(D) q|_{\lambda_{1}}=0, p \in I_{2 \lambda_{1}}\right\}
$$

then I_{2}^{\star} is an ideal, and $\left(I_{2}^{\star}\right)_{\lambda_{1}}=I_{2 \lambda_{1}}$. Similarly to the preceding proof, we have that

$$
\operatorname{dim} I_{1} / I_{2}^{\star}=\operatorname{dim} I_{2 \lambda_{1}} / I_{1 \lambda_{1}}
$$

Set $I_{2 \lambda_{1}}=I_{1 \lambda_{1}} \dot{+} R$ with $\operatorname{dim} R=\operatorname{dim} I_{2 \lambda_{1}} / I_{1 \lambda_{1}}$. Let $\sharp R$ denote the linear space of polynomials generated by R which is invariant under the action of $\left\{\partial / \partial z_{1}\right.$, $\left.\ldots, \partial / \partial z_{n}\right\}$. Put

$$
\mathcal{Q}_{\mathcal{R}}=\left\{p \in \mathcal{C}|q(D) p|_{\lambda_{1}}=0, q \in \sharp R\right\} .
$$

Then it is easily verified that $\mathcal{Q}_{\mathcal{R}}$ is a finite codimensional ideal of \mathcal{C} with only zero point λ_{1} because $\sharp R$ is finite dimensional. Thus

$$
\mathcal{Q}_{\mathcal{R}} I_{1} \subseteq I_{2}^{\star} \subseteq I_{1}
$$

From the above relation, we see that for $\lambda \neq \lambda_{1}, I_{1 \lambda}=\left(I_{2}^{\star}\right)_{\lambda}$. Therefore

$$
Z\left(I_{2}\right) \backslash Z\left(I_{2}^{\star}\right)=\left\{\lambda_{2}, \ldots, \lambda_{l}\right\} .
$$

By the induction hypothesis, we have

$$
\operatorname{dim} I_{2}^{\star} / I_{2}=\sum_{j=2}^{l} \operatorname{dim} I_{2 \lambda_{j}} /\left(I_{2}^{\star}\right)_{\lambda_{j}}=\sum_{j=2}^{l} \operatorname{dim} I_{2 \lambda_{j}} / I_{1 \lambda_{j}} .
$$

It follows that we obtain

$$
\operatorname{dim} I_{1} / I_{2}=\operatorname{dim} I_{1} / I_{2}^{\star}+\operatorname{dim} I_{2}^{\star} / I_{2}=\sum_{j=1}^{l} \operatorname{dim} I_{2 \lambda_{j}} / I_{1 \lambda_{j}}=\operatorname{card}\left(Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)\right)
$$

The proof of Theorem 2.4 is thus completed.

From Theorem 2.4 and Corollary 2.3 we have
Corollary 2.5. Let I_{1}, I_{2} be ideals in \mathcal{C}, and $I_{1} \supseteq I_{2}$. Then I_{2} is finite codimensional in I_{1} if and only if $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)$ is bounded, if and only if $Z\left(I_{2}\right) \backslash$ $Z\left(I_{1}\right)$ is finite, and codimension $\operatorname{dim} I_{2} / I_{1}=\operatorname{card}\left(Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)\right)$.

3. ALGEBRAIC REDUCTION FOR HARDY SUBMODULES

In this section we will completely answer the problems raised in Section 1. Similarly to Section 2 , the following concepts are useful. Let M be a submodule of $H^{2}\left(\mathbb{D}^{n}\right)$ and let $\lambda \in \mathbb{D}^{n}$; set

$$
M_{\lambda}=\left\{q \in \mathcal{C}|q(D) f|_{\lambda}=0, \forall f \in M\right\}
$$

Then M_{λ} is invariant under the action of the basic partial differential operators $\left\{\partial / \partial z_{1}, \partial / \partial z_{2}, \ldots, \partial / \partial z_{n}\right\}$, and M_{λ} is called the characteristic space of M at λ. Clearly, if $\lambda \in Z(M)$, then $1 \in M_{\lambda}$, and if $\lambda \notin Z(M)$, then $M_{\lambda}=0$, where $Z(M)$ is zero set of M, that is, $Z(M)=\left\{z \in \mathbb{D}^{n} \mid f(z)=0, \forall f \in M\right\}$. We define the multiplicity of M at λ by the dimension of characteristic space, $\operatorname{dim} M_{\lambda}$. Let M_{1}, M_{2} be Hardy submodules and $\lambda \in \mathbb{D}^{n}$. We say that M_{1} and M_{2} have the same multiplicity at λ if $M_{1 \lambda}=M_{2 \lambda}$. The symbol $Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)$ denotes the set $\left\{\lambda \in Z\left(M_{2}\right) \mid M_{2 \lambda} \neq M_{1 \lambda}\right\}$. If $M_{1} \supseteq M_{2}$ and $\lambda \in Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)$, the multiplicity of M_{2} related to M_{1} at λ is defined by $\operatorname{dim} M_{2 \lambda} / M_{1 \lambda}$. In this way, the cardinality of $Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)$ is defined by $\sum_{\lambda \in Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)} \operatorname{dim} M_{2 \lambda} / M_{1 \lambda}$ by counting multiplicity, and is denoted by card $\left(Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)\right)$. The following is our main result in this section.

Theorem 3.1. Suppose M_{2} is finite codimensional in M_{1} and $M_{1} \cap \mathcal{C}$ is dense in M_{1}. Then we have:
(i) $M_{2} \cap \mathcal{C}$ is dense in M_{2};
(ii) The canonical homomorphism $\tau: M_{1} \cap \mathcal{C} / M_{2} \cap \mathcal{C} \rightarrow M_{1} / M_{2}$ is an isomorphism;
(iii) $Z\left(M_{2} \cap \mathcal{C}\right) \backslash Z\left(M_{1} \cap \mathcal{C}\right)=Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)=\sigma_{\mathrm{p}}\left(M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right) \subset \mathbb{D}^{n}$;
(iv) $M_{2}=\left\{f \in M_{1}|p(D) f|_{\lambda}=0, p \in M_{2 \lambda}, \lambda \in Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)\right\}$;
(v) $\operatorname{dim} M_{1} / M_{2}=\operatorname{dim} M_{1} \cap \mathcal{C} / M_{2} \cap \mathcal{C}=\operatorname{card}\left(Z\left(M_{2} \cap \mathcal{C}\right) \backslash Z\left(M_{1} \cap \mathcal{C}\right)\right)=$ $\operatorname{card}\left(Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)\right)$.

Conversely, let I_{1}, I_{2} be ideals in $\mathcal{C}, I_{1} \supseteq I_{2}$ and $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right) \subset \mathbb{D}^{n}$. Then $\operatorname{dim}\left[I_{1}\right] /\left[I_{2}\right]=\operatorname{dim} I_{1} / I_{2}$, that is, the canonical homomorphism $\tau: I_{1} / I_{2} \rightarrow$ $\left[I_{1}\right] /\left[I_{2}\right]$ is an isomorphism.

Proof. Firstly, we claim that M_{1} can be expressed as

$$
M_{1}=M_{2} \dot{+} R
$$

where R is a linear space of polynomials with $\operatorname{dim} R=\operatorname{dim} M_{1} / M_{2}$. In fact, since $M_{1} \cap \mathcal{C}$ is dense in M_{1}, there exists a polynomial q in $M_{1} \cap \mathcal{C}, q \notin M_{2}$. Let Σ be the collection $\left\{L \mid L\right.$ is a linear space of polynomials, $L \subseteq M_{1} \cap \mathcal{C}$, and $\left.L \cap M_{2}=\{0\}\right\}$. We thus see that Σ is not empty. If $\cdots \subseteq \Phi_{\alpha} \subseteq \Phi_{\beta} \subseteq \Phi_{\gamma} \subseteq \cdots$ is an ascending chain in Σ, then $\bigcup_{\alpha} \Phi_{\alpha}$ is a linear space of polynomials, and $\bigcup_{\alpha} \Phi_{\alpha}$ is in Σ. It follows that there exists a maximal element R in Σ such that $M_{2} \cap R=\{0\}$. Since $M_{2} \dot{+} R \subseteq M_{1}, R$ is finite dimensional. So $M_{2} \dot{+} R$ is closed. If $M_{2} \dot{+} R \neq M_{1}$, then there is a polynomial $p \in M_{1}$, such that $p \notin M_{2} \dot{+} R$. This induces that the linear space $\{R, p\}$ generated by R and p satisfies that $\{R, p\} \cap M_{2}=0$. This is impossible. Therefore, we conclude that $M_{1}=M_{2} \dot{+} R$ with $\operatorname{dim} R=\operatorname{dim} M_{1} / M_{2}$. From this assertion we immediately obtain

$$
M_{1} \cap \mathcal{C}=M_{2} \cap \mathcal{C} \dot{+} R
$$

The above argument tells us that $M_{2} \cap \mathcal{C}$ is dense in M_{2}, and the canonical homomorphism $\tau: M_{1} \cap \mathcal{C} / M_{2} \cap \mathcal{C} \rightarrow M_{1} / M_{2}$ is an isomorphism. This completes the proof of (i) and (ii).

To prove (iii), pick any $\lambda \in Z\left(M_{1} \cap \mathcal{C}\right) \backslash Z\left(M_{2} \cap \mathcal{C}\right)$. By Theorem 2.4 (i), we see that $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is a joint eigenvalue of $\left\{M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right\}$ on $M_{1} \cap \mathcal{C} / M_{2} \cap \mathcal{C}$, that is, there is $q \in M_{1} \cap \mathcal{C}, q \notin M_{2} \cap \mathcal{C}$ such that $\left(z_{i}-\lambda_{i}\right) q \in M_{2} \cap \mathcal{C}$ for $i=1,2, \ldots, n$. If for some $i\left|\lambda_{i}\right| \geqslant 1$, then $z_{i}-\lambda_{i}$ is an outer function of one variable. It follows that there exist polynomials $\left\{q_{n}\left(z_{i}\right)\right\}_{n}$ such that $q_{n}\left(z_{i}\right)\left(z_{i}-\lambda_{i}\right)$ converges to 1 as $n \rightarrow \infty$. This implies that $q \in \overline{M_{2} \cap \mathcal{C}}=M_{2}$. Thus $q \in M_{2} \cap \mathcal{C}$. This contradiction says that $\left|\lambda_{i}\right|<1, i=1,2, \ldots, n$. So

$$
Z\left(M_{2} \cap \mathcal{C}\right) \backslash Z\left(M_{1} \cap \mathcal{C}\right) \subset \mathbb{D}^{n}
$$

By (i), (ii) and Theorem 2.4 (i), we immediately obtain

$$
Z\left(M_{2} \cap \mathcal{C}\right) \backslash Z\left(M_{1} \cap \mathcal{C}\right)=Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)=\sigma_{\mathrm{p}}\left(M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right) \subset \mathbb{D}^{n}
$$

The proof of (iii) is complete.
We notice that (iv) is from (i) and Theorem 2.4 (ii), and (v) is from (ii), (iii) and Theorem 2.4 (iii).

Let I_{1}, I_{2} be ideals in \mathcal{C}, with $I_{1} \supseteq I_{2}$ and $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right) \subset \mathbb{D}^{n}$. Then by Corollary 2.3, I_{2} is finite codimensional in I_{1}, and by Theorem 2.4 (ii),

$$
I_{2}=\left\{q \in I_{1}|p(D) q|_{\lambda}=0, p \in I_{2 \lambda}, \lambda \in Z\left(I_{2}\right) \backslash Z\left(I_{1}\right) \subset \mathbb{D}^{n}\right\}
$$

Set

$$
I_{1}=I_{2} \dot{+} R
$$

where R is a linear space of polynomials with $\operatorname{dim} R=\operatorname{dim} I_{1} / I_{2}$. Since each function f in $\left[I_{2}\right]$ satisfies that $\left.p(D) f\right|_{\lambda}=0, p \in I_{2 \lambda}, \lambda \in Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)$, it follows that $\left[I_{2}\right] \cap R=\{0\}$. By the fact that $\left[I_{2}\right] \dot{+} R$ contains I_{1}, and $\left[I_{2}\right] \dot{+} R$ is closed, we obtain that $\left[I_{2}\right] \dot{+} R=\left[I_{1}\right]$. Therefore, it holds that $I_{1} / I_{2} \cong\left[I_{1}\right] /\left[I_{2}\right] \cong R$. The proof of Theorem 3.1 is complete.

4. SOME FURTHER RESULTS AND REMARKS

We denote by $\operatorname{Hol}\left(\overline{\mathbb{D}}^{n}\right)$ the ring of holomorphic functions defined on neighborhoods of the closure of \mathbb{D}^{n}. Now let \mathcal{R} be a Noetherian subring of $\operatorname{Hol}\left(\overline{\mathbb{D}}^{n}\right)$ containing \mathcal{C}. For exemple, the ring of all rational functions with poles off the closure $\overline{\mathbb{D}}^{n}$ of \mathbb{D}^{n} is such a ring ([8]). Since the rings \mathcal{R} and \mathcal{C} have the same algebraic properties, the techniques in Sections 2 and 3 are also completely available in the case of the Noetherian ring \mathcal{R}. Let I be an ideal of \mathcal{R}. We use $Z(I)$ to denote $\left\{z \in \overline{\mathbb{D}}^{n} \mid f(z)=0, \forall f \in I\right\}$. Let $I_{1} \supseteq I_{2}$, the definitions of $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)$ and $\operatorname{card}\left(Z\left(I_{2}\right) \backslash Z\left(I_{1}\right)\right)$ are completely similar to that of Sections 2 and 3. We thus have the following theorem.

Theorem 4.1. Suppose M_{2} is finite codimensional in M_{1} and $M_{1} \cap \mathcal{R}$ is dense in M_{1}. Then we have:
(i) $M_{2} \cap \mathcal{R}$ is dense in M_{2};
(ii) the canonical homomorphism $\tau: M_{1} \cap \mathcal{R} / M_{2} \cap \mathcal{R} \rightarrow M_{1} / M_{2}$ is an isomorphism;
(iii) $Z\left(M_{2} \cap \mathcal{R}\right) \backslash Z\left(M_{1} \cap \mathcal{R}\right)=Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)=\sigma_{\mathrm{p}}\left(M_{z_{1}}, M_{z_{2}}, \ldots, M_{z_{n}}\right) \subset$ $\mathbb{D}^{n} ;$
(iv) $M_{2}=\left\{f \in M_{1}|p(D) f|_{\lambda}=0, p \in M_{2 \lambda}, \lambda \in Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)\right\}$;
(v) $\operatorname{dim} M_{1} / M_{2}=\operatorname{dim} M_{1} \cap \mathcal{R} / M_{2} \cap \mathcal{R}=\operatorname{card}\left(Z\left(M_{2} \cap \mathcal{R}\right) \backslash Z\left(M_{1} \cap \mathcal{R}\right)\right)=$ $\operatorname{card}\left(Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)\right)$.

Conversely, if I_{1}, I_{2} are ideals in $\mathcal{R}, I_{1} \supseteq I_{2}$ and $Z\left(I_{2}\right) \backslash Z\left(I_{1}\right) \subset \mathbb{D}^{n}$. Then $\operatorname{dim}\left[I_{1}\right] /\left[I_{2}\right]=\operatorname{dim} I_{1} / I_{2}$, that is, the canonical homomorphism $\tau: I_{1} / I_{2} \rightarrow$ $\left[I_{1}\right] /\left[I_{2}\right]$ is an isomorphism.

Let \mathcal{Q} be a subring of $\operatorname{Hol}\left(\mathbb{D}^{n}\right)$ containing \mathcal{C}, where $\operatorname{Hol}\left(\mathbb{D}^{n}\right)$ is the ring of all holomorphic functions on \mathbb{D}^{n}. Using the techniques in this paper, we can prove the following theorem.

Theorem 4.2. Suppose M_{2} is finite codimensional in M_{1}, and $M_{1} \cap \mathcal{Q}$ is dense in M_{1}. Then we have:
(i) $M_{2} \cap \mathcal{Q}$ is dense in M_{2};
(ii) the canonical homomorphism $\tau: M_{1} \cap \mathcal{Q} / M_{2} \cap \mathcal{Q} \rightarrow M_{1} / M_{2}$ is an isomorphism;
(iii) $Z\left(M_{2} \cap \mathcal{Q}\right) \cap \mathbb{D}^{n} \backslash Z\left(M_{1} \cap \mathcal{Q}\right) \cap \mathbb{D}^{n}=Z\left(M_{2}\right) \backslash Z\left(M_{1}\right) \subseteq \sigma_{\mathrm{p}}\left(M_{z_{1}}, M_{z_{2}}\right.$, $\left.\ldots, M_{z_{n}}\right) \subset \mathbb{D}^{n} ;$
(iv) $M_{2} \subseteq\left\{f \in M_{1}|p(D) f|_{\lambda}=0, p \in M_{2 \lambda}, \lambda \in Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)\right\}$;
(v) $\operatorname{dim} M_{1} / M_{2}=\operatorname{dim} M_{1} \cap \mathcal{Q} / M_{2} \cap \mathcal{Q} \geqslant \operatorname{card}\left(Z\left(M_{2} \cap \mathcal{Q}\right) \cap \mathbb{D}^{n} \backslash Z\left(M_{1} \cap\right.\right.$ $\left.\mathcal{Q}) \cap \mathbb{D}^{n}\right)=\operatorname{card}\left(Z\left(M_{2}\right) \backslash Z\left(M_{1}\right)\right)$.

Finally, we point out that techniques in this paper are also available for Hardy submodules and Bergman submodules on bounded connected domain Ω which satisfies some additional conditions, for exemple, we may assume that all polynomials are dense in Hardy module $H^{2}(\Omega)$ (Bergman module $L_{a}^{2}(\Omega)$), and for $\lambda \notin \Omega$, there exists a polynomial q such that $q(\lambda)=1$, and $|q(z)|<1$ for all $z \in \bar{\Omega} \backslash\{\lambda\}(z \in \Omega)$. Furthermore, if a reproducing Hilbert $A(\Omega)$-module H satisfies certain technical hypotheses, then the results in this paper extend with essentially no change to H.

Acknowledgements. The author would like to thank Professor Xiaoman Chen for his valuable discussions.

Research supported in part by NNSF.

REFERENCES

1. O.P. Agrawal, n. Salinas, Sharp kernels and canonical subspace, Amer. J. Math. 109(1987), 23-48.
2. P.R. Ahern, D.N. Clark, Invariant subspaces and analytic continuation in several variables, J. Math. and Mech. 19(1970), 963-969.
3. M.F. Atiyah, I.G. MacDonald, Introduction to Commutative Algebra, AddisonWesley, Menlo Park, California 1969.
4. S. Axler, P. Bourdon, Finite codimensional invariant subspaces of Bergman spaces, Trans. Amer. Math. Soc. 305(1986), 1-13.
5. X.M. Chen, R.G. Douglas, Localization of Hilbert modules, Michigan Math. J. 39(1992), 443-453.
6. R. Curto, Application of several complex variables to multiparameter spectral theory, in Surveys of Some Results in Operator Theory. II, Pitman Res. Notes Math. Ser., vol. 192, Logman, London 1988, pp. 25-90.
7. R.G. Douglas, V.I. Paulsen, Hilbert moddules over function algebras, Pitman Res. Notes Math. Ser., Harlow 1989.
8. R.G. Douglas, V.I. Paulsen, C.H. Sah, K.R. Yan, Algebraic reduction and rigidity for Hilbert modules, Amer. J. Math. 117(1995), 75-92.
9. M. Putinar, On invariant subspaces of several variables Bergman spaces, Pacific J. Math. 147(1991), 355-364.

KUNYU GUO
Department of Mathematics
Fudan University
Shanghai, 200433
P.R. CHINA
E-mail: kyguo@moboss.fudan.edu.cn

Received July 11, 1997; revised October 10, 1997.

