THE STABLE RANK OF TENSOR PRODUCTS OF FREE PRODUCT C^{*}-ALGEBRAS

KENNETH J. DYKEMA

Communicated by Şerban Strătilă

Abstract

Let A be the minimal tensor product of C^{*}-algebras, $A^{(j)}$, which are reduced free products with respect to traces of C^{*}-algebras that are not too small in a specific sense. Then the stable rank of A is 1 .

KEYWORDS: Stable rank, tensor product, free product.
MSC (2000): 46L05.

1. INTRODUCTION

The (topological) stable rank, $\operatorname{sr}(A)$, of a Banach algebra, A, was invented by Rieffel ([4]) and is intimately related to "non-stable" K-theory. The case $\operatorname{sr}(A)=1$ has been of particular interest; by definition, $\operatorname{sr}(A)=1$ if and only if the invertible elements of A are dense in A. Recently, Villadsen ([6]) constructed the first examples of finite, simple C^{*}-algebras whose stable rank is greater than 1 .

In [3], it was shown that if

$$
(A, \tau)=\left(A_{1}, \tau_{1}\right) *\left(A_{2}, \tau_{2}\right)
$$

is the reduced free product of C^{*}-algebras with respect to traces τ_{1} and τ_{2}, then $\operatorname{sr}(A)=1$, provided that the Avitzour conditions are satisfied, namely, that there are unitaries $x \in A_{1}$ and $y, z \in A_{2}$ such that

$$
\tau_{1}(x)=0=\tau_{2}(y)=\tau_{2}(z)=\tau_{2}\left(z^{*} y\right)
$$

(See [7], [8] and [1] for the definition of reduced free products.) In [2], more classes of reduced free products were shown to have stable rank 1.

It should be mentioned that it is not known if it is possible to find out about $\operatorname{sr}(A \otimes B)$ for simple C^{*}-algebras knowing only $\operatorname{sr}(A)$ and $\operatorname{sr}(B)$, or even knowing $\operatorname{sr}(A)=1=\operatorname{sr}(B)$. In this note, we show that minimal tensor products of reduced free product C^{*}-algebras have stable rank 1, provided that the Avitzour conditions are satisfied in each free product. The proof is a generalization of the proof of [3], 3.8.

2. ON TENSOR PRODUCTS OF FREE PRODUCTS

Consider a C^{*}-algebra, A, which is a minimal tensor product,

$$
A=\bigotimes_{j \in J} A^{(j)}
$$

of C^{*}-algebras $A^{(j)}$ which are in turn reduced free products of C^{*}-algebras with respect to tracial states,

$$
\begin{equation*}
\left(A^{(j)}, \tau^{(j)}\right)=\underset{\iota \in I^{(j)}}{*}\left(A_{\iota}^{(j)}, \tau_{\iota}^{(j)}\right) \tag{2.1}
\end{equation*}
$$

We also let τ be the tensor product trace on A,

$$
\tau=\bigotimes_{j \in J} \tau^{(j)}
$$

and we work with the inner product $\langle c, d\rangle=\tau\left(d^{*} c\right)$ on A. Here J is nonempty and each $I^{(j)}$ is a set with at least two elements.

Let $X_{\iota}^{(j)}$ be a standard orthonormal basis for $\left(A_{\iota}^{(j)}, \tau_{\iota}^{(j)}\right)$ and let

$$
Y^{(j)}=\underset{\iota \in I^{(j)}}{*} X_{\iota}^{(j)}
$$

(See [3], Section 2 for definitions.) Thus, $Y=\bigcup_{k=0}^{\infty} Y_{k}^{(j)}$ where for $k \geqslant 1, Y_{k}^{(j)}$ is the set of reduced words in the family $\left(\left(X_{\iota}^{(j)}\right)^{\mathrm{O}}\right)_{\iota \in I^{(j)}}$ having length k, while $Y_{0}^{(j)}=\{1\}$. Let $E_{k}^{(j)}$ denote the orthogonal projection of $\operatorname{span} Y^{(j)}$ onto span $Y_{k}^{(j)}$. Let

$$
K=\{k: J \rightarrow \mathbb{N} \cup\{0\} \mid k(j)=0 \text { for all but finitely many } j \in J\}
$$

Given $k \in K$, let

$$
\begin{align*}
Y_{k} & =\left\{\bigotimes_{j \in J} v(j) \mid v(j) \in Y_{k(j)}^{(j)}\right\} \tag{2.2}\\
Y & =\bigcup_{k \in K} Y_{k}
\end{align*}
$$

Then Y is a standard orthonormal basis for (A, τ). Let E_{k} denote the orthogonal projection of $\operatorname{span} Y$ onto span Y_{k}. Given elements $v=\bigotimes_{j \in J} v(j)$ and $w=\bigotimes_{j \in J} w(j)$ of Y, we say that $v w$ is reduced if, for each $j \in J$ the word $v(j) w(j)$ of $Y^{(j)}$ is reduced, i.e. $v(j)$ ends with an element of $\left(X_{\iota}^{(j)}\right)^{\mathrm{O}}$ and $w(j)$ starts with an element of $\left(X_{\iota^{\prime}}^{(j)}\right)^{\mathrm{O}}$ with $\iota \neq \iota^{\prime}$.

Let $a \in \operatorname{span} Y$. We define the support of a to be the set of all $w \in Y$ such that $\langle w, a\rangle \neq 0$. Given $j_{0} \in J$ and $\iota \in I^{\left(j_{0}\right)}$ let $F_{\iota}^{\left(j_{0}\right)}(a)$ be the set of all $x \in\left(X_{\iota}^{\left(j_{0}\right)}\right)^{\mathrm{O}}$ such that there is $w=\bigotimes_{j \in J} w(j)$ in the support of a and with x appearing as a letter in $w\left(j_{0}\right)$. Note that $F_{\iota}^{\left(j_{0}\right)}(a)$ is always finite and is empty for all but finitely many pairs $\left(j_{0}, \iota\right) \in J \times \bigcup_{j \in J} I^{(j)}$. Let

$$
I=\left\{i: J \rightarrow \bigcup_{j \in J} I^{(j)} \mid i(j) \in I^{(j)} \text { for every } j \in J\right\}
$$

Given $i \in I$ and a finite subset $J^{\prime} \subseteq J$, let

$$
F_{i}^{\left(J^{\prime}\right)}(a)=\left\{x=\bigotimes_{j \in J} x(j) \mid x(j) \in F_{i(j)}^{(j)}(a) \text { if } j \in J^{\prime}, x(j)=1 \text { if } j \notin J^{\prime}\right\}
$$

and let

$$
M_{i}^{\left(J^{\prime}\right)}(a)=\left(\sum_{x \in F_{i}^{\left(J^{\prime}\right)}(a)}\|x\|^{2}\right)^{\frac{1}{2}}
$$

with the convention that $M_{i}^{\left(J^{\prime}\right)}(a)=0$ if $F_{i}^{\left(J^{\prime}\right)}(a)$ is empty. Let

$$
M(a)=\max \left\{M_{i}^{\left(J^{\prime}\right)}(a) \mid i \in I, J^{\prime} \text { a finite subset of } J\right\}
$$

Note that $M(a)<\infty$.
Lemma 2.1. Let $k, l, n \in K$, let $a \in Y_{k}$ and $b \in Y_{l}$. If $n(j)<|k(j)-l(j)|$ or $n(j)>k(j)+l(j)$ for some $j \in J$ then $E_{n}(a b)=0$. Otherwise

$$
\left\|E_{n}(a b)\right\|_{2} \leqslant M(a)\|a\|_{2}\|b\|_{2}
$$

Proof. If $n\left(j_{0}\right)<\left|k\left(j_{0}\right)-l\left(j_{0}\right)\right|$ or $n\left(j_{0}\right)>k\left(j_{0}\right)+l\left(j_{0}\right)$ for some $j_{0} \in J$ then for every $v=\bigotimes_{j \in J} v(j)$ in the support of a and every $w=\bigotimes_{j \in J} w(j)$ in the support of b we have $E_{n\left(j_{0}\right)}^{\left(j_{0}\right)}\left(v\left(j_{0}\right) w\left(j_{0}\right)\right)=0$, so $E_{n}(a b)=0$. Now suppose $|k(j)-l(j)| \leqslant$ $n(j) \leqslant k(j)+l(j)$ for every $j \in J$. Let

$$
\begin{aligned}
& J_{\mathrm{e}}=\{j \in J \mid k(j)+l(j)-n(j) \text { even }\} \\
& J_{\mathrm{o}}=\{j \in J \mid k(j)+l(j)-n(j) \text { odd }\}
\end{aligned}
$$

Let $q \in K$ be such that

$$
k(j)+l(j)-n(j)= \begin{cases}2 q(j) & \text { if } j \in J_{\mathrm{e}} \\ 2 q(j)+1 & \text { if } j \in J_{\mathrm{o}}\end{cases}
$$

Let $q^{\prime} \in K$ be

$$
q^{\prime}(j)= \begin{cases}q(j) & \text { if } j \in J_{\mathrm{e}} \\ q(j)+1 & \text { if } j \in J_{\mathrm{o}}\end{cases}
$$

Let $k-q^{\prime} \in K$ be $\left(k-q^{\prime}\right)(j)=k(j)-q^{\prime}(j)$ and similarly for $l-q^{\prime} \in K$. Given $i \in I$ and a finite subset J^{\prime} of J, let

$$
Z\left(i, J^{\prime}\right)=\left\{x=\bigotimes_{j \in J} x(j) \mid x(j) \in\left(X_{i(j)}^{(j)}\right)^{\mathrm{o}} \text { if } j \in J^{\prime}, x(j)=1 \text { if } j \notin J^{\prime}\right\}
$$

Then we may write

$$
\begin{aligned}
a & =\sum_{i \in I} \sum_{v_{1}, x, v_{2}} \alpha_{v_{1} x v_{2}} v_{1} x v_{2} \\
b & =\sum_{i \in I} \sum_{w_{2}, y, w_{1}} \beta_{w_{2} y w_{1}} w_{2} y w_{1}
\end{aligned}
$$

where $\alpha_{v_{1} x v_{2}}, \beta_{w_{2} y w_{1}} \in \mathbb{C}$ and where the sums are over all $x, y \in Z\left(i, J_{\mathrm{O}}\right)$ and all $v_{1} \in Y_{k-q^{\prime}}, v_{2} \in Y_{q}, w_{2} \in Y_{q}$ and $w_{1} \in Y_{l-q^{\prime}}$ such that $v_{1} x v_{2} \in Y_{k}$ and $w_{2} y w_{1} \in Y_{l}$. Then, writing $v_{1}=\bigotimes_{j \in J} v_{1}(j)$, etc., we have

$$
\begin{aligned}
& E_{n(j)}^{(j)}\left(v_{1}(j) x(j) v_{2}(j) w_{2}(j) y(j) w_{1}(j)\right) \\
& \quad= \begin{cases}\left\langle v_{2}(j) w_{2}(j), 1\right\rangle v_{1}(j) w_{1}(j) & \text { if } j \in J_{\mathrm{e}} ; \\
\sum_{u \in\left(X_{i(j)}^{(j)}\right)}\left\langle v_{2}(j) w_{2}(j), u\right\rangle v_{1}(j) u w_{1}(j) & \text { if } j \in J_{\mathrm{o}} .\end{cases}
\end{aligned}
$$

So

$$
E_{n}(a b)=\sum_{v_{1}, w_{1}} \sum_{i \in I} \sum_{u}\left(\sum_{x, y} \sum_{v_{2}, w_{2}} \alpha_{v_{1} x v_{2}} \beta_{w_{2} y w_{1}}\left\langle v_{2} w_{2}, 1\right\rangle\langle x y, u\rangle\right) v_{1} u w_{1}
$$

where the sums are over all $v_{1} \in Y_{k-q^{\prime}}$, all $w_{1} \in Y_{l-q^{\prime}}$ and all $u \in Z\left(i, J_{0}\right)$ such that $v_{1} u w_{1} \in Y_{n}$ and over all $x, y \in Z\left(i, J_{\mathrm{o}}\right)$ and all $v_{2}, w_{2} \in Y_{q}$ such that $v_{1} x v_{2} \in Y_{k}$ and $w_{2} y w_{1} \in Y_{l}$. Thus

$$
\left\|E_{n}(a b)\right\|_{2}=\sum_{v_{1}, w_{1}} \sum_{i \in I} \sum_{u}\left|\sum_{x, y} \sum_{v_{2}, w_{2}} \alpha_{v_{1} x v_{2}} \beta_{w_{2} y w_{1}}\left\langle v_{2} w_{2}, 1\right\rangle\langle x y, u\rangle\right|^{2} .
$$

For fixed v_{1}, w_{1} and $i \in I$ set

$$
z=\sum_{x, y \in Z\left(i, J_{o}\right)}\left\langle\sum_{w_{2}} \beta_{w_{2} y w_{1}} w_{2}, \sum_{v_{2}} \overline{\alpha_{v_{1} x v_{2}}} v_{2}^{*}\right\rangle x y .
$$

Hence

$$
\left|\sum_{x, y} \sum_{v_{2}, w_{2}} \alpha_{v_{1} x v_{2}} \beta_{w_{2} y w_{1}}\left\langle v_{2} w_{2}, 1\right\rangle\langle x y, u\rangle\right|^{2}=|\langle z, u\rangle|^{2}
$$

Now since $\alpha_{v_{1} x v_{2}}=0$ if $x \notin F_{i}^{\left(J_{o}\right)}(a)$, we have

$$
\begin{aligned}
\|z\|^{2} & =\left\|\sum_{x \in F_{i}^{\left(J_{o}\right)}(a)} x \sum_{y \in Z\left(i, J_{o}\right)}\left\langle\sum_{w_{2}} \beta_{w_{2} y w_{1}} w_{2}, \sum_{v_{2}} \overline{\alpha_{v_{1} x v_{2}}} v_{2}^{*}\right\rangle y\right\|_{2}^{2} \\
& \leqslant\left(\sum_{x \in F_{i}^{\left(J_{o}\right)}(a)}\|x\| \cdot\left\|\sum_{y \in Z\left(i, J_{0}\right)}\left\langle\sum_{w_{2}} \beta_{w_{2} y w_{1}} w_{2}, \sum_{v_{2}} \overline{\alpha_{v_{1} x v_{2}}} v_{2}^{*}\right\rangle y\right\|_{2}\right)^{2} \\
& \leqslant\left(\sum_{x \in F_{i}^{\left(J_{o}\right)}(a)}\|x\|^{2}\right) \cdot\left(\sum_{x \in F_{i}^{\left(J_{o}\right)}(a)}\left\|\sum_{y \in Z\left(i, J_{o}\right)}\left\langle\sum_{w_{2}} \beta_{w_{2} y w_{1}} w_{2}, \sum_{v_{2}} \overline{\alpha_{v_{1} x v_{2}}} v_{2}^{*}\right\rangle y\right\|_{2}^{2}\right) \\
& \leqslant M(a)^{2} \sum_{x \in F_{i}^{\left(J_{o}\right)}(a)} \sum_{y \in Z\left(i, J_{0}\right)}\left|\left\langle\sum_{w_{2}} \beta_{w_{2} y w_{1}} w_{2}, \sum_{v_{2}} \overline{\alpha_{v_{1} x v_{2}} v_{2}^{*}}\right\rangle\right|^{2} \\
& \leqslant M(a)^{2} \sum_{x \in F_{i}^{\left(J_{o}\right)}(a)} \sum_{y \in Z\left(i, J_{o}\right)}\left\|\sum_{w_{2}} \beta_{w_{2} y w_{1}} w_{2}\right\|_{2}^{2} \cdot\left\|\sum_{v_{2}} \overline{\alpha_{v_{1} x v_{2}}} v_{2}^{*}\right\|_{2}^{2} \\
& =M(a)^{2} \sum_{x \in F_{i}^{\left(J_{o}\right)}(a)} \sum_{y \in Z\left(i, J_{o}\right)} \sum_{w_{2}}\left|\beta_{w_{2} y w_{1}}\right|^{2} \cdot \sum_{v_{2}}\left|\alpha_{v_{1} x v_{2}}\right|^{2} \\
& =M(a)^{2} \sum_{x, v_{2}}\left|\alpha_{v_{1} x v_{2}}\right|^{2} \cdot \sum_{w_{2}, y}\left|\beta_{w_{2} y w_{1}}\right|^{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{u \in Z\left(i, J_{o}\right)} & \left|\sum_{x, y \in Z\left(i, J_{o}\right)} \sum_{v_{2}, w_{2}} \alpha_{v_{1} x v_{2}} \beta_{w_{2} y w_{1}}\left\langle v_{2} w_{2}, 1\right\rangle\langle x y, u\rangle\right|^{2} \\
& =\sum_{u \in Z\left(i, J_{o}\right)}|\langle z, u\rangle|^{2} \leqslant\|z\|_{2}^{2} \leqslant M(a)^{2} \sum_{x, v_{2}}\left|\alpha_{v_{1} x v_{2}}\right|^{2} \cdot \sum_{w_{2}, y}\left|\beta_{w_{2} y w_{1}}\right|^{2} .
\end{aligned}
$$

Finally, this shows that

$$
\begin{aligned}
\left\|E_{n}(a b)\right\|_{2}^{2} & \leqslant \sum_{v_{1}, w_{1}} \sum_{i \in I} M(a)^{2} \sum_{x, v_{2}}\left|\alpha_{v_{1} x v_{2}}\right|^{2} \cdot \sum_{w_{2}, y}\left|\beta_{w_{2} y w_{1}}\right|^{2} \\
& =M(a)^{2}\left(\sum_{i \in I} \sum_{v_{1}, x, v_{2}}\left|\alpha_{v_{1} x v_{2}}\right|^{2}\right)\left(\sum_{i \in I} \sum_{w_{1}, y, w_{2}}\left|\beta_{w_{2} y w_{1}}\right|^{2}\right) \\
& =M(a)^{2}\|a\|_{2}^{2}\|b\|_{2}^{2}
\end{aligned}
$$

Given $k, n \in K$, define $n+k,|n-k| \in K$ by

$$
\begin{aligned}
(n+k)(j) & =n(j)+k(j) \\
|n-k|(j) & =|n(j)-k(j)|
\end{aligned}
$$

and write $k \leqslant n$ if $k(j) \leqslant n(j)$ for every $j \in J$. Simliarly, given finitely many $l_{1}, \ldots, l_{m} \in K$ we define $\max \left(l_{1}, \ldots, l_{m}\right) \in K$ by

$$
\max \left(l_{1}, \ldots, l_{m}\right)(j)=\max \left(l_{1}(j), \ldots, l_{m}(j)\right)
$$

Finally, for $k \in K$ let

$$
\rho(k)=\prod_{j \in J}(2 k(j)+1) .
$$

Lemma 2.2. Let $k \in K$ and $a \in \operatorname{span} Y_{k}$. Then

$$
\|a\| \leqslant \rho(k) M(a)\|a\|_{2}
$$

Proof. It suffices to show that

$$
\|a b\|_{2} \leqslant \rho(k) M(a)\|a\|_{2}\|b\|_{2}
$$

for every $b \in \operatorname{span} Y$. For $l \in K$ let $b_{l}=E_{l}(b)$. Then for each $n \in K$, using Lemma 2.1 we have

$$
\begin{aligned}
\left\|E_{n}(a b)\right\|_{2} & =\left\|\sum_{\substack{l \in K \\
|n-k| \leqslant l \leqslant n+k}} E_{n}\left(a b_{l}\right)\right\|_{2} \leqslant \sum_{\substack{l \in K \\
|n-k| \leqslant l \leqslant n+k}}\left\|E_{n}\left(a b_{l}\right)\right\|_{2} \\
& \leqslant \sum_{\substack{l \in K \\
\mid n-k \leqslant l \leqslant l \leqslant n+k}} M(a)\|a\|_{2}\left\|b_{l}\right\|_{2} \leqslant M(a)\|a\|_{2} \rho(k)^{\frac{1}{2}}\left(\sum_{\substack{l \in K \\
|n-k| \leqslant l \leqslant n+k}}\left\|b_{l}\right\|_{2}^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

This last inequality follows from the fact that the number of $l \in K$ satisfying $|n-k| \leqslant l \leqslant n+k$ is bounded above by $\rho(k)$. Hence

$$
\begin{aligned}
\|a b\|_{2}^{2} & =\sum_{n \in K}\left\|E_{n}(a b)\right\|_{2}^{2} \leqslant \rho(k) M(a)^{2}\|a\|_{2}^{2} \sum_{n \in K} \sum_{\substack{l \in K \\
|n-k| \leqslant l \leqslant n+k}}\left\|b_{l}\right\|_{2}^{2} \\
& =\rho(k) M(a)^{2}\|a\|_{2}^{2} \sum_{l \in K} \sum_{\substack{n \in K \\
|l-k| \leqslant n \leqslant l+k}}\left\|b_{l}\right\|_{2}^{2} \\
& \leqslant \rho(k)^{2} M(a)^{2}\|a\|_{2}^{2} \sum_{l \in K}\left\|b_{l}\right\|_{2}^{2}=\rho(k)^{2} M(a)^{2}\|a\|_{2}^{2}\|b\|_{2}^{2}
\end{aligned}
$$

Given $a \in \operatorname{span} Y$ define

$$
\begin{aligned}
\operatorname{supp}_{K}(a) & =\left\{k \in K \mid Y_{k} \text { meets the support of } a\right\} \\
\max _{K}(a) & =\max \left\{k \in K \mid k \in \operatorname{supp}_{K}(a)\right\}
\end{aligned}
$$

Lemma 2.3. Let $a \in \operatorname{span} Y$. Then

$$
\|a\| \leqslant \rho\left(\max _{K}(a)\right)^{\frac{3}{2}} M(a)\|a\|_{2}
$$

Proof. For $k \in K$ let $a_{k}=E_{k}(a)$. Note that $M\left(a_{k}\right) \leqslant M(a)$, and for every $k \in \operatorname{supp}_{K}(a), \rho(k) \leqslant \rho\left(\max _{K}(a)\right)$. Furthermore

$$
\left|\operatorname{supp}_{K}(a)\right| \leqslant \prod_{j \in J}\left(\max _{K}(a)(j)+1\right) \leqslant \rho\left(\max _{K}(a)\right)
$$

Using Lemma 2.2 we now have

$$
\begin{aligned}
\|a\| & =\left\|\sum_{k \in \operatorname{supp}_{K}(a)} a_{k}\right\| \leqslant \sum_{k \in \operatorname{supp}_{K}(a)}\left\|a_{k}\right\| \leqslant \sum_{k \in \operatorname{supp}_{K}(a)} \rho(k) M\left(a_{k}\right)\left\|a_{k}\right\|_{2} \\
& \leqslant \rho\left(\max _{K}(a)\right) M(a) \sum_{k \in \operatorname{supp}_{K}(a)}\left\|a_{k}\right\|_{2} \\
& \leqslant \rho\left(\max _{K}(a)\right) M(a)\left|\operatorname{supp}_{K}(a)\right|^{\frac{1}{2}}\left(\sum_{k \in \operatorname{supp}_{K}(a)}\left\|a_{k}\right\|_{2}^{2}\right)^{\frac{1}{2}} \\
& =\rho\left(\max _{K}(a)\right) M(a)\left|\operatorname{supp}_{K}(a)\right|^{\frac{1}{2}}\|a\|_{2} \leqslant \rho\left(\max _{K}(a)\right)^{\frac{3}{2}} M(a)\|a\|_{2} .
\end{aligned}
$$

Lemma 2.4. Suppose that for every $j \in J$ there are $i_{1}(j), i_{2}(j) \in I^{(j)}$ such that there are at least two unitary elements in $\left(X_{i_{2}(j)}^{(j)}\right)^{\mathrm{O}}$ and at least one unitary element in $\left(X_{i_{1}(j)}^{(j)}\right)^{\mathrm{o}}$. Then for each $a \in \operatorname{span} Y$ there are unitaries $u, v \in \operatorname{span} Y$ and a constant $M<\infty$ such that

$$
\left\|(u a v)^{n}\right\|_{2}=\|a\|_{2}, \quad M\left((u a v)^{n}\right) \leqslant M
$$

for every $n \geqslant 1$.
Proof. Let $y(j), z(j) \in\left(X_{i_{2}(j)}^{(j)}\right)^{\mathrm{O}}$ and $x(j) \in\left(X_{i_{1}(j)}^{(j)}\right)^{\mathrm{O}}$ be distinct unitary elements. Let $m=\max _{K}(a) \in K$. Fix for the moment $j \in J$. Let $l(j) \in \mathbb{N}$ be such that $l(j) \geqslant(m(j)+3) / 2$ and set

$$
u_{0}(j)=\left(x(j) y(j)^{*}\right)^{l(j)}, \quad v_{0}(j)=(x(j) z(j))^{l(j)}
$$

As in the proof of [3], Lemma 3.7, it then follows that if $w \in \bigcup_{i=0}^{m(j)} Y_{i}^{(j)}$, then $u_{0}(j) w v_{0}(j)$ is a linear combination of reduced words belonging to $Y^{(j)}$ which start with $x(j)$ and end with $z(j)$. Note also that every such $u_{0}(j) w v_{0}(j)$ belongs to span $\bigcup_{i=0}^{4 l(j)+m(j)} Y_{i}^{(j)}$. Let $p(j) \in \mathbb{N}$ be such that $p(j) \geqslant(4 l(j)+m(j)+1) / 2$ and let

$$
r(j)=(x(j) y(j))(x(j) z(j))^{p(j)}(x(j) y(j))
$$

Thus, whenever $n \in \mathbb{N}$ and $w_{1}, \ldots, w_{n}, w_{1}^{\prime}, \ldots, w_{n}^{\prime} \in \bigcup_{i=0}^{4 l(j)+m(j)} Y_{i}^{(j)}$ are words each starting with $x(j)$ and ending with $z(j)$, then each $r(j) w_{j}$ is a reduced word in $Y^{(j)}$, as is $r(j) w_{1} r(j) w_{2} \cdots r(j) w_{n}$, and if

$$
r(j) w_{1} r(j) w_{2} \cdots r(j) w_{n}=r(j) w_{1}^{\prime} r(j) w_{2}^{\prime} \cdots r(j) w_{n}^{\prime}
$$

then $w_{1}=w_{1}^{\prime}, w_{2}=w_{2}^{\prime}, \ldots, w_{n}=w_{n}^{\prime}$.
Let $u=\bigotimes_{j \in J} u(j)$ and $v=\bigotimes_{j \in J} v(j)$ where

$$
\begin{aligned}
& u(j)= \begin{cases}r(j) u_{0}(j) & \text { if } m(j)>0 \\
1 & \text { if } m(j)=0\end{cases} \\
& v(j)= \begin{cases}v_{0}(j) & \text { if } m(j)>0 \\
1 & \text { if } m(j)=0\end{cases}
\end{aligned}
$$

What we have shown above implies that

$$
u a v=\sum_{i=1}^{N} \alpha_{i} w_{i}
$$

where $\alpha_{i} \in \mathbb{C}$ and $w_{1}, w_{2}, \ldots, w_{N}$ are distinct elements of Y, and that for every $n \in \mathbb{N}$

$$
(u a v)^{n}=\sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} \cdots \sum_{i_{n}=1}^{N} \alpha_{i_{1}} \alpha_{i_{2}} \cdots \alpha_{i_{n}} w_{i_{1}} w_{i_{2}} \cdots w_{i_{n}}
$$

with the words $w_{i_{1}} w_{i_{2}} \cdots w_{i_{n}}$ being reduced words and distinct elements of Y. This implies that for every $n \in \mathbb{N}$,

$$
M\left((u a v)^{n}\right)=M(u a v)
$$

and

$$
\begin{aligned}
\left\|(u a v)^{n}\right\|_{2} & =\sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} \cdots \sum_{i_{n}=1}^{N}\left|\alpha_{i_{1}} \alpha_{i_{2}} \cdots \alpha_{i_{n}}\right|^{2} \\
& =\sum_{i_{1}=1}^{N}\left|\alpha_{i_{1}}\right|^{2} \sum_{i_{2}=1}^{N}\left|\alpha_{i_{2}}\right|^{2} \cdots \sum_{i_{n}=1}^{N}\left|\alpha_{i_{n}}\right|^{2}=\|u a v\|_{2}^{n}=\|a\|_{2}^{n}
\end{aligned}
$$

In a unital C^{*}-algebra A, let $\mathrm{U}(A)$ denote the group of unitaries of A and let $\mathrm{GL}(A)$ denote the group of invertible elements of A. For $a \in A$, let $r(a)$ denote spectral radius of a. As in [3], we will use that

$$
\begin{equation*}
\operatorname{dist}(a, \operatorname{GL}(A)) \leqslant \inf _{u, v \in \mathrm{U}_{(A)}} r(u a v) . \tag{2.3}
\end{equation*}
$$

Theorem 2.5. Let J be a nonempty set, and for each $j \in J$ let $I^{(j)}$ be a set. For every $j \in J$ and $\iota \in I^{(j)}$, let $A_{\iota}^{(j)}$ be a unital C^{*}-algebra with a faithful, tracial state $\tau_{\iota}^{(j)}$. Assume that for every $j \in J$ there are distinct indices $\iota_{1}(j), \iota_{2}(j) \in I^{(j)}$ and unitary elements $x(j) \in A_{\iota_{1}(j)}^{(j)}$ and $y(j), z(j) \in A_{\iota_{2}(j)}^{(j)}$ such that

$$
\tau_{\iota_{1}(j)}^{(j)}(x(j))=0=\tau_{\iota_{2}(j)}^{(j)}(y(j))=\tau_{\iota_{2}(j)}^{(j)}(z(j))=\tau_{\iota_{2}(j)}^{(j)}\left(z(j)^{*} y(j)\right) .
$$

Let

$$
\left(A^{(j)}, \tau^{(j)}\right)=\underset{\iota \in I^{(j)}}{*}\left(A_{\iota}^{(j)}, \tau_{\iota}^{(j)}\right)
$$

be the reduced free product of C^{*}-algebras and let

$$
A=\bigotimes_{j \in J} A^{(j)}
$$

be the minimal tensor product of C^{*}-algebras. Then A has stable rank one.
Proof. Since any element of A belongs to a subalgebra which is the tensor product of countably many algebras $B^{(j)}$ where $B^{(j)}=\underset{\iota \in G^{(j)}}{*} B_{\iota}^{(j)}$, where $G^{(j)} \subseteq$ $I^{(j)}$ is countable and $B_{\iota}^{(j)} \subseteq A_{\iota}^{(j)}$ are separable C^{*}-subalgebras, we may assume without loss of generality that J and each $I^{(j)}$ is countable and that each $A_{\iota}^{(j)}$ is separable.

By [3], 2.1 there is for every $j \in J$ and $\iota \in I^{(j)}$ a standard orthonormal basis $X_{\iota}^{(j)}$ for $\left(A_{\iota}^{(j)}, \tau_{\iota}^{(j)}\right)$ such that $x(j) \in X_{\iota_{1}(j)}^{(j)}$ and $y(j), z(j) \in X_{\iota_{2}(j)}^{(j)}$. Let $Y^{(j)}=\underset{\iota \in I^{(j)}}{*} X_{\iota}^{(j)}$ and let Y be the standard orthonormal basis for (A, τ) defined in equation (2.2). We will show that

$$
\begin{equation*}
\inf _{u, v \in \mathrm{U}_{(A)}} r(u a v) \leqslant\|a\|_{2} \quad\left(=\tau\left(a^{*} a\right)^{\frac{1}{2}}\right) \tag{2.4}
\end{equation*}
$$

whenever $a \in \operatorname{span} Y$. Indeed, let $M>0$ and unitaries $u, v \in \operatorname{span} Y$ be as found in Lemma 2.4. Let $m=\max _{K}(u a v) \in K$. Let $p<\infty$ be the number of $j \in J$ such that $m(j) \neq 0$. Then for every $n \in \mathbb{N}$,

$$
\max _{K}\left((u a v)^{n}\right) \leqslant n \cdot m
$$

where, naturally, $n \cdot m \in K$ is $(n \cdot m)(j)=n \cdot m(j)$, and hence

$$
\rho\left(\max _{K}\left((u a v)^{n}\right)\right) \leqslant n^{p} \rho(m) .
$$

Lemmas 2.3 and 2.4 give

$$
\left\|(u a v)^{n}\right\| \leqslant\left(n^{p} \rho(m)\right)^{\frac{3}{2}} M\left\|(u a v)^{n}\right\|_{2}=\left(n^{p} \rho(m)\right)^{\frac{3}{2}} M\|a\|_{2}^{n}
$$

Therefore

$$
\begin{aligned}
\inf _{u, v \in \mathrm{U}(A)} r(u a v) & \leqslant r(u a v)=\liminf _{n \rightarrow \infty}\left\|(u a v)^{n}\right\|^{\frac{1}{n}} \\
& \leqslant \liminf _{n \rightarrow \infty}\left(n^{p} \rho(m)\right)^{\frac{3}{2 n}} M^{\frac{1}{n}}\|a\|_{2}=\|a\|_{2}
\end{aligned}
$$

Now, the proof that $\operatorname{sr}(A)=1$ follows by the exactly same argument as in the proof of [3], 3.8, which we briefly review here. Suppose for contradiction that $\operatorname{sr}(A)>1$. Then by Rørdam's result [5], 2.6, there is $b \in A$ having norm 1 and whose distance to $\mathrm{GL}(A)$ is 1 . But b is a norm limit, $b=\lim _{n \rightarrow \infty} a_{n}$, where each $a_{n} \in \operatorname{span} Y$. Using (2.3) and (2.4), we have

$$
\operatorname{dist}\left(a_{n}, \mathrm{GL}(A)\right) \leqslant\left\|a_{n}\right\|_{2}
$$

and hence

$$
\operatorname{dist}(b, \operatorname{GL}(A)) \leqslant\|b\|_{2}
$$

But this implies that $\|b\|=\|b\|_{2}=1$, hence that b is unitary, which contradicts that $\operatorname{dist}(b, \operatorname{GL}(A))=1$.

Corollary 2.6. Let J be a nonempty set and let G be a group which is the (restricted) direct sum

$$
G=\bigoplus_{j \in J} G^{(j)}
$$

where for each $j \in J, G^{(j)}$ is the free product of groups

$$
G^{(j)}=G_{1}^{(j)} * G_{2}^{(j)}
$$

with $\left|G_{1}^{(j)}\right| \geqslant 2$ and $\left|G_{2}^{(j)}\right| \geqslant 3$. Then the reduced group C^{*}-algebra $C_{\mathrm{r}}^{*}(G)$ has stable rank one.

Proof.

$$
C_{\mathrm{r}}^{*}(G)=\bigotimes_{j \in J} C_{\mathrm{r}}^{*}\left(G^{(j)}\right)
$$

is the minimal tensor product of C^{*}-algebras and, letting τ_{H} denote the canonical trace on $C_{\mathrm{r}}^{*}(H)$,

$$
\left(C_{\mathrm{r}}^{*}\left(G^{(j)}\right), \tau_{G^{(j)}}\right)=\left(C_{\mathrm{r}}^{*}\left(G_{1}^{(j)}\right), \tau_{G_{1}^{(j)}}\right) *\left(C_{\mathrm{r}}^{*}\left(G_{2}^{(j)}\right), \tau_{G_{2}^{(j)}}\right)
$$

Now the theorem applies.
Acknowledgements. I would like to thank Chris Phillips for asking me whether a result like the main theorem holds. This paper's affirmative answer plays a role in Phillips' examples ([4]).

REFERENCES

1. D. Avitzour, Free products of C^{*}-algebras, Trans. Amer. Math. Soc. 271(1982), 423-465.
2. K.J. Dykema, Simplicity and the stable rank of some free product C^{*}-algebras, Trans. Amer. Math. Soc., to appear.
3. K.J. Dykema, U. Haagerup, M. Rørdam, The stable rank of some free product C^{*}-algebras, Duke Math. J. 90(1997), 95-121.
4. N.C. Phillips, Nonisomorphic simple exact C^{*}-algebras with the same Elliot and Haagerup invariants, preprint, 1997.
5. M.A. Rieffel, Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. (3) 46(1983), 301-333.
6. M. Rørdam, Advances in the theory of unitary rank and regular approximation, Ann. of Math. (2) 128(1988), 153-172.
7. J. Villadsen, The stable rank of simple C^{*}-algebras, preprint, 1996.
8. D. Voiculescu, Symmetries of some reduced free product C ${ }^{*}$-algebras, in Operator Algebras and their Connections with Topology and Ergodic Theory, Lecture Notes in Math., vol. 1132, Springer-Verlag, 1985, pp. 556-588.
9. D. Voiculescu, K.J. Dykema, A. Nica, Free Random Variables, CRM Monogr. Ser., vol. 1, Amer. Math. Soc., 1992.

KENNETH J. DYKEMA
Department of Mathematics and Computer Science
Odense Universitet, Campusvej 55
DK-5230 Odense M
DENMARK
E-mail: dykema@imada.ou.dk

[^0]
[^0]: Received July 14, 1997.

