A CONDITIONAL EXPECTATION
 FOR THE FULL FOCK SPACE

C. BARNETT and A. VOLIOTIS

Communicated by Şerban Strătilă

Abstract

We define a family of conditional expectations on the algebra generated by the creation, annihilation and gauge operators on the Full Fock space over $L^{2}\left(\mathbb{R}_{+}\right)$.

Keywords: Quantum probability, conditional expectations, Fock space.
MSC (2000): Primary 46L50, 46L, 46; Secondary 60B99.

1. INTRODUCTION

There is now a well developed non-commutative stochastic calculus which deals with non-commutative analogues and generalisations of classical stochastic processes. Recently attention has turned to the example provided by the full Fock space, \mathcal{F}, over $L^{2}\left(\mathbb{R}_{+}\right)$. The basic processes are provided by the annihilation, creation and gauge operators $l(h), l^{*}(f), p(\mathcal{T})$ for $h, f \in L^{2}\left(\mathbb{R}_{+}\right), \mathcal{T} \in \mathcal{B}\left(L^{2}\left(\mathbb{R}_{+}\right)\right)$(the bounded operators on $\left.L^{2}\left(\mathbb{R}_{+}\right)\right)$. One of the features of this situation, in contrast to [1], [2], is the absence (thus far) of a (formal) conditional expectation acting on the processes with which one can define the (formal) notion of martingale and associated processes. Without this one cannot introduce the projections associated with random times and exploit their relationship with stochastic integration ([3]). Since we shall have some more to say on this and other matters in this context ([4]), we demonstrate here that it is possible to construct a family of conditional expectations in a straightforward manner. The construction proceeds as one might expect; for example it is clear that $l\left(\chi_{t} h\right)$ should be the time t conditional expectation of $l(h)$. From these easy beginings the expectation is extended to the whole of $B(\mathcal{F})$. Many of the proofs are obvious, we omit these. Others demand a fuller explanation, we include some details.

2. PRELIMINARIES AND NOTATION

We define the full Fock space \mathcal{F} over $L^{2}\left(\mathbb{R}_{+}\right)$as follows:
(a)

$$
\mathcal{F} \equiv \mathbb{C} \oplus\left(\bigoplus_{n=1}^{\infty} L^{2}\left(\mathbb{R}_{+}\right)^{\otimes n}\right)
$$

here \mathbb{C} denotes the complex numbers and \mathcal{F} has the usual scalar product. Note that all scalar products are linear in the left argument. Ω will denote the vector $(1,0,0, \ldots)$. We define the annihilation operator $l(f)$ and creation operator $l^{*}(f)$ for $f \in L^{2}\left(\mathbb{R}_{+}\right)$, as follows

$$
\begin{align*}
l(f) f_{1} \otimes \cdots \otimes f_{n} & =\left\langle f_{1}, f\right\rangle f_{2} \otimes \cdots \otimes f_{n} \tag{b}\\
l^{*}(f) f_{1} \otimes \cdots \otimes f_{n} & =f \otimes f_{1} \otimes \cdots \otimes f_{n} \\
l(f) \Omega & =0 \tag{d}\\
l^{*}(f) \Omega & =f
\end{align*}
$$

for $n \geqslant 1$ and f_{1}, \ldots, f_{n} in $L^{2}\left(\mathbb{R}_{+}\right)$. The operators $l(f)$ and $l^{*}(f)$ are bounded and mutually adjoint. Furthermore,

$$
\|l(f)\|=\left\|l^{*}(f)\right\|=\|f\|_{2}
$$

Given any $\mathcal{T} \in \mathcal{B}\left(L^{2}\left(\mathbb{R}_{+}\right)\right)$we define the operator $p(\mathcal{T})$ by:

$$
p(\mathcal{T}) f_{1} \otimes \cdots \otimes f_{n}=\mathcal{T} f_{1} \otimes \cdots \otimes f_{n}, \quad p(\mathcal{T}) \Omega=0
$$

for $f_{i} \in L^{2}\left(\mathbb{R}_{+}\right), 1 \leqslant i \leqslant n$. The operator $p(\mathcal{T})$ is bounded and $\|p(\mathcal{T})\|=\|\mathcal{T}\|$, and $p(\mathcal{T})^{*}=p\left(\mathcal{T}^{*}\right)$. For $g \in L^{\infty}\left(\mathbb{R}_{+}\right), g$ will be considered to be the element of $\mathcal{B}\left[L^{2}\left(\mathbb{R}_{+}\right)\right]$obtained by letting g act by multiplication on $L^{2}\left(\mathbb{R}_{+}\right)$. This makes the meaning of $p(g)$ clear. Moreover the following identities hold:

$$
\begin{align*}
l(g) \cdot l^{*}(f) & =\langle f \cdot g\rangle \mathcal{I} \tag{f}\\
p\left(\mathcal{T}_{1}\right) \cdot p\left(\mathcal{T}_{2}\right) & =p\left(\mathcal{T}_{1} \cdot \mathcal{T}_{2}\right) \\
p(\mathcal{T}) l^{*}(f) & =l^{*}(\mathcal{T} f) \\
l(g) p(\mathcal{T}) & =l\left(\mathcal{T}^{*} g\right)
\end{align*}
$$

Let $D^{0} \subseteq \mathcal{F}$ be the set consisting of $\lambda \Omega$ with $\lambda \in \mathbb{C}$ and $|\lambda| \leqslant 1$ and vectors of the form $u_{1} \otimes \cdots \otimes u_{k}$ with $k \in \mathbb{N}$, the natural numbers, $u_{j} \in L^{2}\left(\mathbb{R}_{+}\right) \cap L^{\infty}\left(\mathbb{R}_{+}\right)$, $\left\|u_{j}\right\|_{2} \leqslant 1,\left\|u_{j}\right\|_{\infty} \leqslant 1$ for $1 \leqslant j \leqslant k$. For $k=0, u_{1} \otimes \cdots \otimes u_{k}=\Omega$. D will denote the linear span of D^{0}. We denote the bounded operators on \mathcal{F} by $\mathcal{B}(\mathcal{F})$ and by τ_{s} the strong operator topology on $\mathcal{B}(\mathcal{F})$. We collect together some elementary facts and definitions needed for the sequel.
2.1. D is dense in \mathcal{F}.
2.2. \mathcal{F} is separable.
2.3. We note a useful lemma about the strong topology τ_{s} on bounded sets of $\mathcal{B}(\mathcal{F})$.

Lemma. The strong operator topology on S [the unit ball of $\mathcal{B}(\mathcal{F})]$ is metrisable. This metric is given by a norm on $\mathcal{B}(\mathcal{F})$.

For $x \in \mathcal{B}(\mathcal{F})$ the norm is given by

$$
\|x\|_{\mathrm{s}}=\left\{\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left\|x \varsigma_{n}\right\|^{2}\right\}^{\frac{1}{2}}
$$

where $\left(\varsigma_{n}\right)_{n=1}^{\infty}$ is a countable base for \mathcal{F}.
2.4. Definition. We define \mathcal{A} to be the $*$-algebra generated by the annihilation and gauge operators $l(f), p(g)$ respectively and \mathcal{I}, where $f \in L^{2}\left(\mathbb{R}_{+}\right)$, $g \in L^{\infty}\left(\mathbb{R}_{+}\right)$. We shall denote by \mathcal{V} the Von Neumann algebra $\overline{\mathcal{A}}^{\tau_{\mathrm{s}}}$ in $\mathcal{B}(\mathcal{F})$.
2.5. Definition. \mathcal{A}_{t} is defined to be the $*$-algebra of \mathcal{A} which is generated by \mathcal{I} and the operators $l(f), p(g)$ with $g \in L^{\infty}([0, t])$ and $f \in L^{2}([0, t])$, for any $t \in \mathbb{R}_{+}$. By \mathcal{V}_{t} mean the strong-operator closure of \mathcal{A}_{t}. By (f), (g), (h) and (i) we note that any element of \mathcal{A} can be written as a sum of basic elements of the form $\lambda \mathcal{I}$ or

$$
l^{*}\left(f_{1}\right) \cdots l^{*}\left(f_{r}\right) p(g) l\left(h_{1}\right) \cdots l\left(h_{s}\right)
$$

or

$$
l^{*}\left(f_{1}\right) \cdots l^{*}\left(f_{r}\right) l\left(h_{1}\right) \cdots l\left(h_{s}\right)
$$

with the convention that $r=0$ (respectively $s=0$) denotes an element with no creation (respectively no annihilation) operators. Here $r, s \in \mathbb{N} \cup\{0\}$ and $f_{i}, h_{j} \in L^{2}\left(\mathbb{R}_{+}\right)$and $g \in L^{\infty}\left(\mathbb{R}_{+}\right), 0 \leqslant i \leqslant r, 0 \leqslant j \leqslant s$. Furthermore if f_{i}, h_{j}, and g have support in $[0, t]$ then we get basic elements for \mathcal{A}_{t}.
2.6. Definition. We define a process $F(t)$ to be a function

$$
F: \mathbb{R}^{+} \rightarrow\{\text { operators with domain containing } \mathcal{D}\}
$$

A \mathcal{V} adapted process is a process such that $F(t) \in \mathcal{V}_{t}$ and similarly for \mathcal{A} adapted processes. We shall call a process simple if it can be written in the form

$$
\sum_{j=1}^{n} F\left(t_{j}\right) \chi_{\left[t_{j}, t_{j+1}\right)}
$$

with $0=t_{1} \leqslant \cdots t_{j} \leqslant t_{j+1} \leqslant \cdots \leqslant t_{n+1}=\infty, 1 \leqslant j \leqslant n, F\left(t_{j}\right) \in \mathcal{A}_{t_{j}}$.
2.7. For a subset \mathcal{K} of \mathcal{F} we will use the term " τ_{s}-on \mathcal{K} " to refer to pointwise convergence on \mathcal{K}.

3. CONSTRUCTION OF THE EXPECTATION

For each $t \in \mathbb{R}^{+}$we will construct an expectation $E_{t}: \mathcal{V} \rightarrow \mathcal{V}_{t}, t \geqslant 0$ with all the standard properties. We show further that E_{t} is strong-operator continuous on bounded sets.

In order to construct E_{t} we need to define a map $\widetilde{E}_{t}: \mathcal{A} \rightarrow \mathcal{A}_{t}$ with the appropriate properties, and we shall then extend \widetilde{E}_{t} in the following stages:
(a) For a sequence $\left(a_{n}\right)_{n \geqslant 1}$ in \mathcal{A}, for which $\left(a_{n}(\xi)\right)$ is Cauchy in \mathcal{F} for each $\xi \in D^{0}$ we shall demonstrate that $\left(\widetilde{E}_{t} a_{n}(\xi)\right)_{n \geqslant 1}$ is also Cauchy in \mathcal{F} for each $\xi \in D^{0}$. Furthermore, if $\left(a_{n}\right)_{n \geqslant 1}$ is a sequence in \mathcal{A} such that $a_{n} \rightarrow 0, \tau_{\mathrm{s}}$-on D^{0}, then we shall show that $\left(\widetilde{E}_{t} a_{n}\right)_{n \geqslant 1}$ is a sequence in \mathcal{A}_{t} with $\widetilde{E}_{t} a_{n} \rightarrow 0, \tau_{\mathrm{s}}$-on D^{0}.
(b) Here we will show that for any element $a \in \mathcal{A},\left\|\widetilde{E}_{t} a\right\| \leqslant\|a\|$. In the process of proving this result we shall obtain most of the properties related to conditional expectations.
(c) We will use the previously obtained results to extend $\widetilde{E}_{t}: \mathcal{A} \rightarrow \mathcal{A}_{t}$ to $E_{t}: \mathcal{V} \rightarrow \mathcal{V}_{t}$ and we shall show that E_{t} satisfies the properties of a conditional expectation between two von Neumann algebras.
3.1. Notes on notation. We shall use the letters f and h to denote elements of $L^{2}\left(\mathbb{R}_{+}\right)$which will be arguments of $l^{*}(\cdot)$ and $l(\cdot)$ respectively, we will use g to denote arguments of $p(\cdot), g \in L^{\infty}\left(\mathbb{R}_{+}\right)$.

Furthermore, the letter a will denote elements of the algebras \mathcal{A} and the letter x will denote elements of \mathcal{V}. In addition, for any basic elements of \mathcal{A} the letter r will represent the numbers of creation operators and s the number of annihilation operators. Finally, χ_{t} will denote the indicator function of $[0, t]$.

4. THE MAP \widetilde{E}_{t}

We shall start this section with an important property of elements $a \in \mathcal{A}$, which will enable us to define the map $\widetilde{E}_{t}: \mathcal{A} \rightarrow \mathcal{A}_{t}$.

An element of \mathcal{A} is a sum of basic elements. Recall that basic elements have the form
(a) $\lambda \mathcal{I}$;
(b) $l^{*}\left(f_{1}\right) \cdots l^{*}\left(f_{r}\right) p(g) l\left(h_{1}\right) \cdots l\left(h_{s}\right)$;
(c) $l^{*}\left(f_{1}\right) \cdots l^{*}\left(f_{r}\right) l\left(h_{1}\right) \cdots l\left(h_{s}\right)$.

We shall write an element a of \mathcal{A} in a particular way that reflects how the basic elements which comprise a act on \mathcal{F}. So if $a=\sum_{i} a_{i}$, we shall denote by $a_{\delta, q}$ the sum of those basic elements a_{i}, for which the difference between the number of creation operators and the number of annihilation operators is δ; and the sum of the number of annihilation and gauge operators is q. Then we can write

$$
\begin{equation*}
a=\sum_{\delta} \sum_{q} a_{\delta, q} . \tag{4.1}
\end{equation*}
$$

For example if

$$
a=l^{*}\left(f_{1}\right)+l^{*}\left(f_{2}\right) p\left(g_{1}\right)+l^{*}\left(f_{3}\right) l^{*}\left(f_{4}\right) l\left(h_{1}\right)+l^{*}\left(f_{5}\right) l^{*}\left(f_{6}\right) p\left(g_{2}\right) l\left(h_{2}\right)
$$

then

$$
a=a_{1,0}+a_{1,1}+a_{1,2}
$$

where

$$
\begin{aligned}
& a_{1,0}=l^{*}\left(f_{1}\right) \\
& a_{1,1}=l^{*}\left(f_{2}\right) p\left(g_{1}\right)+l^{*}\left(f_{3}\right) l^{*}\left(f_{4}\right) l\left(h_{1}\right) \\
& a_{1,2}=l^{*}\left(f_{5}\right) l^{*}\left(f_{6}\right) p\left(g_{2}\right) l\left(h_{2}\right) .
\end{aligned}
$$

4.1. Definition. Given $a=\sum_{i=1}^{n} a_{i}$ in \mathcal{A}, with a_{i} basic elements of \mathcal{A} we define:

$$
\begin{aligned}
a^{t} & =\sum_{i=1}^{n} a_{i}^{t} \quad \text { with }(\lambda \mathcal{I})^{t}=\lambda \mathcal{I} \\
\left\{l^{*}\left(f_{1}\right) \cdots l^{*}\left(f_{r}\right) p(g) l\left(h_{1}\right) \cdots l\left(h_{s}\right)\right\}^{t} & =l^{*}\left(\chi_{t} f_{1}\right) \cdots l^{*}\left(\chi_{t} f_{r}\right) p\left(\chi_{t} g\right) l\left(\chi_{t} h_{1}\right) \cdots l\left(\chi_{t} h_{s}\right) \\
\left\{l^{*}\left(f_{1}\right) \cdots l^{*}\left(f_{r}\right) l\left(h_{1}\right) \cdots l\left(h_{s}\right)\right\}^{t} & =l^{*}\left(\chi_{t} f_{1}\right) \cdots l^{*}\left(\chi_{t} f_{r}\right) l\left(\chi_{t} h_{1}\right) \cdots l\left(\chi_{t} h_{s}\right) .
\end{aligned}
$$

Note that all a_{i}^{t} lie in \mathcal{A}_{t}.
4.2. Note. $a^{t}=\sum_{\delta} \sum_{q} a_{\delta, q}^{t}$ just by regrouping the basic elements of a_{i}. Given a vector $u_{1} \otimes \cdots \otimes u_{k}$ in D^{0} and $0 \leqslant j \leqslant k$, define,

$$
\underline{v}_{j}=\chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{j} .
$$

Again we shall use the convention: $\underline{v}_{0}=\Omega$ and for $k=0, u_{1} \otimes \cdots \otimes u_{k} \equiv \Omega$. We can write

$$
a=\sum_{\delta=-\Delta}^{\Delta} \sum_{q=\max (0,-\delta)}^{Q(\delta)} a_{\delta, q}, \quad a^{t}=\sum_{\delta=-\Delta}^{\Delta} \sum_{q=\max (0,-\delta)}^{Q(\delta)} a_{\delta, q}^{t}
$$

with Δ the maximum $|\delta|$ of those in appearing in equation (4.1) and with $a_{\delta, q}=0$ for all (δ, q) not appearing in equation (4.1). For each $\delta, Q(\delta)$ will denote the maximum q appearing in $a_{\delta, q}$ of equation. Since the number of creation operators has to be non-negative, we need $q \geqslant-\delta$ and when $q=-\delta$ the basic elements cannot contain any gauge operators. The following result underpins our construction.
4.3. Theorem. For a in \mathcal{A} with $a=\sum_{\delta=-\Delta}^{\Delta} \sum_{q=0}^{Q(\delta)} a_{\delta, q}$ and $u_{1} \otimes \cdots \otimes u_{k}$ in D^{0} we have that:

$$
\left\|a^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \leqslant(4 k+2) \sum_{q=0}^{k}\left\|a \underline{v}_{q}\right\|^{2}
$$

for $k \in \mathbb{N} \cup\{0\}$.

Proof. Fix $k \in \mathbb{N} \cup\{0\}$. We first observe that:

$$
\begin{aligned}
a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k} & \in L^{2}\left(\mathbb{R}_{+}\right)^{\otimes(k+\delta)} & & \text { for } k \geqslant q, \\
& =0 & & \text { for } k<q ; \\
\sum_{q=0}^{Q(\delta)} a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k} & \in L^{2}\left(\mathbb{R}_{+}\right)^{\otimes(k+\delta)} & & \text { for } k \geqslant q, \\
& =0 & & \text { for } k<q .
\end{aligned}
$$

Note that $k \geqslant q \Rightarrow k-q \geqslant 0 \Rightarrow k+\delta \geqslant 0$, and $L^{2}\left(\mathbb{R}_{+}\right)^{\otimes 0}$ will represent \mathbb{C}. So for $\delta<\delta^{\prime}$ the vectors, $a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}, a_{\delta^{\prime}, q}^{t} u_{1} \otimes \cdots \otimes u_{k}$ are orthogonal. Hence:

$$
\begin{aligned}
\left\|a^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} & =\left\|\sum_{\delta=-\Delta}^{\Delta} \sum_{q=\max (0,-\delta)}^{Q(\delta)} a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \\
& =\sum_{\delta=-\Delta}^{\Delta}\left\|\sum_{q=\max (0,-\delta)}^{Q(\delta)} a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2}
\end{aligned}
$$

by orthogonality of the vectors, established above, and

$$
\begin{equation*}
\left\|a^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \leqslant \sum_{\delta=-\Delta}^{\Delta}\left\{\sum_{q=\max (0,-\delta)}^{Q(\delta)}\left\|a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|\right\}^{2} \tag{4.2}
\end{equation*}
$$

by the triangle inequality.
Before going further with our proof, let us make the following remarks.
4.4. Note. $a_{\delta, q} u_{1} \otimes \cdots \otimes u_{k}=0, a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}=0$ for $q>k$ since the first k annihilation acting on $u_{1} \otimes \cdots \otimes u_{k}$ give the vector Ω and the next operator (gauge or annihilation) acting on Ω gives 0 . Hence, without loss of generality, we can take $Q(\delta) \leqslant k$. The general term for $a_{\delta, q}^{t}$ is

$$
\begin{aligned}
& a_{\delta, q}^{t}=\sum_{i=1}^{n} l^{*}\left(\chi_{t} f_{1}^{i}\right) \cdots l^{*}\left(\chi_{t} f_{\delta+q-1}^{i}\right) p\left(\chi_{t} g^{i}\right) l\left(\chi_{t} h_{1}^{i}\right) \cdots l\left(\chi_{t} h_{q-1}^{i}\right) \\
&+\sum_{j=1}^{m} l^{*}\left(\chi_{t} \widetilde{f}_{1}^{j}\right) \cdots l^{*}\left(\chi_{t} \widetilde{f}_{\delta+q}^{j}\right) \cdot l\left(\chi_{t} \widetilde{h}_{1}^{j}\right) \cdots l\left(\chi_{t} \widetilde{h}_{q}^{j}\right)
\end{aligned}
$$

with $m, n \in \mathbb{N} \cup\{0\}$ and when m or n is 0 , there is no basic element of that corresponding form. In the particular case $\delta=0, q=0$, we have $a_{0,0}=a_{0,0}^{t}=\lambda \mathcal{I}$ with $\lambda \in \mathbb{C}$. So

$$
\begin{aligned}
& \left\|a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \\
& =\| p\left(\chi_{t}\right)\left\{\sum _ { i = 1 } ^ { n } l ^ { * } (f _ { 1 } ^ { i }) l ^ { * } (\chi _ { t } f _ { 2 } ^ { i }) \cdots l ^ { * } (\chi _ { t } f _ { \delta + q - 1 } ^ { i }) p (\chi _ { t } g ^ { i }) l \left(\chi_{t} h_{1}^{i} \cdots l\left(\chi_{t} h_{q-1}^{i}\right)\right.\right. \\
& \left.\quad+\sum_{j=1}^{m} l^{*}\left(\widetilde{f}_{1}^{j}\right) l^{*}\left(\chi_{t} \widetilde{f}_{2}^{j}\right) \cdots l^{*}\left(\chi_{t} \widetilde{f}_{\delta+q}^{j}\right) l\left(\chi_{t} \widetilde{h}_{1}^{j}\right) \cdots l\left(\chi_{t} \widetilde{h}_{q}^{j}\right)\right\} u_{1} \otimes \cdots \otimes u_{k} \|^{2} .
\end{aligned}
$$

Since we need to refer back to this last equation let us write it as

$$
\begin{equation*}
\left\|a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2}=\left\|p\left(\chi_{t}\right) b_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \tag{4.3}
\end{equation*}
$$

where $b_{\delta, q}^{t}$ is the term between braces above. Observe that the last creation operator to act in each of the terms of $b_{\delta, q}^{t}$ does not involve χ_{t}.

Before starting a lemma we introduce some notation. We write

$$
L^{*}\left(f^{i}\right)=l^{*}\left(f_{1}^{i}\right) l^{*}\left(f_{2}^{i}\right) \cdots l^{*}\left(f_{\delta+q-1}^{i}\right)
$$

and

$$
L\left(h^{i}\right)=l\left(h_{1}^{i}\right) \cdots l\left(h_{q-1}^{i}\right) .
$$

We also write $\underline{u}=u_{1} \otimes \cdots \otimes u_{k}$ and $\underline{u}_{q+1}=u_{q+1} \otimes \cdots \otimes u_{k}$. For a permutation π of the indicies $1,2, \ldots, \delta+q-1$, we write $\pi\left(f^{i}\right)$ for the vector $f_{\pi(1)}^{i} \otimes \cdots \otimes f_{\pi(\delta+q-1)}^{i}$.
4.5. Lemma. Let π be a permutation of the indicies $1,2, \ldots, \delta+q-1$, then

$$
\begin{aligned}
& \left\langle L^{*}\left(f^{i}\right) p\left(g^{i}\right) L\left(h^{i}\right) \underline{u}, L^{*}\left(f^{i^{\prime}}\right) p\left(g^{i^{\prime}}\right) L\left(h^{i^{\prime}}\right) \underline{u}\right\rangle \\
& \quad=\left\langle L^{*}\left(\pi\left(f^{i}\right)\right) p\left(g^{i}\right) L\left(h^{i}\right) \underline{u}, L^{*}\left(\pi\left(f^{i^{\prime}}\right)\right) p\left(g^{i^{\prime}}\right) L\left(h^{i^{\prime}}\right) \underline{u}\right\rangle .
\end{aligned}
$$

Similarly

$$
\left\langle L^{*}\left(f^{i}\right) p\left(g^{i}\right) L\left(h^{i}\right) \underline{u}, L^{*}\left(\widetilde{f}^{j}\right) L\left(\widetilde{h}^{j}\right) \underline{u}\right\rangle=\left\langle L^{*}\left(\pi\left(f^{i}\right)\right) p\left(g^{i}\right) L\left(h^{i}\right) \underline{u}, L^{*}\left(\pi\left(\tilde{f}^{j}\right)\right) L\left(\widetilde{h}^{j}\right) \underline{u}\right\rangle
$$

and

$$
\left\langle L^{*}\left(\widetilde{f}^{j}\right) L\left(\widetilde{h}^{j}\right) \underline{u}, L^{*}\left(\widetilde{f}^{j^{\prime}}\right) L\left(\widetilde{h}^{j^{\prime}}\right) \underline{u}\right\rangle=\left\langle L^{*}\left(\pi\left(\widetilde{f}^{j}\right)\right) L\left(\widetilde{h}^{j}\right) \underline{u}, L^{*}\left(\pi\left(\widetilde{f}^{j}\right)\right) L\left(\widetilde{h}^{j^{\prime}}\right) \underline{u}\right\rangle .
$$

Proof. We look at one case only; the others are similar.

$$
L^{*}\left(f^{i}\right) p\left(g^{i}\right) L\left(h^{i}\right) \underline{u}=\left(\prod_{r=1}^{q-1} \overline{\left\langle\chi_{t} h_{q-r}^{i}, u_{r}\right\rangle}\right) \bigotimes_{s=1}^{\delta+q-1} f_{s}^{i} \otimes g^{i} \otimes \underline{u}_{q+1} .
$$

So

$$
\left\langle L^{*}\left(f^{i}\right) p\left(g^{i}\right) L\left(h^{i}\right) \underline{u}, L^{*}\left(f^{i^{\prime}}\right) p\left(g^{i^{\prime}}\right) L\left(h^{i^{\prime}}\right) \underline{u}\right\rangle
$$

is equal to

$$
\left(\prod_{r=1}^{q-1} \overline{\left\langle\chi_{t} h_{q-r}^{i}, u_{r}\right\rangle}\right)\left(\prod_{r=1}^{q-1}\left\langle\chi_{t} h_{q-r}^{i^{\prime}}, u_{r}\right\rangle\right)\left\langle\bigotimes_{s=1}^{\delta+q-1} f_{s}^{i} \otimes g^{i} \otimes \underline{u}_{q+1}, \bigotimes_{s=1}^{\delta+q-1} f_{s}^{i^{i}} \otimes g^{i^{\prime}} \otimes \underline{u}_{q+1}\right\rangle ;
$$

this in turn is equal to

$$
\left(\prod_{r=1}^{q-1} \overline{\left\langle\chi_{t} h_{q-r}^{i}, u_{r}\right\rangle}\right)\left(\prod_{r=1}^{q-1}\left\langle\chi_{t} h_{q-r}^{i^{\prime}}, u_{r}\right\rangle\right)\left(\prod_{r=1}^{\delta+q-1}\left\langle f_{s}^{i}, f_{s}^{i^{\prime}}\right\rangle\left\langle g^{i} g^{i^{\prime}}\right\rangle\left\langle\underline{u}_{q+1}, \underline{u}_{q+1}\right\rangle\right)
$$

which is

$$
\left(\prod_{r=1}^{q-1} \overline{\left\langle\chi_{t} h_{q-r}^{i}, u_{r}\right\rangle}\right)\left(\prod_{r=1}^{q-1}\left\langle\chi_{t} h_{q-r}^{i^{\prime}}, u_{r}\right\rangle\right)\left(\prod_{r=1}^{\delta+q-1}\left\langle f_{\pi(s)}^{i}, f_{s}^{\pi\left(i^{\prime}\right)}\right\rangle\left\langle g^{i} g^{i^{\prime}}\right\rangle\left\langle\underline{u}_{q+1}, \underline{u}_{q+1}\right\rangle\right)
$$

which is equal to

$$
\left\langle L^{*}\left(\pi\left(f^{i}\right)\right) p\left(g^{i}\right) L\left(h^{i}\right) \underline{u}, L^{*}\left(\pi\left(f^{i^{\prime}}\right)\right) p\left(g^{i^{\prime}}\right) L\left(h^{i^{\prime}}\right) \underline{u}\right\rangle
$$

4.6. Corollary. Let v be a vector in \mathcal{F} which is a finite sum of tensor product vectors $e_{1}, e_{2}, \ldots, e_{r}$ each of which being a k-fold tensor product of elements of $L^{2}\left(\mathbb{R}_{+}\right)$. For a vector of the form $u=u_{1} \otimes \cdots \otimes u_{k}$ and a permutation ρ of the first k integers, write $\rho(u)=u_{\rho(1)} \otimes \cdots \otimes u_{\rho(k)}$ and $\rho(v)$ for $\sum_{i} \rho\left(e_{i}\right)$. Then

$$
\|v\|=\|\rho(v)\|
$$

Moreover, if $w=w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}$ and

$$
v \otimes w=\sum_{i} e_{i} \otimes w
$$

then

$$
\|v \otimes w\|=\|v\| \cdot\|w\|
$$

Here $e_{i} \otimes w$ means the tensor product of the elements of e_{i} and w taken in the order indicated.

Proof. The proof of the lemma is easily adapted to this case.
Proof of Theorem 4.3 continued. Return now to the equation (4.3); since $p\left(\chi_{t}\right)$ is an operator of norm less than one, we have

$$
\left\|a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \leqslant\left\|b_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2}
$$

Now we can express $\left\|b_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2}$ as a sum of (products of) inner products of the form encountered in Lemma 4.5. We can apply the permutation which interchanges the first two terms in each inner product involving f 's, that is f_{1}^{i} with f_{2}^{i}, $f_{1}^{i^{\prime}}$ with f_{2}^{i} with similar interchanges for the f^{j} and $f^{j^{\prime}}$. This amounts interchanging $l^{*}\left(f_{1}^{i}\right)$ and $l^{*}\left(\chi_{t} f_{2}^{i}\right)$ and the corresponding creations involving the other f terms in the expression for $b_{\delta, q}^{t}$. This done it leaves us with an operator which we can write as $p\left(\chi_{t}\right) c_{\delta, q}^{t}$ and we have

$$
\left\|b_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2}=\left\|p\left(\chi_{t}\right) c_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \leqslant\left\|c_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2}
$$

Obviously we can iterate this procedure enough times to remove the χ_{t} 's from the first $\delta+q-1$ creation operators in every term of $a_{\delta, q}^{t}$. At the same time observe that

$$
\left\langle\chi_{t} h^{i}, u\right\rangle=\left\langle h^{i}, \chi_{t} u\right\rangle, \quad\left\langle\chi_{t} g u, \chi_{t} f\right\rangle=\left\langle g \chi_{t} u, f\right\rangle .
$$

Note also that in $u_{1} \otimes \cdots \otimes u_{k}$ the vectors $u_{q+1}, u_{q+2}, \ldots, u_{k}$ are unaffected by the action of the elements of $a_{\delta, q}^{t}$. Putting all of this together we arrive at

$$
\begin{aligned}
& \left\|a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \\
& \leqslant \|\left\{\sum_{i=1}^{n} l^{*}\left(f_{1}^{i}\right) \cdots l^{*}\left(f_{\delta+q-1}^{i}\right) p\left(g^{i}\right) l\left(h_{1}^{i}\right) \cdots l\left(h_{q-1}^{i}\right)\right. \\
& \left.+\sum_{j=1}^{m} l^{*}\left(\widetilde{f}_{1}^{j}\right) \cdots l^{*}\left(\widetilde{f}_{\delta+q-1}^{j}\right) l^{*}\left(\chi_{t} \widetilde{f}_{\delta+q}^{j}\right) l\left(\widetilde{h}_{1}^{j}\right) \cdots l\left(\widetilde{h}_{q}^{j}\right)\right\} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q} \|^{2} \\
& =\| \sum_{i=1}^{n} f_{1}^{i} \otimes \cdots \otimes f_{\delta+q-1}^{i} \otimes \chi_{t} g^{i} u_{q}\left\langle\overline{\left\langle h_{1}^{i}, \chi_{t} u_{q-1}\right\rangle \cdots\left\langle h_{q-1}^{i}, \chi_{t} u_{1}\right\rangle}\right. \\
& +\sum_{j=1}^{m} \widetilde{f}_{1}^{j} \otimes \cdots \otimes \widetilde{f}_{\delta+q-1}^{j} \otimes \chi_{t} \widetilde{f}_{\delta+q}^{j}\left\langle\overline{\left\langle\widetilde{h}_{1}^{j}, \chi_{t} u_{q}\right\rangle \cdots\left\langle\widetilde{h}_{q}^{j}, \chi_{t} u_{1}\right\rangle} \|^{2}\right. \\
& =\| \sum_{i=1}^{n} \chi_{t} g^{i} u_{q} \otimes f_{2}^{i} \otimes \cdots \otimes f_{\delta+q-1}^{i} \otimes f_{1}^{i}\left\langle\overline{\left.h_{1}^{i}, \chi_{t} u_{q-1}\right\rangle \cdots\left\langle h_{q-1}^{i}, \chi_{t} u_{1}\right.}\right\rangle \\
& +\sum_{j=1}^{m} \chi_{t} \widetilde{f}_{\delta+q}^{j} \otimes \widetilde{f}_{2}^{j} \otimes \cdots \otimes \widetilde{f}_{\delta+q-1}^{j} \otimes \widetilde{f}_{1}^{j}\left\langle\overline{\left.\widetilde{h}_{1}^{j}, \chi_{t} u_{q}\right\rangle \cdots\left\langle\widetilde{h}_{q}^{j}, \chi_{t} u_{1}\right\rangle} \|^{2}\right.
\end{aligned}
$$

we have interchanged the first and last terms of the tensor products as above

$$
\begin{aligned}
& \left\|a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \\
& =\| p\left(\chi_{t}\right)\left\{\sum_{i=1}^{n} g^{i} \chi_{t} u_{q} \otimes f_{2}^{i} \otimes \cdots \otimes f_{\delta+q-1}^{i} \otimes f_{1}^{i}\left\langle\overline{\left.h_{1}^{i}, \chi_{t} u_{q-1}\right\rangle \cdots\left\langle h_{q-1}^{i}, \chi_{t} u_{1}\right.}\right\rangle\right. \\
& +\sum_{j=1}^{m} \widetilde{f}_{\delta+q}^{j} \otimes \widetilde{f}_{2}^{j} \otimes \cdots \otimes \widetilde{f}_{\delta+q-1}^{j} \otimes \widetilde{f_{1}^{j}}\left\langle\overline{\left.\widetilde{h_{1}^{j}}, \chi_{t} u_{q}\right\rangle \cdots\left\langle\widetilde{h}_{q}^{j}, \chi_{t} u_{1}\right\rangle}\right\} \|^{2} \\
& \leqslant \| \sum_{i=1}^{n} f_{1}^{i} \otimes \cdots \otimes f_{\delta+q-1}^{i} \otimes g^{i} \chi_{t} u_{q}\left\langle\overline{\left.h_{1}^{i}, \chi_{t} u_{q-1}\right\rangle \cdots\left\langle h_{q-1}^{i}, \chi_{t} u_{1}\right\rangle}\right. \\
& +\sum_{j=1}^{m} \widetilde{f}_{1}^{j} \otimes \cdots \otimes \widetilde{f}_{\delta+q}^{j}\left\langle\overline{\left.\widetilde{h}_{1}^{j}, \chi_{t} u_{q}\right\rangle \cdots\left\langle\widetilde{h}_{q}^{j}, \chi_{t} u_{1}\right\rangle} \|^{2}\right.
\end{aligned}
$$

by using $\left\|p\left(\chi_{t}\right)\right\|=1$ and interchanging the first and last terms of the products as above

$$
\begin{aligned}
& \left\|a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \\
& =\|\left\{\sum_{i=1}^{n} l^{*}\left(f_{1}^{i}\right) \cdots l^{*}\left(f_{\delta+q-1}^{i}\right) p\left(g^{i}\right) l\left(h_{1}^{i}\right) \cdots l\left(h_{q-1}^{i}\right)\right. \\
& \left.\quad+\sum_{j=1}^{m} l^{*}\left(\widetilde{f}_{1}^{j}\right) \cdots l^{*}\left(\widetilde{f}_{\delta+q}^{j}\right) l\left(\widetilde{h}_{1}^{j}\right) \cdots l\left(\widetilde{h}_{q}^{j}\right)\right\} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q} \|^{2}
\end{aligned}
$$

or in other words

$$
\left\|a_{\delta, q}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\| \leqslant\left\|a_{\delta, q} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q}\right\| .
$$

Recalling the notation of Corollary 4.6,

$$
a_{\delta, q} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q} \otimes \chi_{t} u_{q+1} \otimes \cdots \otimes \chi_{t} u_{q+r}
$$

is equal to

$$
\left\{a_{\delta, q} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q}\right\} \otimes \chi_{t} u_{q+1} \otimes \cdots \otimes \chi_{t} u_{q+r}
$$

When $q=0$, this amounts to:

$$
a_{\delta, 0} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{r}=\left(a_{\delta, 0} \Omega\right) \otimes \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{r}
$$

For convenience, we define

$$
\sum_{q=\max (0,-\delta)}^{Q(\delta)} a_{\delta, q}=a_{\delta} .
$$

For $1 \leqslant q^{\prime} \leqslant Q(\delta)$, we can write

$$
a_{\delta} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q^{\prime}}=\sum_{q=\max (0,-\delta)}^{Q(\delta)} a_{\delta, q} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q^{\prime}}
$$

and the right hand side of the last equation is equal to

$$
\sum_{q=\max (0,-\delta)}^{q^{\prime}}\left(a_{\delta, q} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q}\right) \otimes \chi_{t} u_{q+1} \otimes \cdots \otimes \chi_{t} u_{q^{\prime}}
$$

also

$$
\begin{aligned}
& \left\{a_{\delta} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q^{\prime}-1}\right\} \otimes \chi_{t} u_{q^{\prime}} \\
& \quad=\sum_{q=\max (0,-\delta)}^{q^{\prime}-1}\left(a_{\delta, q} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q}\right) \otimes \chi_{t} u_{q+1} \otimes \cdots \chi_{t} u_{q^{\prime}-1} \otimes \chi_{t} u_{q^{\prime}}
\end{aligned}
$$

Substracting
$a_{\delta, q^{\prime}} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q^{\prime}}=a_{\delta} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q^{\prime}}-\left\{a_{\delta} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q^{\prime}-1}\right\} \otimes \chi_{t} u_{q^{\prime}}$.
By taking norms and using the triangle inequality:

$$
\left\|a_{\delta, q^{\prime}} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q^{\prime}}\right\| \leqslant\left\|a_{\delta} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q^{\prime}}\right\|+\left\|a_{\delta} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q^{\prime}-1}\right\|
$$

since $\left\|\chi_{t} u_{q^{\prime}}\right\|_{2} \leqslant 1$ while for $q^{\prime}=0$ we have $\left\|a_{\delta, 0} \Omega\right\| \leqslant\left\|a_{\delta} \Omega\right\|$. We combine these inequalities in the following

$$
\left\|a_{\delta, q^{\prime}}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\| \leqslant\left\|a_{\delta} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q^{\prime}}\right\|+\left\|a_{\delta} \chi_{t} u_{1} \otimes \cdots \otimes \chi_{t} u_{q^{\prime}-1}\right\|
$$

substituting in equation (4.2) we get

$$
\begin{aligned}
& \left\|a^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \\
& \leqslant \sum_{\delta=-\Delta}^{\Delta}\left\{\sum_{q=\max (1,-\delta)}^{Q(\delta)}\left(\left\|a_{\delta} \underline{v}_{q}\right\|+\left\|a_{\delta} \underline{v}_{q-1}\right\|\right)+\left\|a_{\delta} \Omega\right\|\right\}^{2} \\
& \leqslant \sum_{\delta=-\Delta}^{\Delta}(2 Q(\delta)+1) \cdot\left\{\sum_{q=\max (1,-\delta)}^{Q(\delta)}\left(\left\|a_{\delta} \underline{v}_{q}\right\|^{2}+\left\|a_{\delta} \underline{v}_{q-1}\right\|^{2}\right)+\left\|a_{\delta} \Omega\right\|^{2}\right\}
\end{aligned}
$$

since there are at most $2 Q(\delta)+1$ terms in the expression in $\{\cdot\}$

$$
\begin{aligned}
& \left\|a^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \\
& \leqslant \sum_{\delta=-\Delta}^{\Delta}(2 Q(\delta)+1) \cdot\left\{\sum_{q=\max (0,-(\delta+1))}^{Q(\delta)}\left\|a_{\delta} \underline{v}_{q}\right\|^{2}+\sum_{q=\max (0,-(\delta+1))}^{Q(\delta)-1}\left\|a_{\delta} \underline{v}_{q}\right\|^{2}\right\} \\
& \leqslant 2 \sum_{\delta=-\Delta}^{\Delta}(2 Q(\delta)+1) \cdot \sum_{q=\max (0,-(\delta+1))}^{Q(\delta)}\left\|a_{\delta} \underline{v}_{q}\right\|^{2} \\
& \leqslant(4 k+2) \sum_{\delta=-\Delta}^{\Delta} \sum_{q=\max (0,-(\delta+1))}^{k}\left\|a_{\delta} \underline{v}_{q}\right\|^{2} \text { since } Q(\delta) \leqslant k \\
& \leqslant(4 k+2) \sum_{\delta=-\Delta}^{\Delta} \sum_{q=0}^{k}\left\|a_{\delta} \underline{v}_{q}\right\|^{2}=(4 k+2) \sum_{q=0}^{k} \sum_{\delta=-\Delta}^{\Delta}\left\|a_{\delta} \underline{v}_{q}\right\|^{2}=(4 k+2) \sum_{q=0}^{k}\left\|a \underline{v}_{q}\right\|^{2}
\end{aligned}
$$

because $a_{\delta} \underline{v}_{q}$ are orthogonal for different value of δ, and $a=\sum_{\delta=-\Delta}^{\Delta} a_{\delta}$.
Each $a \in \mathcal{A}$ can be written as a sum of basic elements in a non unique way. We shall denote these different representations by $\pi, \rho, \sigma, \ldots$ So for a in \mathcal{A} with a representation π :

$$
a=\sum_{i} a_{i} \equiv a_{(\pi)}
$$

and a representation ρ :

$$
a=\sum_{j} a_{j}^{\prime} \equiv a_{(\rho)} .
$$

Note that the definition of a^{t} depended on a given representation of a and so we now have:

$$
a_{(\pi)}^{t}=\sum_{i} a_{i}^{t}, \quad a_{(\rho)}^{t}=\sum_{j} a^{\prime t}{ }_{j}
$$

for two different representations π, ρ of a. To define \widetilde{E}_{t} we need to show that in fact $a_{(\pi)}^{t}=a_{(\rho)}^{t}$ for different π and ρ. Given any

$$
a_{(\pi)}=\sum_{i=1}^{n} a_{i}, \quad b_{(\sigma)}=\sum_{j=1}^{m} b_{j}
$$

define

$$
\begin{equation*}
(a-b)_{(\pi-\sigma)}=\sum_{i=1}^{n} a_{i}-\sum_{j=1}^{m} b_{j} \tag{4.4}
\end{equation*}
$$

which is a representation of $a-b$ in \mathcal{A}. Hence,

$$
(a-b)_{(\pi-\sigma)}^{t}=\sum_{i=1}^{n} a_{i}^{t}-\sum_{j=1}^{m} b_{j}^{t}=a_{(\pi)}^{t}-b_{(\sigma)}^{t}
$$

Thus:

$$
a_{(\pi)}^{t}-a_{(\rho)}^{t}=(a-a)_{(\pi-\rho)}^{t}
$$

and

$$
\left\|(a-a)_{(\pi-\rho)}^{t} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \leqslant(4 k+2) \sum_{q=0}^{k}\left\|(a-a) \underline{v}_{q}\right\|^{2}=0
$$

for all $u_{1} \otimes \cdots \otimes u_{k} \in D$, hence $(a-a)_{(\pi-\rho)}^{t}=0$. So $a_{(\pi)}^{t}=a_{(\rho)}^{t}$. Now we can make
4.7. Definition. We can now define the function $\widetilde{E}_{t}: \mathcal{A} \rightarrow \mathcal{A}_{t}$ by

$$
\widetilde{E}_{t}(a)=a_{(\pi)}^{t}
$$

for any representation π of a.
Before we discuss the properties of \widetilde{E}_{t} we prove a theorem used in the extension to \mathcal{V}.
4.8. Theorem. (i) If $\left(a^{(n)}\right)_{n=1}^{\infty}$ is a sequence in \mathcal{A} which is Cauchy τ_{s}-on D^{0} then so is $\left(\widetilde{E}_{t} a^{(n)}\right)_{n=1}^{\infty}$.
(ii) If $\left(a^{(n)}\right)_{n=1}^{\infty}$ is a sequence in \mathcal{A} with $a^{(n)} \rightarrow 0, \tau_{\mathrm{s}}$-on D^{0} then $\widetilde{E}_{t} a^{(n)} \rightarrow 0$ likewise.

Proof. (i) Let $u_{1} \otimes \cdots \otimes u_{k} \in D$ for $k \in \mathbb{N} \cup\{0\}$. With $\underline{v}_{q}=\chi_{t} u_{1} \otimes \chi_{t} u_{2} \otimes$ $\chi_{t} \otimes \cdots \otimes \chi_{t} u_{q}$ we have that $a^{(n)} \underline{v}_{q}$ is Cauchy in \mathcal{F} for $0 \leqslant q \leqslant k$. Hence $\forall \varepsilon>0$, $\exists N(\varepsilon)$ such that $\forall n, m \geqslant N(\varepsilon)$

$$
\left\|\left[a^{(n)}-a^{(m)}\right] \underline{v}_{q}\right\|<\varepsilon, \quad 0 \leqslant q \leqslant k
$$

By Theorem 4.3

$$
\left\|\widetilde{E}_{t}\left(a^{(n)}-a^{(m)}\right) u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \leqslant(4 k+2) \sum_{q=0}^{k} \varepsilon^{2}=(k+1)(4 k+2) \varepsilon^{2}
$$

hence $\left(\widetilde{E}_{t} a^{(n)} u_{1} \otimes \cdots \otimes u_{k}\right)_{n=1}^{\infty}$ is Cauchy in \mathcal{F}. So $\left(\widetilde{E}_{t} a^{(n)}\right)_{n=1}^{\infty}$ is τ_{s}-on D^{0} Cauchy.
(ii) Suppose now that $a^{(n)} \rightarrow 0, \tau_{\mathrm{s}}$-on D^{0}. Let $u_{1} \otimes \cdots \otimes u_{k} \in D ; \forall \varepsilon>0$, $\exists N(\varepsilon)$ such that $\forall n \geqslant N(\varepsilon)$:

$$
\left\|a^{(n)} \underline{v}_{q}\right\|<\varepsilon, \quad 0 \leqslant q \leqslant k
$$

Again by Theorem 4.3

$$
\left\|\widetilde{E}_{t} a^{(n)} u_{1} \otimes \cdots \otimes u_{k}\right\|^{2} \leqslant(4 k+2)(k+1) \varepsilon^{2}
$$

Hence $\widetilde{E}_{t} a^{(n)} u_{1} \otimes \cdots \otimes u_{k} \rightarrow 0$ in \mathcal{F}, and so $\widetilde{E}_{t} a^{(n)} \rightarrow 0, \tau_{\mathrm{s}}$-on D^{0}.
4.9. Remark. The above results can be extended to " τ_{s}-on D " by linearity.
5. PROPERTIES OF \widetilde{E}_{t}
5.1. Theorem. (i) \widetilde{E}_{t} is a surjective linear map onto \mathcal{A}_{t} with $\widetilde{E}_{t}(I)=I$;
(ii) $\widetilde{E}_{t}^{2}=\widetilde{E}_{t}$;
(iii) $\forall a \in \mathcal{A},\left(\widetilde{E}_{t} a\right)^{*}=\widetilde{E}_{t}\left(a^{*}\right)$;
(iv) $\widetilde{E}_{t}\left[\left(\widetilde{E}_{t} a\right) \cdot b\right]=\widetilde{E}_{t} a \cdot \widetilde{E}_{t} b=\widetilde{E}_{t}\left[a \cdot\left(\widetilde{E}_{t} b\right)\right]$.

Proof. It is enough to consider basic elements and then to extend the result to \mathcal{A}. The proofs are straightforward, the details may be found in [7].

We shall now prove the following fundamental property of $\widetilde{E}_{t}: \widetilde{E}_{t}\left(a a^{*}\right) \geqslant 0$, $\forall a \in \mathcal{A}$ (with positivity in the operator sense).

First we introduce the notation we will use in the proof of this property. In particular:
(i) $|a|^{2}=a^{*} a, \forall a \in \mathcal{A}$, and so $\left|a^{*}\right|^{2}=a a^{*}$.
(ii) $\mathrm{R}(a)=\frac{a+a^{*}}{2}$, the real part of the operator a.
(iii) For any $a \in \mathcal{A}$ we write $a=\sum_{i=1}^{n} a_{i}$ where a_{i} denotes the sum of those basic elements which have the same number, $s(i)$, of annihilation operators and where $0 \leqslant s(1)<s(2)<\cdots<s(n), n \in \mathbb{N}$.
(iv) Further, we write $a_{i}=\sum_{j=1}^{m(i)} a^{i, j}$ with

$$
a^{i, j}=l^{*}\left(f_{1}^{s(i), j}\right) \cdots l^{*}\left(f_{r(i, j)}^{s(i), j}\right) p_{\nu_{i, j}}\left(g^{s(i), j}\right) l\left(h_{s(i)}^{s(i), j}\right) \cdots l\left(h_{1}^{s(i), j}\right)
$$

where $r(i, j)$ is the number of creation operators for the basic element $a^{i, j}, \nu_{i, j}$ ($=0$ or 1) is the number of gauge operators of $a^{i, j}$, and $p_{0}\left(g^{s(i), j}\right)=I$; while $\left.p_{1}\left(g^{s(i), j}\right)=p_{(} g^{s(i), j}\right)$. Let us make some contractions of notation. So, much as before, we will write

$$
\begin{aligned}
L^{*}\left(f_{r(i, j)}^{s(i), j}\right) & =l^{*}\left(f_{1}^{s(i), j}\right) \cdots l^{*}\left(f_{r(i, j)}^{s(i), j}\right) \\
p_{\nu_{i, j}} & =p_{\nu_{i, j}}\left(g^{s(i), j}\right) \\
L\left(h_{s(i)}^{s(i), j}\right) & =l\left(h_{s(i)}^{s(i), j}\right) \cdots l\left(h_{1}^{s(i), j}\right) .
\end{aligned}
$$

Notice that in the notation for L^{*} it is implicit that the index that counts the f 's runs from 1 up to $r(i, j)$ while in L the index runs from $s(i)$ down to 1 . We will need to consider different ranges for the counting indicies, so we will indicate these with the sufficies of the arguments of L^{*} and L. So, for example $L\left(h_{s(1), k}^{s(i), j}\right)$ is the product of the annihilation operators $l\left(h_{r}^{s(i), j}\right)$ with r running from $s(1)$ to k as we read left to right. It is worth noting that taking the adjoint of an L or L^{*} reverses the order of its counting index.

A preparatory lemma follows.
5.2. Lemma. For $d \in \mathcal{A}$ with

$$
d=\sum_{i=1}^{N} \sum_{j=1}^{m(i)} l^{*}\left(f_{1}^{s(i), j}\right) \cdots l^{*}\left(f_{r(i, j)}^{s(i), j}\right) p_{\nu_{i, j}}\left(g^{s(i), j}\right) l\left(h_{s(i)}^{s(i), j}\right) \cdots l\left(h_{1}^{s(i), j}\right),
$$

we have for any $0 \leqslant k \leqslant s(1)$,

$$
d d^{*} \geqslant \mid\left\{\left.\sum_{i=1}^{N} \sum_{j=1}^{m(i)} L^{*}\left(f_{r(i, j)}^{s(i), j}\right) p_{\nu_{i, j}} L\left(h_{s(i), s(1)+1}^{s(i), j}\right) L\left(\chi_{t} h_{s(1), k+1}^{s(i), j} L\left(h_{k}^{s(i), j}\right)\right\}^{*}\right|^{2}\right.
$$

Note that for $k=0$ the term $L\left(h_{k}^{s(i), j}\right)$ does not appear in the above expression.
Proof.

$$
\begin{aligned}
& d d^{*}= \sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} \sum_{j=1}^{m(i)} \sum_{j^{\prime}=1}^{m\left(i^{\prime}\right)}\left(\prod_{r=1}^{s(1)}\left\langle h_{r}^{s\left(i^{\prime}\right), j^{\prime}}, h_{r}^{s(i), j}\right\rangle\right) L^{*}\left(f_{r_{(i, j)}}^{s(i), j)}\right) p_{\nu_{i, j}} L\left(h_{s(i)}^{s(i), j}\right) \\
& \circ L^{*}\left(h_{s(i), s(1)+1}^{s\left(i^{\prime}\right), j^{\prime}}\right) L^{*}\left(h_{s(1)+1, s\left(i^{\prime}\right)}^{s\left(i^{\prime}\right), j^{\prime}}\right) p_{\nu_{i^{\prime}, j^{\prime}}^{*}}^{*} L\left(f_{r\left(i^{\prime}, j^{\prime}\right)}^{s\left(i^{\prime}\right), j^{\prime}}\right) .
\end{aligned}
$$

The term on the right hand side is equal to

$$
\begin{aligned}
& \left|\left\{\sum_{i=1}^{N} \sum_{j=1}^{m(i)} L^{*}\left(f_{r_{(i, j)}}^{s(i), j)}\right) p_{\nu_{i, j}} L\left(h_{s(i), s(1)+1}^{s(i), j}\right) L\left(h_{k}^{s(i), j}\right) L\left(h_{s(1), k+1}^{s(i), j}\right)\right\}^{*}\right|^{2} \\
& \geqslant\left|\left\{\sum_{i=1}^{N} \sum_{j=1}^{m(i)} L^{*}\left(f_{r_{(i, j)}}^{s(i), j)}\right) p_{\nu_{i, j}} L\left(h_{s(i), s(1)+1}^{s(i), j}\right) L\left(h_{k}^{s(i), j}\right) L\left(h_{s(1), k+1}^{s(i), j}\right) p\left(\chi_{t}\right)\right\}^{*}\right|^{2}
\end{aligned}
$$

The inequality is achieved simply by using the fact that for $a, b \in \mathcal{A}$ with $\|b\| \leqslant 1$, we have $a b^{*} b a^{*} \leqslant a a^{*}$. Now equation (i) of Section 2 tells us that $l\left(h_{k+1}^{s(i), j}\right) p\left(\chi_{t}\right)=$ $l\left(\chi_{t} h_{k+1}^{s(i), j}\right)$. Notice also that in the expression for $d d^{*}$ and the last term, the annihilation operators $l\left(h_{1}^{s(i), j}\right) \cdots l\left(h_{s(1)}^{s(i), j}\right)$ interact with each other to give inner product terms. As a consequence, the order of these terms can be varied (uniformly in every term of the double sum) without changing it. (There is a variant of Lemma 4.5 here.) So, by permuting the annihilation operators in $L\left(h_{s(1), k+2}^{s(i), j}\right) l\left(\chi_{t} h_{k+1}^{s(i), j}\right)$ and using the simple operator inequality above to insert a $p\left(\chi_{t}\right)$, we can arrive at the inequality

$$
d d^{*} \geqslant\left|\left\{\sum_{i=1}^{N} \sum_{j=1}^{m(i)} L^{*}\left(f_{r_{(i, j)}}^{s(i), j)}\right) p_{\nu_{i, j}} L\left(h_{s(i), s(1)+1}^{s(i), j}\right) L\left(h_{k}^{s(i), j}\right) L\left(\chi_{t} h_{s(1), k+1}^{s(i), j}\right)\right\}^{*}\right|^{2}
$$

By one last permutation of the annihilation operators we get

$$
d d^{*} \geqslant\left|\left\{\sum_{i=1}^{N} \sum_{j=1}^{m(i)} L^{*}\left(f_{r_{(i, j)}}^{s(i), j)}\right) p_{\nu_{i, j}} L\left(h_{s(i), s(1)+1}^{s(i), j}\right) L\left(\chi_{t} h_{s(1), k+1}^{s(i), j}\right) L\left(h_{k}^{s(i), j}\right)\right\}^{*}\right|^{2}
$$

5.3. Theorem. For each $a \in \mathcal{A}, \widetilde{E}_{t}\left(a a^{*}\right) \geqslant 0$.

Proof. Let $a=\sum_{i=1}^{n} \sum_{j=1}^{m(i)} a^{i, j}$ as before with

$$
a^{i, j}=L^{*}\left(f_{r(i, j)}^{s(i), j)}\right) p_{\nu_{i, j}} L\left(h_{s(i)}^{s(i), j}\right) .
$$

Define

$$
b_{k}=\left|\left\{\sum_{i=n-k+1}^{n} a_{i}\right\}^{*}\right|^{2}, \quad 1 \leqslant k \leqslant n, b_{0}=0
$$

and note that $b_{n}=a a^{*}=\left|a^{*}\right|^{2}$; furthermore, define

$$
{ }^{(\mu)} a_{i}=\sum_{j=1}^{m(i)} L^{*}\left(\chi_{t} f_{r(i, j)}^{s(i), j)}\right) p_{\nu_{i, j}} L\left(\chi_{t} h_{s(i), s(n-\mu)+1}^{s(i), j}\right) L\left(h_{s(n-\mu)}^{s(i), j}\right)
$$

with $n-i<\mu \leqslant n-1$, and

$$
{ }^{(n-i)} a_{i}=\sum_{j=1}^{m(i)} L^{*}\left(\chi_{t} f_{r_{(i, j)}}^{s(i), j)}\right) p_{\nu_{i, j}} L\left(h_{s(i)}^{s(i), j}\right) .
$$

Finally, write $p_{\nu_{i, j}}\left(\chi_{t}\right)$ for $p_{\nu_{i, j}}\left(\chi_{t} g^{s(n), j}\right)$. We now consider

$$
\begin{aligned}
& \widetilde{E}_{t} b_{1}=\widetilde{E}_{t}\left(a_{n} a_{n}^{*}\right)=\widetilde{E}_{t}\left\{\sum_{j=1}^{m(n)} \sum_{j^{\prime}=1}^{m(n)} a^{n, j} a^{n, j^{\prime *}}\right\} \\
& =\widetilde{E}_{t}\left\{\sum_{j=1}^{m(n)} \sum_{j^{\prime}=1}^{m(n)} L^{*}\left(f_{r_{(n, j)}}^{s(n), j}\right) p_{\nu_{n, j}} L\left(h_{s(n)}^{s(n), j}\right) L^{*}\left(h_{s(n)}^{s(n), j^{\prime}}\right) p_{\nu_{n, j^{\prime}}^{*}}^{*} L\left(f_{\left.r_{\left(n, j^{\prime}\right)}^{s(n), j^{\prime}}\right)}^{m}\right\}\right. \\
& =\sum_{j=1}^{m(n)} \sum_{j^{\prime}=1}^{m(n)}\left(\prod_{r=1}^{s(n)}\left\langle h_{r}^{s(n), j^{\prime}}, h_{r}^{s(n), j}\right\rangle\right) L^{*}\left(\chi_{t} f_{r_{(n, j)}}^{s(n), j}\right) p_{\nu_{n, j}}\left(\chi_{t}\right) p_{\nu_{n, j^{\prime}}^{*}}^{*}\left(\chi_{t}\right) L\left(\chi_{t} f_{r\left(n, j^{\prime}\right)}^{s(n), j^{\prime}}\right) \\
& =\sum_{j=1}^{m(n)} \sum_{j^{\prime}=1}^{m(n)} L^{*}\left(\chi_{t} f_{r_{(n, j)}}^{s(n), j}\right) p_{\nu_{n, j}}\left(\chi_{t}\right) L\left(h_{s(n)}^{s(n), j}\right) L^{*}\left(h_{s(n)}^{s(n), j^{\prime}}\right) p_{\nu_{n, j^{\prime}}}\left(\chi_{t}\right) L\left(\chi_{t} f_{r_{\left(n, j^{\prime}\right)}^{s(n), j^{\prime}}}^{s}\right) \\
& =\left|\left\{\sum_{j=1}^{m(n)} L^{*}\left(\chi_{t} f_{r_{(n, j)}}^{s(n), j}\right) p_{\nu_{n, j}}\left(\chi_{t}\right) L\left(h_{s(n)}^{s(n), j}\right)\right\}^{*}\right|^{2}={ }^{(0)} a_{n} \cdot{ }^{(0)} a_{n}^{*} \text {. }
\end{aligned}
$$

We shall now show that:

$$
\widetilde{E}_{t}\left(b_{\mu+1}\right) \geqslant\left|\left\{{ }^{(\mu)} a_{n}+{ }^{(\mu)} a_{n-1}+\cdots+{ }^{(\mu)} a_{n-\mu}\right\}^{*}\right|^{2}
$$

for $0 \leqslant \mu \leqslant n-1$. Indeed, we showed previously that:

$$
\widetilde{E}_{t}\left(b_{1}\right)={ }^{(0)} a_{n} \cdot{ }^{(0)} a_{n}^{*}
$$

We shall show this by proving that

$$
\begin{aligned}
\widetilde{E}_{t}\left(b_{\mu}\right) & \geqslant\left|\left\{{ }^{(\mu-1)} a_{n}+\cdots+{ }^{(\mu-1)} a_{n-\mu+1}\right\}^{*}\right|^{2} \\
\Rightarrow \widetilde{E}_{t}\left(b_{\mu+1}\right) & \geqslant\left|\left\{{ }^{(\mu)} a_{n}+\cdots+{ }^{(\mu)} a_{n-\mu}\right\}^{*}\right|^{2}, \quad \text { for } 0 \leqslant \mu \leqslant n-1 .
\end{aligned}
$$

To begin with

$$
\begin{align*}
\widetilde{E}_{t}\left(b_{\mu+1}\right)= & \widetilde{E}_{t}\left|\left\{\sum_{i=n-\mu}^{n} a_{i}\right\}^{*}\right|^{2} \\
= & \widetilde{E}_{t}\left[\left\{\left(\sum_{i=n-\mu+1}^{n} a_{i}\right)+a_{n-\mu}\right\}\left\{\left(\sum_{i^{\prime}=n-\mu+1}^{n} a_{i^{\prime}}^{*}\right)+a_{n-\mu}^{*}\right\}\right] \\
= & \widetilde{E}_{t}\left\{b_{\mu}+2 \mathrm{R}\left(a_{n-\mu} \cdot \sum_{i^{\prime}=n-\mu+1}^{n} a_{i^{\prime}}^{*}\right)+\left|a_{n-\mu}^{*}\right|^{2}\right\} \tag{5.1}\\
\geqslant & \left\lvert\,\left\{\begin{array}{c}
(\mu-1) \\
\left.a_{n}+\cdots+{ }^{(\mu-1)} a_{n-\mu+1}\right\}\left.^{*}\right|^{2} \\
\\
\end{array}+2 \mathrm{R}\left\{\widetilde{E}_{t}\left(a_{n-\mu} \cdot \sum_{i^{\prime}=n-\mu+1}^{n} a_{i^{\prime}}^{*}\right)\right\}+\widetilde{E}_{t}\left|a_{n-\mu}^{*}\right|^{2}\right.\right.
\end{align*}
$$

using the hypothesis and because $\widetilde{E}_{t}\{\mathrm{R}(a)\}=\mathrm{R}\left(\widetilde{E}_{t} a\right)$. Consider first:

$$
\begin{aligned}
\widetilde{E}_{t}\left|a_{n-\mu}^{*}\right|^{2}= & \widetilde{E}_{t}\left(a_{n-\mu} \cdot a_{n-\mu}^{*}\right) \\
= & \widetilde{E}_{t}\left\{\sum_{j=1}^{m(n-\mu)} \sum_{j^{\prime}=1}^{m(n-\mu)} L^{*}\left(f_{r(n-\mu, j)}^{s(n-\mu), j}\right) p_{\nu_{n-\mu, j}} L\left(h_{s(n-\mu)}^{s(n-\mu), j}\right)\right. \\
& \left.\cdot L^{*}\left(h_{s(n-\mu)}^{s(n-\mu), j}\right) p_{\nu_{n-\mu, j^{\prime}}^{*}}^{*} L\left(f_{r\left(n-\mu, j^{\prime}\right)}^{s(n-\mu) j^{\prime}}\right)\right\} \\
= & \sum_{j=1}^{m(n-\mu)} \sum_{j^{\prime}=1}^{m(n-\mu)}\left(\prod_{r=1}^{s(n-\mu)}\left\langle h_{r}^{s(n-\mu), j^{\prime}}, h_{r}^{s(n-\mu), j}\right\rangle\right) \\
= & \left\lvert\,\left\{^{\sum^{*}\left(\chi_{t} f_{r(n-\mu, j)}^{s(n-\mu), j}\right) p_{\nu_{n-\mu, j}}\left(\chi_{t}\right) p_{\nu_{n-\mu, j^{\prime}}}\left(\chi_{t}\right)^{*} L\left(\chi_{t} f_{r\left(n-\mu, j^{\prime}\right)}^{\left.s(n-\mu), j^{\prime}\right)}\right)} \begin{array}{l}
\left.\left.L_{j=1}^{*} f_{r(n-\mu, j)}^{s(n-\mu), j}\right) p_{\nu_{n-\mu, j}}\left(\chi_{t}\right) L\left(h_{s(n-\mu)}^{s(n-\mu), j}\right)\right\}\left.^{*}\right|^{2} \\
=
\end{array}{ }^{(\mu)} a_{n-\mu}{ }^{(\mu)} a_{n-\mu}^{*}=\left.\left.\right|^{(\mu)} a_{n-\mu}^{*}\right|^{2} .\right.\right.
\end{aligned}
$$

Now, the following inequality follows from Lemma 5.2

$$
\left|\left\{{ }^{(\mu-1)} a_{n}+\cdots+{ }^{(\mu-1)} a_{n-\mu+1}\right\}^{*}\right|^{2} \geqslant\left|\left\{{ }^{(\mu)} a_{n}+\cdots+{ }^{(\mu)} a_{n-\mu+1}\right\}^{*}\right|^{2}
$$

using the notation of that lemma, $d={ }^{(\mu-1)} a_{n}+\cdots+{ }^{(\mu-1)} a_{n-\mu+1}, s(n-\mu+1)$ is the minimum number of annihilation operators of d, corresponding to $s(1)$ of Lemma 5.2, and $s(n-\mu)$ corresponds to k in Lemma 5.2.

Finally, we consider the term

$$
\widetilde{E}_{t}\left\{a_{n-\mu} \cdot \sum_{i^{\prime}=n-\mu+1}^{n} a_{i^{\prime}}^{*}\right\}
$$

which is equal to

$$
\begin{aligned}
& \sum_{i^{\prime}=n-\mu+1}^{n} \widetilde{E}_{t}\left\{\sum_{j=1}^{m(n-\mu)} L^{*}\left(f_{r(n-\mu, j)}^{s(n-\mu), j}\right) p_{\nu_{n-\mu}, j} L\left(h_{s(n-\mu)}^{s(n-\mu), j}\right)\right. \\
& \cdot \sum_{j^{\prime}=1}^{m\left(i^{\prime}\right)} L^{*}\left(h_{s\left(i^{\prime}\right)}^{s\left(i^{\prime}\right), j^{\prime}}\right) p_{\nu_{i^{\prime}, j^{\prime}}^{*}} L\left(f_{r\left(i^{\prime}, j^{\prime}\right)}^{\left.s\left(i^{\prime}\right), j^{\prime}\right)}\right\} \\
&= \sum_{i^{\prime}=n-\mu+1}^{n} \sum_{j=1}^{m(n-\mu)} \sum_{j^{\prime}=1}^{m\left(i^{\prime}\right)}\left\{\left(\prod_{r=1}^{s(n-\mu)}\left\langle h_{r}^{s\left(i^{\prime}\right), j^{\prime}}, h_{r}^{s(n-\mu), j}\right\rangle\right) L^{*}\left(\chi_{t} f_{r(n-\mu, j)}^{s(n-\mu), j}\right) p_{\nu_{n-\mu, j}}\left(\chi_{t}\right)\right. \\
&=\left\{L^{*}\left(\chi_{t} h_{s(n-\mu)+1, s\left(i^{\prime}\right)}^{s\left(i^{\prime}\right), j^{\prime}}\right) p_{\nu_{i^{\prime}, j^{\prime}}}\left(\chi_{t}\right)^{*} L\left(\chi_{t} f_{r\left(i^{\prime}, j^{\prime}\right)}^{s\left(i^{\prime}\right), j^{\prime}}\right)\right\} \\
& \sum_{j=1}^{m(n-\mu)} L^{*}\left(\chi_{t} f_{r(n-\mu, j)}^{s(n-\mu), j} p_{\nu_{n-\mu, j}}\left(\chi_{t}\right) L\left(h_{s(n-\mu)}^{s(n-\mu), j}\right)\right\} \\
& \cdot\left\{\sum_{i^{\prime}=n-\mu+1}^{n} \sum_{j^{\prime}=1}^{m(i)} L^{*}\left(\chi_{t} f_{r\left(i^{\prime}, j^{\prime}\right)}^{s\left(i^{\prime}\right), j}\right) p_{\nu_{i^{\prime}, j^{\prime}}}\left(\chi_{t}\right) L\left(\chi_{t} h_{s\left(i^{\prime}\right), s(n-\mu)}^{s\left(i^{\prime}\right), j^{\prime}}\right) L\left(h_{s(n-\mu)}^{s\left(i^{\prime}\right), j^{\prime}}\right)\right\}^{*}
\end{aligned}
$$

Hence inequality (5.1) becomes

$$
\begin{aligned}
\widetilde{E}_{t}\left(b_{\mu+1}\right) & \geqslant\left|\left\{{ }^{(\mu)} a_{n}+\cdots{ }^{(\mu)} a_{n-\mu+1}\right\}^{*}\right|^{2}+2 \mathrm{R}\left[{ }^{(\mu)} a_{n-\mu} \cdot \sum_{i^{\prime}=n-\mu+1}^{n}{ }^{(\mu)} a_{i^{\prime}}^{*}\right]+\left.{ }^{(\mu)} a_{n-\mu}^{*}\right|^{2} \\
& =\left|\left\{{ }^{(\mu)} a_{n}+\cdots+{ }^{(\mu)} a_{n-\mu}\right\}^{*}\right|^{2}
\end{aligned}
$$

as required. Finally, using this result $(n-1)$-times beginning with $\widetilde{E}_{t}\left(b_{1}\right)=$ ${ }^{(0)} a_{n} \cdot{ }^{(0)} a_{n}^{*}$ we get

$$
\widetilde{E}_{t}\left(b_{n}\right) \geqslant\left|\left\{{ }^{(n-1)} a_{n}+\cdots+{ }^{(n-1)} a_{1}\right\}^{*}\right|^{2} .
$$

Hence

$$
\widetilde{E}_{t}\left(a a^{*}\right)=\widetilde{E}_{t} b_{n} \geqslant 0
$$

5.4. Corollary. If $b \in \mathcal{A}$ and $b \geqslant 0$, then $\widetilde{E}_{t}(b) \geqslant 0$.

Proof. Let $\overline{\mathcal{A}}^{\tau_{\mathrm{n}}}$ denote the norm closure of \mathcal{A}. For $b \in \mathcal{A}, b \geqslant 0$, there is an element $a \in \overline{\mathcal{A}}^{\tau_{\mathrm{n}}}$ with $b=a a^{*}$, since $\overline{\mathcal{A}}^{\tau_{\mathrm{n}}}$ is a C^{*}-algebra. Since $a \in \overline{\mathcal{A}}^{\tau_{\mathrm{n}}}$ there is a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ in \mathcal{A} with $a_{n} \rightarrow a$ in τ_{n}-topology. Since multiplication and *-operation are τ_{n}-continuous $a_{n} \cdot a_{n}^{*} \rightarrow b$ in the τ_{n}-topology. Hence, $a_{n} a_{n}^{*} \rightarrow b$ pointwise on D^{0} or $b-a_{n} \cdot a_{n}^{*} \rightarrow 0$ pointwise on D^{0}. Now by Theorem 4.8, $\widetilde{E}_{t}\left(b-a_{n} \cdot a_{n}^{*}\right) \rightarrow 0$ pointwise on D^{0}. By linearity, $\widetilde{E}_{t}\left(b-a_{n} \cdot a_{n}^{*}\right) \rightarrow 0$ pointwise on D. So $\forall u \in D$:

$$
\left\langle\widetilde{E}_{t} b u, u\right\rangle=\lim _{n \rightarrow \infty}\left\langle\widetilde{E}_{t}\left(a_{n} \cdot a_{n}^{*}\right) u, u\right\rangle \geqslant 0
$$

by Theorem 5.3.
Finally, for $h \in \mathcal{F}, \exists$ a sequence $\left(u_{n}\right)_{n=1}^{\infty}$ in span D with $u_{n} \rightarrow h$; then

$$
\left\langle\widetilde{E}_{t} b h, h\right\rangle=\lim _{n \rightarrow \infty}\left\langle\widetilde{E}_{t} b u_{n}, u_{n}\right\rangle
$$

since $\widetilde{E}_{t} b$ is a bounded operator and thus $\left\langle\widetilde{E}_{t} b h, h\right\rangle \geqslant 0$. Therefore $\widetilde{E}_{t} b \geqslant 0$.
Lemma 5.5. For every $a \in \mathcal{A}$

$$
\widetilde{E}_{t}\left(a \cdot a^{*}\right) \geqslant \widetilde{E}_{t} a \cdot \widetilde{E}_{t} a^{*}
$$

and

$$
\left\|\widetilde{E}_{t} a\right\| \leqslant\|a\|
$$

Proof. By Theorem 5.3, for the element $a-\widetilde{E}_{t} a$ we have

$$
\begin{aligned}
& \widetilde{E}_{t}\left\{\left(a-\widetilde{E}_{t} a\right) \cdot\left(a-\widetilde{E}_{t} a\right)^{*}\right\} \geqslant 0 \\
& \Rightarrow \widetilde{E}_{t}\left\{a \cdot a^{*}-\widetilde{E}_{t} a \cdot a^{*}-a \cdot \widetilde{E}_{t} a^{*}+\widetilde{E}_{t} a \cdot \widetilde{E}_{t} a^{*}\right\} \geqslant 0 \\
& \Rightarrow \widetilde{E}_{t}\left(a \cdot a^{*}\right)-\widetilde{E}_{t} a \cdot \widetilde{E}_{t} a^{*}-\widetilde{E}_{t} a \widetilde{E}_{t} a^{*}+\widetilde{E}_{t} a \cdot \widetilde{E}_{t} a^{*} \geqslant 0
\end{aligned}
$$

(by Theorem 5.1 (iii)-(iv))

$$
\begin{aligned}
& \Rightarrow \widetilde{E}_{t}\left(a \cdot a^{*}\right) \geqslant \widetilde{E}_{t} a \cdot \widetilde{E}_{t} a^{*} \\
& \Rightarrow\left\|\widetilde{E}_{t}\left(a a^{*}\right)\right\| \geqslant\left\|\widetilde{E}_{t} a \cdot \widetilde{E}_{t} a^{*}\right\|
\end{aligned}
$$

(since for any two positive operators a, b in \mathcal{A} with

$$
\begin{aligned}
& \left.a \geqslant b \text { we have }\|a\|=\sup _{\|h\| \leqslant 1}\langle a h, h\rangle \leqslant \sup _{\|h\| \leqslant 1}\langle b h, h\rangle=\|b\|\right) \\
& \Rightarrow\left\|\widetilde{E}_{t}\left(a a^{*}\right) \geqslant\right\| \widetilde{E}_{t} a \|^{2}
\end{aligned}
$$

(since the bounded operators on \mathcal{F} form a C^{*}-algebra).
Now $\|a\|^{2} \mathcal{I} \geqslant a a^{*}$ and \widetilde{E}_{t} is positivity preserving so $\|a\| \geqslant\left\|\widetilde{E}_{t} a\right\|$.
We can now extend the expectation to \mathcal{V}.

6. DEFINITION OF E_{t}

6.1. Lemma. (i) If $\left(a_{n}\right)_{n=1}^{\infty}$ is a sequence in \mathcal{A} which is Cauchy in the $\tau_{\mathrm{s}^{-}}$ topology, then $\left(\widetilde{E}_{t} a_{n}\right)_{n=1}^{\infty}$ is also Cauchy in the τ_{s}-topology.
(ii) If $\left(a_{n}\right)_{n=1}^{\infty}$ is a sequence in \mathcal{A} such that $a_{n} \rightarrow 0$ in the τ_{s}-topology, then $\widetilde{E}_{t} a_{n} \rightarrow 0$ in the τ_{s}-topology.

Proof. (i) As $\left(a_{n}\right)$ is τ_{s} Cauchy on \mathcal{F} it is certainly Cauchy τ_{s}-on D. By Theorem 4.8, $\left(\widetilde{E}_{t} a_{n}\right)_{n=1}^{\infty}$ is Cauchy τ_{s}-on D. By Banach-Steinhaus Theorem

$$
\sup _{n}\left\|a_{n}\right\|<\infty
$$

and by Lemma 5.5

$$
\sup _{n}\left\|\widetilde{E}_{t} a_{n}\right\| \leqslant \sup _{n}\left\|a_{n}\right\|<\infty
$$

So we have a uniformly bounded sequence of operators pointwise convergent on a linear set dense in \mathcal{F}. It follows that $\left(\widetilde{E}_{t} a_{n}\right)_{n=1}^{\infty}$ is Cauchy in the τ_{s}-topology.
(ii) The proof of this is similar to (i).
6.2. Lemma. If $x \in \mathcal{V}, \exists\left(a_{n}\right)_{n=1}^{\infty}$ in \mathcal{A} such that $a_{n} \rightarrow x$ in the τ_{s}-topology.

Proof. Kaplansky's density theorem tells us that any operator T in \mathcal{V}_{1} is the τ_{s}-limit of a net of operators from \mathcal{A}. Since in our case the τ_{s}-topology is metrisable on bounded subsets of $B(\mathcal{F})$ we can choose a subsequence from this net converging τ_{s} to T.
6.3. Definition. Let $x \in \mathcal{V}$, by Lemma 6.2 we can choose an $\left(a_{n}\right)_{n=1}^{\infty}$ in \mathcal{A} with $a_{n} \rightarrow x$ in the τ_{s}-topology. By Theorem 4.8 (i), since $\left(a_{n}\right)$ is τ_{s} Cauchy then so is $\left(\widetilde{E}_{t}\left(a_{n}\right)\right)$. Since \mathcal{V}_{t} is complete for the τ_{s}-topology it follows that $\widetilde{E}_{t} a_{n}$ converges to an element of \mathcal{V}_{t}. Define

$$
E_{t} x=\lim \widetilde{E}_{t} a_{n} \in \mathcal{V}_{t}
$$

Suppose now that $\left(b_{n}\right)$ is another sequence from \mathcal{A} converging $\tau_{\text {s }}$ to x. Then $a_{n}-b_{n} \rightarrow 0$ and $\left(a_{n}-b_{n}\right)$ is a sequence in \mathcal{A}. By Theorem 4.8 (ii), $\widetilde{E}_{t}\left(a_{n}-b_{n}\right) \rightarrow 0$ in the τ_{s}-topology, or $\widetilde{E}_{t} b_{n} \rightarrow E_{t} x$. So E_{t} is well defined. Finally, we note that if $x \in \mathcal{A}, E_{t} x=\widetilde{E}_{t} x$.
6.4. Lemma. (Properties if E_{t}) (i) E_{t} is a linear map from \mathcal{V} onto \mathcal{V}_{t};
(ii) $\left(E_{t} x\right)^{*}=E_{t} x^{*}, \forall x \in \mathcal{V}$;
(iii) $E_{t}^{2}=E_{t}$;
(iv) $E_{t}\left[\left(E_{t} x\right) \cdot y\right]=E_{t} x \cdot E_{t} y=E_{t}\left[x \cdot\left(E_{t} y\right)\right], \forall x, y \in \mathcal{V}$;
(v) $E_{t} x \geqslant 0, \forall x \in \mathcal{V}_{+}$;
(vi) $\left\|E_{t} x\right\| \leqslant\|x\|, \forall x \in \mathcal{V}$.

These properties show that E_{t} is a conditional expectation.
Proof. Items (i), (ii), (iii) are proved in the obvious way.
(iv) Suppose $x, y \in \mathcal{V}$ with $a_{n} \rightarrow x, b_{n} \rightarrow y$ in the τ_{s}-topology and $\left(a_{n}\right),\left(b_{n}\right) \subseteq$ \mathcal{A}. Then, by Banach-Steinhaus Theorem

$$
\sup _{n}\left\|a_{n}\right\|_{\infty}<\infty, \quad \sup _{n}\left\|b_{n}\right\|_{\infty}<\infty
$$

Furthermore, $\widetilde{E}_{t} a_{n} \rightarrow E_{t} a$ in the τ_{s}-topology, and $\sup _{n}\left\|\widetilde{E}_{t} a_{n}\right\|<\infty$. Now,

$$
\begin{aligned}
E_{t}\left[\left(E_{t} x\right) \cdot y\right] & =E_{t}\left[\left\{\lim _{n \rightarrow \infty}\left(\widetilde{E}_{t} a_{n}\right)\right\} \cdot\left\{\lim _{n \rightarrow \infty} b_{n}\right\}\right] \\
& =E_{t}\left[\lim _{n \rightarrow \infty}\left(\widetilde{E}_{t} a_{n} \cdot b_{n}\right)\right]
\end{aligned}
$$

(since multiplication is continuous in the τ_{s}-topology)

$$
=\lim _{n \rightarrow \infty} \widetilde{E}_{t}\left[\left(\widetilde{E}_{t} a_{n}\right) \cdot b_{n}\right]
$$

(by definition of E_{t} and since $\left(\widetilde{E}_{t} a_{n}\right) \cdot b_{n} \in \mathcal{A}, \forall n \in \mathbb{N}$)

$$
=\lim _{n \rightarrow \infty}\left[\left(\widetilde{E}_{t} a_{n}\right) \cdot\left(\widetilde{E}_{t} b_{n}\right)\right]
$$

(properties of \widetilde{E}_{t})

$$
=\left(\lim _{n \rightarrow \infty} \widetilde{E}_{t} a_{n}\right) \cdot\left(\lim _{n \rightarrow \infty} \widetilde{E}_{t} b_{n}\right)
$$

(continuity of multiplication in the τ_{s}-topology on bounded sets)

$$
=E_{t} x \cdot E_{t} y
$$

Furthermore,

$$
\begin{aligned}
\left\{E_{t}\left[x \cdot\left(E_{t} y\right)\right]\right\}^{*} & =E_{t}\left\{\left[x \cdot E_{t} y\right]^{*}\right\} \quad(\text { by }(\text { ii })) \\
& =E_{t}\left\{E_{t} y^{*} \cdot x^{*}\right\} \quad(\text { by (ii)) } \\
& =E_{t} y^{*} \cdot E_{t} x^{*} \quad(\text { by above }) \\
& =\left[E_{t} x \cdot E_{t} y\right]^{*} \quad(\text { by }(\mathrm{ii})) \\
E_{t}\left[E_{t}(x) \cdot y\right]=E_{t} x & E_{t} y=E_{t}\left[x \cdot\left(E_{t} y\right)\right], \quad \forall x, y \in \mathcal{V} .
\end{aligned}
$$

Item (v) uses the fact that $\forall x \in \mathcal{V}_{+}, \exists y=y^{*} \in \mathcal{V}$ such that $y^{2}=x$. Approximating y with a sequence $\left(a_{n}\right)$ of Hermitian elements from \mathcal{A}, we see that $\left(a_{n}^{2}\right)$ approximates x, and each a_{n}^{2} is a positive operator.

$$
\widetilde{E}_{t}\left(a_{n}^{2}\right) \rightarrow E_{t}\left(y^{2}\right)=E_{t} x
$$

in the τ_{s}-topology. So $E_{t} x$ is a strong operator limit of positive operators, so it is positive.
(vi) follows from (v) with x replased by $\left(x-E_{t} x\right) \cdot\left(x-E_{t} x\right)^{*}$.
6.5. Theorem. E_{t} is τ_{s}-continuous on bounded sets of \mathcal{V}.

Proof. It suffices to show that:

$$
E_{t}:\left(\mathcal{V}_{1}, \tau_{\mathrm{s}} \text {-topology }\right) \rightarrow\left(\mathcal{V}_{1}, \tau_{\mathrm{s}} \text {-topology }\right)
$$

is continuous. $\left(\left\|E_{t} x\right\| \leqslant\|x\|\right.$ so $E_{t}\left(\mathcal{V}_{1}\right) \subset \mathcal{V}_{1}$.)
By Lemma 2.3, ($\mathcal{V}_{1}, \tau_{\mathrm{s}}$-topology $)$ is metrisable, and we shall denote this metric by ρ.

So all we need to show is that if $x_{n} \rightarrow x$ in ρ in \mathcal{V}_{1} then $E_{t} x_{n} \rightarrow E_{t} x$ in ρ.
By definition of $E_{t} x_{n}, \exists a_{n} \in \mathcal{A}$ such that:

$$
\rho\left(x_{n}, a_{n}\right)<\frac{1}{n} \quad \text { and } \quad \rho\left(E_{t} x_{n}, E_{t} a_{n}\right)<\frac{1}{n} .
$$

Hence

$$
\rho\left(a_{n}, x\right) \leqslant \rho\left(a_{n}, x_{n}\right)+\rho\left(x_{n}, x\right) \rightarrow 0 .
$$

So $a_{n} \rightarrow x$ in the ρ-topology.
By the definition of $E_{t} x, E_{t} a_{n} \rightarrow E_{t} x$ in ρ.
Hence:

$$
\rho\left(E_{t} x_{n}, E_{t} x\right) \leqslant \rho\left(E_{t} x_{n}, E_{t} a_{n}\right)+\rho\left(E_{t} a_{n}, E_{t} x\right) \rightarrow 0
$$

as required.

REFERENCES

1. C. Barnett, R.F. Streater, I.F. Wilde, The Ito-Clifford integral, J. Funct. Anal. 48(1982), 142-212.
2. C. Barnett, R.F. Streater, I.F. Wilde, Quasi-Free quantum stochastic integrals for the C.A.R. and C.C.R., J. Funct. Anal. 52(1983), 17-47.
3. C. Barnett, I.F. Wilde, Random times, predictable processes and stochastic integration in finite von Neumann algebras, Proc. London. Math. Soc. (3) 67(1993), 355-383.
4. C. Barnett, A. Voliotis, Stochastic integration on the full Fock space, preprint.
5. F. FAGNOLA, On quantum stochastic integration with respect to free noise, in Quantum probability and related topics, World Sci. Publishing, 1991, pp. 285-304.
6. R. Speicher, Survey on the Stochastic integration on the full-Fock space, in Quantum probability and related topics, World Sci. Publishing, 1991, pp. 421-435.
7. A. Voliotis, Ph.D. Dissertation, Imperial College London, 1994.

C. BARNETT

Centre for Quantitative Finance
Imperial College
Exhibition Road
London SW7 2BX
U.K.

E-mail: c.barnett@ic.ac.uk

A. VOLIOTIS

C. Paleologou 73

Nea Erythrea
14671 Athens GREECE
E-mail: aeakis@netor.gr

