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Abstract. Let H be a densely defined linear operator acting on a Hilbert
space H, let P be the orthogonal projection onto a closed linear subspace L
and let n ∈ N. The n-th order spectrum Specn(H,L) of H relative to L is
the set of z ∈ C such that the restriction to L of the operator P (H − zI)nP
is not invertible within the subspace L. We study restrictions which may be
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1. INTRODUCTION

Let H be a bounded self-adjoint operator on a Hilbert space H. In order to deter-
mine the spectrum Spec(H) of H, one can use the following projection method.
Let (Lk) be a sequence of subspaces of H and suppose that the corresponding
orthogonal projections Pk : H → Lk converge strongly to the identity operator. Is
it true that

(1.1) lim
k→∞

Spec1(H,Lk) = Spec(H),

where Spec1(H,Lk) is the spectrum of the restriction to Lk of the operator PkHPk

and “lim” is defined in an appropriate sense?
One can show that the inclusion

lim
k→∞

Spec1(H,Lk) ⊃ Spec(H),

is always true (see, e.g., [1], Theorem 2.3 or Lemma 7.2 below). Whether the
equality holds depends on the essential spectrum Spece(H) of H. If Spece(H)
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is connected, then (1.1) is valid (see Corollary 7.3), but if Spece(H) is not con-
nected, there exist sequences (Lk) such that lim

k→∞
Spec1(H,Lk) is strictly larger

than Spec(H) (see Theorem 6.1 and (2.10)). The projection methods of approx-
imating Spec(H) by Spec1(H,Lk) may lead to spurious points laying in gaps of
Spece(H). In this paper we show that projection methods using higher order
relative spectra are free from this defect (see Theorem 7.1 and Corollaries 3.4,
4.2).

Definition 1.1. Let H be a densely defined linear operator acting on a
Hilbert space H and let P be the orthogonal projection onto a closed linear sub-
space L. We assume either that H is bounded or that L is finite-dimensional and
contained in the domain of Hn for a given n ∈ N. Let Mn(z) denote the restric-
tion to L of the operator P (H − zI)nP , z ∈ C. We define the n-th order spectrum
Specn(H,L) of H relative to L to be the set of z such that the operator Mn(z) is
not invertible within the subspace L.

This definition is due to E.B. Davies, who suggested that second order relative
spectra might be useful for approximate computation of spectra of self-adjoint
operators and started the study of their connections with complex resonances (see
[2], Section 9).

Specn(H,L) is a non-empty compact set (see [2], Theorem 17) which may
contain complex numbers even if H is self-adjoint. In Sections 6–7 we investigate
the behaviour of Specn(H,L) as L increases towards H. In particular, we prove
that for any bounded self-adjoint operator H⋃

lim
k→+∞

Specn(H,Lk) ∩ R = Spec(H) if n is even,

where the union is taken over the set of all sequences (Lk) such that the orthogonal
projections onto Lk converge strongly to the identity operator (see Theorem 7.1).

Sections 3–5 are devoted to the geometry of Specn(H,L) for a fixed L. More
precisely, we study restrictions which may be placed on this set under given as-
sumptions on Spec(H) and in particular give an answer to a question posed in
[2], Section 9. The main conclusion of this part of the analysis is Theorem 3.1,
providing sharp restrictions on the possible location of Specn(H,L) when H is a
bounded normal operator. Theorem 3.1 implies the following simple result in the
case when H is self-adjoint and n = 2 (see also Theorem 2.6 and Remarks 3.2,
3.3).

Let Σ ⊂ R be an arbitrary compact set,

a := min Σ, b := maxΣ, [a, b]\Σ =
⋃
l

]al, bl[ , ]al, bl[∩ ]ak, bk[ = ∅ if l 6= k,

and let B(c1, c2) denote the closed disk with the diameter [c1, c2]. If H is a self-
adjoint operator and Spec(H) ⊂ Σ, then

Spec2(H,L) ⊂ B(a, b) \
⋃
l

IntB(al, bl).
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For any point z belonging to the right-hand side there exists a self-adjoint operator
H acting on H = C2 and a one-dimensional subspace L ⊂ C2 such that

Spec(H) ⊂ Σ and z ∈ Spec2(H,L).

In order to formulate the restrictions on Specn(H,L) when L is fixed and
characterize its behaviour as L increases towards H in the case of normal operators
(see Theorems 3.1 and 6.1), we have to define for an arbitrary compact set Σ the
set Qn(Σ) (see (2.6) and (2.7)), whose geometric structure is analysed in Section
2. The simplest results of this section are Theorems 2.6 and 2.8.

Throughout the paper, except Section 4, we deal only with bounded linear
operators.

2. AUXILIARY GEOMETRIC RESULTS

Let K ⊂ C \ {0} be an arbitrary compact set,

σ(K) :=
{

w

|w|
: w ∈ K

}
.

It is clear that σ(K) lies in the unit circle T = {ζ ∈ C : |ζ| = 1} . The set σ(K) is
compact as a continuous image of a compact set. Then ∆(K) := T \ σ(K) is an
open set in T. Consequently, ∆(K) is a union of an at most countable family of
open arcs. Let us denote the length of the longest of these arcs by α(K).

For an arbitrary compact set Σ ⊂ C we introduce the set

(2.1)
{
Rρ(Σ) := Σ ∪

{
z ∈ C \ Σ : α(Σ− z) 6 (2− 1

ρ )π
}

if ρ > 1,
Rρ(Σ) := ∅ if ρ < 1.

It is clear that z /∈ Rρ(Σ), ρ > 1, iff Σ is seen from z at the angle less than
π/ρ. In particular, z /∈ R1(Σ) iff Σ lies in some closed half-plane not containing z,
i.e. iff z does not belong to the convex hull of Σ (see, e.g., [7], Theorem V.4 (c)).
Thus

(2.2) R1(Σ) = conv(Σ).

In the case Σ = [a, b] ⊂ R the set

(2.3) Rρ([a, b]) = Rρ({a, b}) = [a, b] ∪
{

z ∈ C \ [a, b] :
∣∣∣arg

b− z

a− z

∣∣∣ >
π

ρ

}
,

ρ > 1, where

(2.4) −π < arg · · · 6 π,

is bounded by two mutually symmetric circular arcs.
It is easily seen that

(2.5) Rρ(Σ0) ⊂ Rρ(Σ) if Σ0 ⊂ Σ.

The set Rρ(Σ) has a very simple structure.
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Theorem 2.1. Let Σ ⊂ C be an arbitrary compact set, ρ > 1. Then:
(i) Rρ(Σ) = Rρ(conv(Σ));
(ii) Rρ(Σ) is arcwise connected;
(iii) C \ Rρ(Σ) is arcwise connected.

Proof. (i) It follows from (2.5) that Rρ(Σ) ⊂ Rρ(conv(Σ)).
Let us take an arbitrary z /∈ Rρ(Σ). The compact set Σ lies in an angle with

vertex z and size less than π/ρ. This angle is a convex set. So, conv(Σ) lies in this
angle too. Consequently, z /∈ Rρ(conv(Σ)).

(ii) According to (i) we may suppose that Σ is convex. In this case σ(Σ− z)
is connected for an arbitrary z /∈ Σ as a continuous image of a connected set. Thus
σ(Σ− z) is a closed arc and it easily follows from (2.1) that

∀ z1, z2 ∈ Rρ(Σ) ∃λ1, λ2, λ3, λ4 ∈ Σ : z1 ∈ Rρ({λ1, λ2}), z2 ∈ Rρ({λ3, λ4}).
Let us connect z1 with λ2 by a curve lying in Rρ({λ1, λ2}) ⊂ Rρ(Σ) (see (2.3) and
(2.5)). Then let us connect λ2 with λ3 by a curve lying in Rρ({λ2, λ3}) ⊂ Rρ(Σ)
(we may take the segment [λ2, λ3]). Finally, let us connect λ3 with z2 by a curve
lying in Rρ({λ3, λ4}) ⊂ Rρ(Σ). So, for arbitrary z1 and z2 from Rρ(Σ) we have
constructed a curve which connects this two points and lies in Rρ(Σ).

(iii) The compact set Σ is seen at small angles from points lying sufficiently far
from it. Thus, the complement of a sufficiently large disk is an arcwise connected
subset of C \ Rρ(Σ) and the statement will be proved if we construct a curve
connecting an arbitrary point z ∈ C \Rρ(Σ) with a point of this subset and lying
in C \Rρ(Σ). The set Σ lies in some angle with vertex at z and size less than π/ρ
and it is clear that the ray opposite to the bisector of this angle lies in C\Rρ(Σ).

Let Σ ⊂ C be a compact set, z ∈ C, n ∈ N,

Σn
z := {(λ− z)n : λ ∈ Σ} ,(2.6)

Qn(Σ) := {z ∈ C : 0 ∈ conv(Σn
z )} .(2.7)

It follows from the definition that Σ ⊂ Qn(Σ) and

(2.8) Qn(Σ0) ⊂ Qn(Σ) if Σ0 ⊂ Σ.

Theorem 2.2. Qn(Σ) is arcwise connected.

Proof. Let us first prove that the set Qn({λ1, λ2, λ3}) is arcwise connected
for arbitrary λ1, λ2, λ3 ∈ C. It is clear that the circular arcs

(2.9)
{

w ∈ C : arg
λj − w

λk − w
=

2l − 1
n

π

}
, j, k = 1, 2, 3, l = 1, . . . ,

[
n + 1

2

]
,

lie in Qn({λ1, λ2, λ3}). So, it is sufficient to prove that for any z ∈ Qn({λ1, λ2, λ3})
there exists a curve connecting z with one of the points λ1, λ2, λ3 and lying in
Qn({λ1, λ2, λ3}).

If 0 belongs to the boundary of the triangle with the vertices (λj − z)n,
j = 1, 2, 3, then z belongs to the arc (2.9) for some j, k and l. In this case, we may
take a part of it to play the role of the connecting curve. Let now 0 belong to the
interior of the triangle conv({(λj − z)n}3j=1). Then there exists x0 > 0 such that

0 belongs to the interior of the triangle conv({(λj − z − x)n}3j=1) if 0 6 x < x0

and to its boundary if x = x0. It is clear that the curve consisting of the segment
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[z, z +x0] and of a part of the corresponding arc (2.9) has all necessary properties.
Thus we have proved that Qn({λ1, λ2, λ3}) is an arcwise connected set.

Let us take an arbitrary z1 ∈ Qn(Σ). According to the definition (2.7),
0 ∈ conv(Σn

z1
). Then 0 lies in the convex hull of some subset of Σn

z1
that contains

at most 3 points (see, e.g., [8], 3.25, Lemma), i.e. there exist points λ1, λ2, λ3 ∈ Σ
such that 0 ∈ conv({(λj − z1)n}3j=1), i.e. z1 ∈ Qn({λ1, λ2, λ3}). Analogously, we
have ∀ z2 ∈ Qn(Σ), ∃λ4, λ5, λ6 ∈ Σ : z2 ∈ Qn({λ4, λ5, λ6}). Now acting as in the
proof of Theorem 2.1 (ii), we can construct a curve lying in Qn(Σ) and connecting
z1 with z2 in three steps.

It is clear that
(2.10) Q1(Σ) = conv(Σ) = R1(Σ)
(see (2.2)). For arbitrary n ∈ N we have the following result.

Theorem 2.3. Let Σ ⊂ C be an arbitrary compact set, n ∈ N. Then:
(i) Qn(Σ) ⊂ Rn(Σ);
(ii) Qn(Σ) = Rn(Σ) if Σ is connected;
(iii) Rn(Σ) = Qn(conv(Σ)).

Proof. (i) Let us take an arbitrary z /∈ Rn(Σ). Then the set Σ− z lies in an
open angle with vertex at 0 and size less than π/n. Consequently Σn

z lies in an
open half-plane whose boundary contains 0. Thus 0 /∈ conv(Σn

z ), i.e. z /∈ Qn(Σ).
(ii) Let Σ be connected and z ∈ Rn(Σ). If z ∈ Σ, then clearly z ∈ Qn(Σ).

Let now z belong to Rn(Σ) \ Σ. Then

(2.11) α(Σ− z) 6

(
2− 1

n

)
π.

The compact set σ(Σ− z) is connected as a continuous image of a connected set.
Therefore σ(Σ − z) is a closed arc. It follows from (2.11) that the length of this
arc is not less than π/n. Consequently, there exist λ1, λ2 ∈ Σ such that

arg
λ1 − z

λ2 − z
=

π

n
, i.e., arg

(λ1 − z)n

(λ2 − z)n
= π.

The last equality means that 0 ∈ [(λ1−z)n, (λ2−z)n] ⊂ conv(Σn
z ), i.e. z ∈ Qn(Σ).

(iii) The equality follows from (ii), Theorem 2.1 (i) and the fact that conv(Σ)
is connected.

The statement of Theorem 2.3 (ii) is not generally true if Σ is not connected.
The set Qn(Σ) may have rather complicated structure, unlike the set Rn(Σ). For
example, if Σ consists of two points a and b, the set Qn(Σ) = Qn({a, b}) is the
union of the circular arcs{

w ∈ C :
∣∣∣arg

b− w

a− w

∣∣∣ =
2l − 1

n
π

}
, l = 1, . . . ,

[
n + 1

2

]
,

(cf. (2.3), (2.4)). Gaps in Σ may cause gaps in Qn(Σ). We will demonstrate this
effect in the case Σ ⊂ R.

Suppose −∞ < a 6 a0 < b0 6 b < +∞. Let

(2.12)
Sm

n (a, a0, b0, b) :=IntR n
2m−1

([a0, b0]) \ (R n
2m+1

([a, b])

∪Rn([a, a0]) ∪Rn([b0, b])),

m = 1, . . . ,
[

n
2

]
, where “Int” denotes the interior of the corresponding set.
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Theorem 2.4. Let Σ = [a, a0] ∪ [b0, b], n ∈ N. Then

(2.13) Qn(Σ) = Rn([a, b]) \
[n
2 ]⋃

m=1

Sm
n (a, a0, b0, b).

Proof. We will first prove that the LHS of (2.13) is a subset of the RHS. Let
us take an arbitrary z not belonging to the RHS of (2.13). Then

z /∈ Rn([a, b]) or z ∈
[n
2 ]⋃

m=1

Sm
n (a, a0, b0, b).

In the first case z /∈ Qn(Σ) according to Theorem 2.3 (i). So, we have to consider
the second case, i.e. the case

(2.14) z ∈ Sm
n (a, a0, b0, b) for some m = 1, . . . ,

[n

2

]
.

Suppose that

(2.15) α(Σn
z ) 6 π

(see (2.6)). It is clear that ∆(Σn
z ) consists of two arcs at most. If ∆(Σn

z ) is empty
or consists of one arc, then it is easy to see that (2.15) implies the existence two
points µ1, µ2 ∈ σ(Σn

z ) such that µ1 = −µ2. If ∆(Σn
z ) consists of two open arcs

l1, l2, then σ(Σn
z ) consists of two closed arcs γ1 and γ2 (one or both of them may

be degenerate, i.e. contain only one point). The set −γ1 cannot be covered by
l1 or l2, because in this case the covering arc would contain a point diametrically
opposite to its end-point and, consequently, its length would be greater than π.
This, however, contradicts (2.15). Therefore, the connected set −γ1 cannot be
covered by the union of the disjoint open arcs l1 and l2. Thus

(2.16) ∃µ1 ∈ γ1 ⊂ σ(Σn
z ) : µ2 = −µ1 ∈ σ(Σn

z ).

So, (2.15) implies (2.16).
We can rewrite (2.16) in the following form

(2.17) ∃λ1, λ2 ∈ [a, a0] ∪ [b0, b] : arg
(λ1 − z)n

(λ2 − z)n
= π.

It follows from (2.3), (2.12) and (2.14) that if λ1, λ2 ∈ [a, a0], then the angle
between λ1 − z and λ2 − z is less than π/n. This, however, contradicts (2.17).
By the same reason we can exclude the case λ1, λ2 ∈ [b0, b]. Let us suppose that
λ1 ∈ [a, a0] and λ2 ∈ [b0, b] (or λ2 ∈ [a, a0] and λ1 ∈ [b0, b]). Using the inclusion

z ∈ IntR n
2m−1

([a0, b0]) \ R n
2m+1

([a, b])

(see (2.12), (2.14)), we obtain the following inequality for the angle β between
λ1 − z and λ2 − z

(2.18)
2m− 1

n
π < β <

2m + 1
n

π.

It is clear that (2.18) contradicts (2.17).
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So, we have proved that (2.17) leads to a contradiction. Therefore (2.15)
leads to a contradiction. Consequently, we have proved that α(Σn

z ) > π, i.e.
0 /∈ R1(Σn

z ) = conv(Σn
z ), i.e. z /∈ Qn(Σ) (see (2.1), (2.2), (2.7)). Thus the LHS of

(2.13) is a subset of the RHS.
Now we have to prove the opposite inclusion. Let us take an arbitrary z from

the RHS of (2.13). There is nothing to prove if

z ∈ Rn([a, a0]) ∪Rn([b0, b]) = Qn([a, a0]) ∪Qn([b0, b]) ⊂ Qn(Σ)

(see Theorem 2.3 (ii) and (2.8)). If z /∈ Rn([a, a0]) ∪Rn([b0, b]), then there exist

λ1 ∈ [a, a0], λ2 ∈ [b0, b] and l = 1, . . . ,

[
n + 1

2

]
such that the angle between λ1 − z and λ2 − z equals 2l−1

n π, because otherwise z
would belong to Sm

n (a, a0, b0, b) for some m. It is clear that for these λ1 and λ2 we
have

arg
(λ1 − z)n

(λ2 − z)n
= π,

i.e. 0 ∈ [(λ1 − z)n, (λ2 − z)n] ⊂ conv(Σn
z ), i.e. z ∈ Qn(Σ).

Remark 2.5. We have proved in fact that if z belongs to the LHS of (2.13),
then there exist λ1 and λ2 ∈ Σ such that

(2.19) 0 ∈ [(λ1 − z)n, (λ2 − z)n].

A similar result holds in a more general situation. Namely, if a compact set
Σ ⊂ C is connected or consists of two connected components, and z ∈ Qn(Σ),
then there exist λ1 and λ2 ∈ Σ satisfying (2.19). Indeed, if z ∈ Σ, we may take
λ1 = λ2 = z. If z ∈ Qn(Σ) \ Σ, the inclusion 0 ∈ conv(Σn

z ) = R1(Σn
z ) (see (2.2))

is equivalent to α(Σn
z ) 6 π (see (2.1)) and we can repeat a part of the proof of

Theorem 2.4 (from (2.15) to (2.17)).

Above we considered the case of one gap in Σ. Let now Σ ⊂ R be an arbitrary
compact set,

(2.20) a = minΣ, b = maxΣ.

The open set ]a, b[\Σ is a union of an at most countable family of mutually disjoint
open intervals

(2.21) ]a, b[ \ Σ =
⋃
l

]al, bl[ .

Theorem 2.4 implies

(2.22) Qn(Σ) ⊂ Rn([a, b]) \
⋃
l

[n
2 ]⋃

m=1

Sm
n (a, al, bl, b).

The equality in (2.22) generally does not hold if n > 4. Let for example Σ = {0,±1}
and z = i cot 7π

4n , n > 4. Taking into account the fact that the angle between ±1−z

and 0− z = −z equals 7π
4n , we can easily see that

z ∈ Rn([−1, 0]) ∩Rn([0, 1]), 0 /∈ conv {(±1− z)n, (−z)n} .
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Consequently, z belongs to the RHS of (2.22) (see (2.12)) and does not belong to
the LHS (see (2.6), (2.7)).

The reason of the described effect is that different gaps in Σ may “inter-
act” and cause new gaps in Qn(Σ), which cannot be predicted by Theorem 2.4.
However, this does not happen if n = 2 or 3 (see also (2.10)).

For arbitrary c1, c2 ∈ R, let B(c1, c2) be the closed disk with the diameter
[c1, c2].

Theorem 2.6. Let Σ ⊂ R be an arbitrary compact set. Then Q2(Σ) =
B(a, b) \

⋃
l

IntB(al, bl) (see (2.20), (2.21)).

Proof. Note that R2([a, b]) = B(a, b) and S1
2(a, al, bl, b) = IntB(al, bl) (see

(2.12)). According to (2.22) it is sufficient to prove that an arbitrary z from
the RHS belongs to Q2(Σ). It is easily seen that α(Σ2

z) 6 π. Consequently, 0 ∈
R1(Σ2

z) = conv(Σ2
z) (see (2.1), (2.2)), i.e. z ∈ Q2(Σ).

Theorem 2.7. Let Σ ⊂ R be an arbitrary compact set. Then Q3(Σ) =
R3([a, b]) \

⋃
l

S1
3(a, al, bl, b) (see (2.20), (2.21)).

Proof. According to (2.22) it is sufficient to prove that an arbitrary z from
the RHS belongs to Q3(Σ). If z ∈ [a, b], then z ∈ Q3(Σ) (see Theorem 2.8 (ii)
below). Let now z belong to R3([a, b]) \ [a, b].

If each interval ]al, bl[ is seen from z at an angle less or equal to π/3, then
α(Σ3

z) 6 π. Consequently, 0 ∈ conv(Σ3
z), i.e. z ∈ Q3(Σ).

If there exists l such that the interval ]al, bl[ is seen from z at an angle
(π/3) + β, β > 0, then either [a, al] or [bl, b] is seen from z at an angle greater or
equal to π/3, because otherwise z would belong to S1

3(a, al, bl, b) (see (2.12)). Let
us suppose for definiteness that [a, al] is seen from z at angle (π/3) + γ, γ > 0.
Note that (π/3) + β + (π/3) + γ < π. Consequently, β + γ < π/3 and β, γ < π/3.
It is easy to see that

α({a, al, bl}3z) = max {π − 3β, π − 3γ, 3(β + γ)} 6 π.

Therefore, 0 ∈ conv({a, al, bl}3z) ⊂ conv(Σ3
z), i.e. z ∈ Q3(Σ).

Theorem 2.8. Let Σ ⊂ R be an arbitrary compact set. Then:
(i) Qn(Σ) ∩ R = Σ if n is even;
(ii) Qn(Σ) ∩ R = conv(Σ) if n is odd.

Proof. (i) Since Σ ⊂ Qn(Σ), we have to prove only that the LHS of (i) is a
subset of Σ. Let us take an arbitrary z ∈ R \ Σ. Then

(λ− z)n > const > 0, ∀λ ∈ Σ.

Consequently, 0 /∈ conv(Σn
z ), i.e. z /∈ Qn(Σ).

(ii) Let us take an arbitrary z ∈ [a, b] := conv(Σ). It is clear that

(a− z)n 6 0 6 (b− z)n.

Therefore, 0 ∈ [(a− z)n, (b− z)n] ⊂ conv(Σn
z ), i.e. z ∈ Qn(Σ). So, the RHS of (ii)

is a subset of the LHS.
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Now let us take an arbitrary z ∈ R \ [a, b]. If z > b, then

−(λ− z)n > const > 0, ∀λ ∈ Σ.

If z < a, then
(λ− z)n > const > 0, ∀λ ∈ Σ.

In both cases 0 /∈ conv(Σn
z ), i.e. z /∈ Qn(Σ). Thus, the LHS of (ii) is a subset of

the RHS.

3. ENCLOSURES FOR HIGHER ORDER RELATIVE SPECTRA

OF NORMAL AND SELF-ADJOINT OPERATORS

Theorem 3.1. Let Σ ⊂ C be an arbitrary compact set and n ∈ N.
(i) If H is a normal operator and Spec(H) ⊂ Σ, then

(3.1) Specn(H,L) ⊂ Qn(Σ);

(ii) For an arbitrary z ∈ Qn(Σ) there exists a normal operator H acting on
H = C3 and a one-dimensional subspace L ⊂ C3 such that

(3.2) Spec(H) ⊂ Σ and z ∈ Specn(H,L).

Proof. (i) Let us take any z ∈ C \ Qn(Σ). According to (2.7), 0 /∈ conv(Σn
z ).

Then Σn
z lies in some open half-plane

{
w ∈ C : Re(eiθ0w) > 0

}
, θ0 ∈ ]− π, π] (see,

e.g., [7], Theorem V.4 (c)). Therefore

Re(eiθ0(λ− z)n) > 0, ∀λ ∈ Σ

(see (2.6)). The compactness of Σ implies the existence of c > 0 such that

Re(eiθ0(λ− z)n) > c > 0, ∀λ ∈ Spec(H) ⊂ Σ.

Now applying the spectral theorem we obtain

Re(eiθ0Mn(z)u, u) = Re(eiθ0(H − zI)nPu, Pu) = Re(eiθ0(H − zI)nu, u)

=
∫

Spec(H)

Re(eiθ0(λ− z)n) d(E(λ)u, u)

> c

∫
Spec(H)

d(E(λ)u, u) = c‖u‖2, ∀u ∈ L.

It is well known that the inequality

(3.3) Re(eiθ0Mn(z)u, u) > c‖u‖2, ∀u ∈ L,

implies invertibility of Mn(z) within L. Thus, we have proved that if z /∈ Qn(Σ),
then z /∈ Specn(H,L).

(ii) According to the definition (2.7), 0 ∈ conv(Σn
z ). Then 0 lies in the convex

hull of some subset of Σn
z that contains at most 3 points (see, e.g., [8], 3.25,
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Lemma), i.e. there exist the points λ1, λ2, λ3 ∈ Σ and t1, t2, t3 > 0 such that
t1 + t2 + t3 = 1 and

(3.4)
3∑

j=1

tj(λj − z)n = 0.

Let

(3.5) H = diag(λj)3j=1,

(3.6) L =
{

u ∈ C3 : uj = t
1/2
j w, w ∈ C, j = 1, 2, 3

}
.

Then, for an arbitrary u ∈ L, we have

((H − zI)nu, u) = |w|2
3∑

j=1

tj(λj − z)n = 0

(see (3.4)). Therefore, P (H − zI)nP = 0, where P is the orthogonal projection
onto L. Thus, z ∈ Specn(H,L). It is clear that Spec(H) = {λ1, λ2, λ3} ⊂ Σ.

Remark 3.2. Let Σ ⊂ C be an arbitrary compact set and let z ∈ Qn(Σ) be
such that 0 belongs to a segment [(λ1 − z)n, (λ2 − z)n] for some λ1, λ2 ∈ Σ (see
Remark 2.5). Then the proof of Theorem 3.1 (ii) shows that there exist a normal
operator H acting on H = C2 and a one-dimensional subspace L ⊂ C2 satisfying
(3.2).

Remark 3.3. If λ1, λ2, λ3 from the proof of Theorem 3.1 (ii) belong to R,
then the operator (3.5) is self-adjoint. The same is true for the operator from the
previous remark.

Using the results of Section 2 one can formulate obvious corollaries of Theo-
rem 3.1, which describe enclosures for higher order relative spectra of normal and
self-adjoint operators in more clear geometric terms (see also Remarks 3.2 and
3.3). We will not dwell on this.

Corollary 3.4. Let H be a self-adjoint operator and z ∈ Spec2(H,L).
Then

(3.7) Spec(H) ∩ [Re z − |Im z|,Re z + |Im z|] 6= ∅.

Proof. Suppose the LHS of (3.7) is empty. Then there exists ε > 0 such that

Spec(H) ∩ [Re z − |Im z| − ε, Re z + |Im z|+ ε] = ∅.

According to Theorems 2.6 and 3.1

IntB(Re z − |Im z| − ε, Re z + |Im z|+ ε)

does not intersect Spec2(H,L). On the other hand, z belongs to this open disk and
to Spec2(H,L). The obtained contradiction proves that the LHS of (3.7) cannot
be empty.
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4. A REMARK ON UNBOUNDED SELF-ADJOINT OPERATORS

Above we dealt with bounded operators only. Let now H be an arbitrary self-
adjoint operator acting on H.

Lemma 4.1. If a0, b0 ∈ R and

]a0, b0[∩Spec(H) = ∅,
then

IntB(a0, b0) ∩ Spec2(H,L) = ∅.
Proof. Let us take an arbitrary z ∈ IntB(a0, b0). The interval ]a0, b0[ is seen

from z at an angle equal to π/2 + ε, where ε ∈ ]0, π/2]. It is clear that the set

F =
{
(λ− z)2 : λ ∈ Spec(H)

}
lies in an angle with vertex at 0 and size π − 2ε. The distance from 0 to F is
obviously positive. Therefore there exist θ0 ∈]− π, π] and c > 0 such that

Re(eiθ0(λ− z)2) > c, ∀λ ∈ Spec(H).

The remaining part of the proof coincides with that of Theorem 3.1 (i).

Corollary 4.2. If z ∈ Spec2(H,L), then

Spec(H) ∩ [Re z − |Im z|,Re z + |Im z|] 6= ∅.
Proof. Cf. Corollary 3.4.

5. AN ESTIMATE FOR HIGHER ORDER RELATIVE SPECTRA

OF BOUNDED OPERATORS

We start by an auxiliary result.

Lemma 5.1. Let x0 > 0, y0 > 0, x0/y0 = cotβ, 0 < k 6 sinβ. Then

(5.1) sup
{

x0 + x

y0 − y
: x, y > 0, x2 + y2 6 k2(x2

0 + y2
0)

}
= cot(β − arcsin k).

Proof. For the fixed (x0, y0), the set{
(x0 + x, y0 − y) : x2 + y2 6 k2(x2

0 + y2
0)

}
is obviously a disk with the centre (x0, y0). The condition k 6 sinβ implies that
the interior of this disk does not intersect the abscissae axis.

Let us draw the tangent to the corresponding circle passing through the origin
and lying below the disk. Let (x1, y1) be the point of contact. An elementary
geometric argument shows that the LHS of (5.1) equals

x1

y1
= cot(β − arcsin k).

Theorem 5.2. (i) Let H be an arbitrary bounded operator. Then

(5.2) |z| 6
(
sin

π

2n

)−1

‖H‖, ∀ z ∈ Specn(H,L).
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(ii) There exist a normal operator H acting on H = C2 and a one-dimensio-
nal subspace L such that ‖H‖ = 1 and

(5.3) sin−1 π

2n
∈ Specn(H,L).

Proof. (i) Let us fix an arbitrary z ∈ C such that

(5.4) |z| >
(
sin

π

2n

)−1

‖H‖.

It is convenient to rewrite Mn(z) in the following form

(5.5) Mn(z) = (−z)nP (I −R)nP,

where R = z−1H,

(5.6) ‖R‖ 6 sin
π(1− ε)

2n

for sufficiently small ε > 0.
Let us take an arbitrary u ∈ L \ {0} and consider the vectors

(5.7) uk = (I −R)ku, k = 0, 1, . . . , n.

We have
‖Quk‖
‖Puk‖

=
‖Q(I −R)uk−1‖
‖P (I −R)uk−1‖

6
‖Quk−1‖+ ‖QRuk−1‖
‖Puk−1‖ − ‖PRuk−1‖

, k = 1, . . . , n,

where Q := I − P . Taking into account that

(5.8)
‖QRuk−1‖2 + ‖PRuk−1‖2 = ‖Ruk−1‖2 6

(
sin

π(1− ε)
2n

)2

‖uk−1‖2

=
(

sin
π(1− ε)

2n

)2

(‖Quk−1‖2 + ‖Puk−1‖2)

(see (5.6)) and applying Lemma 5.1 with

x0 = ‖Quk−1‖, y0 = ‖Puk−1‖,
x = ‖QRuk−1‖, y = ‖PRuk−1‖, k = sin π(1−ε)

2n ,

we obtain successively

arccot
‖Qu0‖
‖Pu0‖

= arccot 0 =
π

2
,

arccot
‖Quk‖
‖Puk‖

> arccot
‖Quk−1‖
‖Puk−1‖

− π(1− ε)
2n

> · · · > π

2

(
1− k

n
(1− ε)

)
,

k = 1, . . . , n. Thus

(5.9)
‖Q(I −R)nu‖
‖P (I −R)nu‖

6 cot
πε

2
.

Further,

(5.10)
‖Q(I −R)nu‖
‖P (I −R)nu‖

>
‖(I −R)nu‖
‖P (I −R)nu‖

− 1,
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(5.11)

‖(I −R)nu‖ > ‖(I −R)n−1u‖ − ‖R‖ ‖(I −R)n−1u‖
= (1− ‖R‖)‖(I −R)n−1u‖ > · · · > (1− ‖R‖)n‖u‖

>

(
1− sin

π(1− ε)
2n

)n

‖u‖

(see (5.6)). It follows from (5.9)–(5.11) that

‖P (I −R)nu‖ >
(
1 + cot

πε

2

)−1
(

1− sin
π(1− ε)

2n

)n

‖u‖.

So, there exists c > 0 such that

(5.12) ‖Mn(z)u‖ > c‖u‖, ∀u ∈ L \ {0},

(see (5.4), (5.5)). This inequality implies that

(5.13) Ker Mn(z) = {0}

and the image of Mn(z) is closed (see, e.g., [9], Chapter III, Theorem 5.1).
The image of the operator P (H − zI)nP : H → H coincides with Im Mn(z)

and, therefore, is closed. Consequently,

(5.14) v ∈ Im P (H − zI)nP ⇐⇒ (v, g) = 0, ∀ g ∈ KerP (H∗ − z̄I)nP

(see [9], Chapter III, Theorem 3.4 and note that in our case P is orthogonal, i.e.
P = P ∗).

We can prove analogously to (5.13) that

(5.15) Ker P (H∗ − z̄I)nP = KerP.

Comparing (5.14), (5.15) with the relation

v ∈ Im P ⇐⇒ (v, g) = 0, ∀ g ∈ KerP,

we obtain
Im Mn(z) = Im P (H − zI)nP = Im P = L.

Thus according to the Banach theorem, Mn(z) is invertible within L (see (5.13)).
(ii) Let

λ1 = sin
π

2n
− i cos

π

2n
, λ2 = sin

π

2n
+ i cos

π

2n
.

It is clear that

(5.16) |λ1| = |λ2| = 1.

Further,

λ1 − sin−1 π
2n

λ2 − sin−1 π
2n

=
(sin π

2n − sin−1 π
2n )− i cos π

2n

(sin π
2n − sin−1 π

2n ) + i cos π
2n

=
− cos2 π

2n − i cos π
2n sin π

2n

− cos2 π
2n + i cos π

2n sin π
2n

=
cos π

2n + i sin π
2n

cos π
2n − i sin π

2n

= ei π
n .
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Consequently, for z = sin−1 π
2n , we have (λ1 − z)n = −(λ2 − z)n. Let

H =
(

λ1 0
0 λ2

)
,

and
L =

{
u ∈ C2 : u1 = u2

}
.

It is clear that ‖H‖ = 1 (see (5.16)) and

((H − zI)nu, u) = |u1|2((λ1 − z)n + (λ2 − z)n) = 0, ∀u ∈ L.

Therefore, P (H − zI)nP = 0 and (5.3) holds.

6. LIMIT BEHAVIOUR OF HIGHER ORDER RELATIVE SPECTRA

Above we studied the “statics” of higher order relative spectra, i.e. the case when
the subspace L was fixed. Now we are going to consider their “dynamics”. It is
interesting to know what may happen to Specn(H,L) when L “tends” to H. This
question is connected to the theory of projection methods.

Let Λ be the set of all sequences of closed linear subspaces Lk ⊂ H, k ∈ N,
such that the corresponding orthogonal projections Pk : H → Lk converge strongly
to the identity operator I as k → +∞. Let Λ0 be the subset of Λ consisting of
increasing sequences: Lk ⊂ Lk+1, ∀ k ∈ N.

For a sequence of sets Mk ⊂ C, k ∈ N, we will use the following notation

lim
k→+∞

∗Mk :=
{

z ∈ C | ∃ zk ∈ Mk : lim
k→+∞

zk = z
}

,

lim
k→∞

∗Mk := {z ∈ C | ∃ km ∈ N, ∃ zkm
∈ Mkm

: km → +∞

and zkm
→ z as m → +∞}.

Simple examples show that the limit behaviour of Specn(H,Lk) depends in
general on the choice of the sequence (Lk)∞k=1 ∈ Λ. So, it is natural to unite limit
sets corresponding to different sequences (Lk)∞k=1 in order to obtain an invariant
set depending only on H. It turns out that this set depends on the spectrum and
the essential spectrum of H.

In this paper we will adopt the following definition of the essential spec-
trum. Remove from Spec(H) all isolated points which are eigenvalues with finite
multiplicities; the remaining set Spece(H) is the essential spectrum of H.

Theorem 6.1. Let H be a bounded normal operator. Then

(6.1)
⋃

(Lk)∈Λ

lim
k→∞

∗ Specn(H,Lk) = Spec(H) ∪Qn(Spece(H)).

This equality will remain valid if we replace “ lim∗” by “ lim∗”. The same is true
for Λ0 instead of Λ.

Proof. Let us fix an arbitrary z /∈ Spec(H) ∪ Qn(Spece(H)). There exists a
closed neighbourhood F of Spece(H) such that z /∈ Qn(F ). The set S = Spec(H)∩
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(C\F ) consists of an at most finite number of eigenvalues with finite multiplicities.
The operator

(6.2) PS := E(S),

where E(·) is the spectral measure corresponding to the normal operator H, com-
mutes with H and is the orthogonal projection on the finite-dimensional subspace
spanned by eigenvectors corresponding to the eigenvalues belonging to S (see, e.g.,
[6], Section 4.5).

Let us take an arbitrary z0 ∈ F and consider the operator

(6.3) H0 := (I − PS)H + z0PS = (I − PS)H(I − PS) + z0PS .

It is easy to prove that Spec(H0) ⊂ F (see [6], Section 4.5). It follows from the
normality of H that the operators H,H∗ and PS = P ∗S commute with each other.
Thus, H0 is a normal operator. Then the proof of Theorem 3.1 (i) (see (3.3))
implies that for an arbitrary orthogonal projection P

(6.4) ‖P (H0 − zI)nPu‖ > c‖Pu‖, ∀u ∈ H,

where c does not depend on P.
For the operator H we have the representation H = H0 + T, where T =

PSH − z0PS is a finite-dimensional and, consequently, a compact operator. So,
the operator

(6.5) (H − zI)n − (H0 − zI)n

is compact. Taking into account that the operator (H − zI)n is invertible and
applying (6.4) we obtain from [3], Chapter II, Theorems 2.1 and 3.1, that for an
arbitrary sequence (Lk)∞k=1 ∈ Λ the corresponding operator Pk(H − zI)nPk is
invertible within Lk if k is sufficiently large. Thus, z does not belong to the LHS
of (6.1), i.e. the LHS is a subset of the RHS.

Now we have to prove the opposite inclusion. Let us fix an arbitrary w ∈
Spec(H) ∪ Qn(Spece(H)). If w ∈ Spec(H) \ Spece(H), then w is an eigenvalue of
H. Taking an arbitrary sequence (Lk)∞k=1 ∈ Λ0 such that all of the subspaces Lk

contain an eigenvector of H corresponding to w, we obtain

(6.6) w ∈
⋃

(Lk)∈Λ0

lim
k→+∞

∗ Specn(H,Lk).

Since

Spec(H) ∪Qn(Spece(H)) = (Spec(H) \ Spece(H)) ∪Qn(Spece(H)),

it is left to consider the case w ∈ Qn(Spece(H)). We can establish as in the
proof of Theorem 2.2 that there exist (not necessarily different) points λ1, λ2, λ3 ∈
Spece(H) such that 0 ∈ conv({(λj − w)n}3j=1), i.e.

(6.7) ∃ t1, t2, t3 ∈ [0, 1] : t1 + t2 + t3 = 1,
3∑

j=1

tj(λj − w)n = 0.
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Let E(·) be the spectral measure corresponding to the normal operator H.
Using the fact that λj ∈ Spece(H), we can construct closed linear subspaces
Hj

l ⊂ H, l ∈ N, j = 1, 2, 3, having the following properties:

(6.8) Hj
l 6= {0}, HHj

l ⊂ Hj
l , l ∈ N, j = 1, 2, 3,

(6.9) Hj
l ⊥ Hj′

l′ if l 6= l′ or j 6= j′,

and for an arbitrary neighbourhood W j of λj the inclusions

(6.10) Hj
l ⊂ Im E(W j) = E(W j)H

hold for sufficiently large l. Indeed, if λj is an isolated point of Spec(H), then it
is an eigenvalue of infinite multiplicity and we may take Hj

l := span{ej
l }, where

ej
l are mutually orthogonal eigenvectors of H corresponding to λj . If λj is not an

isolated point, then we may take Hj
l := Im E(W j

l ) = E(W j
l )H, where (W j

l )∞l=1 is
a suitable sequence of pairwise disjoint closed sets “tending” to λj .

Let vj
l ∈ Hj

l \ {0}, l ∈ N, j = 1, 2, 3, be arbitrary vectors and H0 be the
closed linear subspace spanned by Hj

l , l ∈ N, j = 1, 2, 3. Let Lk be the subspaces
spanned by Hj

l , l < k, j = 1, 2, 3, the orthogonal complement H⊥0 of H0 and the
vector

(6.11) uk :=
3∑

j=1

√
tj ‖vj

k‖
−1vj

k.

Note that ‖uk‖ = 1 (see (6.7), (6.9)). It is easily seen that (Lk)∞k=1 ∈ Λ0. The
conditions (6.8) and (6.9) imply the equality

((H − ζI)nuk, u) = 0, ∀u ∈ H⊥0
⋃ ⋃

j=1,2,3
l<k

Hj
l , ∀ ζ ∈ C.

Therefore
(6.12) Pk(H − ζI)nPkuk = Pk(H − ζI)nuk = ((H − ζI)nuk, uk)uk.

It is clear that
(6.13) pk(ζ) := ((H − ζI)nuk, uk)
is a polynomial of degree n with respect to ζ. The spectral theorem and (6.8)–(6.11)
imply that its coefficients tend to the corresponding coefficients of the polynomial

p(ζ) :=
3∑

j=1

tj(λj − ζ)n

as k → +∞. According to (6.7), p(w) = 0. Consequently, pk(ζ) has a zero wk

arbitrarily close to w if k is sufficiently large (see, e.g., [4], Theorem 4.10c). Taking
into account that Pk(H −wkI)nPkuk = 0 (see (6.12) and (6.13)), we obtain (6.6).
Thus

Spec(H) ∪Qn(Spece(H)) ⊂
⋃

(Lk)∈Λ0

lim
k→+∞

∗ Specn(H,Lk).

Applying the following obvious relations

(6.14)
⋃

(Lk)∈Λ0

lim
k→+∞

∗ · · · =
⋃

(Lk)∈Λ0

lim
k→∞

∗ · · · ⊂
⋃

(Lk)∈Λ

lim
k→∞

∗ · · · =
⋃

(Lk)∈Λ

lim
k→+∞

∗ · · ·

we conclude the proof.
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Let now H be a separable Hilbert space. Then it is natural to consider
subsets Λf and Λf

0 of Λ and Λ0 correspondingly, consisting of sequences of finite-
dimensional subspaces.

Theorem 6.2. If H is a bounded normal operator acting on a separable
Hilbert space H, then (6.1) will remain valid if we replace Λ by Λf or Λf

0 . The
same is true for “lim∗” instead of “lim∗”.

Proof. Theorem 6.1 implies:⋃
(Lk)∈Λf

lim
k→∞

∗ Specn(H,Lk) ⊂ Spec(H) ∪Qn(Spece(H)).

So, it is sufficient to prove that⋃
(Lk)∈Λf

0

lim
k→+∞

∗ Specn(H,Lk) ⊃ Spec(H) ∪Qn(Spece(H))

(cf. (6.14)). The only thing we have to change in the proof of Theorem 6.1 is
the definition of Lk. Let ej

l,m, m = 1, . . . , be an orthonormal basis of Hj
l and em,

m = 1, . . . , be an orthonormal basis of H⊥0 (see the proof of Theorem 6.1). These
basses exist because all subspaces of H are separable. Let Lk be the subspace
spanned by the vectors em, ej

l,m, l,m < k, j = 1, 2, 3 and

uk :=
3∑

j=1

√
tj ej

k,1.

The remaining part of the proof repeats that of Theorem 6.1.

Remark 6.3. Let Λf
1 be the subset of Λf

0 consisting of sequences such that
dimLk+1/Lk = 1. This class of sequences is often used in the theory of projection
methods (see, e.g., [3], Chapter II, Sections 4–6). It is clear that⋃

(Lk)∈Λf
1

lim
k→∞

∗ · · · =
⋃

(Lk)∈Λf
0

lim
k→∞

∗ · · · .

Thus, Theorem 6.2 implies the equality

(6.15)
⋃

(Lk)∈Λf
1

lim
k→∞

∗ Specn(H,Lk) = Spec(H) ∪Qn(Spece(H)).

It would be interesting to investigate the set⋃
(Lk)∈Λf

1

lim
k→+∞

∗ Specn(H,Lk)

and, in particular, to know whether (6.15) is true for “lim∗” instead of “lim∗”.
For arbitrary r > 0 and a bounded linear operator H we will use the following

notation

B(r) := {ζ ∈ C : |ζ| 6 r} ,

|||H||| := inf {‖H + T‖ : T is compact on H} .

The last quantity is called the essential norm of the operator H.
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Theorem 6.4. Let H be an arbitrary bounded operator. Then

(6.16)
⋃

(Lk)∈Λ

lim
k→∞

∗ Specn(H,Lk) ⊂ Spec(H) ∪B

((
sin

π

2n

)−1

|||H|||
)

.

Proof. According to the definition of the essential norm, for an arbitrary
ε > 0, there exists a compact operator T such that ‖H + T‖ < |||H|||+ ε. Let us
take an arbitrary

z /∈ Spec(H) ∪B

((
sin

π

2n

)−1

(|||H|||+ ε)
)

.

It follows from the proof of Theorem 5.2 (see (5.12)) that for an arbitrary or-
thogonal projection P , (6.4) holds with H0 := H + T. Taking into account that
the operator (6.5) is compact and (H − zI)n is invertible, we conclude from [3],
Chapter II, Theorems 2.1 and 3.1, that for an arbitrary sequence (Lk)∞k=1 ∈ Λ the
corresponding operator Pk(H − zI)nPk is invertible within Lk if k is sufficiently
large. Consequently z does not belong to the LHS of (6.16). Thus, the LHS of
(6.16) is a subset of

Spec(H) ∪B

((
sin

π

2n

)−1

(|||H|||+ ε)
)

, ∀ ε > 0.

7. FINAL REMARKS

We conclude this paper by some remarks concerning projection methods of finding
of spectra of bounded operators. We will not discuss the case when the opera-
tor under consideration is compact, because it is well understood (see, e.g. [5],
Section 18).

Theorems 6.1, 6.2 and 2.8 (i) imply the following result.

Theorem 7.1. Let H be a bounded self-adjoint operator and n be an even
number. Then

(7.1)

⋃
(Lk)∈Λ

lim
k→∞

∗ Specn(H,Lk) ∩ R =
⋃

(Lk)∈Λ

lim
k→+∞

∗ Specn(H,Lk) ∩ R

= Spec(H).

The same is true for Λ0 instead of Λ (and for Λf ,Λf
0 if H is separable).

Theorems 6.1 and 7.1 tell us what may happen for all sequences from Λ, but
they do not provide sufficient information about

(7.2) lim
k→∞

∗ Specn(H,Lk) and lim
k→+∞

∗ Specn(H,Lk)

for a given (Lk)∞k=1 ∈ Λ. The most interesting question is whether these sets cover
Spec(H). For normal operators the answer is in general negative. For example, if
H is the simple bilateral shift operator acting on H = l2(Z):

(Hx)m = xm+1, ∀m ∈ Z, ∀x = (xm) ∈ l2(Z),
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then H is a unitary and, therefore, a normal operator and its spectrum coincides
with the unit circle. A simple proof of this well known fact follows from the
representation of H as the operator of multiplication by the function exp(iθ) acting
on L2([0, 2π]) with the orthonormal basis

(
(2π)−1/2eimθ

)
m∈Z . On the other hand,

let us consider the following sequence (Lk)∞k=1 ∈ Λf
1 (see Remark 6.3):

Lk =
{
x ∈ l2(Z) : xm = 0 if m < − [k/2] or m > k − [k/2]

}
, k ∈ N.

It is obvious that if Pk : l2(Z) → Lk is the orthogonal projection, then the matrix
corresponding to the operator PkH lPk, l ∈ N in the standard basis is nilpotent,
i.e. is an upper triangular matrix with 0 on the diagonal. Thus

Specn(H,Lk) = {0}, ∀ k ∈ N, ∀n ∈ N.

So, Spec(H) and Specn(H,Lk) are totally unrelated.
It is not difficult to prove that the sets (7.2) cover Spec(H) if H is self-adjoint

and n = 1 (see, e.g., [1], Theorem 2.3).

Lemma 7.2. Let H be a bounded self-adjoint operator. Then
Spec(H) ⊂ lim

k→+∞
∗ Spec1(H,Lk) ⊂ lim

k→∞
∗ Spec1(H,Lk), ∀ (Lk)∞k=1 ∈ Λ.

Proof. Let (Lk)∞k=1 be an arbitrary sequence from Λ and E(·) be the spectral
measure corresponding to H. Let us fix an arbitrary λ ∈ Spec(H) and ε > 0. We
will use the following notation
(7.3) d(λ, ε, k) = inf{‖u− v‖ : u ∈ Im E([λ− ε, λ + ε]), v ∈ Lk, ‖u‖ = ‖v‖ = 1}.
For an arbitrary δ > 0, there exist uk ∈ Im E([λ− ε, λ+ ε]) and vk ∈ Lk such that

‖uk − vk‖ 6 d(λ, ε, k) + δ, ‖uk‖ = ‖vk‖ = 1.

It follows from the spectral theorem that ‖(H − λI)uk‖ 6 ε. Further,

(7.4)

‖Pk(H − λI)Pkvk‖ = ‖Pk(H − λI)vk‖ 6 ‖(H − λI)vk‖
6 ‖(H − λI)uk‖+ ‖(H − λI)(vk − uk)‖
6 ε + 2‖H‖ ‖uk − vk‖ 6 ε + 2‖H‖(d(λ, ε, k) + δ).

Taking into account that the restriction of Pk(H − λI)Pk to Lk is a self-
adjoint operator, we conclude from (7.4) that its spectrum intersects the segment

[−ε− 2‖H‖(d(λ, ε, k) + δ), ε + 2‖H‖(d(λ, ε, k) + δ)]
(see, e.g., [8], 12.24). Consequently,

dist(λ, Spec1(H,Lk)) 6 ε + 2‖H‖(d(λ, ε, k) + δ), ∀ δ > 0,

i.e.
(7.5) dist(λ, Spec1(H,Lk)) 6 ε + 2‖H‖d(λ, ε, k).
The strong convergence of the orthogonal projections Pk : H → Lk to the identity
operator implies

0 6 d(λ, ε, k) 6 inf{‖u− v‖ : v ∈ Lk, ‖v‖ = 1} → 0
as k → +∞, ∀u ∈ Im E([λ− ε, λ + ε]) : ‖u‖ = 1, ∀ ε > 0.

Thus
λ ∈ lim

k→+∞
∗ Spec1(H,Lk), ∀λ ∈ Spec(H).

Now from Theorem 6.1 and (2.10) we obtain the following result.
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Corollary 7.3. Let H be a bounded self-adjoint operator such that Spece(H)
is a segment (or a point). Then

lim
k→∞

∗ Spec1(H,Lk) = lim
k→+∞

∗ Spec1(H,Lk) = Spec(H), ∀ (Lk)∞k=1 ∈ Λ,

and (7.5) holds for any λ ∈ Spec(H) and ε > 0 (see (7.3)).

Theorem 7.1 shows that projection methods of approximate computation of
spectra of self-adjoint operators which use even order relative spectra do not lead
to spurious points. The method involving Spec2(H,Lk) is probably the simplest
one among these methods and thus seems to be the most attractive one (see also
Corollaries 3.4 and 4.2). It would be interesting to know whether this method
allows to find the whole spectrum, i.e. whether the sets (7.2) cover Spec(H) in
the case when H is self-adjoint and n = 2 (cf. (7.1)).
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