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Abstract. Let Hp denote the Lebesgue space Lp for p > 1 and the Hardy
space Hp for p 6 1. For 0 < p, q, r <∞, we study Hp ×Hq → Hr mapping
properties of bilinear operators given by finite sums of products of Calderón-
Zygmund operators on stratified homogeneous Lie groups. When r 6 1, we
show that such mapping properties hold when a number of moments of the
operator vanish. This hypothesis is natural and the conditions imposed are
the minimal required for any operator of this type to map into the space Hr.
Our proofs employ both the maximal function and atomic characterization
of Hp. We also discuss some applications.
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0. INTRODUCTION

The study of multilinear operators is not motivated by a mere quest to general-
ize the theory of linear operators, but by their wide applicability and usability
in analysis. The relation between the Cauchy integral along Lipschitz curves and
the Calderón commutators is an example of this situation: the boundedness of
the (bi)linear commutators is clearly connected to that of the Cauchy integral.
Multilinear operators have also proved to be very useful in other fields of mathe-
matics such as partial differential equations. The need to invert some linear partial
differential operators occasionally leads to the study of multilinear singular inte-
grals. The remarkable solution of the Korteweg-de Vries equation by the method
of inverse scattering is a dramatic corroboration of this point of view.

In this article, we systematically study boundedness of bilinear operators
given by sums of products of Calderón-Zygmund operators on stratified homoge-
neous groups. We are interested in mapping properties of these operators from
X × Y to Z, where X,Y , and Z are Lebesgue spaces or Hardy spaces. We con-
centrate our attention on the case where Z is a Hardy space, otherwise the result
is a trivial consequence of Hölder’s inequality. We prove that boundedness into a
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Hardy space holds exactly when a necessary number of moments of the operator
vanishes. To avoid cumbersome notation we state our results for bilinear operators
only; however, we note that our methods work for general multilinear operators of
the same type.

1. NOTATION AND STATEMENT OF RESULTS

Let G be a stratified homogeneous Lie group with ambient space Rn and
group dilations {δr}r>0. Then for some 1 = d1 6 d2 6 · · · 6 dn,

δrx = (rd1x1, . . . , r
dnxn) for all x = (x1, . . . , xn) ∈ Rn and r > 0.

The number D = d1 + · · · + dn is called the homogeneous dimension of G. For a
multi-index α = (α1, . . . , αn) ∈ Nn, let |α| = α1 + · · · + αn, and d(α) = d1α1 +
· · · + dnαn. Let P (x) =

∑
α
aαx

α =
∑
α
aαx

α1
1 · · ·xαn

n be a polynomial on G. The

largest d(α) with nonzero coefficient aα is called the homogeneous degree of P (x).
Let ρ(x) be a C∞0 (away from the origin) homogeneous norm on G. Then, there
exists a positive constant c such that for all x, y ∈ G,

(1.1) ρ(xy) 6 c(ρ(x) + ρ(y)) and ρ(x−1) = ρ(x).

Note that by [8], we can always choose an equivalent norm which has the
subadditivity property with constant c = 1. In the rest of this paper we will
assume that the constant c in (1.1) is equal to 1. All balls below will be left balls;
that is, sets Q = {x : ρ(c−1

Q x) < R}, where R is the radius of Q and cQ is its
center. We denote by dx Haar measure on G, normalized so that the measure of
the unit ball {x : ρ(x) < 1} is 1. Under this normalization, the Haar measure |Q|
of the ball Q is RD and therefore Q = {x : ρ(c−1

Q x) < |Q| 1
D }. For a > 1, aQ will

be the set Q = {x : ρ(c−1
Q x) < a|Q| 1

D }.
Let {X1, . . . , Xn} be a basis for the space of left-invariant vector fields on

G. For α = (α1, . . . , αn), write Xα = Xα1
1 · · ·Xαn

n . Similarly, let {Y1, . . . , Yn} be
a basis for the space of right-invariant vector fields on G, and define Y α likewise.
Unless stated otherwise, all our Taylor expansions will be based on left-invariant
vector fields as in [6].

For 0 < r 6 1, the Hardy space Hr(G) is defined to be the set of all distri-
butions f on G for which the maximal function sup

t>0
|f ∗ ϕt(x)| is in Lr(G). Here

∗ is the group convolution on G, ϕt = 1
tD (ϕ ◦ δ 1

t
), and ϕ is a Schwartz function

which is also a commutative approximate identity on G; that is,
∫
G

ϕdx = 1 and

ϕt ∗ϕs = ϕs ∗ϕt for all s, t > 0. Note that the definition of Hr(G) is independent
of the function ϕ. It was communicated to us by J. Dziubański that every strati-
fied homogeneous group admits a compactly supported commutative approximate
identity. See the appendix at the end of this paper for a proof of this fact. In the
sequel, we will work with such an approximate identity.
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The Hardy space Hr(G) can also be characterized by its atomic decomposi-
tion. Every element f in Hr(G) can be written as

(1.2) f =
∑
Q

λQaQ,

where Q is a ball, λQ > 0, and aQ is an atom, i.e., a compactly supported bounded
function with support in Q which satisfies:

(i) |aQ(x)| 6 |Q|− 1
r and

(ii)
∫
aQ(x)P (x) dx = 0

for all polynomials P (x) of homogeneous degree not exceeding a fixed integer N1

with N1 >
[
D

(
1
r − 1

)]
. The number N1 can be taken arbitrarily large.

Consider a doubly indexed family of Calderón-Zygmund singular integral
operators

{
T j

i

}
j=1,2
i=1,2,...,N

on G. The T j
i ’s are given by T j

i f = f ∗ Kj
i , where ∗

is the convolution on G, and Kj
i are standard Calderón-Zygmund distribution

kernels. We assume that there exists a large enough positive integer M and a
constant A such that for all i, j the following hold:

(i) the T j
i ’s are L2-bounded, that is∥∥T j

i f
∥∥

L2 6 A‖f‖L2 ,

for all f in a suitable dense subset of L2(G);
(ii) for all multi-indices α with d(α) 6 M ,∣∣(XαKj

i

)
(x)

∣∣ 6 Aρ(x)−D−d(α).

Remark 1.1. Condition (ii) on G is equivalent to condition (ii)′ below:
(ii)′ for all multi-indices α with d(α) 6 M ,∣∣(Y αKj

i

)
(x)

∣∣ 6 Aρ(x)−D−d(α).

This is a consequence of Proposition 1.29 in [6], which states that Y α can be
written as a sum of homogeneous polynomials of degree d(β)− d(α) times Xβ .

Remark 1.2. Direct consequences of (ii) and (ii)′ are:
(iii) for all α with d(α) 6 M − 1,∣∣(XαKj

i

)
(xy)−

(
XαKj

i

)
(x)

∣∣ 6 A
ρ(y)

ρ(x)D+d(α)+1
whenever ρ(x) > 2ρ(y);

(iii)′ for all α with d(α) 6 M − 1,∣∣(Y αKj
i

)
(yx)−

(
Y αKj

i

)
(x)

∣∣ 6 A
ρ(y)

ρ(x)D+d(α)+1
whenever ρ(x) > 2ρ(y).

Remark 1.3. We do not need to assume that Kj
i is homogeneous of degree

−D. This property is essentially contained in (ii). However, in most interesting
examples, we have this homogeneity.
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Remark 1.4. Singular integral operators with kernels satisfying (i) and (ii)
can be extended to bounded operators from Lp(G) to Lp(G) for 1 < p < ∞, and
those with kernels satisfying (ii) and (iii) can be extended to bounded operators
from Hr(G) to Hr(G) for 0 < r 6 1. See [6] and [12] for details.

Let Hp(G) = Lp(G) for p > 1. We would like to study Hp(G) ×Hq(G) →
Hr(G) mapping properties of bilinear operators of the form

B(f, g)(x) =
N∑

i=1

(T 1
i f)(x)(T 2

i g)(x),

where 0 < p, q, r <∞. Such boundedness properties can hold only when 1
p + 1

q = 1
r .

Since the case r > 1 is trivial, we consider below the following three situations:
(a) p, q > 1, r 6 1,
(b) p > 1, q 6 1, r 6 1, and
(c) p, q 6 1, r 6 1.

Below we shall write
∑
i

for the
N∑

i=1

. In the sequel, all constants will depend

on N .

Theorem 1.5 Let p, q > 1 and 1
r = 1

p + 1
q . Assume that there exists a

nonnegative integer k 6 D − 1 such that

(1.3)
∫
xαB(f, g)(x) dx = 0,

for all multi-indices α with d(α) 6 k and all f, g ∈ L2(G) with compact support.
Then, for D

D+k+1 < r 6 1, B can be extended to a bounded operator from Lp(G)×
Lq(G) into Hr(G).

Theorem 1.6. Let 0 < p 6 1, q > 1, and 1
r = 1

p + 1
q . Assume that there

exists a nonnegative integer k such that

(1.4)
∫
xαB(f, g)(x) dx = 0,

for all multi-indices α with d(α) 6 k, all f being p-atoms and g ∈ L2(G) with
compact support. Then, for D

D+k+1 < r 6 1, B can be extended to a bounded
operator from Hp(G)× Lq(G) into Hr(G).

Theorem 1.7. Let 0 < p, q, r 6 1 and 1
r = 1

p + 1
q . Assume that for some

integer k >
[
D

(
1
p − 1

)]
+

[
D

(
1
q − 1

)]
+D + 2 we have

(1.5)
∫
xαB(f, g)(x) dx = 0

for all multi-indices α with d(α) 6 k and all f being p-atoms and g being q-atoms.
Then B can be extended to a bounded operator from Hp(G)×Hq(G) into Hr(G).

Remark 1.8. Note that the hypotheses of Theorem 1.7 imply that D
D+k+1 <

r 6 1.
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Remark 1.9. Having k vanishing moments is a necessary requirement for
B(f, g) to belong to Hr for r > D

D+k+1 .

Remark 1.10. It is easy to see that the integrals in conditions (1.3), (1.4)
and (1.5) are well-defined. Moreover, by the Campbell-Hausdorff formula, (1.5) is
equivalent to either one of the following two conditions:∫

(yx)αB(f, g)(x) dx = 0 ∀ y ∈ G,(1.5)′ ∫
(xy)αB(f, g)(x) dx = 0 ∀ y ∈ G.(1.5)′′

Remark 1.11. Theorems 1.5 and 1.7 generalize the results in [1] and [7] to
the context of stratified homogeneous groups; however, the approach taken in the
proof of Theorem 1.7 is different. Theorem 1.6 fills in the missing link between
Theorems 1.5 and 1.7 and does not seem to have appeared in the literature before.

Although we discuss bilinear operators only, our methods can be adapted to
multilinear operators of this kind as well.

We would like to thank J. Dziubański for communicating to us the existence
of a smooth compactly supported commutative approximate identity on stratified
homogeneous groups. We are also grateful to Professors B. Blank, M. Christ,
G. Folland, Y. Han, A. Hulanicki, M. Taibleson, and G. Weiss for helpful discussion
and suggestions.

2. THE PROOF OF THEOREM 1.5

Let ϕ be a smooth compactly supported commutative approximate identity on G
as in Section 1. Without loss of generality, we may assume that suppϕ ⊆ {x :
ρ(x) 6 1}. For x0 ∈ G, let ϕt,x0(x) = t−Dϕ(δ 1

t
(x−1x0)), x ∈ G. We need to show

that the function
x0 → sup

t>0

∣∣∣ ∫
ϕt,x0(x)B(f, g)(x) dx

∣∣∣
is in Lr(G). Fix a function η(x) in C∞(G) satisfying η ≡ 1 on {x : ρ(x) < 2}, and
supp η ⊆ {x : ρ(x) < 4}. Let η0(x) = η

(
δ 1

t
(x−1x0)

)
and η1(x) = 1 − η0(x). Also

fix f, g ∈ L2(G) with compact support. Split the operator B as follows:

(2.1) B(f, g) = B(η0f, η0g) +B(f, η1g) +B(η1f, g)−B(η1f, η1g).

Let us consider the term B(f, η1g) first. For ρ(x−1x0) 6 t, we have

sup
t>0

|T 2
i (η1g)(x)− T 2

i (η1g)(x0)|

= sup
t>0

∣∣∣ ∫
ρ(y−1x0)>2t

(
K2

i (y−1x)−K2
i (y−1x0)

)
η1(y)g(y) dy

∣∣∣(2.2)

6 c sup
t>0

∫
ρ(y−1x0)>2t

ρ(x−1
0 x)

|η1(y)g(y)|
ρ(y−1x0)D+1

dy by condition (iii)

6 cM(η1g)(x0),
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where M is the Hardy-Littlewood maximal operator on G, and c is an absolute
positive constant. Throughout this article, c > 0 will denote a constant whose
value may vary. Thus

(2.3)

sup
t>0

∣∣∣ ∫
ϕt,x0(x)B(f, η1g)(x) dx

∣∣∣
6

∑
i

sup
t>0

∫
|ϕt,x0(x)|

∣∣T 1
i f(x)

∣∣ ∣∣T 2
i (η1g)(x)− T 2

i (η1g)(x0)
∣∣ dx

+
∑

i

sup
t>0

∫
|ϕt,x0(x)|

∣∣T 1
i f(x)

∣∣ ∣∣T 2
i (η1g)(x0)

∣∣ dx

6 c
∑

i

M
(
T 1

i f
)
(x0)M(η1g)(x0) + c

∑
i

M
(
T 1

i f
)
(x0)

∣∣T 2
i (η1g)(x0)

∣∣.
Since 1

r = 1
p + 1

q , Hölder’s inequality gives

(2.4)

∫
sup
t>0

∣∣∣ ∫
ϕt,x0(x)B(f, η1g)(x) dx

∣∣∣r dx0

6 c
∑

i

∥∥M(
T 1

i f
)∥∥r

p

(
‖M(η1g)‖r

q +
∥∥T 2

i (η1g)
∥∥r

q

)
6 c‖f‖r

p ‖g‖r
q.

The estimate for term B(η1f, g) is similar and is omitted. We now consider
the last term in (2.1). Write B(η1f, η1g) = Σ1 + Σ2 + Σ3 + Σ4, where

(2.5)

Σ1(x) =
∑

i

(
T 1

i (η1f)(x)− T 1
i (η1f)(x0)

)(
T 2

i (η1g)(x)− T 2
i (η1g)(x0)

)
,

Σ2(x) =
∑

i

T 1
i (η1f)(x)T 2

i (η1g)(x0),

Σ3(x) =
∑

i

T 1
i (η1f)(x0)T 2

i (η1g)(x),

Σ4(x) = −
∑

i

T 1
i (η1f)(x0)T 2

i (η1g)(x0).

By (2.2), Σ1(x) 6 cM(η1f)(x0)M(η1g)(x0) for all x in the support of ϕt,x0 .
Hölder’s inequality now gives the desired estimate for Σ1.

Terms Σ2 and Σ3 are similar to the second sum of (2.3) and are estimated
likewise. The estimate for Σ4 is easier and is omitted. We conclude that

(2.6)
∫

sup
t>0

∣∣∣ ∫
ϕt,x0(x)B(η1f, η1g)(x) dx

∣∣∣r dx0 6 c‖f‖r
p ‖g‖r

q.

Now we consider the main term B(η0f, η0g). Hypothesis (1.3) implies that

(2.7)
∑

i

(
T 1

i

)∗(
PkT

2
i (η0g)

)
= 0 a.e. on G,

for all polynomials Pk of homogeneous degree less than or equal to k, where (T 1
i )∗

is the adjoint operator of T 1
i . Since 1

p + 1
q = 1

r <
D+k+1

D and k + 1 6 D, we can
choose 1 < p1 < p and 1 < q1 < q, such that

1
p1

+
1
q1

=
D + k + ε

D
,
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for some 0 < ε < 1.
As in [5], let Γk+ε be the homogeneous Lipschitz space of G, defined as the

set of all continuous and bounded functions on G which satisfy

‖h‖Γk+ε
≡ sup

u,v∈G
sup

d(α)6k

|(Xαh)(uv)− (Xαh)(u)|
ρ(v)ε

<∞.

Let P k
x (z) =

∑
d(α)6k

Cα,x0(x)(x
−1z)α be the Taylor polynomial of homogeneous

degree k of the function ϕt,x0( · ) at the point x. Using Taylor’s theorem and
the easy fact that the C∞ compactly supported function ϕt,x0 is in Γk+ε with
‖ϕt,x0‖Γk+ε

6 ct−D−k−ε, we deduce that

(2.8)
∣∣ϕt,x0(y)− P k

x (x−1y)
∣∣ 6 ct−D−k−ερ(x−1y)k+ε

for some constant c > 0 depending only on ϕ, k and ε.
Using the Campbell-Hausdorff formula, we can write the polynomial y →

P k
x (x−1y) as a sum of powers of y with coefficients in x. Applying (2.7) to this

polynomial we obtain

(2.9)
∑

i

(
T 1

i

)∗[
P k

x (x−1 · )T 2
i (η0g)( · )

]
= 0.

Then we have

(2.10)

sup
t>0

∣∣∣∫ ϕt,x0B(η0f, η0g)(x) dx
∣∣∣=sup

t>0

∣∣∣∫ ϕt,x0

∑
i

T 1
i (η0f)(x)T 2

i (η0g)(x) dx
∣∣∣

= sup
t>0

∣∣∣ ∫ ∑
i

(η0f)(x)
(
T 1

i

)∗(
ϕt,x0T

2
i (η0g)

)
(x) dx

∣∣∣
= sup

t>0

∣∣∣ ∫ ∑
i

(η0f)(x)
[(
T 1

i

)∗[(
ϕt,x0( · )−P k

x (x−1 · )
)
T 2

i (η0g)( · )
]
(x)

]
dx

∣∣∣,
where we used (2.9) in the last inequality above. Let 1

p1
+ 1

p′1
= 1. We claim that∥∥(

T 1
i )∗

[
(ϕt,x0( · )− P k

x (x−1 · )
)
T 2

i (η0g)( · )
]∥∥

p′1
6 ct−D−k−ε‖η0g‖q1 ,

where q1 > 1 and 1
p′1

= 1
q1
− k+ε

D .

Assuming the claim, we control (2.10) by∑
i

sup
t>0

‖η0f‖p1

∥∥(T 1
i )∗

[(
ϕt,x0( · )− P k

x (x−1 · )
)
T 2

i (η0g)( · )
]∥∥

p′1

6 c sup
t>0

‖η0f‖p1t
−D−k−ε‖η0g‖q1

6 c sup
t>0

t−D−k−εM(|f |p1)
1

p1 (x0)t
D
p1M(|g|q1)

1
q1 (x0)t

D
q1

= cM(|f |p1)
1

p1 (x0)M(|g|q1)
1

q1 (x0),
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since D
p1

+ D
q1

= D + k + ε. Thus∫
sup
t>0

∣∣∣ ∫
ϕt,x0B(η0f, η0g) dx

∣∣∣r dx0 6 c

∫
M(|f |p1)

r
p1 (x0)M(|g|q1)

r
q1 (x0) dx0

6 c
( ∫

M(|f |p1)
p

p1 (x0) dx0

) r
p
( ∫

M(|g|q1)
q

q1 (x0) dx0

) r
q

6 c‖f‖r
p ‖g‖r

q

since p > p1 and q > q1.
To complete our proof we need to prove the claim. Let (K1

i )∗ be the kernel
of (T 1

i )∗. Using (2.8) we obtain∣∣(T 1
i )∗

[(
ϕt,x0( · )− P k

x (x−1 · )
)
T 2

i (η0g)( · )
]∣∣

6 c

∫ ∣∣(K1
i

)∗(y−1x)
∣∣t−D−k−ερ(x−1y)k+ε

∣∣T 2
i (η0g)(y)

∣∣ dy

6 ct−D−k−ε

∫ ∣∣T 2
i (η0g)(y)

∣∣
ρ(y−1x)D−(k+ε)

dy by condition (ii).

This last estimate, together with the fractional integral theorem on homogeneous

groups ([6]), and the boundedness of Calderón-Zygmund operators give∣∣(T 1
i )∗

[
(ϕt,x0( · )− P k

x (x−1 · )
)
T 2

i (η0g)( · )
]∥∥

p′1
6 ct−D−k−ε

∥∥T 2
i (η0g)

∥∥
q1

6 ct−D−k−ε‖η0g‖q1 ,

where q1 > 1 and 1
p′1

= 1
q1
− k+ε

D .

This finishes the proof of the claim and thus of Theorem 1.5

3. THE PROOF OF THEOREM 1.6

Fix 0 < p 6 1, f ∈ Hp(G), and g ∈ L2(G) with compact support. Let f have a

decomposition as in (1.2). We will show that for any atom aQ that appears in the

decomposition of f , the following holds:

(3.1)
∫

sup
t>0

∣∣∣ ∫
ϕt,x0

∑
i

(
T 1

i aQ

)
(T 2

i g) dx
∣∣∣r dx0 6 c‖g‖r

q.

Then, summing (3.1) over all such atoms will give the conclusion. Let

I(x0) = sup
t>0

∣∣∣ ∫
ϕt,x0

∑
i

(
T 1

i aQ

)(
T 2

i g
)
dx

∣∣∣r.
We will use the notation c′Q = c−1

Q x0. Pick a fixed l with 1 < l < q.
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Case 1. x0 ∈ 3Q. In this case∫
3Q

I(x0) dx0 6
∑

i

∫
3Q

sup
t>0

( ∫
|ϕt,x0 |

∣∣T 1
i aQT

2
i g

∣∣ dx
)r

dx0

6 c
∑

i

∫
3Q

M
(∣∣T 1

i aQT
2
i g

∣∣)r dx0

6 c
∑

i

( ∫
G

M
(∣∣T 1

i aQT
2
i g

∣∣)l dx0

) r
l
( ∫

3Q

1 dx0

) l−r
l

6 c|Q|
l−r

l

∑
i

( ∫ ∣∣T 1
i aQT

2
i g

∣∣l dx) r
l

6 c|Q|
l−r

l

∑
i

( ∫
|T 1

i aQ|
lq

q−l dx
) q−l

q
r
l
( ∫ ∣∣T 2

i g
∣∣q dx

) r
q

6 c|Q|
l−r

l

( ∫
|aQ|

lq
q−l dx

) q−l
q

r
l ‖g‖r

q since
q

l
> 1

6 c‖g‖r
q.

Case 2. x0 6∈ 3Q. We have

I(x0) 6 sup
0<t6 1

2 ρ(c′
Q

)

∣∣∣ ∫
ϕt,x0

∑
i

(
T 1

i aQ

)(
T 2

i g
)
dx

∣∣∣r
+ sup

t> 1
2 ρ(c′

Q
)

∣∣∣ ∫
ϕt,x0

∑
i

(
T 1

i aQ

)(
T 2

i g
)
dx

∣∣∣r = I1(x0) + I2(x0).

We now have I1(x0) 6 I11(x0) + I12(x0), where

I11(x0) = sup
0<t6 1

2 ρ(c′
Q

)

∣∣∣ ∫
2Q

ϕt,x0(x)
∑

i

(
T 1

i aQ

)
(x)

(
T 2

i g
)
(x) dx

∣∣∣r
I12(x0) = sup

0<t6 1
2 ρ(c′

Q
)

∣∣∣ ∫
(2Q)c

ϕt,x0(x)
∑

i

(
T 1

i aQ

)
(x)

(
T 2

i g
)
(x) dx

∣∣∣r.
Consider I11(x0) first. As before, let P k

cQ
(y) be the Taylor polynomial of

homogeneous degree k of ϕt,x0( · ) at the point cQ. We claim that in this case,
P k

cQ
( · ) ≡ 0, since for t 6 1

2ρ(c
′
Q), ϕt,x0 is identically equal to zero near cQ.

Therefore P k
cQ

(c−1
Q x) = 0 for x ∈ 2Q. By Taylor’s Theorem we have∣∣ϕt,x0(x)− P k

cQ
(c−1

Q x)
∣∣ 6 c

1
tD+k+1

ρ(c−1
Q x)k+1χρ(x−1x0)6t

6 c
|Q| k+1

D

ρ(x−1x0)
D+k+1

6 c
|Q| k+1

D

ρ
(
c−1
Q x0

)D+k+1

since x ∈ 2Q

by (1.1) since x0 6∈ 3Q.
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Replacing ϕt,x0(x) by ϕt,x0(x) − P k
cQ

(c−1
Q x) in the definition of I11(x) and using

the estimate above, we obtain:

(3.2)

I11(x0) 6 c
|Q|

r(k+1)
D

ρ
(
c−1
Q x0

)(D+k+1)r

∑
i

( ∫ ∣∣T 1
i aQ(x)

∣∣ ∣∣T 2
i g(x)

∣∣ dx
)r

6 c
|Q|

r(k+1)
D

ρ
(
c−1
Q x0

)(D+k+1)r

∑
i

∥∥T 1
i aQ

∥∥r

q′
‖T 2

i g‖r
q, where

1
q′

+
1
q

= 1

6 c
|Q|

r(k+1)
D

ρ
(
c−1
Q x0

)(D+k+1)r
‖aQ‖r

q′‖g‖r
q 6 c‖g‖r

q

|Q|−1+ D+k+1
D r

ρ
(
c−1
Q x0

)(D+k+1)r
.

Integrating the above over (3Q)c and using that

(3.3)
∫

(3Q)c

|Q|−1+ D+k+1
D r

ρ
(
c−1
Q x0

)(D+k+1)r
dx0 6 c,

we obtain that for r > D
D+k+1∫

(3Q)c

I11(x0) dx0 6 c‖g‖r
q.

Now consider I12(x0). Let N1 be as in Section 1. For any nonnegative integer
m 6 N1, let Px( · ) be the right Taylor polynomial of K1

i ( ·x) at x of homogeneous
degree m. By (iii)′,

(3.4)
∣∣K1

i (y−1x)− Pc−1
Q

x(y−1cQ)
∣∣ 6 c

ρ(y−1cQ)m+1

ρ
(
c−1
Q x

)m+1+D
,

whenever ρ
(
c−1
Q x

)
> 2ρ(y−1cQ). Now

(3.5)
∣∣T 1

i aQ(x)
∣∣ =

∣∣∣ ∫ (
K1

i (y−1x)− Pc−1
Q

x(y−1cQ)
)
aQ(y) dy

∣∣∣,
by the cancellation property of aQ and the Campbell-Hausdorff formula. Thus,
using (3.4) and (3.5), we obtain the following pointwise estimate,

(3.6)
∣∣T 1

i aQ(x)
∣∣ 6 c

|Q|−
1
p +1+ m+1

D

ρ(c−1
Q x)m+1+D

, x 6∈ 2Q,

for all nonnegative integers m 6 N1. We now have that I12(x0) is bounded above
by

c
∑

i

sup
0<t6 1

2 ρ(c′
Q

)

( ∫
|ϕt,x0(x)|

∣∣T 1
i aQ(x)

∣∣l′χ(2Q)c dx
) r

l′
( ∫

|ϕt,x0(x)|
∣∣T 2

i g(x)
∣∣l dx) r

l

6 c
∑

i

sup
0<t6 1

2 ρ(c′
Q

)

( ∫
|ϕt,x0(x)|

∣∣T 1
i aQ(x)

∣∣l′χ(2Q)c dx
) r

l′
M

(∣∣T 2
i g(x)

∣∣l) r
l (x0).
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Integrating the above on x0 6∈ 3Q and applying Hölder’s inequality, we obtain the
following estimate for

∫
(3Q)c

I12(x0) dx0:

(3.7)

c
∑

i

( ∫
(3Q)c

sup
0<t6 1

2 ρ(c′
Q

)

( ∫
|ϕt,x0(x)|

∣∣T 1
i aQ(x)

∣∣l′χ(2Q)c dx
) p

l′ dx0

) r
p

·
( ∫

(3Q)c

M
(∣∣T 2

i g(x)
∣∣l) q

l (x0) dx0

) r
q

.

By the Hardy-Littlewood maximal theorem, the second factor in (3.7) is bounded
by c‖g‖r

q. By (3.6), the first factor in (3.7) satisfies( ∫
(3Q)c

sup
0<t6 1

2 ρ(c′
Q

)

( ∫
|ϕt,x0(x)||T 1

i aQ(x)|l
′
χ(2Q)c dx

) p

l′ dx0

) r
p

6 c
( ∫

(3Q)c

sup
0<t6 1

2 ρ(c′
Q

)

( ∫
(2Q)c

|ϕt,x0(x)|
|Q|(−

1
p +1+ m+1

D )l′

ρ(c−1
Q x)(m+1+D)l′

dx
) p

l′ dx0

) r
p

6 c
( ∫

(3Q)c

|Q|(−
1
p +1+ m+1

D )p

ρ(c−1
Q x0)(m+1+D)p

dx0

) r
p

6 c
(
|Q|−1+p+ m+1

D p |Q| 1
D (D−(m+1+D)p)

) r
p = c,

where we use that ρ(c−1
Q x) = ρ

(
c−1
Q x0x

−1
0 x

)
> ρ

(
c−1
Q x0) − ρ(x−1

0 x
)

> 1
2ρ(c

−1
Q x0).

We also picked an m in (3.6) with m > D
p − D − 1 to make the last integral

convergent.
We have now proved (3.1) for I1(x0). Next, we discuss I2(x0). Note that by

(1.4), Hölder’s inequality, and the Lq boundedness of T 2
i , we have

I2(x0) = sup
t> 1

2 ρ(c′
Q

)

∣∣∣ ∫ (
ϕt,x0(x)− P k

cQ
(c−1

Q x)
) ∑

i

(
T 1

i aQ

)
(x)

(
T 2

i g
)
(x) dx

∣∣∣r
6 c

∑
i

sup
t> 1

2 ρ(c′
Q

)

( ∫
ρ
(
c−1
Q x

)k+1

tD+k+1

∣∣T 1
i aQ(x)

∣∣ ∣∣T 2
i g(x)

∣∣ dx
)r

6 c‖g‖r
q

∑
i

sup
t> 1

2 ρ(c′
Q

)

( ∫
ρ
(
c−1
Q x

)(k+1)q′

t(D+k+1)q′

∣∣T 1
i aQ(x)

∣∣q′ dx) r
q′
.(3.8)

Since r
q′ < 1, we have that the supremum in (3.8) is controlled by

sup
t> 1

2 ρ(c′
Q

)

( ∫
x∈2Q

dx
) r

q′ + sup
t> 1

2 ρ(c′
Q

)

( ∫
x6∈2Q

dx
) r

q′ ≡ I21(x0) + I22(x0).

It is easy to obtain that

(3.9) I21(x0) 6 c
|Q|

r(k+1)
D

ρ
(
c−1
Q x0

)(D+k+1)r
‖T 1

i aQ‖r
q′ 6 c

|Q|−1+ D+k+1
D r

ρ
(
c−1
Q x0

)(D+k+1)r
.



74 Loukas Grafakos and Xinwei Li

For I22(x0), we use (3.6) (taking m = k) to obtain

I22(x0) 6 c sup
t> 1

2 ρ(c′
Q

)

( ∫
ρ(c−1

Q x)(k+1)q′

t(D+k+1)q′

|Q|(−
1
p +1+ k+1

D )q′

ρ
(
c−1
Q x

)(k+1+D)q′
dx

) r
q′

6 c
|Q|(−

1
p +1+ k+1

D )r

ρ
(
c−1
Q x0

)(k+1+D)r

( ∫
x6∈2Q

1

ρ
(
c−1
Q x

)Dq′
dx

) r
q′

6 c
|Q|−1+ D+k+1

D r

ρ
(
c−1
Q x0

)(k+1+D)r
.(3.10)

Combining (3.8), (3.9), and (3.10), we deduce

I2(x0) 6 c‖g‖r
q

|Q|−1+ D+k+1
D r

ρ(c−1
Q x0)(D+k+1)r

.

Integrating the above over the set x0 6∈ 3Q, and using (3.3), we obtain∫
(3Q)c

I2(x0) dx0 6 c‖g‖r
q.

We have now finished the proof of (3.1) and we derive Theorem 1.6. Let
f =

∑
λQaQ be a finite sum of atoms in Hp. We have∫

sup
t>0

∣∣∣ ∫
ϕt,x0(x)

∑
i

(T 1
i f)(x)(T 2

i g)(x) dx
∣∣∣r dx0

6
∑
Q

λr
Q

∫
sup
t>0

∣∣∣ ∫
ϕt,x0(x)

∑
i

(T 1
i aQ)(x)(T 2

i g)(x) dx
∣∣∣r dx0

6 c
∑
Q

λr
Q‖g‖r

q by (3.1).

Since q > 1, we claim that p
r 6 2; otherwise, p

r > 2 which would imply that
r < p

2 6 1
2 and r

q < 1
2q < 1

2 . Hence 1 = 1
p/r + 1

q/r < 1
2 + 1

2 = 1 which gives

a contradiction. Therefore p
r 6 2 and we have that

( ∑
Q

λr
Q

) 1
r

6 c
( ∑

Q

λp
Q

) 1
p

=

c‖f‖Hp .
To see this last inequality, we assume that

∑
Q

λr
Q > 1 and that each λQ 6 1.

Then ( ∑
Q

λr
Q

) p
r

6
( ∑

Q

λr
Q

)2

6 2
∑
Q

λ2r
Q 6 2

∑
Q

λp
Q.

We have now shown that( ∫
sup
t>0

∣∣∣ ∫
ϕt,x0(x)

∑
i

(
T 1

i f
)
(x)

(
T 2

i g
)
(x) dx

∣∣∣r dx0

) 1
r

6 c‖f‖Hp‖g‖Lq ,

and the proof of Theorem 1.6 is complete.
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3. THE PROOF OF THEOREM 1.7

We are now going to prove that if B satisfies the hypotheses of Theorem 1.7, the
Lr norm of the function

x0 → sup
t>0

∣∣∣ ∫
ϕt,x0(x)B(f, g)(x) dx

∣∣∣
is controlled by c‖f‖Hp‖g‖Hq . Write f =

∑
λQaQ, g =

∑
µRbR, where λQ, µR >

0, aQ are p-atoms, and bR are q-atoms. Denote

S(aQ, bR)(x0) = sup
t>0

∣∣∣ ∫
ϕt,x0(x)B(aQ, bR)(x) dx

∣∣∣.
Then

sup
t>0

∣∣∣ ∫
ϕt,x0(x)B(f, g)(x) dx

∣∣∣ 6
∑
Q,R

λQµRS(aQ, bR)(x0)

6 Σ1(x0) + Σ2(x0) + Σ3(x0) + Σ4(x0),
where the Σ1,Σ2,Σ3,Σ4 are defined below.

Σ1(x0) =
∑
Q,R

x0∈5Q
x0∈5R

λQµRS(aQ, bR)(x0), Σ2(x0) =
∑
Q,R

x0∈5Q
x0 6∈5R

λQµRS(aQ, bR)(x0)

Σ3(x0) =
∑
Q,R

x0 6∈5Q
x0∈5R

λQµRS(aQ, bR)(x0), Σ4(x0) =
∑
Q,R

x0 6∈5Q
x0 6∈5R

λQµRS(aQ, bR)(x0).

It suffices to show that for each j, Σj ∈ Lr(G), and ‖Σj‖Lr 6 c‖f‖Hp‖g‖Hq .

Case 1. x0 ∈ 5Q, x0 ∈ 5R. In this case we have

S(aQ, bR)(x0) 6
∑

i

sup
t>0

∣∣∣ ∫
ϕt,x0(x)

(
T 1

i aQ

)
(x)

(
T 2

i bR
)
(x) dx

∣∣∣
6

∑
i

sup
t>0

( ∫
|ϕt,x0(x)|

∣∣T 1
i aQ(x)

∣∣2 dx
) 1

2
( ∫

|ϕt,x0(x)|
∣∣T 2

i bR(x)
∣∣2 dx

) 1
2

6 c
∑

i

M
(∣∣T 1

i aQ

∣∣2) 1
2 (x0)M

(∣∣T 2
i bR

∣∣2) 1
2 (x0).

Therefore∫ (∑
1
(x0)

)r

dx0 6
∫ ( ∑

Q,R

x0∈5Q∩5R

λQµRS(aQ, bR)(x0)
)r

dx0

6 c

∫ ( ∑
i

∑
Q,R

x0∈5Q∩5R

λQµRM
(∣∣T 1

i aQ

∣∣2) 1
2M(

∣∣T 2
i bR

∣∣2) 1
2

)r

dx0

6 c
∑

i

∫ ( ∑
Q

x0∈5Q

λQM
(∣∣T 1

i aQ

∣∣2) 1
2
)r( ∑

R
x0∈5R

µRM(
∣∣T 2

i bR
∣∣2) 1

2

)r

dx0
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6 c
∑

i

( ∫ ( ∑
Q

x0∈5Q

λQM
(∣∣T 1

i aQ|2)
1
2

)p

dx0

) r
p

·
( ∫ ( ∑

R
x0∈5R

µRM
(∣∣T 2

i bR
∣∣2) 1

2
)q

dx0

) r
q

6 c
∑

i

( ∑
Q

λp
Q

∫
5Q

M
(∣∣T 1

i aQ

∣∣2) p
2 (x0) dx0

) r
p

·
( ∑

R

µq
R

∫
5R

M
(∣∣T 2

i bR
∣∣2) q

2 (x0) dx0

) r
q

.

It is a simple fact ([12], Chapter 1, 8.15) that

(4.1)

∫
5Q

M
(∣∣T 1

i aQ

∣∣2) p
2 (x0) dx0 6 c|Q|1−p/2

( ∫ ∣∣T 1
i aQ

∣∣2 dx
) p

2

6 c|Q|1−p/2
( ∫

|aQ|2 dx
) p

2
6 c.

Similarly for M
(∣∣T 2

i bR
∣∣2) q

2 . We now have that

(4.2)
∫ (

Σ1(x0)
)r

dx0 6 c
( ∑

Q

λp
Q

) r
p
( ∑

R

µq
R

) r
q

6 c‖f‖r
Hp‖g‖r

Hq .

Case 2. x0 ∈ 5Q, x0 6∈ 5R. For any integer j > 0, we denote by P j
a (y) the

Taylor polynomial of homogeneous degree j of ϕt,x0( · ) at the point a. Let cR be
the center of the ball R and c′R = c−1

R x0. We have

S(aQ, bR)(x0)6 sup
0<t6 1

2ρ(c′
R

)

∣∣∣ ∫
ϕt,x0B(aQ, bR) dx

∣∣∣+ sup
t> 1

2 ρ(c′
R

)

∣∣∣ ∫
ϕt,x0B(aQ, bR) dx

∣∣∣
= S1(aQ, bR)(x0) + S2(aQ, bR)(x0).

Consider S1 first. We have

S1(aQ, bR)(x0) 6 sup
0<t6 1

2 ρ(c′
R

)

∣∣∣ ∫
2R

ϕt,x0B(aQ, bR) dx
∣∣∣

+ sup
0<t6 1

2 ρ(c′
R

)

∣∣∣ ∫
(2R)c

ϕt,x0B(aQ, bR) dx
∣∣∣ = S11(x0) + S12(x0).

Since ρ(c′R) > 2t, note that cR is not in the support of ϕt,x0 and thus P l
cR

≡ 0.
Here l is a large integer to be determined later. Thus
S11(x0)

6
∑

i

sup
0<t6 1

2 ρ(c′
R

)

∣∣∣ ∫
{x∈2R : ρ(x−1x0)6t}

(
ϕt,x0(x)−P l

cR
(c−1

R x)
)
T 1

i aQ(x)T 2
i bR(x) dx

∣∣∣
6c

∑
i

sup
0<t6 1

2 ρ(c′
R

)

∫
{x∈2R : ρ(x−1x0)6t}

t−D−l−1ρ(c−1
R x)l+1

∣∣T 1
i aQ(x)

∣∣∣∣T 2
i bR(x)

∣∣ dx
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(using that 1
t 6 1

ρ(x−1x0)
6 c 1

ρ(c−1
R

x0)
since x ∈ 2R, and x0 6∈ 5R)

S11(x0) 6 c
∑

i

1

ρ(c−1
R x0)

D
2 +l+1

sup
t>0

( 1
tD

∫
ρ(x−1x0)6t

∣∣T 1
i aQ(x)

∣∣2 dx
) 1

2

·
( ∫

2R

ρ(c−1
R x)2(l+1)

∣∣T 2
i bR(x)

∣∣2 dx
) 1

2

6 c
∑

i

M
(∣∣T 1

i aQ

∣∣2) 1
2 (x0)

|R|−
1
q + 1

2+ l+1
D

ρ
(
c−1
R x0

)D
2 +l+1

,(4.3)

since it can be easily seen that( ∫
(2R)c

ρ(c−1
R x)2(l+1)

∣∣T 2
i bR(x)

∣∣2 dx
) 1

2
6 c|R|

l+1
D ‖bR‖2 6 c|R|−

1
q + 1

2+ l+1
D .

Next, observe that

(4.4)
∫

x0 6∈5R

(
|R|−

1
q + 1

2+ l+1
D

ρ
(
c−1
R x0

)D
2 +l+1

)q

dx0 6 c,

provided that we have
(

D
2 + l+1

)
q > D. Fix l to be the least nonnegative integer

such that l > D
(

1
q − 1

)
+ D

2 − 1. We now deduce the inequality∫
Sr

11(x0) dx0 6 c‖f‖r
Hp‖g‖r

Hq

as a consequence of (4.1), (4.4), and Hölder’s inequality.
Next consider S12(x0). We have

S12(x0) 6
∑

i

sup
0<t6 1

2 ρ(c′
R

)

( ∫
(2R)c

|ϕt,x0 |
∣∣T 1

i aQ

∣∣2 dx
) 1

2
( ∫

(2R)c

|ϕt,x0 |
∣∣T 2

i bR
∣∣2 dx

) 1
2

6 c
∑

i

M
(∣∣T 1

i aQ

∣∣2) 1
2 (x0) sup

0<t6 1
2 ρ(c′

R
)

( ∫
(2R)c

|ϕt,x0 |
(
|R|−

1
q +1+ l+1

D

ρ
(
c−1
R x

)D+l+1

)2

dx
) 1

2

,

where we use (3.6) for bR. Now, since ρ
(
c−1
R x0

)
> 2t and ρ(x−1x0) 6 t, we have

ρ
(
c−1
R x

)
> ρ

(
c−1
R x0

)
− ρ(x−1x0) > 1

2ρ
(
c−1
R x0

)
. Therefore

S12(x0) 6 c
∑

i

M
(∣∣T 1

i aQ

∣∣2) 1
2 (x0)

|R|−
1
q +1+ l+1

D

ρ
(
c−1
R x0

)D+l+1
.

It is easy to check that

(4.5)
∫

(5R)c

(
|R|−

1
q +1+ l+1

D

ρ
(
c−1
R x0

)D+l+1

)q

dx0 6 c.
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So we have the inequality∫
Sr

12(x0) dx0 6 c‖f‖r
Hp‖g‖r

Hq

as a consequence of (4.1), (4.5), and Hölder’s inequality.
We now turn our attention to S2(aQ, bR). We have

S2(aQ, bR)(x0) = sup
t> 1

2 ρ(c′
R

)

∣∣∣ ∫ (
ϕt,x0(x)− P l

cR
(c−1

R x)
) ∑

i

(T 1
i aQ)(x)(T 2

i bR)(x) dx
∣∣∣

(by assumption (1.5))

6 c sup
t> 1

2 ρ(c′
R

)

∫
ρ
(
c−1
R x

)l+1

tD+l+1

∑
i

∣∣T 1
i aQ(x)

∣∣∣∣T 2
i bR(x)

∣∣ dx

6 c sup
t> 1

2 ρ(c′
R

)

( ∫
ρ(x−1x0)>4t

dx
)

+ c sup
t> 1

2 ρ(c′
R

)

( ∫
ρ(x−1x0)<4t

dx
)

= S21(x0) + S22(x0).

Consider first S21. The inequality ρ(x−1x0) > 4t implies ρ
(
c−1
R x

)
> ρ(x−1x0)

− ρ
(
c−1
R x0

)
> 2t > ρ

(
c−1
R x0

)
, thus x 6∈ 5R and ρ(x−1x0) 6 2ρ

(
c−1
R x

)
. Using (3.6)

for bR, we obtain

S21(x0) 6 c
∑

i

1

ρ
(
c−1
R x0

)D+l+1

· sup
t> 1

2 ρ(c′
R

)

∫
ρ(x−1x0)>4t

ρ
(
c−1
R x

)l+1∣∣T 1
i aQ(x)

∣∣ |R|− 1
q +1+ l+2

D

ρ
(
c−1
R x

)D+l+2
dx

6 c
∑

i

1

ρ
(
c−1
R x0

)D+l+1
sup
t>0

∫
ρ(x−1x0)>4t

|T 1
i aQ(x)|

ρ(x−1x0)
D
2

|R|−
1
q +1+ l+2

D

ρ
(
c−1
R x

)D
2 +1

dx

6 c
∑

i

|R|−
1
q +1+ l+2

D

ρ
(
c−1
R x0

)D+l+1

· sup
t>0

( ∫
ρ(x−1x0)>4t

|T 1
i aQ(x)|2

ρ(x−1x0)D
dx

) 1
2
( ∫

(5R)c

1

ρ
(
c−1
R x

)D+2
dx

) 1
2

6 c
∑

i

M
(∣∣T 1

i aQ

∣∣2) 1
2 (x0)

|R|−
1
q +1+ l+1

D

ρ
(
c−1
R x0

)D+l+1
.

By (4.1), (4.5), and Hölder’s inequality, it follows that∫
Sr

21(x0) dx0 6 c‖f‖r
Hp‖g‖r

Hq .
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Now consider S22. We have S22(x0) 6 S221(x0) + S222(x0), where

S221(x0)=c
∑

i

sup
t> 1

2 ρ(c′
R

)

( ∫
{x∈2R : ρ(x−1x0)64t}

ρ
(
c−1
R x

)l+1

tD+l+1

∣∣T 1
i aQ(x)

∣∣∣∣T 2
i bR(x)

∣∣ dx
)

S222(x0)=c
∑

i

sup
t> 1

2 ρ(c′
R

)

( ∫
{x∈(2R)c : ρ(x−1x0)64t}

ρ
(
c−1
R x

)l+1

tD+l+1

∣∣T 1
i aQ(x)

∣∣∣∣T 2
i bR(x)

∣∣ dx
)
.

Arguing similarly as for the term S11, we obtain estimate (4.3) for S221. Next

S222(x0) 6 c
∑

i

|R|−
1
q +1+ l+2

D

ρ
(
c−1
R x0

)D
2 +l+1

· sup
t>0

( 1
tD

∫
ρ(x−1x0)64t

∣∣T 1
i aQ

∣∣2 dx
) 1

2
( ∫

(2R)c

1

ρ
(
c−1
R x

)2(D+1)
dx

) 1
2

6 c
∑

i

M
(∣∣T 1

i aQ

∣∣2) 1
2 (x0)

|R|−
1
q + 1

2+ l+1
D

ρ
(
c−1
R x0

)D
2 +l+1

.

As before using (4.1), (4.4), and Hölder’s inequality, we conclude that

(4.6)
∫

(Σ2(x0))r dx0 6 c‖f‖r
Hp‖g‖r

Hq .

This finishes the proof of Case 2.

Case 3. x0 6∈ 5Q, x0 ∈ 5R. This case is the same as case 2. Let us denote by
m the least nonnegative integer satisfying m > D( 1

p − 1) + D
2 − 1. (m in this case

plays the role of l in Case 2.)

Case 4. x0 6∈ 5Q, x0 6∈ 5R. Without loss of generality, we assume that
suppϕ ⊆ [− 9

10 ,
9
10 ]. Divide this case into the following four nonmutually exclusive

subcases:
1◦ 0 < t 6 ρ(c′Q), 0 < t 6 ρ(c′R);
2◦ 0 < t 6 1

2ρ(c
′
Q), t > ρ(c′R);

3◦ t > ρ(c′Q), 0 < t 6 1
2ρ(c

′
R);

4◦ t > 1
2ρ(c

′
Q), t > 1

2ρ(c
′
R).

Subcase 3◦ is similar to 2◦. So we consider Subcases 1◦, 2◦, and 4◦ only. Let
k = m+ l + 1, where l and m are the integers that appeared in Cases 2 and 3.

Subcase 1◦. In this subcase, P j
cQ

( · ) ≡ P j
cR

( · ) ≡ 0 for all j, since both cQ
and cR are not in the support of ϕt,x0 . We have

sup
1◦

∣∣∣ ∫
ϕt,x0(x)

∑
i

(
T 1

i aQ

)
(x)

(
T 2

i bR
)
(x) dx

∣∣∣ 6 sup
1◦

∣∣∣ ∫
2Q∩2R

∣∣∣ + sup
1◦

∣∣∣ ∫
2Q∩(2R)c

∣∣∣
+ sup

1◦

∣∣∣ ∫
(2Q)c∩2R

∣∣∣ + sup
1◦

∣∣∣ ∫
(2Q)c∩(2R)c

∣∣∣ = I1(x0) + I2(x0) + I3(x0) + I4(x0).
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Note that I1(x0) 6= 0 when ρ(x−1x0) 6 t. So

1
t

6
1

ρ(x−1x0)
6 c

1
ρ
(
c−1
Q x0

) and similarly
1
t

6 c
1

ρ
(
c−1
R x0

)
since x ∈ 2Q ∩ 2R but x0 6∈ 5Q ∪ 5R. When |R| 6 |Q|, since P k

cR
≡ 0, we have

I1(x0) = sup
1◦

∣∣∣ ∫
2Q∩2R

(
ϕt,x0(x)− P k

cR
(c−1

R x)
) ∑

i

(T 1
i aQ)(T 2

i bR) dx
∣∣∣

6 c
∑

i

sup
1◦

∫
2Q∩2R

ρ
(
c−1
R x

)k+1

tD+k+1

∣∣T 1
i aQ

∣∣∣∣T 2
i bR

∣∣ dx

6 c
∑

i

sup
1◦

∫
2Q∩2R

|Q|m+1
D

t
D
2 +m+1

∣∣T 1
i aQ

∣∣ |R| l+1
D

t
D
2 +l+1

∣∣T 2
i bR

∣∣ dx

6 c
∑

i

1

ρ
(
c−1
Q x0

)D
2 +m+1

( ∫
2Q

|Q|2(m+1)
∣∣T 1

i aQ

∣∣2 dx
) 1

2

· 1

ρ
(
c−1
R x0

)D
2 +l+1

( ∫
2R

|R|2(l+1)
∣∣T 2

i bR
∣∣2 dx

) 1
2

6 c
|Q|−

1
p + 1

2+ m+1
D

ρ
(
c−1
Q x0

)D
2 +m+1

|R|−
1
q + 1

2+ l+1
D

ρ
(
c−1
R x0

)D
2 +l+1

.

If |R| > |Q|, we use P k
cQ

(c−1
Q x) instead of P k

cR
(c−1

R x) above to get the same estimate.
The inequality ∫

Ir
1 (x0) dx0 6 c‖f‖r

Hp‖g‖r
Hq

follows as before. Now consider I2. Since Pm
cQ
≡ 0,

I2(x0) 6 c
∑

i

sup
1◦

∣∣∣ ∫
2Q∩(2R)c

(
ϕt,x0(x)− Pm

cQ
(c−1

Q x)
)
χρ(x−1x0)6t

(
T 1

i aQ

)(
T 2

i bR
)
dx

∣∣∣
6 c

∑
i

sup
1◦

∫
2Q∩(2R)c

ρ
(
c−1
Q x

)m+1

t
D
2 +m+1

∣∣T 1
i aQ(x)

∣∣ 1

t
D
2
χρ(x−1x0)6t

∣∣T 2
i bR(x)

∣∣ dx

6 c
∑

i

1

ρ
(
c−1
Q x0

)D
2 +m+1

( ∫
2Q

ρ
(
c−1
Q x

)2(m+1)∣∣T 1
i aQ(x)

∣∣2 dx
) 1

2

· sup
1◦

( ∫
(2R)c

1
tD
χρ(x−1x0)6t

(
|R|−

1
q +1+ l+1

D

ρ
(
c−1
R x

)D+l+1

)2

dx
) 1

2

.

Now ρ
(
c−1
R x

)
> ρ

(
c−1
R x0

)
− ρ(x−1x0) > 1

10ρ
(
c−1
R x0

)
whenever x ∈ suppϕt,x0 .
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Therefore

I2(x0) 6 c
|Q|−

1
p + 1

2+ m+1
D

ρ
(
c−1
Q x0

)D
2 +m+1

|R|−
1
q +1+ l+1

D

ρ
(
c−1
R x0

)D+l+1

as desired. Term I3 is similar to I2. We now treat term I4.

I4(x0) 6
∑

i

sup
1◦

∫
(2Q)c∩(2R)c

|ϕt,x0(x)|
∣∣T 1

i aQ(x)
∣∣∣∣T 2

i bR(x)
∣∣ dx

6 c
∑

i

sup
1◦

( ∫
(2Q)c

|ϕt,x0(x)|
(
|Q|−

1
p +1+ m+1

D

ρ
(
c−1
Q x

)D+m+1

)2

dx
) 1

2

· sup
1◦

( ∫
(2R)c

|ϕt,x0(x)|
(
|R|−

1
q +1+ l+1

D

ρ
(
c−1
R x

)D+l+1

)2

dx
) 1

2

.

By the previous argument we have that ρ
(
c−1
Q x

)
> 1

10ρ
(
c−1
Q x0

)
, ρ

(
c−1
R x

)
>

1
10ρ

(
c−1
R x0

)
. Thus

I4(x0) 6 c
|Q|−

1
p +1+ m+1

D

ρ
(
c−1
Q x0

)D+m+1

|R|−
1
q +1+ l+1

D

ρ
(
c−1
R x0

)D+l+1

as before.

Subcase 4◦. In this subcase, because of symmetry we may assume that |R| 6

|Q|.
Using 1

t 6 2

ρ
(
c−1

Q
x0

) and 1
t 6 2

ρ
(
c−1

R
x0

) and (1.5) we obtain

sup
4◦

∣∣∣ ∫
ϕt,x0

∑
i

(
T 1

i aQ

)(
T 2

i bR
)
dx

∣∣∣
= sup

4◦

∣∣∣ ∫ (
ϕt,x0(x)− P k

cR
(c−1

R x)
) ∑

i

(
T 1

i aQ

)(
T 2

i bR
)
dx

∣∣∣
6 c

∑
i

sup
4◦

∫
ρ
(
c−1
R x

)k+1

tD+k+1

∣∣T 1
i aQ

∣∣∣∣T 2
i bR

∣∣ dx

6 c
∑

i

(
sup
4◦

∫
2Q∩2R

+sup
4◦

∫
2Q∩(2R)c

+sup
4◦

∫
(2Q)c∩2R

+sup
4◦

∫
(2Q)c∩(2R)c

)
= J1(x0) + J2(x0) + J3(x0) + J4(x0).
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To estimate J1 note that ρ
(
c−1
R x

)
6 2|R| 1

D 6 2|Q| 1
D . Thus

J1(x0) 6 c
∑

i

|Q|m+1
D

ρ
(
c−1
Q x0

)D
2 +m+1

|R| l+1
D

ρ
(
c−1
R x0

)D
2 +l+1

( ∫ ∣∣T 1
i aQ

∣∣2 dx
) 1

2

·
( ∫ ∣∣T 2

i bR
∣∣2 dx

) 1
2

6 c
|Q|−

1
p + 1

2+ m+1
D

ρ
(
c−1
Q x0

)D
2 +m+1

|R|−
1
q + 1

2+ l+1
D

ρ
(
c−1
R x0

)D
2 +l+1

as desired. Using (3.6) for bR, we estimate J2 as follows:

J2(x0) 6 c
∑

i

sup
4◦

∫
2Q∩(2R)c

ρ
(
c−1
R x

)k+1

tD+k+1

∣∣T 1
i aQ

∣∣ |R|− 1
q +1+ l+m+3

D

ρ
(
c−1
R x

)D+m+l+3
dx

6 c
∑

i

|Q|m+1
D

ρ
(
c−1
Q x0

)D
2 +m+1

( ∫ ∣∣T 1
i aQ

∣∣2 dx
) 1

2 |R|−
1
q +1+ l+2

D

ρ
(
c−1
R x0

)D
2 +l+1

·
( ∫

(2R)c

1

ρ
(
c−1
R x

)2(D+1)
dx

) 1
2

6 c
|Q|−

1
p + 1

2+ m+1
D

ρ
(
c−1
Q x0

)D
2 +m+1

|R|−
1
q + 1

2+ l+1
D

ρ
(
c−1
R x0

)D
2 +l+1

as desired. To estimate J3 note that ρ
(
c−1
R x

)
6 2|R| 1

D 6 2|Q| 1
D 6 ρ

(
c−1
Q x

)
. Using

(3.6) for aQ we obtain

J3(x0) 6 c
∑

i

sup
4◦

∫
(2Q)c∩2R

ρ
(
c−1
R x

)l+1

t
D
2 +l+1

∣∣T 2
i bR(x)

∣∣ |Q|− 1
p +1+ m+1

D

t
D
2 +m+1

ρ
(
c−1
R x

)m+1

ρ
(
c−1
Q x

)D+m+1
dx

6 c
∑

i

|R| l+1
D

ρ
(
c−1
R x0

)D
2 +l+1

( ∫ ∣∣T 2
i bR

∣∣2 dx
) 1

2 |Q|−
1
p +1+ m+1

D

ρ
(
c−1
Q x0

)D
2 +m+1

·
( ∫

(2Q)c

1

ρ
(
c−1
Q x

)2D
dx

) 1
2

6 c
|R|−

1
q + 1

2+ l+1
D

ρ
(
c−1
R x0

)D
2 +l+1

|Q|−
1
p + 1

2+ m+1
D

ρ
(
c−1
Q x0

)D
2 +m+1
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as desired. Finally using (3.6) for both aQ and bR we obtain

J4(x0)6c
∑

i

sup
4◦

∫
(2Q)c∩(2R)c

|Q|−
1
p +1+ m+1

D

ρ
(
c−1
Q x

)D+m+1

1

t
D
2 +m+1

|R|−
1
q +1+ k+1

D

ρ
(
c−1
R x

)D+k+1

ρ
(
c−1
R x

)k+1

t
D
2 +l+1

dx

6 c
∑

i

|Q|−
1
p +1+ m+1

D

ρ
(
c−1
Q x0

)D
2 +m+1

|Q|
m+1

D

( ∫
(2Q)c

1

ρ
(
c−1
Q x

)2(D+m+1)
dx

) 1
2

· |R|−
1
q +1+ l+1

D

ρ
(
c−1
R x0

)D
2 +l+1

( ∫
(2R)c

1

ρ
(
c−1
R x

)2D
dx

) 1
2

6 c
|Q|−

1
p + 1

2+ m+1
D

ρ
(
c−1
Q x0

)D
2 +m+1

|R|−
1
q + 1

2+ l+1
D

ρ
(
c−1
R x0

)D
2 +l+1

as desired.

This concludes Subcase 4◦. We are now left with Subcases 2◦ and 3◦. Because

of symmetry we only consider the former.

Subcase 2◦. We break up Subcase 2◦ of Case 4 into two subsubcases:

Subsubcase |R| 6 |Q|. In this subsubcase write

sup
2◦

∣∣∣ ∫
ϕt,x0

∑
i

(
T 1

i aQ

)(
T 2

i bR
)
dx

∣∣∣
= sup

2◦

∣∣∣ ∫ (
ϕt,x0(x)− P k

cR
(c−1

R x)
) ∑

i

(
T 1

i aQ

)(
T 2

i bR
)
dx

∣∣∣ by (1.5)

6 c
∑

i

sup
2◦

∫
ρ
(
c−1
R x

)k+1

tD+k+1

∣∣T 1
i aQ

∣∣ ∣∣T 2
i bR

∣∣ dx

6 c
∑

i

(
sup
2◦

∫
2Q∩2R

+sup
2◦

∫
2Q∩(2R)c

+sup
2◦

∫
(2Q)c∩2R

+sup
2◦

∫
(2Q)c∩(2R)c

)
= K1(x0) +K2(x0) +K3(x0) +K4(x0).

We begin with term K1. If 2Q and 2R intersect, it follows that ρ(c−1
R cQ) <

2|R| 1
D + 2|Q| 1

D < 4|Q| 1
D . Observe that t > ρ

(
c−1
R x0

)
> ρ

(
c−1
Q x0

)
− ρ(c−1

R cQ) >

5|Q| 1
D − 4|Q| 1

D = |Q| 1
D . Hence ρ

(
c−1
Q x0

)
6 ρ

(
c−1
R x0

)
+ 4|Q| 1

D < 5t. Using that



84 Loukas Grafakos and Xinwei Li

both ρ(c−1
Q x0) and ρ(c−1

R x0) are less than a multiple of t we obtain

K1(x0) 6 c
∑

i

sup
2◦

∫
2Q∩2R

ρ
(
c−1
R x

)m+1

ρ
(
c−1
Q x0

)D
2 +m+1

∣∣T 1
i aQ

∣∣ ρ
(
c−1
R x

)l+1

ρ
(
c−1
R x0

)D
2 +l+1

∣∣T 2
i bR

∣∣ dx

6 c
∑

i

|R|m+1
D

ρ
(
c−1
Q x0

)D
2 +m+1

( ∫ ∣∣T 1
i aQ

∣∣2 dx
) 1

2 |R| l+1
D

ρ
(
c−1
R x0

)D
2 +l+1

( ∫ ∣∣T 2
i bR

∣∣2 dx
) 1

2

6 c
|Q|−

1
p + 1

2+ m+1
D

ρ
(
c−1
Q x0

)D
2 +m+1

|R|−
1
q + 1

2+ l+1
D

ρ
(
c−1
R x0

)D
2 +l+1

,

since ρ
(
c−1
R x

)
6 2|R| 1

D and |R| 1
D 6 |Q| 1

D .
We now control term K2. Note that when x ∈ 2Q ∩ (2R)c, then ρ

(
c−1
R x

)
>

ρ
(
c−1
Q x0

)
− ρ

(
c−1
Q x

)
− ρ

(
c−1
R x0

)
> 3

5ρ
(
c−1
Q x0

)
− ρ

(
c−1
R x0

)
> 1

10ρ
(
c−1
Q x0

)
, since

2ρ
(
c−1
Q x0

)
> 10|Q| 1

D > 5ρ
(
c−1
Q x

)
and ( 3

5 −
1
10 )ρ

(
c−1
Q x0

)
> ρ

(
c−1
R x0

)
. We now use

that t > ρ(c−1
R x0) and ρ(c−1

R x) > 1
10ρ(c

−1
Q x0) to obtain

K2(x0) 6 c
∑

i

sup
2◦

∫
2Q∩(2R)c

ρ
(
c−1
R x

)k+1

tD+k+1

∣∣T 1
i aQ

∣∣ |R|− 1
q +1+ k+m+2

D

ρ
(
c−1
R x

)D+k+m+2
dx

6 c
|R|−

1
q +1+ k+1

D

ρ(c−1
R x0)D+k+1

|R|m+1
D

ρ(c−1
Q x0)D+m+1

∫ ∣∣T 1
i aQ

∣∣ dx

6 c
|R|−

1
q +1+ k+1

D

ρ
(
c−1
R x0

)D+k+1

|Q|−
1
p +1+ m+1

D

ρ
(
c−1
Q x0

)D+m+1
since|R| 6 |Q|.

This concludes the estimate for K2.
Consider K3 now. Since 5|R| 1

D 6 ρ
(
c−1
R x0

)
6 t, it follows that |R| 1

D 6
1
5 t. Hence ρ(x−1x0) 6 ρ

(
c−1
R x0

)
+ ρ

(
c−1
R x

)
6 7

5 t 6 7
10ρ

(
c−1
Q x0

)
and ρ

(
c−1
Q x

)
>

ρ
(
c−1
Q x0

)
− ρ(x−1x0) > 3

10ρ
(
c−1
Q x0

)
. Now we have

K3(x0) 6 c
∑

i

sup
2◦

∫
(2Q)c∩2R

ρ
(
c−1
R x

)k+1

tD+k+1

∣∣T 2
i bR

∣∣ |Q|− 1
p +1+ m+1

D

ρ
(
c−1
Q x

)D+m+1
dx

6 c
∑

i

|Q|−
1
p +1+ m+1

D

ρ
(
c−1
Q x0

)D+m+1

|R| k+1
D

ρ
(
c−1
R x0

)D+k+1

∫
2R

∣∣T 2
i bR(x)

∣∣ dx

6 c
|Q|−

1
p +1+ m+1

D

ρ
(
c−1
Q x0

)D+m+1

|R|
k+1

D − 1
q +1

ρ
(
c−1
R x0

)D+k+1
,

which is the desired estimate for K3.
Finally, we discuss K4. Let A(x0, Q,R) be the set of all x ∈ (2Q)c ∩ (2R)c

with ρ
(
c−1
Q x

)
> 1

10ρ
(
c−1
Q x0

)
and B(x0, Q,R) be the set of all x ∈ (2Q)c ∩ (2R)c
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with ρ
(
c−1
Q x

)
< 1

10ρ
(
c−1
Q x0

)
. Then,

K41(x0) ≡ c
∑

i

sup
2◦

∫
A(x0,Q,R)

|Q|−
1
p +1+ m+1

D

ρ
(
c−1
Q x

)D+m+1

ρ
(
c−1
R x

)k+1

tD+k+1

|R|−
1
q +1+ k+l+2

D

ρ
(
c−1
R x

)D+k+l+2
dx

6 c
|Q|−

1
p +1+ m+1

D

ρ
(
c−1
Q x0

)D+m+1

|R|−
1
q +1+ k+1

D

ρ
(
c−1
R x0

)D+k+1
|R|

l+1
D

∫
(2R)c

1

ρ
(
c−1
R x

)D+l+1
dx

6 c
|Q|−

1
p +1+ m+1

D

ρ
(
c−1
Q x0

)D+m+1

|R|−
1
q +1+ k+1

D

ρ
(
c−1
R x0

)D+k+1
.

Now suppose that x is in the set B(x0, Q,R). Then, ρ(x−1x0) > ρ
(
c−1
Q x0

)
−

ρ
(
c−1
Q x

)
> 9

10ρ
(
c−1
Q x0

)
> 9

5 t. Hence ρ
(
c−1
R x

)
> ρ(x−1x0)−ρ

(
c−1
R x0

)
> 4

9ρ(x
−1x0)

> 2
5ρ

(
c−1
Q x0

)
. We have

K42(x0) ≡ c
∑

i

sup
2◦

∫
B(x0,Q,R)

|Q|−
1
p +1+ m+1

D

ρ
(
c−1
Q x

)D+m+1

ρ
(
c−1
R x

)k+1

tD+k+1

|R|−
1
q +1+ k+m+2

D

ρ
(
c−1
R x

)D+k+m+2
dx

6 c
|Q|−

1
p +1+ m+1

D

ρ
(
c−1
Q x0

)D+m+1

|R|−
1
q +1+ k+1

D

ρ
(
c−1
R x0

)D+k+1
|R|

m+1
D

∫
(2Q)c

1

ρ
(
c−1
Q x

)D+m+1
dx

6 c
|Q|−

1
p +1+ m+1

D

ρ
(
c−1
Q x0

)D+m+1

|R|−
1
q +1+ k+1

D

ρ
(
c−1
R x0

)D+k+1
,

since |R|m+1
D · |Q|−m+1

D 6 1. Since K4 6 K41 + K42, we conclude the estimates
for K4.

We now come to the second Subsubcase of Subcase 2◦ of Case 4:

Subsubcase |R| > |Q|. We use the hypothesis to subtract a suitable term and
we then split things in four parts as before.

sup
2◦

∣∣∣ ∫
ϕt,x0

∑
i

(
T 1

i aQ

)(
T 2

i bR
)
dx

∣∣∣
= sup

2◦

∣∣∣ ∫ (
ϕt,x0 − P k

cQ
(c−1

Q x)
) ∑

i

(
T 1

i aQ

)(
T 2

i bR
)
dx

∣∣∣
6 c

(
sup
2◦

∫
2Q∩2R

+sup
2◦

∫
2Q∩(2R)c

+sup
2◦

∫
(2Q)c∩2R

+sup
2◦

∫
(2Q)c∩(2R)c

)
= L1(x0) + L2(x0) + L3(x0) + L4(x0).

We observe that term L1 ≡ 0. In fact, if there were some x in the intersection
of the doubles of Q and R that appear in term L1, then ρ

(
c−1
Q x0

)
6 ρ

(
c−1
R x0

)
+

ρ
(
c−1
Q cR

)
6 t+ρ

(
c−1
Q x

)
+ρ

(
c−1
R x

)
6 t+2|R| 1

D +2|Q| 1
D 6 t+4|R| 1

D < t+ 4
5 t < 2t,

which is impossible. Therefore L1 ≡ 0.
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We now proceed with term L2. As we showed for term K2, we have that
ρ
(
c−1
R x

)
> 1

10ρ
(
c−1
Q x0

)
. Using this fact and that t > ρ

(
c−1
R x0

)
, we obtain

L2(x0) 6 c
∑

i

sup
2◦

∫
2Q∩(2R)c

ρ
(
c−1
Q x

)k+1

tD+k+1

∣∣T 1
i aQ

∣∣ |R|− 1
q +1+ k+1

D

ρ
(
c−1
R x

)D+k+1
dx

6 c
∑

i

|Q| k+1
D

ρ
(
c−1
R x0

)D+k+1

|R|−
1
q +1+ k+1

D

ρ
(
c−1
Q x0

)D+k+1

∫ ∣∣T 1
i aQ

∣∣ dx

6 c
|Q|−

1
p +1+ k+1

D

ρ
(
c−1
Q x0

)D+k+1

|R|−
1
q +1+ k+1

D

ρ
(
c−1
R x0

)D+k+1
.

This concludes the estimate for L2.
We now consider term L3. As we showed for termK3, we have that ρ

(
c−1
Q x

)
>

3
10ρ

(
c−1
Q x0

)
. Thus

L3(x0) 6 c
∑

i

sup
2◦

∫
(2Q)c∩2R

ρ
(
c−1
Q x

)k+1

tD+k+1

∣∣T 2
i bR(x)

∣∣ |Q|− 1
p +1+ m+k+2

D

ρ
(
c−1
Q x

)D+m+k+2
dx

6 c
∑

i

|Q| k+1
D

ρ(c−1
R x0)

D+k+1

|Q|−
1
p + 1

2+ m+1
D

ρ
(
c−1
Q x0

)D+m+1

∫
(2Q)c∩2R

∣∣T 2
i bR(x)

∣∣ dx

6 c
|R|−

1
q +1+ k+1

D

ρ(c−1
R x0)D+k+1

|Q|−
1
p +1|Q|m+1

D

ρ(c−1
Q x0)D+m+1

since |Q| < |R|.

Finally, we discuss L4. We have

L4(x0) 6 c
∑

i

∫
(2Q)c∩(2R)c

ρ(c−1
Q x)k+1

tD+k+1

|Q|−
1
p +1+ m+k+2

D

ρ(c−1
Q x)D+m+k+2

|R|−
1
q +1+ k+1

D

ρ(c−1
R x)D+k+1

dx

6 c
|R|−

1
q +1+ k+1

D

ρ(c−1
R x0)D+k+1

∫
(2Q)c∩(2R)c

|Q|−
1
p +1+ m+1

D + k+1
D

ρ(c−1
Q x)D+m+1ρ(c−1

R x)D+k+1
dx.

As we did with term K4, we consider the sets A(x0, Q,R) and B(x0, Q,R).
For x ∈ A(x0, Q,R), use the estimate ρ(c−1

Q x) > 1
10ρ

(
c−1
Q x0

)
to bound the integral

above by
|Q|−

1
p +1+ m+1

D

ρ
(
c−1
Q x0

)D+m+1
.

For x ∈ B(x0, Q,R), we showed before that ρ
(
c−1
R x

)
> 2

5ρ
(
c−1
Q x0

)
. Then use this

estimate to bound the integral above by

|Q|−
1
p +1+ k+1

D

ρ(c−1
Q x0)D+k+1

.
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In both cases, we have proved the desired pointwise estimate for term K4,
thus concluding the proof of the second Subsubcase of Subcase 2◦ of Case 4.
Subcase 3◦ of Case 4 is similar. Theorem 1.7 is now completely proved.

Note that when D is even, m can be
[
D

(
1
p − 1

)]
+ D

2 and l can be
[
D

(
1
q −

1
)]

+ D
2 . Thus k can be as small as

[
D

(
1
p − 1

)]
+

[
D

(
1
q − 1

)]
+D+ 1. When D is

odd, m can be
[
D

(
1
p − 1

)]
+ D+1

2 and l can be
[
D

(
1
q − 1

)]
+ D+1

2 . In this case k
can be as small as

[
D

(
1
p − 1

)]
+

[
D

(
1
q − 1

)]
+D + 2. Moreover, it is easy to see

that r > D
D+k+1 .

5. APPLICATIONS AND EXAMPLES

We can use Theorem 1.5 to extend, in the context of stratified homogeneous groups,
the result of [3] which says that the commutator of a Calderón-Zygmund operator
and multiplication by a BMO function maps Lp(Rn) into itself. More precisely,
we have the following:

Corollary 5.1. Let b ∈ BMO(G) and T be a Calderón-Zygmund operator
as in Section 1. Then the operator

[b, T ](f) = bT (f)− T (bf)

maps Lp(G) boundedly into itself for 1 < p <∞, and

‖[b, T ](f)‖Lp 6 c‖f‖Lp‖b‖BMO.

Proof. Let p′ be the conjugate idex of p. From Theorem 1.5, we know that
for all g ∈ Lp′(G), g(Tf) − f(T ∗g) ∈ H1(G) since assumption (1.3) is obviously
satisfied with k = 0. Moreover, ‖g(Tf) − f(T ∗g)‖H1 6 c‖f‖Lp‖g‖Lp′ . Using the
duality between H1 and BMO on homogeneous groups ([6]), we obtain∣∣∣ ∫

[b, T ](f)(x)g(x) dx
∣∣∣ =

∣∣∣ ∫
b(x)[g(x)(Tf)(x)− f(x)(T ∗g)(x)] dx

∣∣∣
6 ‖b‖BMO‖g(Tf)− f(T ∗g)‖H1 6 c‖b‖BMO‖f‖Lp‖g‖Lp′ .

Next we discuss another application of our results. Consider the Heisenberg
group Hn which is a stratified homogeneous group of homogeneous dimension
2n+ 2.

The Cauchy-Szegö projection on Hn is defined as the following principal
value convolution

C(f)(x) =
∫

Hn

K(y−1x)f(y) dy, f ∈ L2(Hn) with compact support,

where K is a homogeneous distribution of degree −(2n + 2) which equals the
smooth function c(t + i|ξ|2)−n−1 away from the origin, x = [ξ, t] ∈ Hn, ξ ∈ R2n,
t ∈ R, and c = 2n−1in+1n!/πn+1, i2 = −1. Let C∗ denote the adjoint of C. It is
easy to see that C = C∗.

The following is a consequence of Theorem 1.5 and Theorem 1.6. As before,
we set Hp = Lp for p > 1.
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Corollary 5.2. Let 0 < p, q < ∞ and assume that at least one of the p, q
is bigger than one. Let r > 2n+2

2n+3 satisfy 1
r = 1

p + 1
q . Then for f ∈ Hp(Hn) and

g ∈ Hq(Hn) we have that B(f, g) = fC(g)− gC∗(f) ∈ Hr(Hn), and

‖fC(g)− gC∗(f)‖Hr(Hn) 6 C‖f‖Hp(Hn)‖g‖Hq(Hn),

for some constant C independent of f and g.

It can be seen that this bilinear operator B does not have higher order
moments vanishing and thus we can not expect it to map into Hr(Hn), for r 6
2n+2
2n+3 .

Examples of bilinear operators with vanishing moments of all orders are
given by

B1(f, g) = f(Hg) + (Hf)g and B2(f, g) = (Hf)(Hg)− fg,

where H is the usual Hilbert transform on R1. For these operators we obtain
Hp ×Hq → Hr boundedness for all 0 < p, q, r <∞, with 1

p + 1
q = 1

r .
Suitable combinations of Riesz transforms give examples of operators with

only a finite number of vanishing moments. For instance, if R1 and R2 are the
usual Riesz transforms in R2, the operator

D(f, g) = (R2
1f)(R2

2g)− 2(R1R2f)(R1R2g) + (R2
2f)(R2

1g)

has integral and first order moments vanishing (but no higher order moments
vanishing). This operator is naturally obtained from the determinant of the 2×2×2
matrix of all second order partial derivatives of the function (f, g) : R2 → R2.
Theorem 1.7 gives that the operator D is bounded from Hp × Hq into Hr for
r > 1

2 . This result is analogous to the theorem in [2] on the H1 boundedness of
the Jacobian.

6. APPENDIX : EXISTENCE OF COMPACTLY SUPPORTED
COMMUTATIVE APPROXIMATE IDENTITIES ON STRATIFIED GROUPS

The following construction was communicated to us by J. Dziubański.
Let G be a connected and simply connected stratified homogeneous Lie

group. Let ∆ = −
∑
j

X2
j be the sublaplacian on G. By [9], for any Schwartz

function m on [0,∞), there exists a Schwartz function m̃ on G such that
∞∫
0

m(λ) dE(λ)f = f ∗ m̃,

where
∞∫
0

λ dE(λ)f = ∆f is the spectral decomposition of the sublaplacian on

G. Moreover,
∫
G

m̃(x) dx = m(0), and if mt(λ) = m(tλ), t > 0, then (m̃t)(x) =

t−D/2m̃(δt−1/2x). Also, for m, η being Schwartz functions on [0,∞), we have m̃ ∗
η̃ = η̃ ∗ m̃.
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Let ψ be a real smooth even function on the line supported in the interval
[−1, 1] with integral 1. Let m = ψ̂. Since m can be extended to an even holomor-
phic function on the complex plane, the function η(λ) = m(

√
λ) is also a Schwartz

function on [0,∞) and η(0) = 1.
We claim that the Schwartz function η̃ on G is compactly supported. To see

the claim, consider the fundamental solution Γt of the wave equation (∆+∂2
t )u = 0

on G×R with initial conditions u(x, 0) = f and ∂tu(x, 0) = 0. An easy calculation

shows that f ∗ Γt =
∞∫
0

cos(t
√
λ) dE(λ)f . Furthermore,

f ∗ η̃ =

∞∫
0

ψ̂(
√
λ) dE(λ)f =

∞∫
0

1∫
−1

ψ(t) cos(t
√
λ) dtdE(λ)f

=

1∫
−1

ψ(t)
[ ∞∫

0

cos(t
√
λ) dE(λ)f

]
dt=

1∫
−1

ψ(t)(f ∗ Γt) dt=f ∗
[ 1∫
−1

ψ(t)Γt( · ) dt
]
.

By [10], the support of Γt is contained in the “cone”
{
(x, t) : ‖x‖ 6 |t|

}
, where ‖·‖ is

the distance associated with the vector fieldsXj as in the work of [11]. The support
properties of Γt and the identities above imply that η̃ is compactly supported as
a distribution and hence as a function. By the properties of m̃, it follows that
η̃t(x) = t−Dη̃(δ 1

t
x) is a compactly supported commutative approximate identity

on G.
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