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Abstract. We prove that, for a given one-sided subshift XΛ, any non-trivial
automorphism of the subshift always yields an outer automorphism of the
C∗-algebra OΛ associated with the subshift. In particular, any non-trivial
automorphism of the one-sided topological Markov shift XA for a {0, 1}-
matrix A yields an outer automorphism of the Cuntz-Krieger algebra OA.
We also determine the form of the automorphisms of the C∗-algebra OΛ

arising from automorphisms of the subshift XΛ.
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1. INTRODUCTION

In [22], the author has introduced and studied a class of C∗-algebras associated
with subshifts in the theory of symbolic dynamics. Each of the C∗-algebras asso-
ciated with subshifts has canonical generators of partial isometries with mutually
orthogonal ranges. It also has universal properties subject to some operator re-
lations among the generators ([22], [25]) so that it becomes purely infinite and
simple in many cases including Cuntz-Krieger algebras. For a subshift (Λ, σ), we
denote by XΛ the set of all right-infinite sequences that appear in Λ. The dy-
namical system (XΛ, σ), simply written as XΛ, is called the one-sided subshift for
Λ. The C∗-algebra OΛ associated with subshift Λ is essentially constructed by
the dynamics (XΛ, σ). Many dynamical property for (XΛ, σ) reflects on algebraic
structure on the C∗-algebra OΛ as in [22], [24].

We will in this paper study relationships between automorphisms of the
dynamics XΛ and automorphisms of the algebra OΛ. A homeomorphism h of
XΛ satisfying h = σ ◦ h ◦ σ−1 is called an automorphism of XΛ. We denote by
Aut(XΛ) the set of all automorphisms of XΛ. There have been many studies on
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automorphisms of subshifts especially of topological Markov shifts (cf. [3], [19], . . .).
Their studies are closely related to classification of subshifts (cf. [19], [29]).

Let (Λ, σ) be a subshift over a finite set Σ = {1, 2, . . . , n} with shift transfor-
mation σ. Then the C∗-algebra OΛ associated with the subshift is generated by n
canonical partial isometries S1, S2, . . . , Sn. One typical example of automorphisms
of OΛ is defined by a mapping for t ∈ R : Sj → e

√
−1tSj , j = 1, 2, . . . , n. These

automorphisms are called the gauge automorphisms. The fixed point algebra of
the C∗-algebra OΛ under the gauge automorphisms is an AF-algebra which is
written as FΛ ([22]). We denote by DΛ the C∗-algebra of all diagonal elements
of FΛ, which is commutative. The commutative C∗-algebra C(XΛ), denoted by
DΛ, of all continuous functions on XΛ is naturally embedded into the algebra DΛ.
Hence each automorphism h of XΛ yields an automorphism h∗ of the subalgebra
DΛ of OΛ. The induced endomorphism of DΛ from the shift σ of XΛ is uniquely

extended to an endomorphism ϕΛ of DΛ that is defined by ϕΛ(X) =
n∑

j=1

SjXS∗j

for X ∈ DΛ. They satisfy the relation h∗ ◦ ϕΛ = ϕΛ ◦ h∗ on DΛ. We first see the
following:

Proposition 1.1. (Proposition 4.2) For an automorphism h of XΛ, there
exists an automorphism αh of OΛ such that αh(x) = h∗(x), x ∈ DΛ and the
correspondence h ∈ Aut(XΛ) → αh ∈ Aut(OΛ) gives rise to a homomorphism.

Let Autσ(OΛ,DΛ) be the set of all automorphisms of OΛ whose restrictions
to the algebra DΛ give rise to automorphisms of XΛ. Namely that is the group of
automorphisms of OΛ coming from Aut(XΛ). The extension of h ∈ Aut(XΛ) to
an automorphism of OΛ is not necessarily unique. By proving the result:

DΛ
′ ∩ OΛ = DΛ

as in Proposition 3.3, we see that any automorphism of XΛ may be uniquely
extended to an automorphism of OΛ modulo unitaries in DΛ. That is, for an
automorphism h of XΛ, if two automorphisms αh, βh of OΛ coincide with h∗ on
XΛ, then αh = βh ◦ λ(U) for some unitary U in DΛ where λ(U) ∈ Aut(OΛ) is
defined to be λ(U)(Si) = USi (Corollary 4.10). We denote by U(DΛ) the group
of all unitaries in DΛ. Let Z1

σ(U(DΛ)) (∼= U(DΛ)) be the set of all unitary one-
cocycles for ϕΛ of U(DΛ) that are defined to be U(DΛ)-valued functions U from
N such that U(k + l) = U(k)ϕk

Λ(U(l)), k, l ∈ N. We will in fact prove

Theorem 1.2. (Theorem 4.9) There exists a natural short exact sequence:

0 → Z1
σ(U(DΛ)) → Autσ(OΛ,DΛ) → Aut(XΛ) → 0

that splits.

We will next study outerness for the automorphisms of OΛ coming from
automorphisms of XΛ. We introduce a condition for an automorphism of XΛ called
condition (I). The condition is considered as a relative version to the condition (I)
for the original dynamics (XΛ, σ). We will show that if a non-trivial automorphism
of XΛ satisfies the condition (I), its extension to an automorphism of OΛ is outer
(Theorem 5.2). We will also prove that any extension as an automorphism of
OΛ of a non-trivial automorphism of XΛ is always outer if XΛ satisfies a certain
aperiodicity condition called (D) (Theorem 5.12). In particular, any extension
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of a non-trivial automorphism of a topological Markov shift XA for an aperiodic
matrix A to an automorphism of the Cuntz-Krieger algebra OA is outer. We see
that the automorphism λ(u) of OΛ for a unitary u in DΛ is inner if and only if
u gives rise to a coboundary for ϕΛ in U(DΛ). Let B1

σ(U(DΛ)) be the subgroup
of all coboundaries in Z1

σ(U(DΛ)). Set H1
σ(U(DΛ)) = Z1

σ(U(DΛ))/B1
σ(U(DΛ)) the

one-cohomology group for ϕΛ of U(DΛ).

Theorem 1.3. (Theorem 5.16) There exists a natural short exact sequence:

0 → H1
σ(U(DΛ)) → Outσ(OΛ,DΛ) → Aut(XΛ) → 0

that splits, where Outσ(OΛ,DΛ) means the group of all outer automorphisms of
OΛ in Autσ(OΛ,DΛ).

We will, in the final section, present certain examples of automorphisms of
the C∗-algebra coming from some subshifts. We will further see that if a sub-
shift XΛ has a fixed point, then the non-trivial gauge automorphisms are outer
(Corollary 6.5).

Slightly similar exact sequences to the above two exact sequences have ap-
peared in a discussion of classification of von Neumann algebras arising from non-
singular ergodic transformation (cf. [20]). The classification has exactly corre-
sponds to orbit equivalences of such ergodic transformations (cf. [5], [10], [20]).
C∗-algebraic analogies have also been discussed in [4], [15], [27], etc. If a subshift
Λ is a topological Markov shift and, in particular, a full shift, the associated C∗-
algebra OΛ becomes a Cuntz-Krieger algebra and a Cuntz algebra respectively.
Hence our study, in this paper, includes studies of automorphisms of these alge-
bras from a view point of symbolic dynamical systems. Studies of automorphisms
of Cuntz-Krieger algebras and Cuntz algebras are seen in many papers as in [1],
[8], [12], [13], [18], [26], [28], . . .. The author has recently received a preprint [18]
by Katayama-Takehana in which outerness of automorphisms of Cuntz-Krieger
algebras are discussed by using a technique of Hilbert C∗-bimodules (cf. [17]).

2. BASIC NOTATION AND THE C∗-ALGEBRA OΛ

Let Σ be a finite set {1, 2, . . . , n} for n > 1. Let ΣZ, ΣN be the infinite product

spaces
∞∏

i=−∞
Σi,

∞∏
i=1

Σi where Σi = Σ, endowed with the product topology respec-

tively. The transformation σ on ΣZ,ΣN given by (σ(x))i = xi+1, i ∈ Z, N for
x = (x :) is called the (full) shift. Let Λ be a shift invariant closed subset of ΣZ

i.e. σ(Λ) = Λ. The topological dynamical system (Λ, σ|Λ) is called a subshift. We
denote σ|Λ by σ for simplicity. This class of the subshifts includes the class of the
topological Markov shifts (cf. [19], [21]).

A finite sequence µ = (µ1, . . . , µk) of elements µj ∈ Σ is called a block or
a word. We denote by |µ| the length k of µ. A block µ = (µ1, . . . , µk) is said
to occur in x = (xi) ∈ ΣZ if xm = µ1, . . . , xm+k−1 = µk for some m ∈ Z. For
x = (xi) ∈ ΣZ or ΣN and i 6 j, we write

x[i,j] = (xi, xi+1, . . . , xj), x[i,∞) = (xi, xi+1, . . .) ∈ ΣN.
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For a subshift (Λ, σ), let Λk be the set of all words with length k in ΣZ

occurring in some x ∈ Λ. Put Λl =
l⋃

k=0

Λk for l ∈ N and Λ∗ =
∞⋃

k=0

Λk where Λ0

denotes the empty word ∅. Let XΛ be the set of all right-infinite sequences that
appear in Λ. The dynamical system (XΛ, σ) is called the one-sided subshift for Λ.

Put
Λl(x) = {µ ∈ Λl | µx ∈ XΛ} for x ∈ XΛ, l ∈ N.

We define equivalence relations in the space XΛ. For l ∈ N, two points x, y ∈ XΛ

are said to be l-past equivalent if Λl(x) = Λl(y). We write this equivalence as x ∼l y
(cf. [24]).

Definition. ([24]) (i) A subshift (XΛ, σ) satisfies condition (I) if for any
l ∈ N and x ∈ XΛ, there exists y ∈ XΛ such that y 6= x and y ∼l x.

(ii) A subshift (XΛ, σ) is irreducible in past equivalence if for any l ∈ N,
y ∈ XΛ and a sequence (xk)k∈N of XΛ with xk ∼k xk+1 for k ∈ N, there exist a
number N and a word µ ∈ ΛN such that y ∼l µxl+N .

(iii) A subshift (XΛ, σ) is aperiodic in past equivalence if for any l ∈ N, there
exists a number N such that for any pair x, y ∈ XΛ, there exists a word µ ∈ ΛN

such that y ∼l µx.
If a subshift (XΛ, σ) is aperiodic in past equivalence or irreducible in past

equivalence with an aperiodic point, then it satisfies condition (I) ([24]). If a sub-
shift (XΛ, σ) is a topological Markov shift (XA, σ) determined by a square matrix
A with entries in {0, 1}, the above aperiodicity, irreducibility and condition (I)
as a subshift coincide with the aperiodicity, irreducibility and condition (I) let it
stand as it is in [9] for the matrix A respectively.

Now we will review the construction of the C∗-algebras associated with sub-
shifts along [22]. We henceforth fix an arbitrary subshift (Λ, σ).

Let {e1, . . . , en} be an orthonormal basis of n-dimensional Hilbert space Cn.
We put

F 0
Λ = Ce0 (e0: vacuum vector);

F k
Λ = the Hilbert space spanned by the vectors eµ = eµ1 ⊗ · · · ⊗ eµk

, µ =
(µ1, . . . , µk) ∈ Λk;

FΛ =
∞⊕

k=0

F k
Λ (Hilbert space direct sum).

We denote by Tν , (ν ∈ Λ∗) the creation operator on FΛ of eν , ν ∈ Λ∗(ν 6= ∅)
defined by

Tνe0 = eν and Tνeµ =
{

eν ⊗ eµ (νµ ∈ Λ∗),
0 else,

which is a partial isometry. We put Tν = 1 for ν = ∅. Let P0 be the rank one

projection onto the vacuum vector e0. It immediately follows that
n∑

i=1

TiT
∗
i +

P0 = 1. We then easily see that for µ, ν ∈ Λ∗, the operator TµP0T
∗
ν is the rank

one partial isometry from the vector eν to eµ. Hence, the C∗-algebra generated
by elements of the form TµP0T

∗
ν , µ, ν ∈ Λ∗ is nothing but the C∗-algebra K(FΛ)

of all compact operators on FΛ. Let TΛ be the C∗-algebra on FΛ generated by the
elements Tν , ν ∈ Λ∗.
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Definition. ([22]) The C∗-algebra OΛ associated with subshift (Λ, σ) is
defined as the quotient C∗-algebra TΛ/K(FΛ) of TΛ by K(FΛ).

We denote by Si, Sµ the quotient images of the operators Ti, i ∈ Σ, Tµ,
µ ∈ Λ∗ respectively. Hence OΛ is generated by partial isometries S1, . . . , Sn with

relation
n∑

i=1

SiS
∗
i = 1.

If (Λ, σ) is a topological Markov shift, the C∗-algebra OΛ is nothing but the
Cuntz-Krieger algebra associated with the topological Markov shift (cf. [9], [11],
[13]).

We will present notation and basic facts for studying the C∗-algebra OΛ.
Put aµ = S∗µSµ, µ ∈ Λ∗. Since TνT ∗

ν commutes with T ∗
µTµ, µ, ν ∈ Λ∗, the

following identities hold

(∗) aµSν = Sνaµν , µ, ν ∈ Λ∗.

We notice that for µ, ν ∈ Λ∗ with |µ| = |ν|,

S∗µSν 6= 0 if and only if µ = ν.

We will use the following notation. Let k, l be natural numbers with k 6 l.

Al = The C∗-subalgebra of OΛ generated by aµ, µ ∈ Λl.

AΛ = The C∗-subalgebra of OΛ generated by aµ, µ ∈ Λ∗.

DΛ = The C∗-subalgebra of OΛ generated by SµS∗µ, µ ∈ Λ∗.

DΛ = The C∗-subalgebra of OΛ generated by SµaS∗µ, µ ∈ Λ∗, a ∈ AΛ.

F l
k = The C∗-subalgebra of OΛ generated by SµaS∗ν , µ, ν ∈ Λk, a ∈ Al.

F∞
k = The C∗-subalgebra of OΛ generated by SµaS∗ν , µ, ν ∈ Λk, a ∈ AΛ.

FΛ = The C∗-subalgebra of OΛ generated by SµaS∗ν , µ, ν∈Λ∗, |µ| = |ν|, a∈AΛ.

The projections {T ∗
µTµ; µ ∈ Λ∗} are mutually commutative so that the C∗-

algebras Al, l ∈ N are commutative. Thus we easily see the following lemma (cf.
[22], Section 3).

Lemma 2.1. (i) Al is finite dimensional and commutative.
(ii) Al is naturally embedded into Al+1 so that AΛ = lim

−→
Al is a commutative

AF-algebra.
(iii) Each element of F l

k is a finite linear combination of elements of the form
SµaS∗ν , µ, ν ∈ Λk, a ∈ Al. Hence F l

k is finite dimensional.
(iv) There are two embeddings in {F l

k}k6l :
(a) ιl : F l

k ⊂ F l+1
k through the embedding Al ⊂ Al+1 and,

(b) ηk : F l
k ⊂ F l+1

k+1 through the identity

SµaS∗ν =
n∑

j=1

SµjS
∗
j aSjS

∗
νj , µ, ν ∈ Λk, a ∈ Al.

(v) Both F∞
k = lim

l→∞
F l

k and FΛ = lim
k→∞

F∞
k are AF-algebras.
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In the preceding Hilbert space FΛ, the transformation eµ → zkeµ, µ ∈ Λk,
z ∈ T = {z ∈ C | |z| = 1} on each base eµ yields a unitary representation which
leaves K(FΛ) invariant. Thus it gives rise to an action α of T on the C∗-algebra
OΛ. It is called the gauge action and satisfies αz(Si) = zSi, i = 1, 2, . . . , n.

Each element X of the ∗-subalgebra of OΛ algebraically generated by Sµ, S∗ν ,
µ, ν ∈ Λ∗ is written as a finite sum

(2.1) X =
∑
|ν|>1

X−νS∗ν + X0 +
∑
|µ|>1

SµXµ for some X−ν , X0, Xµ ∈ FΛ

because of the relation (∗). The map E(X) =
∫

z∈T
αz(X) dz, X ∈ OΛ defines a

projection of norm one onto the fixed point algebra Oα
Λ under α. We then have

(cf. [22], Proposition 3.11)

Lemma 2.2. FΛ = Oα
Λ.

Note that the C∗-algebra DΛ is isomorphic to the commutative C∗-algebra
C(XΛ) of all complex valued continuous functions on the one-sided subshift XΛ

for Λ. Put

ϕΛ(X) =
n∑

j=1

SjXS∗j , X ∈ DΛ (or X ∈ OΛ)

which corresponds to the shift σ of XΛ.
Consider the following condition called (IΛ) for the C∗-algebra OΛ (cf. [22]).
(IΛ): For any l, k ∈ N with l > k, there exists a projection ql

k in DΛ such
that

(i) ql
ka 6= 0 for any nonzero a ∈ Al;

(ii) ql
kϕm

Λ (ql
k) = 0, 1 6 m 6 k.

As in [24], the subshift (XΛ, σ) satisfies condition (I) if and only if the C∗-
algebra OΛ satisfies condition (IΛ). Hence we may describe structure theorems for
the C∗-algebra OΛ proved in [22].

Lemma 2.3. ([22], Theorems 4.9 and 5.2) Let A be a unital C∗-algebra.
Suppose that there is a unital ∗-homomorphism π from AΛ to A and there are n
partial isometries s1, . . . , sn ∈ A satisfying the following relations

n∑
j=1

sjs
∗
j = 1, s∗µsµsν = sνs∗µνsµν , µ, ν ∈ Λ∗,

s∗µsµ = π(S∗µSµ), µ ∈ Λ∗

where sµ = sµ1 · · · sµk
, µ = (µ1, . . . , µk). Then there exists a unital ∗-homomor-

phism π̃ from OΛ to A such that π̃(Si) = si, i = 1, . . . , n and its restriction to
AΛ coincides with π. In addition, if the subshift XΛ satisfies condition (I), this
extended homomorphism π̃ becomes injective whenever π is injective.

Lemma 2.4. ([22], Theorem 6.3 and Theorem 7.5 and [24], Theorem 5.8) If
a subshift XΛ is irreducible in past equivalence and has an aperiodic point, then
OΛ is simple. In addition, if a subshift XΛ is aperiodic in past equivalence, the
C∗-algebra OΛ is simple and purely infinite.

We notice the following lemma.
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Lemma 2.5. ([22], Proposition 5.8 and [24], Lemma 4.5, cf. [9], 2.17 Propo-
sition) Suppose that both subshifts (XΛ1 , σ) and (XΛ2 , σ) satisfy condition (I). If
they are topologically conjugate, then there exists an isomorphism Φ from OΛ1

onto OΛ2 such that Φ ◦ α1
z = α2

z ◦ Φ, z ∈ T where αi is the gauge action on OΛi
,

i = 1, 2 respectively.

3. THE COMMUTANT OF DΛ IN OΛ

We henceforth fix an arbitrary subshift (XΛ, σ) which satisfies condition (I). We
denote by DΛ the C∗-subalgebra of FΛ consisting of all diagonal elements of FΛ

as in the previous section. In this section, we will show that the commutant of the
commutative C∗-algebra DΛ in OΛ is exactly the algebra DΛ.

Lemma 3.1.
D′

Λ ∩ OΛ ⊂ FΛ.

Proof. Assume that X ∈ OΛ commutes with each element of DΛ. For a non
empty word µ ∈ Λ∗, put Xµ = E(S∗µX), X−µ = E(XSµ). We will show that
Xµ = X−µ = 0. For f ∈ DΛ, we see E(S∗µXf) = E(S∗µfSµS∗µX) so that

Xµf = S∗µfSµXµ.

We in particular have
Xµ = XµSµS∗µ, XµSµfS∗µ = fXµ.

Let i be the length of µ. It then follows that

Xµϕi
Λ(f) = XµSµS∗µ

∑
ν∈Λi

SνfS∗ν = XµSµfS∗µ.

Thus we obtain
Xµϕi

Λ(f) = fXµ, f ∈ DΛ.

Now suppose that Xµ 6= 0. For any ε > 0, take Xµ(m) ∈ Fml
mk

such that
‖Xµ−Xµ(m)‖ < ε for some ml > mk > i and assume that ‖Xµ‖ = ‖Xµ(m)‖ = 1.
We then have

‖fXµ(m)−Xµ(m)ϕi
Λ(f)‖ 6 2‖f‖ε.

Since OΛ satisfies condition (IΛ), for ml > mk, there exists a projection qml
mk

∈ DΛ

satisfying the condition (i), (ii) in condition (IΛ). Put Q(m) = ϕmk

Λ (qml
mk

) ∈ DΛ.
It is easy to see that Q(m) commutes with Xµ(m). Hence we get

‖Xµ(m)Q(m)−Xµ(m)ϕi
Λ(Q(m))‖ 6 2ε.

As Q(m) is orthogonal to ϕi
Λ(Q(m)) because of condition (IΛ), the correspondence

Y ∈ Fml
mk

→ Q(m)Y Q(m) ∈ Q(m)Fml
mk

Q(m) yields an isomorphism and hence
isometric by [22], Corollary 5.4. Hence we have ‖Xµ(m)Q(m)‖ = ‖Xµ(m)‖ = 1
so that
‖Xµ(m)Q(m)−Xµ(m)ϕi

Λ(Q(m))‖ = Max{‖Xµ(m)Q(m)‖, ‖Xµ(m)ϕi
Λ(Q(m))‖}

> ‖Xµ(m)Q(m)‖ = 1.

This is a contradiction for a sufficiently small ε. Thus we conclude Xµ = 0. We
similarly have X−µ = 0. This mean that X = E(X) ∈ FΛ.
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Lemma 3.2.

D′
Λ ∩ FΛ = DΛ.

Proof. It suffices to show the inclusion relation D′
Λ ∩ FΛ ⊂ DΛ. Set the

algebras:

Dl
k = The C∗-subalgebra of DΛ generated by SµaS∗µ, µ ∈ Λk, a ∈ Al.

D∞k = The C∗-subalgebra of DΛ generated by SµaS∗µ, µ ∈ Λk, a ∈ AΛ.

Dk = The C∗-subalgebra of DΛ generated by SµS∗µ, µ ∈ Λk.

Put Pµ = SµS∗µ for µ ∈ Λ∗. The map E l
k defined by E l

k(X) =
∑

µ∈Λk

PµXPµ for

X ∈ F l
k yields an expectation from F l

k to Dl
k. Since the restriction of E l+1

k to
F l

k coincides with E l
k, the sequence of the expectations {E l

k}l∈N gives rise to an
expectation Ek from F∞

k onto D∞k such that Ek|F l
k = E l

k. Similarly the sequence
of the expectations {Ek}k∈N gives rise to an expectation EΛ from FΛ onto DΛ such
that E|F∞

k = Ek. Now let X be an element of FΛ which commutes with DΛ. Since
we have Ek(X) = X for all k ∈ N, we see E(X) = X so that X belongs to DΛ.

Therefore we obtain

Proposition 3.3.

D′
Λ ∩ OΛ = DΛ.

We also see

Proposition 3.4. (i) DΛ is a maximal abelian ∗-subalgebra of OΛ.
(ii) There exists a faithful conditional expectation EΛ from OΛ onto DΛ.

4. AUTOMORPHISMS OF OΛ COMING FROM XΛ

Put
Uµ = {(x1, x2, . . . , ) ∈ XΛ | x1 = µ1, x2 = µ2, . . . , xk = µk}

the cylinder set for µ = µ1 · · ·µk ∈ Λk. We denote by χUµ
the characteristic

function of Uµ on XΛ. The correspondence SµS∗µ → χUµ
yields an isomorphism

from DΛ onto C(XΛ).

Lemma 4.1. Let HΛ be the Hilbert space with complete orthonormal basis
{ex | x ∈ XΛ}. Let T1, . . . , Tn be the operators on HΛ defined by

Tjex =
{

ejx if jx ∈ XΛ;
0 otherwise.

Then T1, . . . , Tn are partial isometries such that the correspondence Sj → Tj yields
a faithful nondegenerate representation of OΛ onto the C∗-algebra generated by
T1, . . . , Tn.

Proof. The assertion is easily shown from Lemma 2.3.
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Now suppose that OΛ is represented on the Hilbert space HΛ. For words µ ∈
Λk, ν ∈ Λl with k 6 l, the projection SµaνS∗µ exactly corresponds to the orthogonal
projection onto the subspace spanned by the vectors: ex for x ∈ Uµ∩σ−k(σl(Uν)).
In particular, for a word ν = ν̃µ ∈ Λ∗ with |ν̃| = m, the projection SµaνS∗µ
is represented by the orthogonal projection onto the subspace spanned by the
vectors: ex for x ∈ σm(Uν).

For an automorphism h of XΛ, we denote by h∗ the induced automorphism
of the algebra DΛ defined by h∗(f) = f ◦h−1 for f ∈ DΛ = C(XΛ). By Lemma 2.5,
we know that the automorphism h∗ of DΛ may be extended to an automorphism
of the C∗-algebra OΛ. In the following proposition, we will give another proof of
this fact and show that an extension can be taken in a homomorphic way.

Proposition 4.2. For an automorphism h of XΛ, there exists an auto-
morphism αh of OΛ such that αh(x) = h∗(x), x ∈ DΛ and the correspondence
h ∈ Aut(XΛ) → αh ∈ Aut(OΛ) gives rise to a homomorphism.

Proof. We assume that OΛ is represented on the Hilbert space HΛ. For an
automorphism h of XΛ, put a unitary Vh on HΛ:

Vhex = eh(x), x ∈ XΛ.

We will show that Ad(Vh)(OΛ) = OΛ. Put S′i = Ad(Vh)(Si), i = 1, . . . , n so that
we see for x ∈ XΛ

S′iex =
{

eh(ih−1(x)) if ih−1(x) ∈ XΛ;
0 otherwise.

Set
Yi = {x ∈ XΛ | ih−1(x) ∈ XΛ}

so that Yi = h(σ(Ui)). As h is a sliding block code (cf. [21]), h(Ui) is a finite

disjoint union of cylinder sets ([16]). Hence Yi is of the form: Yi =
p⋃

m=1
σ(Uνi(m))

for some νi(m) ∈ Λ∗. Let Pi be the orthogonal projection on HΛ onto the subspace
corresponding to the set Yi. Since the projection for the subset σ(Uνi(m)) is written
as Sµi(m)aνi(m)S

∗
µi(m) where νi(m) = ν̃i(m)µi(m) with |ν̃i(m)| = 1, the projection

Pi belongs to the algebra DΛ. For y ∈ Yi, we denote by h(ih−1(y))1 the first
coordinate of h(ih−1(y)). Set

Yi(j) = {y ∈ Yi | h(ih−1(y))1 = j} for j = 1, . . . , n.

We see that

h−1(Yi(j)) = {x ∈ XΛ | ix ∈ h−1(U{j})} ∩ h−1(Yi).

The set Yi(j) is the intersection between Yi and a finite union of cylinder sets.
Hence the orthogonal projection corresponding to the set Yi(j) belongs to DΛ,
that we denote by Pi(j). For an element x ∈ XΛ, x belongs to Yi(j) if and only
if eh(ih−1(x)) = ejx as vectors in HΛ. Hence we have S′iPi(j) = SjPi(j). Since

we have Pi =
n∑

j=1

Pi(j) and Pi = S′i
∗
S′i, it follows that S′i =

n∑
j=1

SjPi(j) so that

Ad(Vh)(Si) belongs to the algebra OΛ. We then write αh = Ad(Vh). It defines an
automorphism of OΛ. This correspondence h ∈ Aut(XΛ) → αh ∈ Aut(OΛ) gives
rise to a homomorphism.
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We set

Aut(OΛ,DΛ) = {α ∈ Aut(OΛ) | α(DΛ) = DΛ},
Autσ(OΛ,DΛ) = {α ∈ Aut(OΛ,DΛ) | α ◦ σ∗ = σ∗ ◦ α on DΛ}

where σ∗ denotes the endomorphism ϕΛ

(
=

n∑
j=1

Sj · S∗j
)

of DΛ induced by the

shift σ.
As an extension on OΛ of an automorphism h of XΛ commutes with shift

on DΛ, we will study the group Autσ(OΛ,DΛ). We first see a difference between
Aut(OΛ,DΛ) and Autσ(OΛ,DΛ) as follows:

Lemma 4.3. An automorphism α ∈ Aut(OΛ,DΛ) belongs to Autσ(OΛ,DΛ)
if and only if α(S∗µ)Sν belongs to DΛ for all words µ, ν ∈ Λ∗ with |µ| = |ν|.

Proof. We see that α commutes with ϕΛ if and only if the following equalities
hold:

α

( ∑
µ∈Λk

SµSγS∗γS∗µ

)
=

∑
ν∈Λk

Sνα(SγS∗γ)S∗ν

for any word γ ∈ Λ∗. The above equality is equivalent to the equality:

α(S∗µSµSγS∗γS∗µ)Sν = α(Sµ)∗Sνα(SγS∗γ)S∗νSν

that is equivalent to the condition that α(Sµ)∗Sν commutes with α(SγS∗γ). This
means that α(Sµ)∗Sν belongs to the algebra DΛ by Proposition 3.3.

Thus we see

Proposition 4.4. For an automorphism α ∈ Autσ(OΛ,DΛ), we have
(i) α◦αt = αt ◦α for all t ∈ R, where αt is the gauge automorphism of OΛ.
(ii) α(DΛ) = DΛ.

(iii) α ◦ λΛ = λΛ ◦ α on DΛ where λΛ is defined by λΛ(X) =
n∑

j=1

S∗j XSj for

X ∈ OΛ.

Proof. (i) For j, k = 1, . . . , n, put fj,k = α(Sj)∗Sk that belongs to DΛ by the

previous lemma. Since α(Sj) =
n∑

k=1

Skf∗j,k, it follows that

αt(α(Sj)) =
n∑

k=1

e
√
−1tSkf∗j,k = e

√
−1tα(Sj) = α(αt(Sj)).

(ii) For µ, ν ∈ Λk and γ ∈ Λ∗, we put fµ,ν = α(Sµ)∗Sν , gγ = α(S∗γSγ) ∈ DΛ.
As the algebra DΛ is invariant under α, it commutes with α(DΛ). Hence we have
for ν 6= ξ

f∗µ,νgγfµ,ξ = S∗νSνS∗να(SµS∗γSγS∗µ)SξS
∗
ξ Sξ = 0.

It follows that

α(SµaγS∗µ) =
∑

ν,ξ∈Λk

Sνf∗µ,νgγfµ,ξS
∗
ξ =

∑
ν∈Λk

Sνf∗µ,νgγfµ,νS∗ν .
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This shows that α(DΛ) = DΛ.
(iii) For µ, γ ∈ Λ∗ with µ = µ1µ

′, µ1 = 1, . . . , n, it follows that

α ◦ λΛ(SµaγS∗µ) = α(Sµ′aγS∗µ′)α(S∗µ1
Sµ1).

On the other hand, we have

λΛ ◦ α(SµaγS∗µ) =
n∑

j=1

S∗j α(Sµ1)α(Sµ′aγS∗µ′)α(S∗µ1
)Sj

=
n∑

j=1

α(Sµ′aγS∗µ′)α(S∗µ1
)SjS

∗
j α(Sµ1)

because both the elements S∗j α(Sµ1), α(S∗µ1
)Sj belong to DΛ by the previous

lemma. Hence we have the assertion.

Lemma 4.5. If α ∈ Autσ(OΛ,DΛ) is the identity on DΛ, it is also the iden-
tity on DΛ. Hence an extension of an automorphism of XΛ to an automorphism
of DΛ is unique.

Proof. Suppose that α is the identity on DΛ. As α commutes with λΛ, we
see for µ ∈ Λl,

α(S∗µSµ) = α ◦ λl
Λ(SµS∗µ) = λl

Λ ◦ α(SµS∗µ) = S∗µSµ.

For ν ∈ Λk with k 6 l, it follows that by Lemma 4.3

α(SνaµS∗ν) =
∑

ξ∈Λk

SξS
∗
ξ α(Sν)aµα(S∗ν)

=
∑

ξ∈Λk

Sξaµα(S∗ν)α(Sν)S∗ξ α(Sν)α(S∗ν) = SνaµS∗ν .

Hence we obtain that α is the identity on DΛ.

Lemma 4.6. For an automorphism α of OΛ, its restriction to DΛ is the
identity if and only if there exists a unitary Uα ∈ OΛ such that

α(Si) = UαSi, i = 1, 2, . . . , n and Uα ∈ DΛ.

Proof. Suppose that the restriction of an automorphism α of OΛ to the

subalgebra DΛ is the identity. Set Uα =
n∑

i=1

α(Si)S∗i . Since the extension of an

automorphism of XΛ to an automorphism of the algebra DΛ is unique, we see
α(S∗i Si) = S∗i Si, i = 1, 2, . . . , n. It follows that UαSi = α(Si) and

UαU∗
α =

n∑
i=1

UαSiS
∗
i U∗

α =
n∑

i=1

α(SiS
∗
i ) = 1.

We also have

U∗
αUα =

n∑
i,j=1

Siα(S∗i )α(Sj)S∗j =
n∑

i=1

SiS
∗
i = 1.
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For a word µ = (µ1, . . . , µl) ∈ Λ∗, put µ′ = (µ2, . . . , µl). It then follows that

UαSµS∗µU∗
α =

n∑
j,k=1

α(Sj)S∗j SµS∗µSkα(S∗k)

= α(Sµ1)S
∗
µ1

Sµ1Sµ′S
∗
µ′S

∗
µ1

Sµ1α(S∗µ1
)

= α(Sµ1)Sµ′S
∗
µ′α(S∗µ1

) = α(Sµ1Sµ′S
∗
µ′S

∗
µ1

) = SµS∗µ.

Hence Uα commutes with every element of DΛ so that it belongs to DΛ by Propo-
sition 3.3. The converse implication is easy.

For an automorphism α of OΛ, put

Uα(k) =
∑

µ∈Λk

α(Sµ)S∗µ for k = 1, 2, . . . .

Corollary 4.7. For an automorphism α of OΛ, its restriction to DΛ is the
identity if and only if Uα(k) is a unitary in DΛ for each k = 1, 2, . . .. In this case,
we have

(4.1) Uα(k + l) = Uα(k)ϕk
Λ(Uα(l)) for k, l = 1, 2, . . .

and

(4.2) α(Sµ) = Uα(k)Sµ for µ ∈ Λk, k = 1, 2, . . . .

Proof. Suppose that α is the identity on DΛ. As in the proof of the previous
lemma, we see that Uα(k) commutes with every element of the algebra DΛ so
that it belongs to DΛ by Proposition 3.3. The converse implication is direct. The
identities (4.1) and (4.2) are straightforward.

Let U(DΛ) be the set of all unitaries in DΛ. A unitary one-cocycle for ϕΛ is
defined as a U(DΛ)-valued function U from N satisfying

U(k + l) = U(k)ϕk
Λ(U(l)) for k, l = 1, 2, . . . .

We denote by Z1
σ(U(DΛ)) the set of all unitary one-cocycles for ϕΛ in U(DΛ). It

is an abelian group in natural way. For U ∈ Z1
σ(U(DΛ)), put

λ(U)(Sµ) = U(k)Sµ for µ ∈ Λk, k = 1, 2, . . . .

By Lemma 2.3, we see that λ(U) yields an automorphism of the C∗-algebra OΛ

that acts identically on DΛ. Hence λ gives rise to a map from Z1
σ(U(DΛ)) to

Autσ(OΛ,DΛ). We notice that Z1
σ(U(DΛ)) is regarded as the unitary group U(DΛ)

by corresponding to the value at 1. We sometimes identify them.

Lemma 4.8. The map λ : U ∈ Z1
σ(U(DΛ)) → λ(U) ∈ Autσ(OΛ,DΛ) gives

rise to an injective homomorphism.

Proof. Since λ(U)(v) = v for v ∈ U(DΛ), λ gives rise to a homomorphism.
Suppose that λ(U) = id on OΛ. It follows that

U(1) =
n∑

j=1

λ(U)(Sj)S∗j =
n∑

j=1

SjS
∗
j = 1.

Hence U is the unit of Z1
σ(U(DΛ)).
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Thus we have the following theorem.

Theorem 4.9. Suppose that (XΛ, σ) satisfies condition (I). There exists a
natural short exact sequence:

0 → Z1
σ(U(DΛ)) → Autσ(OΛ,DΛ) → Aut(XΛ) → 0

that splits. Hence we have a semidirect product:

Autσ(OΛ,DΛ) = Aut(XΛ) · U(DΛ).

Namely we have

Corollary 4.10. Any automorphism of XΛ is uniquely extended to an au-
tomorphism of OΛ modulo unitaries in DΛ. That is, for an automorphism h of XΛ,
if two automorphisms αh, βh of OΛ coincide with h∗ on XΛ, then αh = βh ◦ λ(u)
for some unitary u in DΛ where λ(u) ∈ Aut(OΛ) is defined to be λ(u)(Si) = uSi.

Now we refer a connection to the K-theory for OΛ and FΛ.

Corollary 4.11. Any automorphism h of XΛ induces an automorphism
h∗ of the K-groups K∗(OΛ) and K0(FΛ) such that the maps h ∈ Aut(XΛ) → h∗ ∈
Aut(K∗(OΛ)) and h ∈ Aut(XΛ) → h∗ ∈ Aut(K0(FΛ)) give rise to homomor-
phisms respectively. In particular, h∗ ∈ Aut(K0(FΛ)) commutes with the induced
automorphism λΛ∗ of K0(FΛ).

Proof. For U ∈ U(DΛ), as λ(U) = id on DΛ and hence on AΛ, the induced
homomorphism λ(U)∗ on K∗(OΛ) is trivial because of [23]. Hence the assertion is
clear by Theorem 4.9 with Lemma 4.5.

5. OUTER AUTOMORPHISMS

If a subshift Λ is the full n-shift Λn, the C∗-algebra OΛn
is nothing but the

Cuntz algebra On of order n. Outerness of some types of automorphisms of On

have been discussed in several papers (cf. [1], [2], [8], [12], [13], [26], [28], etc.)
In this section, we will discuss on outerness of automorphisms of OΛ coming

from automorphisms of XΛ. Let Inn(OΛ) be the set of all inner automorphisms of
OΛ. We set

Innσ(OΛ,DΛ) = Inn(OΛ) ∩Autσ(OΛ,DΛ)

= {Ad(v) ∈ Autσ(OΛ,DΛ) | v ∈ OΛ, unitary}

and
Outσ(OΛ,DΛ) = Autσ(OΛ,DΛ)/Innσ(OΛ,DΛ).

Lemma 5.1. For an automorphism α ∈ Aut(OΛ), if there exists a unitary
v ∈ OΛ such that α = Ad(v), then we have Uα(k) = vϕk

Λ(v∗) for k ∈ N.

Proof. For a unitary v ∈ OΛ with α = Ad(v), it follows that for µ ∈ Λk,

Uα(k)SµS∗µ = vSµv∗S∗µ.

Hence we get the assertion.
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Now we introduce the notion of condition (I) for an automorphism of XΛ.

Definition. An automorphism h ∈ Aut(XΛ) satisfies condition (I) if it
satisfies the following condition: For any l, k ∈ N with l > k, there exists a
projection ql

k in DΛ such that:
(i) h∗(ql

k)a 6= 0 for any nonzero a ∈ Al;
(ii) h∗(ql

k)ϕm
Λ (ql

k) = 0, 1 6 m 6 k.
Hence we see that a subshift (XΛ, σ) satisfies condition (I) if and only if the

trivial automorphism id ∈ Aut(XΛ) satisfies condition (I) in the above sense.
We will first verify the following theorem.

Theorem 5.2. If a non-trivial automorphism h ∈ Aut(XΛ) satisfies condi-
tion (I), then any extension of h to an automorphism of OΛ is always outer.

We fix an automorphism h ∈ Aut(XΛ) satisfying condition (I) and its arbi-
trary extension α ∈ Autσ(OΛ,DΛ) to OΛ. Suppose that α is inner in OΛ that is
implemented by a unitary v ∈ OΛ.

In order to prove the above theorem, we provide some lemmas.

Lemma 5.3. For k, l = 1, 2, . . . , n, we put X = S∗kvSl. Then we have Xf =
vfv∗X for all f ∈ DΛ.

Proof. By Lemma 4.3, α−1(S∗k)Sl commutes with DΛ. This implies that
v∗Xf = fv∗X for all f ∈ DΛ.

Lemma 5.4. We have X ∈ FΛ and hence v ∈ FΛ.

Proof. Although the proof given here is parallel to the proof of Lemma 3.1,
we give it for the sake of completeness. Put Xµ = E(S∗µX), X−µ = E(XSµ)
µ ∈ Λ∗. We will show that Xµ = X−µ = 0 for any non-empty word µ. For
f ∈ DΛ, as Xf = h∗(f)X by the above lemma, it follows that

Xµf = E(S∗µXf) = S∗µh∗(f)SµXµ.

Put i = |µ| so that we see

Xµϕi
Λ(f) = S∗µϕi

Λ(h∗(f))SµXµ = S∗µSµh∗(f)S∗µSµXµ = h∗(f)Xµ.

Now suppose that Xµ 6= 0. For ε > 0, take Xµ(m) ∈ F lm
km

with lm > km > i such
that ‖Xµ −Xµ(m)‖ < ε. We may assume ‖Xµ‖ = ‖Xµ(m)‖ = 1. It then follows
that

‖h∗(f)Xµ(m)−Xµ(m)ϕi
Λ(f)‖ 6 2ε‖f‖.

As h satisfies condition (I), there exists a projection qm in DΛ such that
(i) h∗(qm)a 6= 0 for any nonzero a ∈ Alm ;
(ii) h∗(qm)ϕj

Λ(qm) = 0, 1 6 j 6 km.

Put Qm = ϕkm

Λ (qm). Both of the projections h∗(Qm), ϕi
Λ(Qm) belong to

ϕkm

Λ (DΛ) so that h∗(Qm), ϕi
Λ(Qm) commute with F lm

km
. Since we see

h∗(Qm)ϕi
Λ(Qm) = 0,

it follows that
‖h∗(Qm)Xµ(m)−Xµ(m)ϕi

Λ(Qm)‖ = Max{‖h∗(Qm)Xµ(m)‖, ‖Xµ(m)ϕi
Λ(Qm)‖}

> ‖h∗(Qm)Xµ(m)‖.
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By using a similar manner to the proof of [22], Corollary 5.4, we see the mapping

X ∈ F lm
km

→ h∗(Qm)Xh∗(Qm) ∈ h∗(Qm)F lm
km

h∗(Qm)

is an isomorphism. Hence we have ‖h∗(Qm)Xµ(m)‖ = ‖Xµ(m)‖ = 1. This is a
contradiction for sufficiently small ε. Thus we conclude that Xµ = 0 and similarly
X−µ = 0 so that X ∈ FΛ. We also see that v ∈ FΛ because of the identity

v =
n∑

k,l=1

SkS∗kvSlS
∗
l .

Lemma 5.5. For any ε > 0, there exists k ∈ N such that for any word µ ∈ Λk

we have
‖vS∗µSµ − bµ‖ < ε for some bµ ∈ DΛ.

Proof. By the above lemma, for ε > 0, take vm ∈ F lm
km

with lm > km such
that ‖v − vm‖ < ε. Put k = km. For any µ, ν ∈ Λk, we have S∗νvmSµ ∈ AΛ. As
α(S∗µ)Sν ∈ DΛ, we see vS∗µv∗Sν · S∗νvmSµ belongs to DΛ. Put bµ = vS∗µv∗vmSµ

that belongs to DΛ. Hence we get ‖vS∗µSµ − bµ‖ < ε.

Proof of Theorem 5.2. Keep the above notation. It suffices to show that the
unitary v belongs to the algebra DΛ. For any ε > 0, take k ∈ N such that for a
word µ ∈ Λk there exists an element bµ ∈ DΛ as above. For any a ∈ DΛ, we have

‖(av − va)S∗µSµ‖ 6 ‖a(vS∗µSµ − bµ)‖+ ‖(bµ − vS∗µSµ)a‖ 6 2ε.

Let fk
1 , . . . , fk

n(k) be the set of all nonzero minimal projections in the commutative

C∗-algebra generated by projections aµ for µ ∈ Λk. As
n(k)∑
i=1

fk
i = 1, we have

fk
i (av − va)∗(av − va)fk

j = 0 for i 6= j

so that we see

‖av − va‖2 =
∥∥∥∥ n(k)∑

i=1

(av − va)fk
i

∥∥∥∥2

= max
16i6n(k)

‖(av − va)fk
i ‖2.

Since fk
i is majorized by a projection of the form S∗µSµ for some µ ∈ Λk. We

obtain that
‖av − va‖ 6 2ε.

Now a ∈ DΛ is independent of ε and hence v ∈ D′
Λ∩FΛ. This implies v ∈ DΛ and

the homeomorphism h is trivial.

We next introduce some condition, called (D), for subshifts that guarantee
condition (I) for all non-trivial automorphism of XΛ. A subshift (XΛ, σ) satisfies
condition (D) if for any l ∈ N, there exists Nl ∈ N such that for any x ∈ XΛ, there
exists y ∈ XΛ such that y 6= x, y ∼l x and σNl(x) = σNl(y).

This condition is clearly a stronger condition than condition (I) for subshifts.
But the following proposition shows that it is not a so strong condition.
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Proposition 5.6. Suppose that XΛ is not a single point. If XΛ is aperiodic
in past equivalence, then it satisfies condition (D).

To prove the above proposition, we need the following lemma.

Lemma 5.7. Suppose that XΛ is not a single point. If XΛ is aperiodic in
past equivalence, there exists K ∈ N such that for any z ∈ XΛ there are words
µ, ν ∈ ΛK satisfying

µ 6= ν and µz, νz ∈ XΛ.

Proof. If Λ is a full shift, the assertion is clear. Suppose that Λ is not a full
shift. Take l ∈ N and a, b ∈ XΛ such that a is not l-past equivalent to b. Since XΛ

is aperiodic in past equivalence, we find K ∈ N such that for any z ∈ XΛ, there
are words µa, µb ∈ ΛK satisfying µaz ∼l a, µbz ∼l b so that we see µa 6= µb.

Proof of Proposition 5.6. For any l ∈ N, as XΛ is aperiodic in past equiv-
alence, take N ∈ N as in the property of aperiodicity in past equivalence and
K ∈ N as in the above lemma. Set Nl = N + K. For any x ∈ XΛ, put γ = x[1,N ],
ξ = x[N+1,N+K] and x′ = x[N+K+1,∞). By the above lemma, there exist distinct
words µ, ν ∈ ΛK with µx′, νx′ ∈ XΛ. We may assume that µ 6= ξ (otherwise
ν 6= ξ). Put y′ = µx′ ∈ XΛ. Since XΛ is aperiodic in past equivalence, we may
find η ∈ ΛN with x ∼l ηy′. Set y = ηy′ ∈ XΛ. Thus we see that

x 6= y, x ∼l y and σNl(x) = σNl(y).

We will show that every non-trivial automorphism on XΛ satisfies condition
(I) under the condition (D) for the subshift.

The following lemma is direct.

Lemma 5.8. A subshift XΛ satisfies condition (D) if and only if it satisfies
the following condition:

For any pair l,m ∈ N, there exists Nl,m ∈ N such that for any x ∈ XΛ, there
exists y ∈ XΛ such that

(i) x[1,m] = y[1,m] and x[m+Nl,m+1,∞) = y[m+Nl,m+1,∞);
(ii) x[m+1,m+Nl,m] 6= y[m+1,m+Nl,m];
(iii) x ∼l y.

For l ∈ N, let F l
1, . . . , F

l
m(l) be the set of all l-past equivalence classes in XΛ.

Hence we have a decomposition of XΛ:
m(l)⋃
i=1

F l
i = XΛ.

Lemma 5.9. Suppose that XΛ satisfies condition (D). Then for an automor-
phism h ∈ Aut(XΛ) and a natural number l ∈ N and i = 1, 2, . . . ,m(l), there exists
y ∈ F l

i such that
σm(y) 6= h(y) for 1 6 m 6 l.

Proof. Fix l and i = 1, . . . ,m(l). Take x ∈ F l
i and suppose that σ(x) =

h(x). By condition (D), there exists Nl ∈ N satisfying the property of (D). Put
µ = x[1,Nl] and take µ′ ∈ ΛNl such that µ 6= µ′, and µ′σNl(x) is admissible
in XΛ and µ′σNl(x) ∼l µσNl(x)(= x). Put x′ = µ′σNl(x) ∈ XΛ. As µ 6= µ′

and σNl(x′) = σNl(x), we obtain that σ(x′) 6= h(x′). We in fact see that if
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σ(x′) = h(x′), σNl(x′) = hNl(x′). Hence hNl(x′) = hNl(x) because h(x) = σ(x).
This is a contradiction for x 6= x′. Therefore we find an element x′ ∈ F l

i such that
σ(x′) 6= h(x′). Put x(1) = x′.

We will next see that there exists x(2) ∈ F l
i such that

σ(x(2)) 6= h(x(2)), σ2(x(2)) 6= h(x(2)).

If σ2(x(1)) 6= h(x(1)), we may take x(2) as x(1). Suppose that σ2(x(1)) = h(x(1)).
As h and σ are uniformly continuous on XΛ, there exists m1 ∈ N such that for
y ∈ XΛ, if x(1)[1,m1] = y[1,m1], then σ(y) 6= h(y). By Lemma 5.8, there exists
Nl,m1 ∈ N and y ∈ XΛ such that

(i) x(1)[1,m1] = y[1,m1] and x(1)[m1+Nl,m1+1,∞) = y[m1+Nl,m1+1,∞);
(ii) x(1)[m1+1,m1+Nl,m1 ] 6= y[m1+1,m1+Nl,m1 ];
(iii) x(1) ∼l y.
Hence we see y ∈ F l

i and σ(y) 6= h(y). If σ2(y) = h(y), we have, by the
above condition (i) and the condition σ2(x(1)) = h(x(1)), hm1+Nl,m1 (x(1)) =
hm1+Nl,m1 (y) a contradiction to x(1) 6= y. Therefore we obtain σ2(y) 6= h(y).
Thus by putting x(2) = y, we have

x(2) ∈ F l
i , σ(x(2)) 6= h(x(2)) and σ2(x(2)) 6= h(x(2)).

By continuing similar arguments to the above, we may take, for any n ∈ N, an
element x(n) ∈ F l

i such that σk(x(n)) 6= h(x(n)) for all 1 6 k 6 n.

Lemma 5.10. Suppose that XΛ satisfies condition (D). Then for an auto-
morphism h ∈ Aut(XΛ) and natural numbers l, k ∈ N with l > k, there exists
yl

i ∈ F l
i for each i = 1, 2, . . . ,m(l) such that

σm(yl
i) 6= h(yl

j) for all 1 6 m 6 k and i, j = 1, 2, . . . ,m(l).

Proof. For i = 1, by the previous lemma, we may find yl
1 ∈ F l

1 such that
σn(yl

1) 6= h(yl
1) for all 1 6 n 6 k. Similarly find xl

2 ∈ F l
2 such that

(5.1) σn(xl
2) 6= h(xl

2) for 1 6 n 6 k.

By uniformly continuity for h, σ, there exists K2,1 ∈ N such that if y ∈ F l
2 satisfies

xl
2[1,K2,1]

= y[1,K2,1], then σn(y) 6= h(y) for 1 6 n 6 k. Now the subshift XΛ

satisfies condition (D) so that there exists zl
2 ∈ F l

2 satisfing zl
2[1,K2,1]

= xl
2[1,K2,1]

and (zl
2)N 6= (xl

2)N for some N > K2,1. If σ(xl
2) = h(yl

1), we see σ(zl
2) 6= h(yl

1).
Hence we may find zl

2 ∈ F l
2 such that

(5.2) σn(zl
2) 6= h(zl

2) for 1 6 n 6 k and σ(zl
2) 6= h(yl

1).

By using (5.2) instead of (5.1), a similar argument to the above one shows that
there exists an element wl

2 ∈ F l
2 such that

σn(wl
2) 6= h(wl

2) for 1 6 n 6 k and σ(wl
2) 6= h(yl

1), σ2(wl
2) 6= h(yl

1).

By repeating these procedure, we may find ul
2 ∈ F l

2 such that

(5.3) σn(ul
2) 6= h(ul

2), σn(ul
2) 6= h(yl

1) for 1 6 n 6 k.
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We next choose an element vl
2 ∈ F l

2 from (5.3) such that

σn(vl
2) 6= h(vl

2), σn(vl
2) 6= h(yl

1) for 1 6 n 6 k and σ(yl
1) 6= h(vl

2)

by using a similar argument to the preceding one. By repeating these procedure
several times, we finally take an element yl

2 ∈ F l
2 such that

σn(yl
i) 6= h(yl

j) for all 1 6 n 6 k, i, j = 1, 2.

Consequently we may find elements yl
i ∈ F l

i for i = 1, . . . ,m(l) that satisfy the
required condition by similar procedures.

We thus have

Proposition 5.11. Suppose that XΛ satisfies condition (D). Then any au-
tomorphism h ∈ Aut(XΛ) satisfies condition (I).

Proof. For any l, k ∈ N with l > k, we will first find a projection pk in DΛ

satisfying the following conditions:
(i) pka 6= 0 for any nonzero a ∈ Al;
(ii) pkϕm

Λ (h∗−1pk) = 0, 1 6 m 6 k.
For any l, k ∈ N with l > k, take yl

i ∈ F l
i as in the previous lemma. Put

Y = {yl
i | i = 1, . . . ,m(l)} ⊂ XΛ. As we see σ−m(h(Y )) ∩ Y = ∅ for 1 6 m 6 k,

there exists a clopen set V , that includes Y , such that σ−m(h(V )) ∩ V = ∅ for
1 6 m 6 k. Let pk be the characteristic function of V on XΛ. The projection pk

satisfies the above conditions (i), (ii). We then put ql
k = h∗−1(pk) that satisfies

the required conditions for condition (I).

We reach the following theorem

Theorem 5.12. Suppose that XΛ satisfies the condition (D). Then any ex-
tension of a non-trivial automorphism of the subshift XΛ to an automorphism of
the C∗-algebra OΛ is outer.

Let XA be the one-sided topological Markov shift determined by an n × n
square matrix A with entries in {0, 1}. If A is an aperiodic matrix, the subshift XΛ

is aperiodic in past equivalence and hence satisfies condition (D). Thus we have

Corollary 5.13. For an aperiodic matrix A with entries in {0, 1}, any
extension of a non-trivial automorphism of the topological Markov shift XA to an
automorphism of the Cuntz-Krieger algebra OA is outer.

A coboundary U is defined as a U(DΛ)-valued function U from N such that
there exists v ∈ U(DΛ) such that

U(k) = vϕk
Λ(v∗) for k = 1, 2, . . . .

We denote by B1
σ(U(DΛ)) the set of all coboundaries in U(DΛ). It is a subgroup

of Z1
σ(U(DΛ)). If we identify Z1

σ(U(DΛ)) with U(DΛ), we can regard B1
σ(U(DΛ))

as the set of all unitaries U in U(DΛ) that is of the form

U = vϕΛ(v∗) for some unitary v ∈ U(DΛ).

We recall that for a unitary U ∈ U(DΛ), an automorphism λ(U) of OΛ is defined
as λ(U)(Si) = USi, i = 1, . . . , n that gives rise to an element of Autσ(OΛ,DΛ).
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Lemma 5.14. For a unitary U ∈ U(DΛ), the automorphism λ(U) is of the
form λ(U) = Ad(v) for some unitary v ∈ OΛ if and only if v ∈ U(DΛ) and

U = vϕΛ(v∗).

Proof. Suppose that λ(U) = Ad(v) for some unitary v ∈ OΛ. Since λ(U) is
the identity on DΛ, v commutes with every element of DΛ so that v belongs to the
algebra DΛ by Proposition 3.3. The condition λ(U)(Si) = Ad(v)(Si), i = 1, . . . , n
is equivalent to the condition USivS∗i = vSiS

∗
i . That is also equivalent to the

condition
n∑

i=1

SivS∗i = U∗v that is nothing but U = vϕΛ(v∗).

We thus have

Proposition 5.15. For a unitary U ∈ U(DΛ), the automorphism λ(U) be-
longs to Innσ(OΛ,DΛ) if and only if U belongs to B1

σ(U(DΛ)).

Now we set
H1

σ(U(DΛ)) = Z1
σ(U(DΛ))/B1

σ(U(DΛ))

the one-cohomology group. Therefore we conclude

Theorem 5.16. Suppose that a subshift (XΛ, σ) satisfies condition (D).
There exists a natural short exact sequence:

0 → H1
σ(U(DΛ)) → Outσ(OΛ,DΛ) → Aut(XΛ) → 0

that splits. Hence we have a semidirect product:

Outσ(OΛ,DΛ) = Aut(XΛ) · U(DΛ)/B1
σ(U(DΛ)).

Proof. The above exact sequence is induced by the exact sequence in Theo-
rem 4.9 and Proposition 5.15.

6. EXAMPLES

In this section, we will present some examples of automorphisms of OΛ coming
from automorphisms of certain subshifts XΛ. In [3], Boyle–Franks–Kitchens have
studied automorphisms of one-sided topological Markov shifts. We will use some
of their results in [3].

Example 6.1. The full 2-shift Λ2.

It is known that the automorphism group Aut(X2) of the one-sided full 2-
shift X2 is the group Z/2Z (cf. [16], [3]). The non-trivial element is the flip-flop
s12 that interchanges the symbols 1 and 2. Let α12 be the automorphism of the
Cuntz algebra O2 defined by

α12(S1) = S2, α12(S2) = S1.

It is an extension of s12 and hence outer by Corollary 5.13. The outerness of
the automorphism was first proved by Archbold in [2]. The discussion has been
generalized in [12], [26] and [18].
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Example 6.2. The topological Markov shift determined by the matrix

A =

[
0 1 1
1 0 1
1 1 0

]
.

It was proved in [3] that the automorphism group Aut(XA) of the one-sided
topological Markov shift XA is isomorphic to the group S3 of all permutations of
order 3. By the calculation formula for the K0-group K0(OA) of the Cuntz-Krieger
algebra OA in [7], we know that the group K0(OA) is isomorphic to Z2⊕Z2 through
the correspondences:

[1] = (0, 0), [S1S
∗
1 ] = (1, 0), [S2S

∗
2 ] = (0, 1), [S3S

∗
3 ] = (1, 1).

Let s(ijk) ∈ S3 be the permutation given by
(

1 2 3
i j k

)
. Put

α(ijk)(S1) = Si, α(ijk)(S2) = Sj , α(ijk)(S3) = Sk.

Then α(ijk) gives rise to an automorphism of OA that is an extension of an auto-
morphism of XA induced by the permutation s(ijk) of the symbols. It is an outer
automorphism of OA by Corollary 5.13 or by [18]. Such automorphisms of OA

yields automorphisms of K0(OA) so that we see a natural isomorphism between
Aut(XA) and Aut(K0(OA)) (cf. Corollary 4.11).

Example 6.3 The full 3-shift Λ3.

Boyle-Franks-Kitchens in [3] showed that, for n > 2, the automorphism group
Aut(Xn) of the one-sided full n-shift Xn is infinite. We now treat automorphisms
of the full 3-shift X3. For k = 1, 2, . . . , let τk be an automorphism of X3 defined
by exchanging words:

τk(32 · · · 2︸ ︷︷ ︸
k times

) = 1 2 · · · 2︸ ︷︷ ︸
k times

, τk(1 2 · · · 2︸ ︷︷ ︸
k times

) = 3 2 · · · 2︸ ︷︷ ︸
k times

and τk identically acts on other words in X3. Put

ατk
(S2) = S2,

ατk
(S3) = S1P2k + S3(1− P2k),

ατk
(S1) = S3P2k + S1(1− P2k),

where P2k = S2 · · ·S2︸ ︷︷ ︸
k times

S∗2 · · ·S∗2︸ ︷︷ ︸
k times

. It is easy to see that ατk
yields an automorphism

of the Cuntz algebra O3 that is an extension of τk. The automorphisms are outer
by Corollary 5.13 or by [26], Theorem 1.

We finally remark on outerness of the automorphisms λ(u) of OΛ coming
from unitaries u of U(DΛ). Suppose that a subshift XΛ satisfies condition (I). We
denote by Pern

σ(XΛ) the set of all n periodic points of XΛ under the shift σ. The
following proposition is directly seen from Lemma 5.14.
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Proposition 6.4. For a unitary u in DΛ if there exists a point x in Pern
σ(XΛ)

for some n ∈ N, such that u(x) 6= u∗(σn−1(x))u∗(σn−2(x)) · · ·u∗(σ(x)), the au-
tomorphism λ(u) is outer in OΛ. In particular, if u is a complex number z with
modulus one such that zn 6= 1 and Pern

σ(XΛ) is not empty, then the automorphism
λ(z) defined by λ(z)(Si) = zSi is outer.

Corollary 6.5. If there exists a fixed point in XΛ for σ, the gauge action
α of OΛ is an outer action of the one dimensional torus group T.

Acknowledgements. The author would like to thank Yasuo Watatani for his sev-
eral discussions and suggestions and Yoshikazu Katayama for his useful suggestions and
discussions on unitary cocycles and coboundaries.

REFERENCES

1. H. Araki, A.L. Carey, D.E. Evans, On On+1, J. Operator Theory 12(1984), 247–
264.

2. R.J. Archbold, On the ‘flip-flop’ automorphism of C∗(S1, S2), Quart. J. Math.
Oxford Ser. (2) 30(1979), 129–132.

3. M. Boyle, J. Franks, B. Kitchens, Automorphisms of one-sided subshifts of finite
type, Ergodic Theory Dynamical Systems 10(1990), 421–449.

4. M. Boyle, J. Tomiyama, Bounded topological orbit equivalence and C∗-algebras,
J. Math. Soc. Japan 50(1998), 317–329.

5. A. Connes, A classification of injective factors, Cases II1, II∞, IIIλ, λ 6= 1. Ann. of
Math. (2) 104(1976), 73–115.

6. J. Cuntz, Simple C∗-algebras generated by isometries, Comm. Math. Phys. 57
(1977), 173–185.

7. J. Cuntz, A class of C∗-algebras and topological Markov chains. II: reducible chains
and the Ext-functor for C∗-algebras, Invent. Math. 63(1980), 25–40.

8. J. Cuntz, Automorphisms of certain simple C∗-algebras, in Quantum Fields-Algebras,
Processes, Springer Verlag, Wien–New York 1980, pp. 187–196.

9. J. Cuntz, W. Krieger, A class of C∗-algebras and topological Markov chains,
Invent. Math. 56(1980), 251–268.

10. H. Dye, On groups of measure preserving transformations. I, Amer. Math. J. 81
(1959), 119–159.

11. M. Enomoto, M. Fujii, Y. Watatani, Tensor algebras on the sub-Fock space
associated with OA, Math. Japon. 26(1981), 171–177.

12. , M. Enomoto, H. Takehana, Y. Watatani, Automorphisms on Cuntz algebras,
Math. Japon. 24(1979), 231–234.

13. D.E. Evans, Gauge actions on OA, J. Operator Theory 7(1982), 79–100.
14. D.E. Evans, The C∗-algebras of topological Markov chains, Tokyo Metropolitan

University Lecture Note, 1982.
15. T. Giordano, I. Putnam, C. Skau, Topological orbit equivalence and C∗-crossed

products, J. Reine Angew. Math. 469(1995), 51–111.
16. G.A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system,

Math. Systems Theory 3(1969), 320–375.
17. T. Kajiwara, C. Pinzari, Y. Watatani, Ideal structure and simplicity of the C∗-

algebras generated by Hilbert modules, J. Funct. Anal. 159(1998), 295–322.
18. Y. Katayama, H. Takehana, On automorphisms of generalized Cuntz algebras,

preprint, 1997.



112 Kengo Matsumoto

19. B.P. Kitchens, Symbolic Dynamics, Springer-Verlag, Berlin–Heidelberg–New York,
1998.

20. W. Krieger On ergodic flows and the isomorphism of factors, Math. Ann. 223
(1976), 19–70.

21. D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge
University Press, Cambridge 1995.

22. K. Matsumoto, On C∗-algebras associated with subshifts, Internat. J. Math. 8
(1997), 357–374.

23. K. Matsumoto, K-theory for C∗-algebras associated with subshifts, Math. Scand.
82(1998), 237–255.

24. K. Matsumoto, Dimension groups for subshifts and simplicity of the associated
C∗-algebras, J. Math. Soc. Japan, to appear

25. K. Matsumoto, Relations among generators of C∗-algebras associated with sub-
shifts, Internat. J. Math. 10(1999), 385–405.

26. K. Matsumoto, J. Tomiyama, Outer automorphisms on Cuntz algebras, Bull.
London Math. 25(1993), 64–66.

27. J. Tomiyama, Topological full groups and structure of normalizers in transformation
group C∗-algebras, Pacific J. Math. 173(1996), 571–583.

28. D. Voiculescu, Symmetries of some reduced free product C∗-algebras, Lecture
Notes in Math. 1132(1985), 556–588.

29. R.F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98(1973),
120–153; erratum, Ann. of Math. (2) 99(1974), 380–381.

KENGO MATSUMOTO
Department of Mathematics

Joetsu University of Education
Joetsu 943–8512

JAPAN

E-mail: matsu@juen.ac.jp

Current address:

Department of Mathematical Sciences
Yokohama City University
22–2 Seto, Kanazawa-ku
Yokohama, 236–0027

JAPAN

E-mail: matsu@math.yokohama-cu.ac.jp

Received May 25, 1998; revised May 14, 1999.


